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In this paper, we establish a dual Laplace representation for the Jacobi-Cherednik kernel, which we let's use its kernel to define a pair of dual Laplace transforms Y α,β and its transposed t Y α,β . Then we show that these transforms and the Opdam-Cherednik transform realize some isomorphisms between generalized and extended Schwartz spaces. As a consequence, we get inversion formulas involving Y α,β and t Y α,β .

Introduction

We consider the differential-difference operator T (α,β) , called Jacobi-Cherednik operator (sometimes named Dunkl-Cherednik operator) and defined for f ∈ C 1 (R), by

T (α,β) f (x) := d dx f (x) + (2α + 1) coth x + (2β + 1) tanh x f (x) -f (-x) 2 -ρf (-x),
for x ∈ R {0}, and T (α,β) f (0) := 2(α + 1)

d dx f (0) -ρf (0), where α ≥ β ≥ - 1 2 , α = - 1 2 , 
and ρ := α + β + 1 (see [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF][START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF][START_REF] Mejjaoli | Spectral theorems associated with the Jacobi-Cherednik operator[END_REF][START_REF] Andersen | Real Paley-Wiener theorems and Roe's theorem associated with the Opdam-Cherednik transform[END_REF]). Using Cherednik's notation, T (α,β) is written in the form

T (k 1 , k 2 )f (x) := d dx f (x) + 2k 1 1 -e -2x + 4k 2 1 -e -4x (f (x) -f (-x)) -(k 1 + 2k 2 )f (x), with α = k 1 + k 2 - 1 2 and β = k 2 - 1 2 .
So the Jacobi-Cherednik operators T (α,β) correspond to the one-dimensional Cherednik operators for the root system BC 1 , and they are also included in the family of Cherednik type operators considered in [START_REF] Mourou | Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line[END_REF] (For more details, see [START_REF] Opdam | Harmonic analysis for certain representations of grade Hecke algebras[END_REF][START_REF] Opdam | Lectures notes on Dunkl operators for real and complex reflection groups[END_REF][START_REF] Schapira | Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel[END_REF][START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF][START_REF] Mourou | Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line[END_REF][START_REF] Trimèche | Harmonic analusis associated with the Cherednik operators and the Heckman-Opdam theory[END_REF][START_REF] Trimèche | Positivity of the transmutation operators associated with a Cherednik type operator on the real line[END_REF][START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF]).

For every λ ∈ C, let us denote by G (α,β) λ the unique solution of the eigenvalue problem

T (α,β) f (x) = iλf (x), f (0) = 1.
Note that from [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF] (see also [START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF][START_REF] Mejjaoli | Spectral theorems associated with the Jacobi-Cherednik operator[END_REF][START_REF] Andersen | Real Paley-Wiener theorems and Roe's theorem associated with the Opdam-Cherednik transform[END_REF]), G (α,β) λ can be expressed in terms of Jacobi functions. The Opdam-Cherednik transform F T (f ) of a function f ∈ C c (R) (the space of continuous functions on R with compact support) is defined by

∀λ ∈ C, F T (f )(λ) := R f (x)G (α,β) λ (-x)A α,β (x) dx,
where A α,β (x) is given by [START_REF] Andersen | Real Paley-Wiener theorems and Roe's theorem associated with the Opdam-Cherednik transform[END_REF]. The inverse Opdam-Cherednik transform, for a suitable function g on R, is given by

∀x ∈ R, F -1 T (g)(x) := R g(λ)G (α,β) λ (x) dν(λ),
where dν is the spectral measure associated with the Jacobi-Cherednik operator T (α,β) , given by [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF] and [START_REF] Ben Abdallah | Dual Laplace integral transforms associated to the Jacobi-Dunkl kernel[END_REF].

The purpose of the present paper is firstly to establish for the Jacobi-Cherednik kernel G (α,β) λ (x), the following dual Laplace representation:

∀λ ∈ R, ∀x ∈ R, G (α,β) λ (x) = 1 2π R N α,β (λ, µ)e iµx dµ,
where N α,β (λ, µ) := 2 1 + µ λ + iρ b α,β (λ, µ), and b α,β (λ, µ) is the kernel defined by [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF] (see also [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]). This is analogous to the corresponding result of [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF] for Jacobi functions, and of [START_REF] Ben Abdallah | Dual Laplace integral transforms associated to the Jacobi-Dunkl kernel[END_REF] for Jacobi-Dunkl kernels (see [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF]). Then, by using the kernel N α,β (λ, µ), we construct a pair of dual integral transforms which we will call them the dual Laplace transform, denoted Y α,β , and its transposed t Y α,β . In particular, the Jacobi-Cherednik kernel G (α,β) λ (x) can be written as

∀λ ∈ R, ∀x ∈ R, G (α,β) λ (x) = Y α,β e ix. (λ).
Also, the transform t Y α,β relates the inverse of the usual Fourier transform F -1 u and the inverse Opdam-Cherednik transform F -1

T

. More precisely, we have on S(R) the space of C ∞ -functions g on R, which are rapidly decreasing together with their derivatives, i.e. such that

∀m, n ∈ N := {0, 1, 2, 3, ...}, sup x∈R 0≤k≤n (1 + x 2 ) m d k dx k g(x) < +∞ ,
the following equality:

F -1 T (g) = F -1 u • t Y α,β (g), g ∈ S(R).
Afterwards, we study and caracterize some functional spaces of Schwartz type, on which the transforms F T , Y α,β and t Y α,β are topological isomorphisms. This relies on estimates of G (α,β) λ (x) and ϕ (α,β) λ (x), and on some similar techniques introduced in [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF][START_REF] Anker | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan[END_REF]. As a consequence, we derive inversion formulas involving the transforms Y α,β and t Y α,β .

