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Introduction

Let X be a real-valued random variable with cumulative distribution function F , and denote by F -1 the generalised inverse of F . Assume that E(-min(0, X)) < ∞, and let u ∈]0, 1[. We are interested in estimating the quantity 1 u u 0 F -1 (s)ds [START_REF] Acerbi | On the coherence of expected shortfall[END_REF] from the n observations X 1 , X 2 , . . . , X n of a strictly stationary and ergodic sequence (X i ) i∈Z of real valued random variables, each distributed as X. Note that, if F is continuous at F -1 (u) then 1 u u 0 F -1 (s)ds = E(X|X < F -1 (u)).

1

The natural plug in estimator of ( 1) is then

1 u u 0 F -1 n (s)ds (2)
where F n is the empirical distribution function associated with (X 1 , X 2 , . . . , X n ) and F -1 n is its generalised inverse. Note that this estimator can always be written as

1 u u 0 F -1 n (s)ds = 1 nu nu i=1 X i,n + (nu -nu ) nu X nu ,n , (3) 
where x is such that x ≤ x < x + 1, x is such that x -1 < x ≤ x , and X 1,n ≤ X 2,n ≤ • • • ≤ X n,n is the re-ordered sample built from (X 1 , X 2 , . . . , X n ).

The quantity -1 u u 0 F -1 (s)ds has several names in the literature : according to Acerbi and Tasche [START_REF] Acerbi | On the coherence of expected shortfall[END_REF] it is called "Expected Shortfall" or "Conditional value-at-risk" (CVaR, first introduced in [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF] for the distribution of -X). According to Rachev et al. [START_REF] Rachev | Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures[END_REF], it is called "Average value-at-risk". According to Rockafellar and Royset [START_REF] Rockafellar | and their applications to risk, random variables, and regression[END_REF], it is also called "Superquantile". The interest of the Conditional Value at Risk is that it is a "coherent risk measure" as defined by Artzner et al. [START_REF] Artzner | Coherent measure of Risk[END_REF] (for more details on this particular point, see also [START_REF] Acerbi | On the coherence of expected shortfall[END_REF], [START_REF] Rachev | Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures[END_REF] and [START_REF] Rockafellar | and their applications to risk, random variables, and regression[END_REF]). If X 1 , X 2 , . . . , X n are independent and identically distributed (iid) random variables, an estimator of (1) (based on the minimisation of an appropriate contrast given in [START_REF] Pflug | Some remarks on the value-at-risk and the conditional value-at-risk[END_REF]) has been proposed in [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF]. The asymptotic normality of this estimator is proved in Theorem 2 of [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF] (see also [START_REF] Nagaraja | Some nondegenerate limit laws for the selection differential[END_REF] for a similar result in a different context). The asymptotic normality of an estimator based on the order statistic (hence very close to [START_REF] Artzner | Coherent measure of Risk[END_REF]) is also proved in [START_REF] Labopin-Richard | Estimation methods and applications[END_REF], but under more restrictive assumptions than in [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF].

In this paper, we study the asymptotic properties of the estimator (2) for a large class of strictly stationary sequence. Our results are based on the following preliminary decomposition. For any i ≥ 1, let

Y i (u) = (F -1 (u) -X i ) + , (4) 
where a + = max(a, 0) denotes the positive part of a real number a. From Lemma 19 (and Remark 20) of the Appendix, we have:

1 u u 0 (F -1 n (s) -F -1 (s))ds = - 1 nu n i=1 (Y i (u) -E(Y i (u))) + R n (u) , (5) 
where R n (u) is such that

|R n (u)| ≤ Un(u) Ln(u) |F n (t) -F (t)|dt , (6) 
with

L n (u) = min(F -1 n (u), F -1 (u)) and U n (u) = max(F -1 n (u), F -1 (u)
). As a by-product of (5), we obtain the strong consistency of the estimator (2) for any strictly stationary and ergodic sequence (X i ) i∈Z such that E(X -) < ∞ where X -= -min(0, X). This follows easily from the ergodic theorem applied to the sequence (Y i (u)) 1≤i≤n and from the Glivenko-Cantelli theorem for stationary and ergodic sequences (which implies that F n -F ∞ → 0 almost surely as n → ∞). More precisely, the following proposition holds:

Proposition 1 If E(X -) < ∞, then, for any u ∈]0, 1[, 1 u u 0 F -1 n (s)ds → n→∞ 1 u u 0 F -1 (s)ds a.s.
To specify the rate of convergence in this strong law of large numbers, we shall work under mixing conditions. In this paper we shall assume that α 1,X (k) → k→∞ 0, where, for any

k ≥ 0, α 1,X (k) = sup t∈R E(1 {X k ≤t} |F 0 ) -F (t) 1 with F 0 = σ(X k , k ≤ 0). ( 7 
)
This coefficient, usually called the α-dependent coefficient, is weaker than the usual strong mixing coefficient of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. More precisely, recall that the strong mixing coefficient of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] between two σ-algebras F and G is defined by

α(F, G) = sup A∈F ,B∈G |P(A ∩ B) -P(A)P(B)| .
For a strictly stationary sequence (X i ) i∈Z of real valued random variables, and the σalgebra G k = σ(X i , i ≥ k) define then the sequence of strong mixing coefficients as follows:

