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empirical estimator of superquantiles/CVaR in the

stationary case

Jérôme Dedecker∗, Florence Merlevède †
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Abstract

In this paper, we show that the difference between the empirical estimator and
the Conditional value-at-risk can be written as a simple partial sum + a residual
term. Starting from this decomposition, we prove a central limit theorem and some
almost sure results for the empirical estimator, for a large class of stationary se-
quences. We also construct a confidence interval with asymptotic level 1 − α, and
we study its coverage level through two different sets of simulation.
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1 Introduction

Let X be a real-valued random variable with cumulative distribution function F , and
denote by F−1 the generalised inverse of F . Assume that E(−min(0, X)) < ∞, and let
u ∈]0, 1[. We are interested in estimating the quantity

1

u

∫ u

0

F−1(s)ds (1)

from the n observations X1, X2, . . . , Xn of a strictly stationary and ergodic sequence
(Xi)i∈Z of real valued random variables, each distributed as X. Note that, if F is contin-
uous at F−1(u) then 1

u

∫ u
0
F−1(s)ds = E(X|X < F−1(u)).
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The natural plug in estimator of (1) is then

1

u

∫ u

0

F−1n (s)ds (2)

where Fn is the empirical distribution function associated with (X1, X2, . . . , Xn) and F−1n

is its generalised inverse. Note that this estimator can always be written as

1

u

∫ u

0

F−1n (s)ds =
1

nu

bnuc∑
i=1

Xi,n +
(nu− bnuc)

nu
Xdnue,n , (3)

where bxc is such that bxc ≤ x < bxc + 1, dxe is such that dxe − 1 < x ≤ dxe, and
X1,n ≤ X2,n ≤ · · · ≤ Xn,n is the re-ordered sample built from (X1, X2, . . . , Xn).
The quantity − 1

u

∫ u
0
F−1(s)ds has several names in the literature : according to Acerbi

and Tasche [1] it is called “Expected Shortfall” or “Conditional value-at-risk” (CVaR,
first introduced in [26] for the distribution of −X). According to Rachev et al. [21], it is
called “Average value-at-risk”. According to Rockafellar and Royset [25], it is also called
“Superquantile”. The interest of the Conditional Value at Risk is that it is a “coherent
risk measure” as defined by Artzner et al. [3] (for more details on this particular point,
see also [1], [21] and [25]).
If X1, X2, . . . , Xn are independent and identically distributed (iid) random variables, an
estimator of (1) (based on the minimisation of an appropriate contrast given in [20]) has
been proposed in [27]. The asymptotic normality of this estimator is proved in Theorem 2
of [27] (see also [19] for a similar result in a different context). The asymptotic normality
of an estimator based on the order statistic (hence very close to (3)) is also proved in [17],
but under more restrictive assumptions than in [27].

In this paper, we study the asymptotic properties of the estimator (2) for a large class of
strictly stationary sequence. Our results are based on the following preliminary decom-
position. For any i ≥ 1, let

Yi(u) = (F−1(u)−Xi)+ , (4)

where a+ = max(a, 0) denotes the positive part of a real number a. From Lemma 19 (and
Remark 20) of the Appendix, we have:

1

u

∫ u

0

(F−1n (s)− F−1(s))ds = − 1

nu

n∑
i=1

(Yi(u)− E(Yi(u))) +Rn(u) , (5)

where Rn(u) is such that

|Rn(u)| ≤
∫ Un(u)

Ln(u)

|Fn(t)− F (t)|dt , (6)

with Ln(u) = min(F−1n (u), F−1(u)) and Un(u) = max(F−1n (u), F−1(u)).

As a by-product of (5), we obtain the strong consistency of the estimator (2) for any
strictly stationary and ergodic sequence (Xi)i∈Z such that E(X−) < ∞ where X− =
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−min(0, X). This follows easily from the ergodic theorem applied to the sequence
(Yi(u))1≤i≤n and from the Glivenko-Cantelli theorem for stationary and ergodic sequences
(which implies that ‖Fn − F‖∞ → 0 almost surely as n → ∞). More precisely, the
following proposition holds:

Proposition 1 If E(X−) <∞, then, for any u ∈]0, 1[,

1

u

∫ u

0

F−1n (s)ds→n→∞
1

u

∫ u

0

F−1(s)ds a.s.

To specify the rate of convergence in this strong law of large numbers, we shall work under
mixing conditions. In this paper we shall assume that α1,X(k) →k→∞ 0, where, for any
k ≥ 0,

α1,X(k) = sup
t∈R
‖E(1{Xk≤t}|F0)− F (t)‖1 with F0 = σ(Xk, k ≤ 0). (7)

This coefficient, usually called the α-dependent coefficient, is weaker than the usual strong
mixing coefficient of Rosenblatt [24]. More precisely, recall that the strong mixing coeffi-
cient of Rosenblatt [24] between two σ-algebras F and G is defined by

α(F ,G) = sup
A∈F ,B∈G

|P(A ∩B)− P(A)P(B)| .

For a strictly stationary sequence (Xi)i∈Z of real valued random variables, and the σ-
algebra Gk = σ(Xi, i ≥ k) define then the sequence of strong mixing coefficients as follows:

α(0) = 1 and α(k) = 2α(F0, σ(Xk)) for k > 0 (8)

α∞(0) = 1 and α∞(k) = 2α(F0,Gk) for k > 0 and Gk = σ(Xi, i ≥ k). (9)

Between these coefficients, the following relation holds: for any positive k,

α1,X(k) ≤ α(k) ≤ α∞(k) .