We conclude this introduction with a summary of the content of this paper. In Section 2, we state necessary definitions and results regarding the Jacobi functions, the Jacobi operator, the Jacobi transform, the Jacobi-Cherednik kernels, The Jacobi-Cherednik operator, and the Opdam-cherednik transform. In the third section, we give a dual Laplace representation of G (α,β) λ (x) and some properties of the associated kernel N α,β (λ, µ), which is expressed in terms of b α,β (λ, µ), the kernel relative to the dual Mehler representation of ϕ (α,β) λ (x) and given in [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]. These properties are based on estimates of the functions G (α,β) λ (x) and ϕ (α,β) λ (x). This allows us to define and study in Section 4, a pair of dual Laplace transforms Y α,β and its transposed t Y α,β . A duality relation and a relationship between the inverse Opdam-Cherednik transform and t Y α,β , are also given. In the last section we establish for the transforms F T , Y α,β , t Y α,β , and for other additional transforms, topological isomorphisms on some generalized and extended Schwartz spaces. Finally, we derive from these isomorphisms, inversion formulas.

In the remainder of this paper we suppose that α ≥ β ≥ -

1 2 with α = - 1 2 (hence ρ = α + β + 1 > 0).

Preliminaries

We recall that from [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Flensted-Jensen | The convolution structure for Jacobi function expansions[END_REF][START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF][START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF], the Jacobi function ϕ

(α,β) λ , λ ∈ C, of index (α, β), is defined by ∀x ∈ R, ϕ (α,β) λ (x) := 2 F 1 ρ + iλ 2 , ρ -iλ 2 ; α + 1; -(sinh x) 2 ,
with 2 F 1 is the Gauss hypergeometric function given by (see [START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF] Rainville | Special functions[END_REF][START_REF] Luke | The special functions and their approximations[END_REF][START_REF] Luke | Mathematical functions and their approximations[END_REF][START_REF] Temme | Special functions: An introduction to the classical functions of mathematical physics[END_REF][START_REF] Dunkl | Orthogonal polynomials of several variables[END_REF])

2 F 1 (a, b; c; z) := +∞ n=0 (a) n (b) n (c) n n! z n , a, b ∈ C, c ∈ C {0, -1, -2, ...}, |z| < 1.
Here

(a) n := a(a + 1)...(a + n -1) if n ≥ 1, 1 if n = 0,
denotes the Pochhammer symbol or the shifted factorial. Note that (for a > 0),

(a) n = Γ(a + n) Γ(a) .
For each λ ∈ C, the function ϕ

(α,β) λ (x) is the unique even C ∞ -solution on R of the differ- ential equation      ∆ α,β u(x) = -(λ 2 + ρ 2 )u(x), x > 0, u(0) = 1, u (0) = 0,
where ∆ α,β is the Jacobi operator on ]0, +∞[, given by

∆ α,β u(x) := d 2 dx 2 u(x) + (2α + 1) coth x + (2β + 1) tanh x d dx u(x).
It can also be written in the form

∆ α,β u(x) = 1 A α,β (x) d dx A α,β (x) d dx u(x) , with A α,β (x) := 2 2ρ (sinh |x|) 2α+1 (cosh x) 2β+1 , x ∈ R. (1) 
It is shown in [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF], that the function ϕ (α,β) λ (x) checks the following estimates:

• ∀n ∈ N, ∃ k n > 0; ∀λ ∈ C, ∀x ≥ 0, d n dx n ϕ (α,β) λ (x) ≤ k n (1 + x)(1 + |λ|) n e (| λ|-ρ)x . ( 2 
)
• ∃ c > 0; ∀n ∈ N, ∀λ ∈ C, ∀x ≥ 0,

d n dλ n ϕ (α,β) λ (x) ≤ c(1 + x) n+1 e (| λ|-ρ)x .
The Jacobi transform of a function g

∈ L 1 ([0, +∞[, A α,β (x)dx) is defined by ∀λ ∈ R, F α,β (g)(λ) := +∞ 0 g(x)ϕ (α,β) λ (x)A α,β (x) dx. (3) 
Its inverse transform, for a suitable function h on R, is given by

∀x ∈ R, F -1 α,β (h)(x) := +∞ 0 h(λ)ϕ (α,β) λ (x) dλ 2π|c(λ)| 2 ,
where c is the Harish-Chandra function given by (see e.g. [START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF])

c(λ) := 2 ρ-iλ Γ(α + 1)Γ(iλ) Γ ρ+iλ 2 Γ α-β+1+iλ 2 , λ ∈ C (iN). (4) 
From [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF], we have