α(0) = 1 and α(k) = 2α(F 0 , σ(X k )) for k > 0 (8) α ∞ (0) = 1 and α ∞ (k) = 2α(F 0 , G k ) for k > 0 and G k = σ(X i , i ≥ k). (9) 
Between these coefficients, the following relation holds: for any positive k,

α 1,X (k) ≤ α(k) ≤ α ∞ (k) .
The coefficient α ∞ (k) is certainly the best known, and many results have been proved under some assumptions on this coefficient, but it has strong limitations: it is not well suited to deal with linear processes with discrete innovations or non irreducible Markov chain, which is not the case of the coefficient α 1,X (k). For instance, the coefficient α 1,X (k) can be computed for many Markov chains associated with dynamical systems that fail to be strongly mixing in the sense of Rosenblatt (see for instance [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF]). The paper is organised as follows. In Section 2, we prove a central limit theorem (CLT) for our estimator under a condition expressed in terms of the coefficients (α 1,X (k)) k≥0 and of the tail distribution of X -, and we study the optimality of this condition. In Section 3, we give the almost sure rates of convergence of the estimator when the conditions for the CLT are not satisfied. In Section 4, we state a strong invariance principle (implying a compact law of the iterated logarithm) under a slight reinforcement of the sufficient condition for the CLT. In Section 5, we propose an estimator of the limiting variance in the CLT, and we derive a confidence interval for the conditional value at risk. All the proofs are given in Section 6. In Section 7 we study the asymptotic coverage level of the confidence interval built in Section 5 through two different sets of simulations: we first simulate a non-mixing Auto-Regressive process in the sense of Rosenblatt; next we simulate a strongly mixing Markov chain with a slow rate of mixing. In Appendix (Section 8) we state and prove the lemma implying the decomposition (5); we believe that this lemma is an important tool, that can also be used in different contexts.

Central limit theorem

This section deals with the central limit theorem for the estimator [START_REF] Andrews | Nonstrong mixing autoregressive processes[END_REF]. Since the papers by Doukhan et al. [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] and Bradley [START_REF] Bradley | On quantiles and the central limit question for strongly mixing sequences. Dedicated to Murray Rosenblatt[END_REF], it is known that in such a dependent context, the optimal condition ensuring the CLT with the standard normalization mixes the decay of the coefficients α 1,X (k) and the tail distribution of the random variables. Before stating the main result of this section, let us recall the definition of the quantile function of a random variable. For any nonnegative random variable Z, the quantile function

Q Z of Z is defined by Q Z (u) = inf{t ≥ 0 : P(Z > t) ≤ u}. Recall that X -= -min(0, X) is the negative part of X. Theorem 2 Let u ∈]0, 1[. Assume that F -1 is continuous at u, and that k≥0 α 1,X (k) 0 (1 + Q 2 X -(s))ds < ∞ . (10) 
Then

√ n 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds → D N 0, σ 2 (u) u 2 as n → ∞, (11) 
where σ 2 (u) = Var(Y 0 (u)) + 2 k≥1 Cov(Y 0 (u), Y k (u)).

Remark 3

The fact that F -1 is continuous at u is equivalent to Card{x : F (x) = u} ≤ 1, which is also equivalent to: one cannot find a non empty interval I = [a, b[ such that F ≡ u on I. It is proved in Theorem 2 of [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF] that this condition is in fact necessary in the iid case for the convergence to a normal distribution.

Remark 4 Let us recall some sufficient conditions for [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] to hold (see Chapter 1 in [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF]):

1. If X -r < ∞ for some r ∈]2, ∞], then (10) is satisfied provided that k≥0 (k + 1) 2/(r-2) α 1,X (k) < ∞ . 2. If E(X 2 -log(1 + X -)) < ∞, then (10) is satisfied provided that there exists τ > 0 such that α 1,X (k) = O(exp(-τ k)) .
Of course, if α 1,X (k) = 0 for k > m (for instance if the variables are m-dependent) then (10) is satisfied as soon as E(X 2 -) < ∞. Note that, in the iid case, this condition is less restrictive than the condition E(X 2 ) < ∞ in Theorem 2 of [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF].

As for the usual central limit theorem for the partial sums associated with dependent random variables, one can ask about the optimality of condition [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] for the validity of the conclusion of Theorem 2. Before giving our main result about the optimality of this condition, we recall the definition of the β-mixing coefficient of a stationary sequence

(X i ) i∈Z . Let X k,∞ = (X i ) i≥k and let P X k,∞ |F 0 be a regular conditional probability of X k,∞ given F 0 . Let also B 1 (R N ) be the set of B(R N )-measurable functions g such that g ∞ ≤ 1.
The β-mixing coefficients of (X i ) i∈Z are then defined by

β(k) = sup g∈B 1 (R N ) P X k,∞ |F 0 (g) -P X k,∞ (g) 1 . (12) 
With this definition, it is easy to see that α ∞ (k) ≤ β(k), where α ∞ (k) is the strong mixing coefficient defined by [START_REF] Dedecker | Weak convergence of the empirical process of intermittent maps in L 2 under long-range dependence[END_REF].