The coefficient α∞(k) is certainly the best known, and many results have been proved
under some assumptions on this coefficient, but it has strong limitations: it is not well
suited to deal with linear processes with discrete innovations or non irreducible Markov
chain, which is not the case of the coefficient α1,X(k). For instance, the coefficient α1,X(k)
can be computed for many Markov chains associated with dynamical systems that fail to
be strongly mixing in the sense of Rosenblatt (see for instance [10]).

The paper is organised as follows. In Section 2, we prove a central limit theorem (CLT)
for our estimator under a condition expressed in terms of the coefficients (α1,X(k))k≥0 and
of the tail distribution of X−, and we study the optimality of this condition. In Section
3, we give the almost sure rates of convergence of the estimator when the conditions for
the CLT are not satisfied. In Section 4, we state a strong invariance principle (implying
a compact law of the iterated logarithm) under a slight reinforcement of the sufficient
condition for the CLT. In Section 5, we propose an estimator of the limiting variance in
the CLT, and we derive a confidence interval for the conditional value at risk. All the
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proofs are given in Section 6. In Section 7 we study the asymptotic coverage level of
the confidence interval built in Section 5 through two different sets of simulations: we
first simulate a non-mixing Auto-Regressive process in the sense of Rosenblatt; next we
simulate a strongly mixing Markov chain with a slow rate of mixing. In Appendix (Section
8) we state and prove the lemma implying the decomposition (5); we believe that this
lemma is an important tool, that can also be used in different contexts.

2 Central limit theorem

This section deals with the central limit theorem for the estimator (2). Since the papers
by Doukhan et al. [15] and Bradley [4], it is known that in such a dependent context, the
optimal condition ensuring the CLT with the standard normalization mixes the decay of
the coefficients α1,X(k) and the tail distribution of the random variables.
Before stating the main result of this section, let us recall the definition of the quantile
function of a random variable. For any nonnegative random variable Z, the quantile
function QZ of Z is defined by QZ(u) = inf{t ≥ 0 : P(Z > t) ≤ u}. Recall that
X− = −min(0, X) is the negative part of X.

Theorem 2 Let u ∈]0, 1[. Assume that F−1 is continuous at u, and that∑
k≥0

∫ α1,X(k)

0

(1 +Q2
X−(s))ds <∞ . (10)

Then

√
n
(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
→D N

(
0,
σ2(u)

u2

)
as n→∞, (11)

where σ2(u) = Var(Y0(u)) + 2
∑

k≥1 Cov(Y0(u), Yk(u)).

Remark 3 The fact that F−1 is continuous at u is equivalent to Card{x : F (x) = u} ≤ 1,
which is also equivalent to: one cannot find a non empty interval I = [a, b[ such that F ≡ u
on I. It is proved in Theorem 2 of [27] that this condition is in fact necessary in the iid
case for the convergence to a normal distribution.

Remark 4 Let us recall some sufficient conditions for (10) to hold (see Chapter 1 in
[23]):

1. If ‖X−‖r <∞ for some r ∈]2,∞], then (10) is satisfied provided that∑
k≥0

(k + 1)2/(r−2)α1,X(k) <∞ .

2. If E(X2
− log(1 +X−)) <∞, then (10) is satisfied provided that

there exists τ > 0 such that α1,X(k) = O(exp(−τk)) .
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Of course, if α1,X(k) = 0 for k > m (for instance if the variables are m-dependent) then
(10) is satisfied as soon as E(X2

−) < ∞. Note that, in the iid case, this condition is less
restrictive than the condition E(X2) <∞ in Theorem 2 of [27].

As for the usual central limit theorem for the partial sums associated with dependent
random variables, one can ask about the optimality of condition (10) for the validity of
the conclusion of Theorem 2. Before giving our main result about the optimality of this
condition, we recall the definition of the β-mixing coefficient of a stationary sequence
(Xi)i∈Z. Let Xk,∞ = (Xi)i≥k and let PXk,∞|F0 be a regular conditional probability of
Xk,∞ given F0. Let also B1(RN) be the set of B(RN)-measurable functions g such that
‖g‖∞ ≤ 1. The β-mixing coefficients of (Xi)i∈Z are then defined by

β(k) =
∥∥∥ sup
g∈B1(RN)

PXk,∞|F0(g)− PXk,∞(g)
∥∥∥
1
. (12)

With this definition, it is easy to see that α∞(k) ≤ β(k), where α∞(k) is the strong mixing
coefficient defined by (9).

Theorem 5 Let a > 1 and f be a continuous, increasing and negative function on ]0, 1]
such that ∫ 1

0

u−1/a(f(u))2du = +∞ . (13)

Then, there exists a stationary ergodic Markov chain (Ui)i∈Z of r.v.’s with uniform distri-
bution over [0, 1] satisfying

0 < lim inf
n→∞

naα1,U(n) ≤ lim sup
n→∞

naβ(n) <∞ , (14)

and such that, for any u ∈]0, 1[, the convergence in distribution (20) does not hold for
(Xk)k≥0 defined by Xk = f(Uk).

Note that, since f is continuous and increasing, α1,X(n) = α1,U(n). It then follows easily
from (14) that∑

k≥0

∫ α1,X(k)

0

Q2
X−(s)ds =∞ if and only if (13) is satisfied.

Hence Theorem 5 shows the optimality of condition (10) for the validity of the conclusion
of Theorem 2.

Now in case where X− is bounded, (10) reduces to
∑

k≥0 α1,X(k) <∞. Next result proves
the optimality of this condition to get the conclusion of Theorem 2.