1 |c(λ)| 2 ∼ π 2 4α+2β+1 (Γ(α + 1)) 2 |λ| 2α+1 , as |λ| -→ +∞, (5) 
and

1 |c(λ)| 2 ∼ Γ( ρ 2 )Γ( α-β+1 2 ) 2 ρ Γ(α + 1) 2 |λ| 2 , as λ -→ 0.
For more details, the interested reader in the study of the theory of Jacobi functions, can see [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Flensted-Jensen | The convolution structure for Jacobi function expansions[END_REF][START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF][START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF][START_REF] Kalla | Integrals of Jacobi functions[END_REF][START_REF] Koornwinder | Jacobi functions and analysis on noncompact semisimple Lie groups[END_REF][START_REF] Salem | Convolution semigroups and central limit theorem associated with a dual convolution structure[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Zh.-K. Li | Some representations of translations of the product of two functions for Hankel transforms and Jacobi transforms[END_REF][START_REF] Grundmann | Moment functions and central limit therorem for Jacobi hypergroups on [0, +∞[END_REF][START_REF] Platonov | Fourier-Jacobi harmonic analysis and some problems of approximation of functions on the half-axis in L 2 metric: Jackson's type direct theorems[END_REF]. From [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], the Jacobi function ϕ (α,β) λ (x), possesses the following dual Mehler reprentation:

∀λ ∈ R, ∀x ≥ 0, ϕ (α,β) λ (x) = 2 π +∞ 0 b α,β (λ, µ) cos(µx) dµ, ( 6 
)
where

b α,β (λ, µ) := F 0 ϕ (α,β) λ (µ), (7) 
with F 0 is the Fourier-cosine transform defined on L 1 ([0, +∞[, dx) by (see [START_REF] Erdélyi | Table of integral transforms[END_REF])

∀λ ∈ R, F 0 (f )(λ) := +∞ 0 f (x) cos(λx) dx.
We also remember that the usual Fourier transform of a function f ∈ L 1 (R, dx) is defined by

∀λ ∈ R, F u (f )(λ) := R f (x)e -iλx dx, ( 8 
)
and the inverse Fourier transform of a function g

∈ L 1 (R, dx) is defined by ∀x ∈ R, F -1 u (g)(x) := 1 2π R g(λ)e iλx dx.
Note that the functions µ

-→ b α,β (λ, µ) (λ ∈ R), and λ -→ b α,β (λ, µ) (µ ∈ R)
, are even and nonnegative on R. Moreover, for all λ ∈ R the function µ -→ b α,β (λ, µ) ∈ S(R) (see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]).

We state now some properties of the Jacobi-Cherednik kernel G (α,β) λ (x), which is expressed in terms of Jacobi functions as (see [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF][START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF][START_REF] Mejjaoli | Spectral theorems associated with the Jacobi-Cherednik operator[END_REF][START_REF] Andersen | Real Paley-Wiener theorems and Roe's theorem associated with the Opdam-Cherednik transform[END_REF])

∀λ ∈ C, ∀x ∈ R, G (α,β) λ (x) = ϕ (α,β) λ (x) + ρ + iλ 4(α + 1) sinh(2x)ϕ (α+1,β+1) λ (x). Since d dx ϕ (α,β) λ (x) = - λ 2 + ρ 2 4(α + 1) sinh(2x)ϕ (α+1,β+1) λ (x), so G (α,β) λ
(x) can also be written as

G (α,β) λ (x) = ϕ (α,β) λ (x) - 1 ρ -iλ d dx ϕ (α,β) λ (x), λ = -iρ. (9) 
Note that (see [START_REF] Mourou | Transmutation operators and Paley-Wiener theorem associated with a Cherednik type operator on the real line[END_REF])

∀x ∈ R, G (α,β) -iρ (x) = 1 + 2ρ A α,β (x) x 0 A α,β (t) dt = 1 + ρ 2(α + 1) sinh(2x)ϕ (α+1,β+1) -iρ (x).
For all m, n ∈ N, there exists C m,n > 0 such that for all λ ∈ C and x ∈ R, we have (see [START_REF] Schapira | Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel[END_REF][START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF])

∂ m+n ∂λ m ∂x n G (α,β) λ (x) ≤ C m,n (1 + |x|) m+1 (1 + |λ|) n e (| λ|-ρ)|x| . ( 10 
)
In particular, in the cases

α > β = - 1 2 and α = β > - 1 2
, and for λ ∈ R, it is shown in [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF] that

G (α,β) λ (x) ≤ 1 if x ≤ 0, 2 if x ≥ 0. The Opdam-Cherednik transform F T (f ) of a function f ∈ C c (R) is defined by ∀λ ∈ C, F T (f )(λ) := R f (x)G (α,β) λ (-x)A α,β (x) dx.
F T is related to the Jacobi transform F α,β on C c (R), by (see e.g. [START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF])

∀λ ∈ C, Ff (λ) = 2F α,β (f e )(λ) + 2(ρ + iλ)F α,β (J(f o ))(λ), (11) 
where f e (resp. f o ) is the even (resp. odd) part of f , and for x ∈ R,