Theorem 5 Let a > 1 and f be a continuous, increasing and negative function on ]0, 1] such that

1 0 u -1/a (f (u)) 2 du = +∞ . (13) 
Then, there exists a stationary ergodic Markov chain

(U i ) i∈Z of r.v.'s with uniform distri- bution over [0, 1] satisfying 0 < lim inf n→∞ n a α 1,U (n) ≤ lim sup n→∞ n a β(n) < ∞ , (14) 
and such that, for any u ∈]0, 1[, the convergence in distribution (20) does not hold for

(X k ) k≥0 defined by X k = f (U k ).
Note that, since f is continuous and increasing,

α 1,X (n) = α 1,U (n). It then follows easily from (14) that k≥0 α 1,X (k) 0 Q 2 X -(s)ds = ∞ if and only if (13) is satisfied.
Hence Theorem 5 shows the optimality of condition [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] for the validity of the conclusion of Theorem 2.

Now in case where X -is bounded, (10) reduces to k≥0 α 1,X (k) < ∞. Next result proves the optimality of this condition to get the conclusion of Theorem 2.

Theorem 6 There exists a stationary ergodic Markov chain

(X i ) i≥0 of r.v.'s with values in [0, 1] satisfying 0 < lim inf n→∞ nα 1,X (n) ≤ lim sup n→∞ nα 1,X (n) < ∞ , (15) 
and such that, for any

u ∈]0, 1[, √ n √ log n 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds → D κ(u)N as n → ∞,
where N has a standard Gaussian distribution and κ(u) is a positive constant depending on u.

3 Almost sure rates of convergence

If condition ( 10) is weakened we still have rates in the strong law of large numbers in the following sense:

Theorem 7 Let u ∈]0, 1[ and p ∈]1, 2[. Assume that k≥0 (k + 1) p-2 α 1,X (k) 0 (1 + Q p X -(s))ds < ∞ . ( 16 
)
Then n 1-1/p 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds → 0 a.s. as n → ∞.
Remark 8 Note that, as Proposition 1, Theorem 7 does not require that F -1 is continuous at u.

Remark 9

Let us recall some sufficient conditions for [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF] to hold (see Annexe C in [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF]):

1. If X -r < ∞ for some r ∈]p, ∞], then (16) is satisfied provided that k≥0 (k + 1) (pr-2r+p)/(r-p) α 1,X (k) < ∞ . 2. If E(X p -(log(1 + X -)) p-1 ) < ∞, then (16) is satisfied provided that there exists τ > 0 such that α 1,X (k) = O(exp(-τ k)) .
Of course, if α 1,X (k) = 0 for k > m (for instance if the variables are m-dependent) then ( 16) is satisfied as soon as E(X p -) < ∞.

In the unbounded case, as for the central limit theorem, it is possible to comment on the optimality of the condition [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF]. More precisely, the following result holds:

Theorem 10 Let p ∈]1, 2[ and a > p -1.
Let f be a continuous, increasing and negative function on ]0, 1] such that

1 0 u -(p-1)/a |f (u)| p du = +∞ . (17) 
Then, there exists a stationary ergodic Markov chain (U i ) i∈Z of r.v.'s with uniform distribution over [0, 1] satisfying [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF] and such that setting

X k = f (U k ), for any u ∈]0, 1[, we have lim sup n→∞ n 1-1/p u 0 F -1 n (s)ds - u 0 F -1 (s)ds = +∞ a.s.
Again, it follows easily from ( 14) and the fact that

α 1,X (n) = α 1,U (n), that k≥0 (k + 1) p-2 α 1,X (k) 0 Q 2 X -(s)ds = ∞ if and only if (17) is satisfied.
Hence Theorem 10 shows the optimality of condition ( 16) for the validity of the conclusion of Theorem 2.

Now in case where X -is bounded, [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] 

reduces to k≥0 k p-2 α 1,X (k) < ∞.
Next result proves the optimality of this condition to get the conclusion of Theorem 2.

Theorem 11 Let p ∈]1, 2[. There exists a stationary ergodic Markov chain (X i ) i≥0 of r.v.'s with values in [0, 1] satisfying 0 < lim inf n→∞ n p-1 α 1,X (n) ≤ lim sup n→∞ n p-1 α 1,X (n) < ∞ , (18) 
and such that, for any u ∈]0, 1[,

n 1-1/p 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds → D κ(u)S as n → ∞,
where S is a non degenerate p-stable distribution and κ(u) is a positive constant depending on u.

Strong invariance principle

In this section, we give a strong invariance principle for

1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds .
This result will hold for a stronger version of the coefficient α 1,X (n), which we define now.

Let

f z (x) = 1 z≤x -F (x). The coefficient α 2,X (n) is defined by α 2,X (n) = max α 1,X (n), sup x,y∈R,j≥i≥n E (f x (X i )f y (X j )|F 0 ) -E (f x (X i )f y (X j )) 1 .
This coefficient has been introduced in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]. For most of the usual examples, the coefficient α 2,X (n) behaves exactly as α 1,X (n) (see [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF] and [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF]). Moreover, is is easy to see that

α 2,X (n) ≤ α ∞ (n) ≤ β(n) ,
where the mixing coefficient α ∞ (n) and β(n) are defined by ( 9) and ( 12) respectively.