Theorem 6 There exists a stationary ergodic Markov chain (Xi)i≥0 of r.v.’s with values
in [0, 1] satisfying

0 < lim inf
n→∞

nα1,X(n) ≤ lim sup
n→∞

nα1,X(n) <∞ , (15)
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and such that, for any u ∈]0, 1[,

√
n√

log n

(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
→D κ(u)N as n→∞,

where N has a standard Gaussian distribution and κ(u) is a positive constant depending
on u.

3 Almost sure rates of convergence

If condition (10) is weakened we still have rates in the strong law of large numbers in the
following sense:

Theorem 7 Let u ∈]0, 1[ and p ∈]1, 2[. Assume that

∑
k≥0

(k + 1)p−2
∫ α1,X(k)

0

(1 +Qp
X−

(s))ds <∞ . (16)

Then

n1−1/p
(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
→ 0 a.s. as n→∞.

Remark 8 Note that, as Proposition 1, Theorem 7 does not require that F−1 is contin-
uous at u.

Remark 9 Let us recall some sufficient conditions for (16) to hold (see Annexe C in
[23]):

1. If ‖X−‖r <∞ for some r ∈]p,∞], then (16) is satisfied provided that∑
k≥0

(k + 1)(pr−2r+p)/(r−p)α1,X(k) <∞ .

2. If E(Xp
−(log(1 +X−))p−1) <∞, then (16) is satisfied provided that

there exists τ > 0 such that α1,X(k) = O(exp(−τk)) .

Of course, if α1,X(k) = 0 for k > m (for instance if the variables are m-dependent) then
(16) is satisfied as soon as E(Xp

−) <∞.

In the unbounded case, as for the central limit theorem, it is possible to comment on the
optimality of the condition (16). More precisely, the following result holds:

6



Theorem 10 Let p ∈]1, 2[ and a > p− 1. Let f be a continuous, increasing and negative
function on ]0, 1] such that ∫ 1

0

u−(p−1)/a|f(u)|pdu = +∞ . (17)

Then, there exists a stationary ergodic Markov chain (Ui)i∈Z of r.v.’s with uniform distri-
bution over [0, 1] satisfying (14) and such that setting Xk = f(Uk), for any u ∈]0, 1[, we
have

lim sup
n→∞

n1−1/p
∣∣∣ ∫ u

0

F−1n (s)ds−
∫ u

0

F−1(s)ds
∣∣∣ = +∞ a.s.

Again, it follows easily from (14) and the fact that α1,X(n) = α1,U(n), that

∑
k≥0

(k + 1)p−2
∫ α1,X(k)

0

Q2
X−(s)ds =∞ if and only if (17) is satisfied.

Hence Theorem 10 shows the optimality of condition (16) for the validity of the conclusion
of Theorem 2.

Now in case where X− is bounded, (10) reduces to
∑

k≥0 k
p−2α1,X(k) < ∞. Next result

proves the optimality of this condition to get the conclusion of Theorem 2.

Theorem 11 Let p ∈]1, 2[. There exists a stationary ergodic Markov chain (Xi)i≥0 of
r.v.’s with values in [0, 1] satisfying

0 < lim inf
n→∞

np−1α1,X(n) ≤ lim sup
n→∞

np−1α1,X(n) <∞ , (18)

and such that, for any u ∈]0, 1[,

n1−1/p
(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
→D κ(u)S as n→∞,

where S is a non degenerate p-stable distribution and κ(u) is a positive constant depending
on u.

4 Strong invariance principle

In this section, we give a strong invariance principle for(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
.

This result will hold for a stronger version of the coefficient α1,X(n), which we define now.
Let fz(x) = 1z≤x − F (x). The coefficient α2,X(n) is defined by
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α2,X(n) = max
{
α1,X(n), sup

x,y∈R,j≥i≥n
‖E (fx(Xi)fy(Xj)|F0)− E (fx(Xi)fy(Xj))‖1

}
.

This coefficient has been introduced in [13]. For most of the usual examples, the coefficient
α2,X(n) behaves exactly as α1,X(n) (see [13] and [10]). Moreover, is is easy to see that

α2,X(n) ≤ α∞(n) ≤ β(n) ,

where the mixing coefficient α∞(n) and β(n) are defined by (9) and (12) respectively.

Theorem 12 Let u ∈]0, 1[. Assume that F−1 is continuous at u and that

∑
k≥0

∫ α2,X(k)

0

(1 +Q2
X−(s))ds <∞ and

∑
k≥0

√
α1,X(k)

k + 1
<∞. (19)

Then, enlarging the probability space if necessary, there exists a sequence (Zi)i≥0 of i.i.d.
Gaussian random variables with mean 0 and variance σ2(u)/u2 such that

(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)
− 1

n

n∑
i=1

Zi = o

(√
log log n

n

)
a.s. (20)

where σ2(u) = Var(Y0(u)) + 2
∑

k≥1 Cov(Y0(u), Yk(u)).

Remark 13 As usual, we infer from this strong invariance principle that: the sequence√
n

2 log log n

(1

u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
)

is almost surely relatively compact, with almost sure limit set [−σ(u)/u, σ(u)/u].

Remark 14 If we do not assume that F−1 is continuous at u in Theorem 12, then the
residual term

√
n/ log log n Rn(u) (where Rn(u) satisfies (6)) does not necessarily con-

verge to 0 almost surely. However, it is still bounded almost surely, so that there exists
C(u) <∞ such that

lim sup
n→∞

√
n

log log n

∣∣∣1
u

∫ u

0

F−1n (s)ds− 1

u

∫ u

0

F−1(s)ds
∣∣∣ ≤ C(u) a.s.