J(f o )(x) := x -∞ f o (y) dy.
The inverse Opdam-Cherednik transform of a function g ∈ L 1 (R, dν), is given by

∀x ∈ R, F -1 T (g)(x) := R g(λ)G (α,β) λ (x) dν(λ), ( 12 
)
where dν(λ)

:= 1 4 1 + i ρ λ dλ 2π|c(λ)| 2 . ( 13 
)
We end this section with the expression of the square of the Jacobi-Cherednik operator in terms of the Jacobi operator, and also of the Jacobi-Dunkl operator (see [START_REF] Chouchane | Positivity of the intertwining operator and harmonic analysis associated with the Jacobi-Dunkl operator on R[END_REF]), as follows:

T (α,β) 2 f (x) = ∆ α,β f (x) -2 α -β (sinh x) 2 + 2(2β + 1) (sinh(2x)) 2 f (x) -f (-x) 2 + ρ 2 f (x) (14) = Λ 2 α,β f (x) + ρ 2 f (x), with f ∈ C 2 (R) and x ∈ R.
Remarks 2.1.

By taking

A(x) = (sinh |x|) 2α+1 (cosh x) 2β+1 (if we omit the constant 2 2ρ
), the mea- [START_REF] Anker | Opdam's hypergeometric functions: product formula and convolution structure in dimension 1[END_REF][START_REF] Mejjaoli | Spectral theorems associated with the Jacobi-Cherednik operator[END_REF][START_REF] Andersen | Real Paley-Wiener theorems and Roe's theorem associated with the Opdam-Cherednik transform[END_REF] for the definition of the inverse Opdam-Cherednik transform, must be multiplied by 2 2ρ . [START_REF] Erdélyi | Higher transcendental functions[END_REF], the integer m in the formula (3) of [1, p. 48], must be replaced by m + 1. Also, the integers m and n in the formula (2.3) of [24, p. 418], must be replaced respectively by n and m + 1. [START_REF] Flensted-Jensen | The convolution structure for Jacobi function expansions[END_REF], the formula (2.1) of [24, p. 418], is wrong.

sure dσ := 1 - ρ iλ dλ 8π|c(λ)| 2 given in

According to

According to

A dual Laplace representation of the Jacobi-Cherednik kernel

We present in the following theorem an integral representation of Laplace type of the Jacobi-Cherednik kernel G (α,β) λ (x) with respect to the dual variable (λ). 

∀x ∈ R, G (α,β) λ (x) = 1 2π R N α,β (λ, µ) e iµx dµ, ( 15 
)
where

N α,β (λ, µ) := 2 1 + µ λ + iρ b α,β (λ, µ), ( 16 
)
and b α,β is given by the relation [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF].

Proof.

Let λ ∈ R (λ = -iρ). Using the relation ( 9) and Mehler's dual representation of the function ϕ (α,β) λ (x) given by the relation ( 6), we have

G (α,β) λ (x) = ϕ (α,β) λ (x) - 1 ρ -iλ d dx ϕ (α,β) λ (x) = 2 π +∞ 0 b α,β (λ, µ) cos(µx) dµ - 1 ρ -iλ d dx 2 π +∞ 0 b α,β (λ, µ) cos(µx) dµ
According to [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF], µ -→ b α,β (λ, µ) ∈ S * (R) (the subspace of S(R) constituted by even functions). Then

G (α,β) λ (x) = 2 π +∞ 0 b α,β (λ, µ) cos(µx) dµ - 1 ρ -iλ 2 π +∞ 0 d dx [b α,β (λ, µ) cos(µx)] dµ = 2 π +∞ 0 b α,β (λ, µ) cos(µx) dµ + 1 ρ -iλ 2 π +∞ 0 µ b α,β (λ, µ) sin(µx) dµ = 1 π R b α,β (λ, µ) e iµx dµ - 1 ρ -iλ i π R µ b α,β (λ, µ) e iµx dµ = R 1 π 1 - iµ ρ -iλ b α,β (λ, µ) e iµx dµ = 1 π R 1 + µ λ + iρ b α,β (λ, µ) e iµx dµ = 1 2π R N α,β (λ, µ) e iµx dµ.
Some properties of the kernel N α,β are given in the following theorem:

Theorem 3.2.
The kernel N α,β satisfies the following results:

1. ∀λ ∈ R, ∀µ ∈ R, N α,β (-λ, -µ) = N α,β (λ, µ). ( 17 
) 2. ∀λ ∈ R, 1 2π R N α,β (λ, µ) dµ = 1.
3. The kernel N α,β (λ, µ) can be extended to an analytic function on the set

U := (λ, µ) ∈ C 2 ; | λ| + | µ| < ρ . 4. For all λ ∈ Ω := {z ∈ C ; | z| < ρ}, the function µ -→ N α,β (λ, µ) is in S(R).
5. For all λ ∈ Ω and µ ∈ R, we have

N α,β (λ, µ) = F u G (α,β) λ (µ), ( 18 
)
where F u is the usual Fourier transform given by (8).