Theorem 12 Let u ∈]0, 1[. Assume that F -1 is continuous at u and that k≥0 α 2,X (k) 0 (1 + Q 2 X -(s))ds < ∞ and k≥0 α 1,X (k) k + 1 < ∞. ( 19 
)
Then, enlarging the probability space if necessary, there exists a sequence (Z i ) i≥0 of i.i.d. Gaussian random variables with mean 0 and variance σ 2 (u)/u 2 such that

1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds - 1 n n i=1 Z i = o log log n n a.s. ( 20 
)
where

σ 2 (u) = Var(Y 0 (u)) + 2 k≥1 Cov(Y 0 (u), Y k (u)).
Remark 13 As usual, we infer from this strong invariance principle that: the sequence

n 2 log log n 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds
is almost surely relatively compact, with almost sure limit set [-σ(u)/u, σ(u)/u].

Remark 14 If we do not assume that F -1 is continuous at u in Theorem 12, then the residual term n/ log log n R n (u) (where R n (u) satisfies (6)) does not necessarily converge to 0 almost surely. However, it is still bounded almost surely, so that there exists

C(u) < ∞ such that lim sup n→∞ n log log n 1 u u 0 F -1 n (s)ds - 1 u u 0 F -1 (s)ds ≤ C(u) a.s.
Remark 15 Remark 4 applies to condition (19) of Theorem 12, with α 2,X instead of α 1,X , except in the bounded case

(case r = ∞ in Item 1 of Remark 4). If X -∞ < ∞, then condition (19) is satisfied if k≥0 α 2,X (k) k + 1 < ∞ .
Remark 16 If we replace α 2,X (k) by the (more restrictive) α-mixing coefficient α ∞ (k) defined by [START_REF] Dedecker | Weak convergence of the empirical process of intermittent maps in L 2 under long-range dependence[END_REF], then the second condition in [START_REF] Nagaraja | Some nondegenerate limit laws for the selection differential[END_REF] is useless: the strong invariance principle remains true under the condition

k≥0 α∞(k) 0 (1 + Q 2 X -(s))ds < ∞ .
In that case, the residual term R n (u) satisfying (6) can be handled by using the arguments in [START_REF] Dedecker | Almost sure invariance principle for the Kantorovich distance between the empirical and the marginal distributions of strong mixing sequences[END_REF].

Confidence Interval for the CVaR

We start by defining a suitable estimator of the limiting variance σ 2 (u) defined in Theorem 2, and we prove its consistency (see Proposition 17 below). For any i ≥ 1, let

Y i,n (u) = (F -1 n (u) -X i ) + and Y (0) i,n (u) = Y i,n (u) -Ȳn,n (u) , where Ȳn,n (u) = n -1 n i=1 Y i,n (u). Define then for any integer k ∈ [0, n], γk (u) = 1 n n-k i=1 Y (0) i,n (u)Y (0) i+k,n (u) 
and

ĉn (u) = γ0 (u) + 2 vn k=1 γk (u) . (21) 
Proposition 17 Let u ∈ [0, 1] and (v n ) n≥1 be a sequence of positive integers. Assume that (10) is satisfied and that

v n → ∞ and v 3 n E X 2 -1 ∧ n -1 X 2 - → 0 as n → ∞. ( 22 
)
6 Proofs

In the proofs, for the sake of simplicity, we shall use the notation a n b n , meaning that a n = O(b n ).

Proof of Theorem 2

We start from the decomposition (5) and we note that Theorem 1 in [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF] together with ergodicity entail that

1 √ n n i=1 (Y i (u) -E(Y i (u))) → D N 0, σ 2 (u) , provided k≥0 α 1,X (k) 0 Q 2 Y 0 (u) (s)ds < +∞ . (23) 
Indeed, the fact that [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF] 

implies that k≥0 Y 0 (u)E(Y k (u) -E(Y k (u)|F 0 ) 1 < ∞ and then their condition (1.
3) can be proved by using the arguments given at the beginning of [14, Section 6] together with the fact that for any real a, x → (a -x) + is monotone. Next, we note that, for any u ∈ [0, 1], condition ( 23) is satisfied as soon as ( 10) is. Indeed it suffices to notice that for any real a, P((a -X) + > t) ∼ t→+∞ P(max(0, -X) > t).

Therefore the theorem will follow if one can prove that √ nR n (u) → P 0, as n → ∞. With this aim, we recall that since it is assumed that F -1 is continuous at u, we have F -1 n (u) → F -1 (u) almost surely, as n → ∞. Therefore, taking into account [START_REF] Caron | Linear regression with stationary errors: the R package slm[END_REF], to prove that √ nR n (u) → P 0, as n → ∞ it is enough to show that

lim δ→0 lim sup n→∞ √ n [F -1 (u)-δ,F -1 (u)+δ] |F n (t) -F (t)|dt = 0 in probability. ( 24 
)
We shall rather prove the above convergence in L 1 . Note that, by [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF]

, k≥0 α 1,X (k) < ∞. Therefore F n (t) -F (t) 1 ≤ F n (t) -F (t) 2 n -1/2 . Hence √ n [F -1 (u)-δ,F -1 (u)+δ] |F n (t) -F (t)|dt 1 δ ,
which proves [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF]. This ends the proof of the theorem.