Remark 15 Remark 4 applies to condition (19) of Theorem 12, with α2,X instead of
α1,X , except in the bounded case (case r = ∞ in Item 1 of Remark 4). If ‖X−‖∞ < ∞,
then condition (19) is satisfied if

∑
k≥0

√
α2,X(k)

k + 1
<∞ .
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Remark 16 If we replace α2,X(k) by the (more restrictive) α-mixing coefficient α∞(k)
defined by (9), then the second condition in (19) is useless: the strong invariance principle
remains true under the condition∑

k≥0

∫ α∞(k)

0

(1 +Q2
X−(s))ds <∞ .

In that case, the residual term Rn(u) satisfying (6) can be handled by using the arguments
in [11].

5 Confidence Interval for the CVaR

We start by defining a suitable estimator of the limiting variance σ2(u) defined in Theorem
2, and we prove its consistency (see Proposition 17 below). For any i ≥ 1, let

Yi,n(u) = (F−1n (u)−Xi)+ and Y
(0)
i,n (u) = Yi,n(u)− Ȳn,n(u) ,

where Ȳn,n(u) = n−1
∑n

i=1 Yi,n(u). Define then for any integer k ∈ [0, n],

γ̂k(u) =
1

n

n−k∑
i=1

Y
(0)
i,n (u)Y

(0)
i+k,n(u)

and

ĉn(u) = γ̂0(u) + 2
vn∑
k=1

γ̂k(u) . (21)

Proposition 17 Let u ∈ [0, 1] and (vn)n≥1 be a sequence of positive integers. Assume
that (10) is satisfied and that

vn →∞ and v3nE
{
X2
−
(
1 ∧ n−1X2

−
)}
→ 0 as n→∞. (22)

Suppose, in addition, that F−1 is differentiable at u. Then

ĉn(u)→ σ2(u) in probability, as n→∞,

where ĉn(u) is defined by (21).

Remark 18 Note that if E(X2
−) <∞, one can always find a sequence vn such that (22)

is satisfied. Moreover, if E(X4
−) <∞, then any vn = o(n1/3) satisfies (22).

When σ2(u) > 0, Theorem 2 combined with Proposition 17 lead to asymptotic confidence
intervals for the CVaR − 1

u

∫ u
0
F−1(s)ds, namely:[

− 1

u

∫ u

0

F−1n (s)ds− q1−α/2 ×
√
ĉn(u)

u
√
n

,−1

u

∫ u

0

F−1n (s)ds+ q1−α/2 ×
√
ĉn(u)

u
√
n

]
is a confidence interval of asymptotic level 1−α for − 1

u

∫ u
0
F−1(s)ds (here, as usual, q1−α/2

is the quantile of order 1− α/2 of the standard Gaussian distribution).
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6 Proofs

In the proofs, for the sake of simplicity, we shall use the notation an � bn, meaning that
an = O(bn).

6.1 Proof of Theorem 2

We start from the decomposition (5) and we note that Theorem 1 in [14] together with
ergodicity entail that

1√
n

n∑
i=1

(Yi(u)− E(Yi(u)))→D N
(
0, σ2(u)

)
,

provided ∑
k≥0

∫ α1,X(k)

0

Q2
Y0(u)

(s)ds < +∞ . (23)

Indeed, the fact that (23) implies that
∑

k≥0 ‖Y0(u)E(Yk(u) − E(Yk(u)|F0)‖1 < ∞ and
then their condition (1.3) can be proved by using the arguments given at the beginning
of [14, Section 6] together with the fact that for any real a, x 7→ (a − x)+ is monotone.
Next, we note that, for any u ∈ [0, 1], condition (23) is satisfied as soon as (10) is. Indeed
it suffices to notice that for any real a, P((a − X)+ > t) ∼t→+∞ P(max(0,−X) > t).
Therefore the theorem will follow if one can prove that

√
nRn(u) →P 0, as n → ∞.

With this aim, we recall that since it is assumed that F−1 is continuous at u, we have
F−1n (u)→ F−1(u) almost surely, as n→∞. Therefore, taking into account (6), to prove
that

√
nRn(u)→P 0, as n→∞ it is enough to show that

lim
δ→0

lim sup
n→∞

√
n

∫
[F−1(u)−δ,F−1(u)+δ]

|Fn(t)− F (t)|dt = 0 in probability. (24)

We shall rather prove the above convergence in L1. Note that, by (10),
∑

k≥0 α1,X(k) <∞.
Therefore

‖Fn(t)− F (t)‖1 ≤ ‖Fn(t)− F (t)‖2 � n−1/2 .

Hence ∥∥∥√n∫
[F−1(u)−δ,F−1(u)+δ]

|Fn(t)− F (t)|dt
∥∥∥
1
� δ ,

which proves (24). This ends the proof of the theorem.