6. For all m, n ∈ N, there exists k m,n > 0 such that for all (λ, µ) ∈ U , we have

µ m ∂ n ∂µ n N α,β (λ, µ) ≤ k m,n (1 + |λ|) m ρ -| λ| -| µ| n+2 . ( 19 
)
In particular, N α,β is bounded on R 2 .

Proof.

1. It is obvious from [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF].

2. For all λ ∈ R,

1 2π R N α,β (λ, µ) dµ = G (α,β) λ (0) = 1. 3. Let λ, µ ∈ R. We have b α,β (λ, µ) = +∞ 0 ϕ (α,β) λ (x) cos(µx) dx = F 0 ϕ (α,β) λ (µ),
and Then

N α,β (λ, µ) = 2b α,β (λ, µ) + 2 λ + iρ +∞ 0 ϕ (α,β) λ (x)µ cos(µx) dx.
N α,β (λ, µ) = 2b α,β (λ, µ) - 2 λ + iρ +∞ 0 d dx ϕ (α,β) λ (x) sin(µx) dx.
By using again (2), there exists k 1 > 0 such that for all λ, µ ∈ C and x ≥ 0, we have

d dx ϕ (α,β) λ (x) sin(µx) ≤ k 1 (1 + x)(1 + |λ|)e (| λ|+| µ|-ρ)x .
Hence we deduce that It is also true for b α,β (λ, µ) according to [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]. So the kernel N α,β (λ, µ) is well defined and analytic on the set U .

4. We know that for all λ ∈ Ω, the even function µ -→ b α,β (λ, µ) is in S * (R) (see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF]). Then according to [START_REF] Gallardo | Positivity of the Jacobi-Cherednik intertwining operator and its dual[END_REF], for all λ ∈ Ω, the function µ -→ N α,β (λ, µ) is in S(R).

5. Since N α,β (λ, .) ∈ S(R), then the relation ( 15) gives (18).

6. Since N α,β (λ, .) ∈ S(R), then by [START_REF] Kalla | Integrals of Jacobi functions[END_REF] we get

µ m ∂ n ∂µ n N α,β (λ, µ) = µ m F u (-ix) n G (α,β) λ (x) (µ) = (-1) n i n-m F u d m dx m x n G (α,β) λ (x) (µ) = (-1) n i n-m m j=max(0,m-n) m!n! j!(m -j)!(n -m + j)! × F u x n-m+j d j dx j G (α,β) λ (x) (µ).
From [START_REF] Erdélyi | Higher transcendental functions[END_REF] 

If a > 1 and (λ, µ) ∈ R × - ρ(a 2 -1) a , ρ(a 2 -1) a , or a = 1 and (λ, µ) ∈ (x, y) ∈ R 2 ; x ≥ 0, -2x ≤ y ≤ 0 ∪ (x, y) ∈ R 2 ; x ≤ 0, 0 ≤ y ≤ -2x , then |N α,β (λ, µ)| ≤ 2a b α,β (λ, µ).
Since F u is an automorphism of S(R), so from the property 4. of the previous theorem and the relation [START_REF] Kalla | Integrals of Jacobi functions[END_REF], we can state the following result:

Corollary 3.4. For all λ ∈ Ω, the function x -→ G (α,β) λ (x) belongs to S(R).

Dual Laplace transforms

In this section, by using the dual Laplace representation of the function G (α,β) λ (x) given in Theorem 3.1, we shall define integral transforms with the kernel N α,β , which we call the dual Laplace transform and its transposed. Next we give some properties of these transforms. Definition 4.1.

The dual Laplace transform denoted by Y α,β

, is defined on C b (R) (the space of continous and bounded functions on R), by

∀λ ∈ R, Y α,β (f )(λ) := 1 2π R N α,β (λ, µ)f (µ) dµ, f ∈ C b (R).

The transposed of Y α,β denoted by

t Y α,β , is defined for g ∈ L 1 (R, dν), by ∀µ ∈ R, t Y α,β (g)(µ) := R N α,β (λ, µ)g(λ) dν(λ),
where dν is given by [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF].

Remarks 4.2.

1. From [START_REF] Flensted-Jenson | Jacobi functions: The addition formula and the positivity of the dual convolution structure[END_REF], we can write for λ, x ∈ R,

G (α,β) λ (x) = Y α,β e ix. (λ). ( 20 
)
2. According to [START_REF] Grundmann | Moment functions and central limit therorem for Jacobi hypergroups on [0, +∞[END_REF] and [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF], we obtain for f ∈ C b (R) and g ∈ L 1 (R, dν),

Y α,β (f ) = Y α,β f and t Y α,β (g) = t Y α,β g , with h (t) = h(-t), t ∈ R.
3. Let f ∈ L 1 (R, dx) and g ∈ L 1 (R, dν). We deduce easily from the properties of the kernel N α,β , that the functions λ -→ Y α,β (f )(λ) and µ -→ t Y α,β (g)(µ), are well defined and analytic on the strip Ω.

Proposition 4.3. 