Proof of Theorem 5

Let a > 1. We consider the same stationary ergodic Markov chain (U i ) i∈Z of r.v.'s with uniform distribution over [0, 1] as the one constructed in Theorem 5 of [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF]. This chain satisfies 0 < lim inf

n→∞ n a β(n) ≤ lim sup n→∞ n a β(n) < ∞ . ( 25 
)
In addition, since [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF] implies that for any c < 0,

1 0 u -1/a (c -f (u)) 2
+ du = +∞, Theorem 5 in [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] asserts that for

X k = f (U k ) and Y k (u) = (F -1 (u) -X k ) + , the sequence n -1/2 n k=1 (Y k (u) -E(Y k (u)))
does not converge in distribution to a Gaussian random variable. Next, considering the decomposition (5), we show that, for any u ∈]0, 1[ (since F -1 is continuous at u), √ nR n (u) → P 0, as n → ∞ where R n (u) satisfies ( 6). This follows by using the same arguments as those developed in the proof of Theorem 2 since [START_REF] Dedecker | On the functional central limit theorem for stationary processes[END_REF] implies that k≥1 β(k) < ∞ and then k≥1 α 1,X (k) < ∞. So, to sum up, we have proved that it is possible to construct a stationary ergodic Markov chain (U i ) i∈Z of r.v.'s with uniform distribution over [0, 1] whose β-mixing coefficients satisfy [START_REF] Rockafellar | and their applications to risk, random variables, and regression[END_REF], satisfying

k≥0 β(k) 0 Q 2 X -(s)ds = ∞ where X = f (U )
with f a continuous, increasing and negative function on ]0, 1], and such that for any u ∈]0, 1[,

√ n u 0 F -1 n (s)ds - u 0 F -1 (s)ds does not converge in distribution.
To end the proof, it remains to show that ( 14) is fully satisfied, or equivalently (since f is continuous and increasing) that lim inf n→∞ n a α 1,X (n) > 0. This can be done using the same arguments as those developed in the first part of the proof of [15, Corollary 1], namely, in the proof of (4.22).

Proof of Theorem 6

Let γ ∈]0, 1[. We consider the Markov chain (X k ) k≥1 associated with the transformation T γ defined from [0, 1] to [0, 1] by

T γ (x) = x(1 + 2 γ x γ ) if x ∈ [0, 1/2[ 2x -1 if x ∈ [1/2, 1] .
This is the so-called LSV [START_REF] Liverani | A probabilistic approach to intermittency[END_REF] map with parameter γ. There exists a unique T γ -invariant measure ν γ on [0, 1], which is absolutely continuous with respect to the Lebesgue measure with positive density denoted by h γ . We denote by K γ the Perron-Frobenius operator of T γ with respect to ν γ . Recall that for any bounded measurable functions f and g, ν γ (f

• g • T γ ) = ν γ (K γ (f )g).
Let then (X i ) i≥0 be the stationary Markov chain with transition Kernel K γ and invariant measure ν γ . Since ν γ has a positive density h γ on ]0, 1[, it follows that F -1 is continuous on ]0, 1[. We take now γ = 1/2. From Section 1.4 in [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF], we know that (15) holds. Next, we follow the lines of the proof of Theorem 2 with the following modifications. From Comment 2 page 88 in Gouezel [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF], since

g u : x → (F -1 (u) -x) + is Lipshitz and k(u) := g u (0) - 1 0 g u (x)h 1/2 (x)dx > 0, we derive 1 √ n log n n i=1 (g u (X i ) -E(g u (X i ))) → D h 1/2 (1/2)k(u)N ,
where N has a standard Gaussian distribution. On another hand,

F n (t) -F (t) 2 2 n k=0 α 1,X (k) log(n) n ,
which implies that n log n R n (u) → P 0 where R n (u) satisfies [START_REF] Caron | Linear regression with stationary errors: the R package slm[END_REF]. The result then follows from the decomposition (5).

Proof of Theorem 7

We start from the decomposition (5) and we note that Corollary 3.2 in [START_REF] Rio | Asymptotic theory of weakly dependent random processes[END_REF] implies that, almost surely,

1 n 1/p n i=1 (Y i (u) -E(Y i (u))) → 0 , as n → ∞, provided k≥0 (k + 1) p-2 α 1,X (k) 0 Q p Y 0 (u) (s)ds < ∞ . (26) 
Next, condition [START_REF] Rockafellar | Optimization of conditional value-at-risk[END_REF] clearly holds provided that ( 16) is satisfied. It remains to prove that, almost surely,

n (p-1)/p [Ln(u),Un(u)] |F n (t) -F (t)|dt → 0 , as n → ∞. (27) 
With this aim, note that by (35), almost surely, there exists an integer N such that for any n ≥ N , [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF] it is enough to prove that

a := F -1 u/2 ≤ F -1 n (u) ≤ F -1 (1 + u)/2 := b . Hence, to prove
n (p-1)/p b a |F n (t) -F (t)|dt → 0 , as n → ∞. (28) 
Since k≥0 (k + 1) p-2 α 1,X (k) < ∞, this follows from the proof of Proposition 3.3 in [START_REF] Berthet | Central limit theorem and almost sure results for bivariate empirical W 1 distances[END_REF] by considering that the random variables X k are bounded. This ends the proof of the theorem.