6.2 Proof of Theorem 5

Let a > 1. We consider the same stationary ergodic Markov chain (Ui)i∈Z of r.v.’s with
uniform distribution over [0, 1] as the one constructed in Theorem 5 of [15]. This chain
satisfies

0 < lim inf
n→∞

naβ(n) ≤ lim sup
n→∞

naβ(n) <∞ . (25)

10



In addition, since (13) implies that for any c < 0,
∫ 1

0
u−1/a(c − f(u))2+du = +∞, The-

orem 5 in [15] asserts that for Xk = f(Uk) and Yk(u) = (F−1(u) − Xk)+, the sequence
n−1/2

∑n
k=1(Yk(u) − E(Yk(u))) does not converge in distribution to a Gaussian random

variable. Next, considering the decomposition (5), we show that, for any u ∈]0, 1[ (since
F−1 is continuous at u),

√
nRn(u) →P 0, as n → ∞ where Rn(u) satisfies (6). This

follows by using the same arguments as those developed in the proof of Theorem 2 since
(14) implies that

∑
k≥1 β(k) < ∞ and then

∑
k≥1 α1,X(k) < ∞. So, to sum up, we have

proved that it is possible to construct a stationary ergodic Markov chain (Ui)i∈Z of r.v.’s
with uniform distribution over [0, 1] whose β-mixing coefficients satisfy (25), satisfying∑

k≥0
∫ β(k)
0

Q2
X−

(s)ds =∞ where X = f(U) with f a continuous, increasing and negative
function on ]0, 1], and such that for any u ∈]0, 1[,

√
n
(∫ u

0

F−1n (s)ds−
∫ u

0

F−1(s)ds
)

does not converge in distribution.

To end the proof, it remains to show that (14) is fully satisfied, or equivalently (since
f is continuous and increasing) that lim infn→∞ n

aα1,X(n) > 0. This can be done using
the same arguments as those developed in the first part of the proof of [15, Corollary 1],
namely, in the proof of (4.22).

6.3 Proof of Theorem 6

Let γ ∈]0, 1[. We consider the Markov chain (Xk)k≥1 associated with the transformation
Tγ defined from [0, 1] to [0, 1] by

Tγ(x) =

{
x(1 + 2γxγ) if x ∈ [0, 1/2[

2x− 1 if x ∈ [1/2, 1] .

This is the so-called LSV [18] map with parameter γ. There exists a unique Tγ-invariant
measure νγ on [0, 1], which is absolutely continuous with respect to the Lebesgue measure
with positive density denoted by hγ. We denote by Kγ the Perron-Frobenius operator
of Tγ with respect to νγ. Recall that for any bounded measurable functions f and g,
νγ(f · g ◦ Tγ) = νγ(Kγ(f)g). Let then (Xi)i≥0 be the stationary Markov chain with
transition Kernel Kγ and invariant measure νγ. Since νγ has a positive density hγ on
]0, 1[, it follows that F−1 is continuous on ]0, 1[.
We take now γ = 1/2. From Section 1.4 in [10], we know that (15) holds. Next, we follow
the lines of the proof of Theorem 2 with the following modifications. From Comment 2
page 88 in Gouezel [16], since gu : x 7→ (F−1(u) − x)+ is Lipshitz and k(u) := gu(0) −∫ 1

0
gu(x)h1/2(x)dx > 0, we derive

1√
n log n

n∑
i=1

(gu(Xi)− E(gu(Xi)))→D
√
h1/2(1/2)k(u)N ,

11



where N has a standard Gaussian distribution. On another hand,

‖Fn(t)− F (t)‖22 �
n∑
k=0

α1,X(k)� log(n)

n
,

which implies that

√
n

log n
Rn(u)→P 0 where Rn(u) satisfies (6). The result then follows

from the decomposition (5).

6.4 Proof of Theorem 7

We start from the decomposition (5) and we note that Corollary 3.2 in [23] implies that,
almost surely,

1

n1/p

n∑
i=1

(Yi(u)− E(Yi(u)))→ 0 , as n→∞,

provided ∑
k≥0

(k + 1)p−2
∫ α1,X(k)

0

Qp
Y0(u)

(s)ds <∞ . (26)

Next, condition (26) clearly holds provided that (16) is satisfied.
It remains to prove that, almost surely,

n(p−1)/p
∫
[Ln(u),Un(u)]

|Fn(t)− F (t)|dt→ 0 , as n→∞. (27)

With this aim, note that by (35), almost surely, there exists an integer N such that for
any n ≥ N ,

a := F−1
(
u/2
)
≤ F−1n (u) ≤ F−1

(
(1 + u)/2

)
:= b .

Hence, to prove (27) it is enough to prove that

n(p−1)/p
∫ b

a

|Fn(t)− F (t)|dt→ 0 , as n→∞. (28)

Since
∑

k≥0(k + 1)p−2α1,X(k) < ∞, this follows from the proof of Proposition 3.3 in [5]
by considering that the random variables Xk are bounded. This ends the proof of the
theorem.

6.5 Proof of Theorem 10

Let a > p−1.We consider the same stationary ergodic Markov chain (Ui)i∈Z of r.v.’s with
uniform distribution over [0, 1] as in the proof of Theorem 5. This chain satisfies (25). In

12



addition, since (17) implies that for any c < 0,
∫ 1

0
u−(p−1)/a(c−f(u))p+du = +∞, Theorem

2 in [22] asserts that for Xk = f(Uk) and Yk(u) = (F−1(u)−Xk)+,

lim sup
n→∞

1

n1/p

∣∣∣∣∣
n∑
k=1

(Yk(u)− E(Yk(u)))

∣∣∣∣∣ =∞ a.s.