1. For f ∈ C b (R), the function Y α,β (f ) is continuous on R. 2. If f ∈ L 1 (R, dx) and g ∈ L 1 (R,
Y α,β (f ) ∞ ≤ k 0,0 2πρ 2 f 1 and t Y α,β (g) ∞ ≤ k 0,0 ρ 2 g 1,ν ,
where k 0,0 is the constant given by [START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF],

h ∞ := sup x∈R |h(x)|, h ∈ C b (R), f 1 := R |f (µ)| dµ, and g 1,ν := R |g(λ)| dν(λ).
3. For g in S(R), the function t Y α,β (g) belongs to S(R).

Proof.

1. The result is derived from the continuity of λ -→ N α,β (λ, µ) and the fact that µ -→ N α,β (λ, µ) ∈ S(R).

2. It suffices to use the theorem of continuity under the integral sign, and the inequality

∀λ ∈ R, ∀µ ∈ R, |N α,β (λ, µ)| ≤ k 0,0 ρ 2 .
3. The relations ( 19), [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF], and (4) give the result.

We express now the transforms Y α,β and t Y α,β in terms of the the dual Mehler transform χα,β and of its transposed t χα,β defined respectively on C b, * (R) (the space of even, continuous and bounded functions on R), and on L 1 [0, +∞[, dλ 2π|c(λ)| 2 , by (see [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF])

∀λ ∈ R, χα,β (u)(λ) := 2 π +∞ 0 b α,β (λ, µ)u(µ) dµ,
and

∀µ ∈ R, t χα,β (v)(µ) := +∞ 0 b α,β (λ, µ)v(λ) dλ 2π|c(λ)| 2 . Proposition 4.4. 1. If f ∈ C(R) such that y -→ yf (y) is bounded on R, then the function Y α,β (f ) is
continuous and bounded on R, and for all λ ∈ R, we have

Y α,β (f )(λ) = χα,β (f e )(λ) + 1 λ + iρ χα,β (yf o (y))(λ),
where f e (resp. f o ) is the even (resp. odd) part of f .

2. If g ∈ L 1 (R, dν), the function x -→ g o (x)
x is even and integrable on [0, +∞[ with respect to the measure dλ 2π|c(λ)| 2 , and for all µ ∈ R, we have

t Y α,β (g)(µ) = t χα,β (g e )(µ) + (µ + iρ) t χα,β g o (x) x (µ),
where g e (resp. g o ) is the even (resp. odd) part of g.

Proof.

1. Let f = f e + f o ∈ C(R) such that y -→ yf (y) is bounded on R, and λ ∈ R.
Then f is also bounded on R and we have

Y α,β (f )(λ) = 1 π R b α,β (λ, µ)(f e (µ) + f o (µ)) 1 + µ λ + iρ dµ = 1 π R b α,β (λ, µ)f e (µ) dµ + 1 λ + iρ 1 π R b α,β (λ, µ)µf o (µ) dµ = χα,β (f e )(λ) + 1 λ + iρ χα,β (yf o (y))(λ).
2. Let g = g e + g o ∈ L 1 (R, dν) and µ ∈ R. We have

t Y α,β (g)(µ) = 1 2 R b α,β (λ, µ)(g e (λ) + g o (λ)) 1 + µ λ + iρ 1 + i ρ λ dλ 2π|c(λ)| 2 = 1 2 R b α,β (λ, µ)(g e (λ) + g o (λ)) 1 + µ + iρ λ dλ 2π|c(λ)| 2 = 1 2 R b α,β (λ, µ)g e (λ) dλ 2π|c(λ)| 2 + µ + iρ 2 R b α,β (λ, µ) g o (λ) λ dλ 2π|c(λ)| 2 = t χα,β (g e )(µ) + (µ + iρ) t χα,β g o (x) x (µ).
Then we establish a duality relation between the transforms Y α,β and t Y α,β .

Proposition 4.5.

For all f ∈ L 1 (R, dµ) and g ∈ L 1 (R, dν), we have the following duality relation:

R Y α,β (f )(λ)g(λ) dν(λ) = 1 2π R f (µ) t Y α,β (g)(µ) dµ. ( 21 
)
Proof.

From [START_REF] Koornwinder | A new proof of a Paley-Wiener type theorem for the Jacobi transform[END_REF],

∀λ ∈ R, ∀µ ∈ R, |N α,β (λ, µ)| ≤ k 0,0 ρ 2 .
So the relation ( 21) is obtained by using Definition 4.1, and Fubini's theorem.

We can state now a relationship between F -1 T , F -1 u and t Y α,β as follows:

Theorem 4.6. For all g ∈ S(R), we have

F -1 T (g) = F -1 u • t Y α,β (g).
Proof.

Let f ∈ C b (R) and g ∈ S(R). From ( 19) we obtain for λ, µ ∈ R,

|N α,β (λ, µ)f (µ)g(λ)| = (1 + µ 2 )N α,β (λ, µ) |f (µ)||g(λ)| 1 1 + µ 2 ≤ f ∞ ρ -2 k 0,0 + k 2,0 (1 + |λ|) 2 |g(λ)| 1 1 + µ 2 .
Using in addition the relations ( 13) and ( 5), we show that ( 21) is also valid for

f ∈ C b (R) and g ∈ S(R). If we take f (µ) = e iµx , x ∈ R, we get R Y α,β (e ix. )(λ)g(λ) dν(λ) = 1 2π R t Y α,β (g)(µ)e iµx dµ.
Now to finish the proof, it suffices to use ( 20) and ( 12).