Proof of Theorem 10

Let a > p -1.We consider the same stationary ergodic Markov chain (U i ) i∈Z of r.v.'s with uniform distribution over [0, 1] as in the proof of Theorem 5. This chain satisfies [START_REF] Rockafellar | and their applications to risk, random variables, and regression[END_REF]. In

Proof of Theorem 12

We start from the decomposition (5), and we note that Theorem 1.13 in [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] implies that: there exists a sequence (Z i ) i≥0 of i.i.d. Gaussian random variables with mean 0 and variance σ 2 (u)/u such that

1 nu n i=1 (Y i (u) -E(Y i (u))) - 1 n n i=1 Z i = o log log n n a.s. provided k≥0 α 2,X (k) 0 Q 2 Y 0 (u) (s)ds < +∞ . (29) 
It remains to prove that

lim n→∞ n log log n R n (u) = 0 a.s. ( 30 
)
where R n (u) satisfies ( 6). Since F -1 is continuous at u, F -1 n (u) converges to F -1 almost surely. Hence (30) follows from

lim δ→0 lim sup n→∞ n log log n F -1 (u)+δ F -1 (u)-δ |F n (t) -F (t)|dt = 0 a.s. (31) 
Applying Theorem 1.1 in [START_REF] Cuny | Invariance principles under the Maxwell-Woodroofe condition in Banach spaces[END_REF] to the space

L 1 ([F -1 (u) -δ, F -1 (u) + δ], dt), we get that lim sup n→∞ n log log n F -1 (u)+δ F -1 (u)-δ |F n (t) -F (t)|dt ≤ 2Cδ k≥0 α 1,X (k) k + 1 a.s.
for some universal constant C, and (31) easily follows.

Proof of Proposition 17

Recall the notation (4), namely:

for any i ≥ 1, Y i (u) = (F -1 (u) -X i ) + . For any integer k ∈ [0, n], let γ * k (u) = 1 n n-k i=1 (Y i (u) -Ȳn (u))(Y i+k (u) -Ȳn (u))
and, for any sequence of positive integers (v n ) n≥1 define

c n (u) = γ * 0 (u) + 2 vn k=1 γ * k (u) .
According to [8, Theorem 1(b)], if [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF] is satisfied and if

v n → ∞ and v 3 n E Y 2 0 (u) 1 ∧ n -1 Y 2 0 (u) → 0 as n → ∞, (32) 
then

c n (u) → σ 2 (u) in probability, as n → ∞. (33) 
Note that condition (32) holds as soon as condition [START_REF] Rio | A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws[END_REF] does. Next, for any positive integer i, noticing that

|Y i (u) -Y i,n (u)| ≤ |F -1 n (u) -F -1 (u)|, we infer that (Y i (u) -Ȳn (u))(Y i+k (u) -Ȳn (u)) -Y (0) i,n (u)Y (0) i+k,n (u) ≤ 2|F -1 n (u) -F -1 (u)| |Y i (u)| + Ȳn (u) + 2|F -1 n (u) -F -1 (u)| |Y i+k (u)| + Ȳn (u) + 4|F -1 n (u) -F -1 (u)| 2 .
Therefore,

|c n (u) -ĉn (u)| ≤ 8v n |F -1 n (u) -F -1 (u)| × 1 n n i=1 |Y i (u)| + 4v n |F -1 n (u) -F -1 (u)| 2 .
But, by the ergodic theorem, n -1 n i=1 |Y i (u)| → E(|Y 1 (u)|) a.s., as n → ∞. Therefore, taking into account (33), the proposition will follow if one can prove that

v n |F -1 n (u) -F -1 (u)| → 0 in probability, as n → ∞. (34) 
With this aim, we start with the well-known inequalities:

F -1 u -n,1 ≤ F -1 n (u) ≤ F -1 u + n,2 , (35) 
where n,1 = F n -F ∞ ∧u and n,2 = F n -F ∞ ∧(1-u). Next, since F -1 is differentiable at u, we have

F -1 u -n,1 -F -1 (u) = -(F -1 ) (u) × n,1 + o( F n -F ∞ ) .
Similarly,

F -1 u + n,2 -F -1 (u) = (F -1 ) (u) × n,2 + o( F n -F ∞ ) .
So, overall, since F -1 is assumed to be differentiable at u, to prove (34) it is enough to prove that

v n F n -F ∞ → 0 in probability, as n → ∞. (36) 
For any fixed positive integer p, setting t i = F -1 (p) for any integer i ∈ [1, p -1], t 0 = -∞ and t p = +∞, and defining

V n = max 0≤i≤p-1 |F n (t i ) -F (t i )|, |F n (t - i+1 ) -F (t - i+1 )| := max 0≤i≤p-1 Z i,n ,
we have, for any t ∈ R, 

|F n (t) -F (t)| ≤ V n + 1 p . But V n 2 ≤ √ p max 1≤i≤p Z i,n 2 . Since k≥1 α 1,X (k) < ∞, Z i,n 2 n -1/2 ,

Simulations

In this section, we shall simulate two different stationary processes, in order to estimate the coverage level of the confidence interval presented in Section 5. The first process is non mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF], but its coefficients α 1,X (k) decrease at an exponential rate. The second process is a β-mixing process (hence mixing in the sense of Rosenblatt), with a slow rate of mixing.

Example 1: Non mixing auto-regressive model

We first simulate (Y 1 , . . . , Y n ), according to the simple AR(1) equation

for k ≥ 1, Y k+1 = 1 2 (Y k + ε k+1 ) ,
where Y 1 is uniformly distributed over [0, 1], and (ε i ) i≥2 is a sequence of iid random variables with distribution B(1/2), independent of Y 1 .

