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Abstract

Elementary control theory and epidemic spread models illustrate the
deadly impacts delay in recognizing pandemic threat and failure of insti-
tutional cognition in facing that threat can have on the institutions of
public health. While short delays may cause some oscillation that rapidly
dies out, sufficiently large time gaps trigger multiple infection waves of
increasing severity, much like the onset of a power network blackout or of
uncontrollable vehicle fishtailing. Similar – and synergistic – oscillations
are found to be triggered by sufficiently low rates of institutional cog-
nition. This approach begins to lift the cultural constraints inherent to
host-pathogen population dynamics models of infectious disease in social
systems sculpted by the synergisms of geography, power relations, and
path-dependent historical trajectory.
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1 Introduction

Very few polities have, like New Zealand and Singapore in figure 1, after the
initial surge, succeeded in suppressing pandemic COVID-19.

Others either did not act promptly, or failed to act consistently, and, like
the United States, Brazil, and England within the UK, and South Africa have
suffered recurrent, and even growing waves of infection. See figure 2.

Here, we will study the patterns of figures 1 and 2 from a perspective some-
what removed from currently-fashionable host-pathogen population dynamics.
A first alternate perspective is that of control theory, in the context of an in-
herently unstable system where the control impulse is further burdened by in-
creasing response delay. Castro et al. (2021) provide a somewhat different view
of the ongoing Brazilian catastrophe.
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Figure 1: From Johns Hopkins (2021). (a) Number of confirmed COVID-19
cases in New Zealand, 3/1/20-3/8/21. (b) COVID-19 cases for Singapore. Con-
trol measures were promptly imposed, consistently maintained, and succeeded.
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Figure 2: (a) From Covid Tracking Project (2021). COVID-19 hospitalizations
in the USA over the same period as figure 1 show increasing amplitude instability
consistent with critical delay in problem recognition and address. (b) From
Our World in Data, via Johns Hopkins, reported COVID-19 deaths in Brazil,
March 2020 through April 14, 2021. Again, increasing amplitude oscillations.
(c) Adapted from Our World Data. COVID-19 hospitalizations in England and
Northern Ireland from NHS data. Yet again, oscillation of increasing amplitude.
(d) Reported cases for South Africa.
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The delay/instability problem in control dynamics has been of central con-
cern outside epidemiology and public health. Ali et al. (1997) describe at some
length how time delay in active control systems causes unsynchronized appli-
cation of the control forces, and shows how this unsynchronization not only
degrades the system performance, but also causes severe instability in system
response.

For individual human cognition, one can invoke the example of Delayed
Auditory Feedback (DAF) in which an artificially-induced delay of about 175ms
between speech and hearing triggers extreme stress (e.g., Yates 1963).

The perspective extends to failure in disease control, and there are funda-
mental cultural reasons for a significant reorientation.

Epidemiologists in Western nations, as a consequence of powerful and deeply-
held cultural mechanisms, will usually focus on the ‘salient object’ (Nisbett et
al. 2001) of the population dynamics seen as the ‘fundamental’ linkage between
host and pathogen. This perspective is currently most saliently instantiated by
the simplistic ‘R-zero’ model (e.g., Bailey 1975; Wallace and Wallace 2016), as
follows.

Let X,Y, Z be, respectively, susceptible, infective, and ‘removed’ – dead or
immune – subpopulations, with N = X + Y + Z = constant. The Kermack-
McKendrick model of infectious disease is as follows:

dX/dt = −βXY
dY/dt = (βX − γ)Y

dZ/dt = γY

Y∞ = 0

Z∞ =
LW

(
−βγ exp[−βγN ]

)
β/γ

+N (1)

where LW is the n = 0 order Lambert W-function that satisfies the relation

LW (n, x) exp[LW (n, x)] = x

This function will appear repeatedly below. Except for n = 0,−1, LW (n, x)
is complex valued. It is real valued for n = 0 in the range − exp[−1] < x <∞,
and for order n = −1 over the range − exp[−1] < x < 0.

Taking the initial infected population at time zero to be Y0 > 0, if the ‘re-
production number’ R0 ≡ βX0/γ < 1, the infection will decline and become
(at least locally) extinct. There are many variations, of differing complexity,
and some have been used for policy purposes during the COVID-19 pandemic
(e.g., Ferguson et al. 2020). Shayak et al. (2021), for example, apply a delay-
differential equation (DDE) version to explore the impact of reproduction num-
ber on the multiwave spreading dynamics of COVID-19 with temporary immu-
nity.
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A different, and in our view, more sophisticated, approach is taken by Pe-
dro et al. (2020). They examine in some detail the interplay between disease
dynamics and social processes as follows.