Isomorphisms on Schwartz type spaces

In this section we shall define some functional spaces on which we can invert the operators Y α,β and t Y α,β . We begin by establishing some topological isomorphisms between (generalized and extended) Schwartz spaces. Here our appraoch needs some similar techniques introduced in [START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF][START_REF] Anker | The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan[END_REF]. Let ε ≥ 0.

Notations.

We denote by

• S 0 (R), the subspace of S(R) consisting of functions f satisfying ∀n ∈ N, d n dx n f (0) = 0.

• S ⊥ (R), the subspace of S(R) consisting of functions f satisfying ∀n ∈ N, R

x n f (x) dx = 0.

• S ε (R), the generalized Schwartz space defined by

S ε (R) := (cosh x) -ερ S(R).
The topology of this space is given by the semi-norms P ε m,n , (m, n) ∈ N 2 , where

P ε m,n (f ) := sup x∈R 0≤k≤n (cosh x) ερ (1 + x 2 ) m d k dx k f (x) < +∞.
• S ε 0 (R), the subspace of S ε (R) defined by S ε 0 (R) := (cosh x) -ερ S 0 (R).

• Ω ε := {λ ∈ C ; | λ| ≤ ερ}.

• H(Ω ε ), the space of functions h that are analytic in the interior of Ω ε and such that h together with all its derivatives extend continuously to Ω ε and satisfy

∀ (m, n) ∈ N 2 , τ ε m,n (h) := sup λ∈Ωε (1 + |λ|) m d n dλ n h(λ) < +∞.
• H ⊥ (Ω ε ), the subspace of H (Ω ε ), consisting of functions h satisfying

∀n ∈ N, R λ n h(λ) dλ = 0. • H u (Ω ε ), the subspace of H (Ω ε ) consisting of functions h satisfying ∀n ∈ N, R u n (λ)h(λ) dν(λ) = 0, where ∀λ ∈ R, u n (λ) := R N α,β (λ, µ)µ n dµ. ( 22 
)
• H * ,v (Ω ε ), the subspace of H (Ω ε ) consisting of even functions h satisfying ∀n ∈ N, 

Opdam-Cherednik transform on generalized and extended Schwartz spaces

We recall from [START_REF] Ben Abdallah | Dual Laplace integral transforms associated to the Jacobi-Dunkl kernel[END_REF] (see also [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Bloom | Fourier transforms of Schwartz functions on Chébli-Trimèche hypergroups[END_REF]), that the usual Fourier transform F u realizes isomorphisms on generalized and extended Schwartz spaces as follows:

Proposition 5.1.

The usual Fourier transform F u is a topological isomorphism from

1. S ε (R) onto H (Ω ε ).
2. S ⊥ (R) onto S 0 (R).

3. S 0 (R) onto S ⊥ (R).

4. S ε 0 (R) onto H ⊥ (Ω ε ).
Also it is shown in [START_REF] Flensted-Jenson | Paley-Wiener type theorems for a differential operator connected with symetric spaces[END_REF][START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Ben Abdallah | Dual Laplace integral transforms associated to the Jacobi-Dunkl kernel[END_REF], with S ε+1 * (R) (resp. H * (Ω ε ), S ε+1 * ,0 (R)) denotes the subspace of even functions of S ε+1 (R) (resp. H (Ω ε ), S ε+1 0 (R)), that the Jacobi transform F α,β given by (3), satisfies the following result:

Proposition 5.2. The Jacobi transform F α,β is a topological isomorphism from 1. S ε+1 * (R) onto H * (Ω ε ). 2. S ε+1 * ,0 (R) onto H * ,v (Ω ε ).
This allows us to state for the Opdam-Cherednik transform F T , the following theorem:

Theorem 5.3. The Opdam-Cherednik transform F T is a topological isomorphism from 1. S ε+1 (R) onto H (Ω ε ). 2. S ε+1 0 (R) onto H u (Ω ε ).
Proof.

1. Let f = f e + f o ∈ S ε+1 (R),
where f e (resp. f o ) is the even (resp. odd) part of f . We put

g 1 = F α,β (f e ) ∈ H * (Ω ε ), g 2 = F α,β (J(f o )) ∈ H * (Ω ε ), and g(λ) = 2g 1 (λ) + 2(ρ + iλ)g 2 (λ), λ ∈ Ω ε .
Then by [START_REF] Erdélyi | Higher transcendental functions[END_REF] and Proposition 5.2,

F T f = g ∈ H (Ω ε ). If g = g e + g o ∈ H (Ω ε ). There exist f 1 , f 2 ∈ S ε+1 * (R) such that F α,β (f 1 ) = g e and F α,β (f 2 )(λ) = g o (λ) λ . If we take f = 1 2 (f 1 + iρf 2 ) - i 2 d dx f 2
, we obtain by [START_REF] Erdélyi | Higher transcendental functions[END_REF],

f ∈ S ε+1 (R) and F T f (λ) = g(λ), λ ∈ Ω ε .
2. By using the inversion formula for F T which is a topological isomorphism from S ε+1 (R) onto H (Ω ε ), we get for all f ∈ S ε+1 (R) and n ∈ N,

d n dx n f (0) = R F T f (λ) d n dx n G (α,β) λ (x) | x=0 dν(λ).
From ( 15) and ( 22), we obtain

d n dx n G (α,β) λ (x) | x=0 = i n 2π u n (λ). Thus d n dx n f (0) = i n 2π R u n (λ)F T f (λ) dν(λ),
and we conclude that f ∈ S ε+1 0 (R) if and only if F T f ∈ H u (Ω ε ).