Next, considering the decomposition (5), we show that, for any u ∈]0, 1[, n(p−1)/pRn(u)→
0 a.s., as n→∞ where Rn(u) satisfies (6). The proof is exactly the same as the proof of
(27).
So, to sum up, we have proved that it is possible to construct a stationary ergodic Markov
chain (Ui)i∈Z of r.v.’s with uniform distribution over [0, 1] whose β-mixing coefficients

satisfy (25), satisfying
∑

k≥0(k + 1)p−2
∫ β(k)
0

Qp
X−

(s)ds = ∞ where X = f(U) with f a
continuous, increasing and negative function on ]0, 1], and such that for any u ∈]0, 1[,

lim sup
n→∞

n(p−1)/p
∣∣∣ ∫ u

0

F−1n (s)ds−
∫ u

0

F−1(s)ds
∣∣∣ =∞ .

The fact that (14) is fully satisfied is proved as in the proof of Theorem 5.

6.6 Proof of Theorem 11

We consider the Markov chain (Xk)k≥1 described in the proof of Theorem 6 with γ = 1/p.
From Section 1.4 in [10], we know that (18) holds. From Theorem 1.3 in Gouezel [16],

since gu : x 7→ (F−1(u) − x)+ is Lipshitz and k(u) := gu(0) −
∫ 1

0
gu(x)h1/p(x)dx > 0, we

derive
1

n1/p

n∑
i=1

(gu(Xi)− E(gu(Xi)))→D Cpk(u)S ,

where S is a non-degenerate p-stable distribution and Cp > 0. On another hand, we know
from Theorem 1.1 in [9] that

n1−1/p
(∫ 1

0

(Fn(t)− F (t))2dt

)1/2

converges in distribution as n→∞.

Now, the quantity Rn(u) defined by (6) satisfies

n1−1/pRn(u) ≤ n1−1/p
(∫ 1

0

(Fn(t)− F (t))2dt

)1/2√
|F−1n (u)− F−1(u)| .

Since F−1 is continuous at u, F−1n (u) converges almost surely to F−1(u), which implies
that n1−1/pRn(u)→P 0. The result follows from the decomposition (5).

13



6.7 Proof of Theorem 12

We start from the decomposition (5), and we note that Theorem 1.13 in [10] implies
that: there exists a sequence (Zi)i≥0 of i.i.d. Gaussian random variables with mean 0 and
variance σ2(u)/u such that

1

nu

n∑
i=1

(Yi(u)− E(Yi(u)))− 1

n

n∑
i=1

Zi = o

(√
log log n

n

)
a.s.

provided ∑
k≥0

∫ α2,X(k)

0

Q2
Y0(u)

(s)ds < +∞ . (29)

It remains to prove that

lim
n→∞

√
n

log log n
Rn(u) = 0 a.s. (30)

where Rn(u) satisfies (6). Since F−1 is continuous at u, F−1n (u) converges to F−1 almost
surely. Hence (30) follows from

lim
δ→0

lim sup
n→∞

√
n

log log n

∫ F−1(u)+δ

F−1(u)−δ
|Fn(t)− F (t)|dt = 0 a.s. (31)

Applying Theorem 1.1 in [7] to the space L1([F
−1(u)− δ, F−1(u) + δ], dt), we get that

lim sup
n→∞

√
n

log log n

∫ F−1(u)+δ

F−1(u)−δ
|Fn(t)− F (t)|dt ≤ 2Cδ

∑
k≥0

√
α1,X(k)

k + 1
a.s.

for some universal constant C, and (31) easily follows.

6.8 Proof of Proposition 17

Recall the notation (4), namely: for any i ≥ 1, Yi(u) = (F−1(u)−Xi)+. For any integer
k ∈ [0, n], let

γ∗k(u) =
1

n

n−k∑
i=1

(Yi(u)− Ȳn(u))(Yi+k(u)− Ȳn(u))

and, for any sequence of positive integers (vn)n≥1 define

cn(u) = γ∗0(u) + 2
vn∑
k=1

γ∗k(u) .

According to [8, Theorem 1(b)], if (10) is satisfied and if

vn →∞ and v3nE
{
Y 2
0 (u)

(
1 ∧ n−1Y 2

0 (u)
)}
→ 0 as n→∞, (32)
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then
cn(u)→ σ2(u) in probability, as n→∞. (33)

Note that condition (32) holds as soon as condition (22) does. Next, for any positive
integer i, noticing that |Yi(u)− Yi,n(u)| ≤ |F−1n (u)− F−1(u)|, we infer that∣∣(Yi(u)− Ȳn(u))(Yi+k(u)− Ȳn(u))− Y (0)

i,n (u)Y
(0)
i+k,n(u)

∣∣
≤ 2|F−1n (u)− F−1(u)|

(
|Yi(u)|+ Ȳn(u)

)
+ 2|F−1n (u)− F−1(u)|

(
|Yi+k(u)|+ Ȳn(u)

)
+ 4|F−1n (u)− F−1(u)|2 .

Therefore,

|cn(u)− ĉn(u)| ≤ 8vn|F−1n (u)− F−1(u)| × 1

n

n∑
i=1

|Yi(u)|+ 4vn|F−1n (u)− F−1(u)|2 .

But, by the ergodic theorem, n−1
∑n

i=1 |Yi(u)| → E(|Y1(u)|) a.s., as n → ∞. Therefore,
taking into account (33), the proposition will follow if one can prove that

vn|F−1n (u)− F−1(u)| → 0 in probability, as n→∞. (34)

With this aim, we start with the well-known inequalities:

F−1
(
u− εn,1

)
≤ F−1n (u) ≤ F−1

(
u+ εn,2

)
, (35)

where εn,1 = ‖Fn−F‖∞∧u and εn,2 = ‖Fn−F‖∞∧(1−u). Next, since F−1 is differentiable
at u, we have

F−1
(
u− εn,1

)
− F−1(u) = −(F−1)′(u)× εn,1 + o(‖Fn − F‖∞) .