One can check that the transition Kernel of the chain (Y i ) i≥1 is

K(f )(x) = 1 2 f x 2 + f x + 1 2 ,
and that the uniform distribution on [0, 1] is the unique invariant distribution by K. Hence, the chain (Y i ) i≥1 is strictly stationary. It is well known that the chain (Y i ) i≥1 is not α-mixing in the sense of Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] (see for instance [START_REF] Andrews | Nonstrong mixing autoregressive processes[END_REF]). However, one can prove that the coefficients α 1,Y of (Y i ) i≥1 are such that

α 1,Y (k) ≤ 2 -k
(see for instance Section 6.1 in [START_REF] Dedecker | An empirical central limit theorem for dependent sequences[END_REF]). Note that this upper bound is also valid for the coefficient α 2,Y (k) defined in Section 4. Let now Q µ,σ 2 be the inverse of the cumulative distribution function of the law N (µ, σ 2 ). Let then

X i = Q µ,σ 2 (Y i ) .
The sequence (X i ) i≥1 is also a stationary Markov chain (as an invertible function of a stationary Markov chain), and one can easily check that α 1,X (k) = α 1,Y (k). By construction, X i is N (µ, σ 2 )-distributed.

One can check that this chain is strictly stationary, with invariant distribution ν. Moreover, it is proved in [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] that the β-mixing coefficients of this chain are exactly of order n -a . Note also that Y a i is uniformly distributed over

[0, 1]. Let then X i = Q µ,σ 2 (Y a i ) .
The sequence (X i ) i≥1 is also a stationary Markov chain (as an invertible function of a stationary Markov chain), and its β-mixing coefficients are such that: there exist B > A > 0 such that, for any n ≥ 1, An -a ≤ β(n) ≤ Bn -a . By construction X i is N (µ, σ 2 )distributed. Note that the equality (37) is still valid, and that (38) is a confidence interval of asymptotic level 1 -α for -u -1 u 0 F -1 (s)ds. In the simulations, we shall take u = 0.75, α = 0.05, µ = 1, σ 2 = 1, so that X i is N (1, 1)distributed. We choose a = 3, which gives a rather slow rate of mixing. We then proceed exactly as in Subsection 7.1 to estimate the quantities Var Since the rate of mixing is quite slow, the results are less satisfactory than for the first example. One has to take n ≥ 800 to get a coverage greater than 93% for the second method (with an automatic AR fitting on the residuals), and n ≥ 1000 to get a coverage greater than 92% for the method presented in Section 5 (with v n = [n 1/4 ]). For n = 4000, the coverage is around 93.5% for the first method and around 94.5% for the second method. As for Example 1, we see that the second procedure is always slightly better (better coverage and variance closer to 1).

Appendix

Lemma 19 Let u ∈]0, 1[, and let F and G be two cumulative distribution functions such that with L(u) = min(F -1 (u), G -1 (u)) and U (u) = max(F -1 (u), G -1 (u)).

Remark 20 Note that the first term on right hand in (39) satisfies

F -1 (u) -∞ (F (t) -G(t))dt = E((F -1 (u) -X) + ) -E((F -1 (u) -Y ) + ) ,
where X and Y are two random variables with cumulative distribution function F and G respectively.

Proof. We start by writing u 0 F -1 (s)ds = -

F -1 (u)
-∞ F (t)dt + uF -1 (u) . Assume that G -1 (u) ≤ F -1 (u). Then, since G -1 (u) ≤ t < F -1 (u) ⇐⇒ F (t) < u ≤ G(t), we get

It follows that

|R| = F -1 (u) G -1 (u) (G(t) -u)dt ≤ F -1 (u) G -1 (u)
(G(t) -F (t))dt .

On another hand, if F -1 (u) ≤ G -1 (u). Then, since F -1 (u) ≤ t < G -1 (u) ⇐⇒ G(t) < u ≤ F (t), we get

|R| = G -1 (u) F -1 (u) (u -G(t))dt ≤ G -1 (u) F -1 (u) (F (t) -G(t))dt ,
and the Lemma is proved.

0-∞ 0 G - 1 (s)ds - u 0 F - 1 0 G - 1 0 F - 1

 01010101 G(t)dt < ∞ and 0 -∞ F (t)dt < ∞.The following equalities hold:u (s)ds = R ((F (t) ∧ u) -(G(t) ∧ u)) dt and u (s)ds -u (s)ds = F -1 (u) -∞ (F (t) -G(t))dt + R ,(39)where|R| ≤ [L(u),U (u)]|F (t) -G(t)|dt .

F 0 G - 1 (s)ds - u 0 F - 1 (

 0101 (t)dt + u(G -1 (u)-F -1 (u)) = R ((F (t) ∧ u) -(G(t) ∧ u)) dt (40)and the first equality is proved. Next, from the first equality in (40), we also deduce thatu t) -G(t)dt + R , where R = u(G -1 (u) -F -1 (u)) -

  1 , Cove 1 (with v n = [n 1/4 ]), Var 2 and Cove 2 . The results are presented in the following table. .41 1.26 1.326 1.293 1.283 1.261 1.242 1.161 Var 2 1.314 1.289 1.146 1.18 1.201 1.208 1.177 1.14 1.093 Cove 1 0.899 0.902 0.914 0.912 0.915 0.921 0.915 0.923 0.935 Cove 2 0.905 0.912 0.924 0.928 0.925 0.93 0.93 0.94 0.944

		n 300	400	500	600	700	800	900	1000 4000
	Var 1	1.42 1					

Suppose, in addition, that F -1 is differentiable at u. Then ĉn (u) → σ 2 (u) in probability, as n → ∞, where ĉn (u) is defined by [START_REF] Rachev | Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures[END_REF].