Inversions formulas

From Theorem 4.6, the transform t Y α,β is expressed in terms of the inverse Opdam-Cherednik and Fourier transforms F -1 T and F u . Similarly, we will establish for the dual Laplace transform Y α,β a relationship involving the inverse Fourier and Opdam-Cherednik transforms F -1 u and F T . Then we obtain for these transforms isomorphisms on the extended Schwartz spaces H (Ω ε ) , H ⊥ (Ω ε ), and H u (Ω ε ). As a consequence, we get inversion formulas involving additional operators. For that, we start by introducing the following operators:

• A α,β (f )(x) := A α,β (x)f (x). • M 0 (f ) := F u • A α,β • F -1 u (f ). • M T (f ) := F T • A α,β • F -1 T (f ).
These operators realize the following isomorphisms:

Proposition 5.4. For ε ≥ 2,

1.

A α,β is a topological isomorphism from S ε 0 (R) onto S ε-2 0 (R).

2. M 0 is a topological isomorphism from H ⊥ (Ω ε ) onto H ⊥ (Ω ε-2 ).

3. M T is a topological isomorphism from H u (Ω ε ) onto H u (Ω ε-2 ).

Proof.

1. and 2. are shown in [START_REF] Salem | Mehler integral transforms associated with Jacobi functions with respect to the dual variable[END_REF][START_REF] Ben Abdallah | Dual Laplace integral transforms associated to the Jacobi-Dunkl kernel[END_REF], and 3. is a consequence of the equality

M T = F T • A α,β • F -1
T , the result of 1. and Theorem 5.3, 2.

Then, we eatablish for the transforms Y α,β and t Y α,β , relationships involving Fourier and Opdam-Cherednik transforms.

Theorem 5.5. The dual Laplace transform Y α,β is a topological isomorphism from H ⊥ (Ω ε ) onto H u (Ω ε+1 ), and on the space H ⊥ (Ω ε ), we have the equality

Y α,β = F T • A -1 α,β • F -1 u .
Proof.

Let f ∈ S ε 0 (R) and λ ∈ Ω ε+1 . Then 

Proof.

The result is obtained by using Theorem 4.6, Theorem 5.3, and Proposition 5.1, 1., 4.

Remark 5.7.

From Theorem 4.6 and the definitions of M 0 and M T , we obtain for all f ∈ H u (Ω ε ), with ε ≥ 2, the following equality:

M T (f ) = t Y α,β -1 • M 0 • t Y α,β (f ).
Thus by Theorem 5.6, 2., and Proposition 5.4, 2., we find again the result of Proposition 5.4, 3. 

Theorem 3. 1 .

 1 Let λ ∈ R. The function G (α,β) λ (x) possesses the following dual Laplace representation:

  = 0. So, an integration by parts shows that+∞ 0 ϕ (α,β) λ (x)µ cos(µx) dx = -sin(µx) dx.

  sin(µx) dx is well defined on the set U .

+∞ 0 v

 0 n (λ)h(λ) dλ 2π|c(λ)| 2 = 0, where ∀λ ∈ R, v n (λ) := +∞ 0 b α,β (λ, µ)µ n dµ.

Y+ x 2 1 1 + µ 2 ,Theorem 5 . 6 .

 21256 α,β (F u (f ))(λ) = 1 2π R R N α,β (λ, µ)f (x)e -iµx dx dµ. Since N α,β (λ, µ)f (x)e -iµx ≤ P ε 1,0 (f ) (1 + µ 2 )N α,β (λ, µ) (cosh x) -ερ 1 1thus by Theorem 3.2, 4., Fubini's theorem and (15), we getY α,β (F u (f ))(λ) = R f (x)G (α,β) λ (-x) dx = F T f A α,β (λ) = F T A -1 α,β (f ) (λ). So, Y α,β = F T • A -1 α,β • F -1 u ,and we finish the proof by Proposition 5.1, 4., Proposition 5.4, 1., and Theorem 5.3, 2. The transform t Y α,β is a topological isomorphism from 1. H (Ω ε ) onto H (Ω ε+1 ).

2 .

 2 H u (Ω ε ) onto H ⊥ (Ω ε+1 ).

Finally, we concludeCorollary 5 . 8 . 1 .

 581 by the following inversion formulas:For ε ≥ 1, (a) t Y α,β • M T • Y α,β = id H ⊥ (Ωε) . (b) Y α,β • M 0 • t Y α,β = id Hu(Ωε) . 2. For ε ≥ 2, (a) t Y α,β • Y α,β • M 0 = id H ⊥ (Ωε) . (b) Y α,β • t Y α,β • M T = id Hu(Ωε) .