Similarly,
F−1

(
u+ εn,2

)
− F−1(u) = (F−1)′(u)× εn,2 + o(‖Fn − F‖∞) .

So, overall, since F−1 is assumed to be differentiable at u, to prove (34) it is enough to
prove that

vn‖Fn − F‖∞ → 0 in probability, as n→∞. (36)

For any fixed positive integer p, setting ti = F−1(p) for any integer i ∈ [1, p−1], t0 = −∞
and tp = +∞, and defining

Vn = max
0≤i≤p−1

(
|Fn(ti)− F (ti)|, |Fn(t−i+1)− F (t−i+1)|

)
:= max

0≤i≤p−1
Zi,n ,

we have, for any t ∈ R,

|Fn(t)− F (t)| ≤ Vn +
1

p
.

But
‖Vn‖2 ≤

√
p max
1≤i≤p

‖Zi,n‖2 .
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Since
∑

k≥1 α1,X(k) <∞, ‖Zi,n‖2 � n−1/2, we get∥∥∥∥sup
t∈R
|Fn(t)− F (t)|

∥∥∥∥
2

�
√
p

n
+

1

p
� n−1/3 ,

by choosing p = [n1/3]. Since by assumption vn = o(n1/3), (36) follows. This ends the
proof of the proposition.

7 Simulations

In this section, we shall simulate two different stationary processes, in order to estimate
the coverage level of the confidence interval presented in Section 5. The first process is
non mixing in the sense of Rosenblatt [24], but its coefficients α1,X(k) decrease at an
exponential rate. The second process is a β-mixing process (hence mixing in the sense of
Rosenblatt), with a slow rate of mixing.

7.1 Example 1: Non mixing auto-regressive model

We first simulate (Y1, . . . , Yn), according to the simple AR(1) equation

for k ≥ 1, Yk+1 =
1

2
(Yk + εk+1) ,

where Y1 is uniformly distributed over [0, 1], and (εi)i≥2 is a sequence of iid random
variables with distribution B(1/2), independent of Y1.
One can check that the transition Kernel of the chain (Yi)i≥1 is

K(f)(x) =
1

2

(
f
(x

2

)
+ f

(
x+ 1

2

))
,

and that the uniform distribution on [0, 1] is the unique invariant distribution by K.
Hence, the chain (Yi)i≥1 is strictly stationary.
It is well known that the chain (Yi)i≥1 is not α-mixing in the sense of Rosenblatt [24] (see
for instance [2]). However, one can prove that the coefficients α1,Y of (Yi)i≥1 are such that

α1,Y (k) ≤ 2−k

(see for instance Section 6.1 in [13]). Note that this upper bound is also valid for the
coefficient α2,Y (k) defined in Section 4.
Let now Qµ,σ2 be the inverse of the cumulative distribution function of the law N (µ, σ2).
Let then

Xi = Qµ,σ2(Yi) .

The sequence (Xi)i≥1 is also a stationary Markov chain (as an invertible function of a sta-
tionary Markov chain), and one can easily check that α1,X(k) = α1,Y (k). By construction,
Xi is N (µ, σ2)-distributed.
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For u ∈]0, 1[, we can now compute the CVaR (see for instance [21]):

−1

u

∫ u

0

F−1(s)ds =
σ

u
√

2π
exp

(
−(Φ−1(u))2

2

)
− µ , (37)

where Φ is the cdf of the N (0, 1)-distribution.
Now, according to Section 5,[

− 1

u

∫ u

0

F−1n (s)ds− q1−α/2 ×
√
ĉn(u)

u
√
n

,−1

u

∫ u

0

F−1n (s)ds+ q1−α/2 ×
√
ĉn(u)

u
√
n

]
(38)

is a confidence interval of asymptotic level 1−α for −u−1
∫ u
0
F−1(s)ds. Recall that ĉn(u)

is the estimator of σ2(u) built in Proposition 17 (for some vn such that vn = o(n1/3)).
In the simulations, we shall take u = 0.75, α = 0.05, µ = 1, σ2 = 1, so that Xi is
N (1, 1)-distributed. We shall estimate the variance of

√
n
∫ u
0
F−1n (s)ds/

√
ĉn(u) and the

coverage probability of the interval (38) via a basic Monte Carlo procedure over N = 2000
independent trials, for different values of n, with the choice vn = [n1/4]. This will give us
Var1 and Cove1.
We shall also try another computation for ĉn(u). We shall fit an autoregressive process

(with an automatic procedure based on the AIC criterion) on the “residuals” Y
(0
i,n(u)

defined in Section 5, and then compute ĉn(u) as the covariance series of the fitted AR
process (this procedure is inspired from the paper [6], where it is shown to work well in
the context of linear regression). This will then gives us Var2 and Cove2.

The results are presented in the following table.

n 200 300 400 500 600 700 800 900 1000
Var1 1.24 1.201 1.12 1.091 1.111 1.053 1.113 1.08 1.041
Var2 1.153 1.143 1.08 1.041 1.067 1.021 1.08 1.043 1.02

Cove1 0.927 0.931 0.937 0.938 0.939 0.94 0.937 0.94 0.944
Cove2 0.933 0.935 0.941 0.946 0.942 0.943 0.941 0.942 0.946

We see that both procedures work well: the coverage levels are greater than 93% for
n ≥ 300 and very close to 95% for n = 1000. We see that the second procedure (with
and automatic AR fitting on the residuals) is always slightly better (better coverage and
variance closer to 1).