Remark 18 Note that if E(X 2 -) < ∞, one can always find a sequence v n such that (22) is satisfied. Moreover, if E(X 4 -) < ∞, then any v n = o(n 1/3 ) satisfies [START_REF] Rio | A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws[END_REF]. When σ 2 (u) > 0, Theorem 2 combined with Proposition 17 lead to asymptotic confidence intervals for the CVaR -1 u u 0 F -1 (s)ds, namely:

is a confidence interval of asymptotic level 1-α for -1 u u 0 F -1 (s)ds (here, as usual, q 1-α/2 is the quantile of order 1 -α/2 of the standard Gaussian distribution). addition, since [START_REF] Labopin-Richard | Estimation methods and applications[END_REF] implies that for any c < 0, [START_REF] Rio | A maximal inequality and dependent Marcinkiewicz-Zygmund strong laws[END_REF] asserts that for

Next, considering the decomposition (5), we show that, for any u ∈]0, 1[, n (p-1)/p R n (u) → 0 a.s., as n → ∞ where R n (u) satisfies [START_REF] Caron | Linear regression with stationary errors: the R package slm[END_REF]. The proof is exactly the same as the proof of [START_REF] Trindade | Financial prediction with constrained tail risk[END_REF]. So, to sum up, we have proved that it is possible to construct a stationary ergodic Markov chain (U i ) i∈Z of r.v.'s with uniform distribution over [0, 1] whose β-mixing coefficients satisfy [START_REF] Rockafellar | and their applications to risk, random variables, and regression[END_REF],

with f a continuous, increasing and negative function on ]0, 1], and such that for any

The fact that ( 14) is fully satisfied is proved as in the proof of Theorem 5.

Proof of Theorem 11

We consider the Markov chain (X k ) k≥1 described in the proof of Theorem 6 with γ = 1/p. From Section 1.4 in [START_REF] Dedecker | Some almost sure results for unbounded functions of intermittent maps and their associated Markov chains[END_REF], we know that (18) holds. From Theorem 1.3 in Gouezel [START_REF] Gouëzel | Central limit theorem and stable laws for intermittent maps[END_REF], since g u : x → (F -1 (u) -x) + is Lipshitz and k(u) := g u (0) -

where S is a non-degenerate p-stable distribution and C p > 0. On another hand, we know from Theorem 1.1 in [START_REF] Dedecker | Weak convergence of the empirical process of intermittent maps in L 2 under long-range dependence[END_REF] that

Now, the quantity R n (u) defined by ( 6) satisfies

Since F -1 is continuous at u, F -1 n (u) converges almost surely to F -1 (u), which implies that n 1-1/p R n (u) → P 0. The result follows from the decomposition (5).

For u ∈]0, 1[, we can now compute the CVaR (see for instance [START_REF] Rachev | Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization: The Ideal Risk, Uncertainty, and Performance Measures[END_REF]):

where Φ is the cdf of the N (0, 1)-distribution. Now, according to Section 5,

is a confidence interval of asymptotic level 1 -α for -u -1 u 0 F -1 (s)ds. Recall that ĉn (u) is the estimator of σ 2 (u) built in Proposition 17 (for some v n such that v n = o(n 1/3 )).

In the simulations, we shall take u = 0.75, α = 0.05, µ = 1, σ 2 = 1, so that X i is N (1, 1)-distributed. We shall estimate the variance of √ n u 0 F -1 n (s)ds/ ĉn (u) and the coverage probability of the interval (38) via a basic Monte Carlo procedure over N = 2000 independent trials, for different values of n, with the choice v n = [n 1/4 ]. This will give us Var 1 and Cove 1 . We shall also try another computation for ĉn (u). We shall fit an autoregressive process (with an automatic procedure based on the AIC criterion) on the "residuals" Y (0 i,n (u) defined in Section 5, and then compute ĉn (u) as the covariance series of the fitted AR process (this procedure is inspired from the paper [START_REF] Caron | Linear regression with stationary errors: the R package slm[END_REF], where it is shown to work well in the context of linear regression). This will then gives us Var We see that both procedures work well: the coverage levels are greater than 93% for n ≥ 300 and very close to 95% for n = 1000. We see that the second procedure (with and automatic AR fitting on the residuals) is always slightly better (better coverage and variance closer to 1).

Example 2: β-mixing Markov chain

In this section, we first simulate the stationary β-mixing Markov chain introduced in [START_REF] Doukhan | The functional central limit theorem for strongly mixing processes[END_REF] as follows. Let a > 1, and let ν and π be the two probability measures on [0, 1] with respective densities f ν (x) = ax a-1 1 0≤x≤1 and f π (x) = (a + 1)x a 1 0≤x≤1 . Let F π be the cdf of π, and let Y 1 be a random variable with law ν. Let (ε i ) i≥1 = ((U i , V i )) i≥2 be a sequence of iid random variables with uniform law over [0, 1] 2 and independent of Y 1 . For k ≥ 1 define then