7.2 Example 2: β-mixing Markov chain

In this section, we first simulate the stationary β-mixing Markov chain introduced in [15]
as follows. Let a > 1, and let ν and π be the two probability measures on [0, 1] with
respective densities fν(x) = axa−110≤x≤1 and fπ(x) = (a+ 1)xa10≤x≤1. Let Fπ be the cdf
of π, and let Y1 be a random variable with law ν. Let (εi)i≥1 = ((Ui, Vi))i≥2 be a sequence
of iid random variables with uniform law over [0, 1]2 and independent of Y1. For k ≥ 1
define then

Yk+1 = Yk1Uk+1≥Yk + F−1π (Vk+1)1Uk+1<Yk .
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One can check that this chain is strictly stationary, with invariant distribution ν. More-
over, it is proved in [15] that the β-mixing coefficients of this chain are exactly of order
n−a. Note also that Y a

i is uniformly distributed over [0, 1].
Let then

Xi = Qµ,σ2(Y a
i ) .

The sequence (Xi)i≥1 is also a stationary Markov chain (as an invertible function of a
stationary Markov chain), and its β-mixing coefficients are such that: there exist B >
A > 0 such that, for any n ≥ 1, An−a ≤ β(n) ≤ Bn−a. By construction Xi is N (µ, σ2)-
distributed.

Note that the equality (37) is still valid, and that (38) is a confidence interval of asymptotic
level 1− α for −u−1

∫ u
0
F−1(s)ds.

In the simulations, we shall take u = 0.75, α = 0.05, µ = 1, σ2 = 1, so that Xi is N (1, 1)-
distributed. We choose a = 3, which gives a rather slow rate of mixing. We then proceed
exactly as in Subsection 7.1 to estimate the quantities Var1, Cove1 (with vn = [n1/4]),
Var2 and Cove2.

The results are presented in the following table.

n 300 400 500 600 700 800 900 1000 4000
Var1 1.42 1.41 1.26 1.326 1.293 1.283 1.261 1.242 1.161
Var2 1.314 1.289 1.146 1.18 1.201 1.208 1.177 1.14 1.093

Cove1 0.899 0.902 0.914 0.912 0.915 0.921 0.915 0.923 0.935
Cove2 0.905 0.912 0.924 0.928 0.925 0.93 0.93 0.94 0.944

Since the rate of mixing is quite slow, the results are less satisfactory than for the first
example. One has to take n ≥ 800 to get a coverage greater than 93% for the second
method (with an automatic AR fitting on the residuals), and n ≥ 1000 to get a coverage
greater than 92% for the method presented in Section 5 (with vn = [n1/4]). For n = 4000,
the coverage is around 93.5% for the first method and around 94.5% for the second
method. As for Example 1, we see that the second procedure is always slightly better
(better coverage and variance closer to 1).

8 Appendix

Lemma 19 Let u ∈]0, 1[, and let F and G be two cumulative distribution functions such

that
∫ 0

−∞G(t)dt <∞ and
∫ 0

−∞ F (t)dt <∞. The following equalities hold:∫ u

0

G−1(s)ds−
∫ u

0

F−1(s)ds =

∫
R

((F (t) ∧ u)− (G(t) ∧ u)) dt

and ∫ u

0

G−1(s)ds−
∫ u

0

F−1(s)ds =

∫ F−1(u)

−∞
(F (t)−G(t))dt+R , (39)
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where

|R| ≤
∫
[L(u),U(u)]

|F (t)−G(t)|dt .

with L(u) = min(F−1(u), G−1(u)) and U(u) = max(F−1(u), G−1(u)).

Remark 20 Note that the first term on right hand in (39) satisfies∫ F−1(u)

−∞
(F (t)−G(t))dt = E((F−1(u)−X)+)− E((F−1(u)− Y )+) ,

where X and Y are two random variables with cumulative distribution function F and G
respectively.

Proof. We start by writing∫ u

0

F−1(s)ds = −
∫ F−1(u)

−∞
F (t)dt+ uF−1(u) .

It follows that∫ u

0

G−1(s)ds−
∫ u

0

F−1(s)ds = −
∫ G−1(u)

−∞
G(t)dt+

∫ F−1(u)

−∞
F (t)dt + u(G−1(u)−F−1(u))

=

∫
R

((F (t) ∧ u)− (G(t) ∧ u)) dt (40)

and the first equality is proved. Next, from the first equality in (40), we also deduce that∫ u

0

G−1(s)ds−
∫ u

0

F−1(s)ds =

∫ F−1(u)

−∞
(F (t)−G(t)dt+R ,

where

R = u(G−1(u)− F−1(u))−
∫ G−1(u)

−∞
G(t)dt +

∫ F−1(u)

−∞
G(t)dt .

Assume thatG−1(u) ≤ F−1(u). Then, sinceG−1(u) ≤ t < F−1(u) ⇐⇒ F (t) < u ≤ G(t),
we get

|R| =
∣∣∣ ∫ F−1(u)

G−1(u)

(G(t)− u)dt
∣∣∣ ≤ ∫ F−1(u)

G−1(u)

(G(t)− F (t))dt .

On another hand, if F−1(u) ≤ G−1(u). Then, since F−1(u) ≤ t < G−1(u) ⇐⇒ G(t) <
u ≤ F (t), we get

|R| =
∣∣∣ ∫ G−1(u)

F−1(u)

(u−G(t))dt
∣∣∣ ≤ ∫ G−1(u)

F−1(u)

(F (t)−G(t))dt ,

and the Lemma is proved.
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