A second wave of COVID-19 is widely feared... as many juris-
dictions around the world begin lifting restrictions that have held
viral transmission in check. To address this issue, we analyzed [the]
... interplay between SARS-CoV-2 transmission dynamics and so-
cial dynamics concerning public support for physical distancing and
school and workplace closure ... [finding] that a second wave of
COVID-19 (and sometimes also a third wave) was likely... In some
cases, the second peak was higher than the first peak...

Time delays... destabilize dynamics... and we... suspect that a
model extension including a response to lagged outcomes... would
exacerbate the severity of second waves...

Pedro et al. (2020) conclude that because interactions between the dynamics
of disease spread and social processes will play a major role in shaping the
pandemic, more effort in transmission modeling of COVID-19 should be devoted
to accounting for them.

We will focus even less on the ‘salient object’ of individual-oriented disease
population dynamics, and bear down heavily on the larger embedding contexts
of geography and path-dependent historical trajectory reflecting the power rela-
tions defining and sculpting the modern state and its subservient public health
institutions. Nisbett et al. (2001) provide deeper exploration of the implications
of such refocs.

As Wallace and Wallace (2016 Ch. 4) studied similar matters in the context
of the West African Ebola outbreaks, finding that

Modern states are cognitive entities. Faced with dynamic pat-
terns of threat or affordance – like spreading infection – national
states or international confederations and their socioeconomic sub-
components must, can, and do choose a smaller set of responses
from a much larger domain of those possible to them. Such choice...
reduces uncertainty and [this] implies the existence of an informa-
tion source generating successive [disease control] messages. That
is, modern states are cognitive...

Pandemic propagation is not constrained by the ‘salient object’ of the R0

model of Eq.(1). Infection spreads, like water through cracks in ice, along a
social geography reflected by the modes of governance and their defining – and
sometimes hidden – power relations. Figure 3, adapted from Abler, Adams and
Gould (1971), characterizes the three levels of disease spread that have operated
since mercantile traffic became routine.

The top plane shows hierarchical diffusion from larger to smaller metropoli-
tan regions along air, rail, road, and river travel patterns. As with COVID-19,
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small outlying outbreaks become entrained into the peak of the urban hierarchy,
and then blow back down the hierarchy through routine travel patterns.

The second plane characterizes spatial contagion , driven by the daily journey-
to-work from central cities back and forth to their outlying suburbs.

The third plane, local, represents network diffusion , person-to-person spread
in homes, schools, workplaces, retail enterprises, and ‘superspreader’ social
events.

In sum, spatial diffusion of both information and infection within a modern
polity is networked by travel patterns at and across the various and different
scales and levels of organization.

For application of this perspective to the ‘slow plague’ of HIV/AIDS in the
USA, see Gould (1993), Gould and Wallace (1994), and Wallace et al. (1997,
1999). D. Wallace and R. Wallace (2020, Ch. 3) apply similar ideas to the
spatial diffusion of COVID-19 in the New York Metropolitan Region.

Figure 4, from Wallace et al. (1999), a study of AIDS across the 25 largest
US metropolitan regions, makes clear the overwhelming dominance of the New
York Metropolitan Region in the dynamics of the country’s pattern of infectious
disease spread: as goes New York City, ultimately, so goes the entire nation.
AIDS is, to reiterate, a ‘slow plague’ in the sense of Gould (1993), since any
rapid dynamics analogous to those of figures 1 and 2 are smoothed out by the
sometimes decade-long asymptomatic but infectious period of HIV.

Figure 4 shows the log of reported AIDS cases in the 25 largest US metropoli-
tan regions for two time periods, through April, 1991, and from April, 1991
through June, 1995. The New York Metropolitan Region is the point on the
upper right of the graph.

The log of reported AIDS cases is expressed as a function of the logs of (1)
the number of reported violent crimes for 1991, (2) the log of the ratio of man-
ufacturing employment jobs for 1987 and 1972 – an index of boom town/bust
town dynamics – and, (3) the log of the probability of contact with the New York
Metropolitan Area, measured in terms of 1985-1990 interregional and intrare-
gional migration. Multivariate analysis of covariance (MANCOVA) shows that,
as the New York Metropolitan Region rose in AIDS cases, it pulled up AIDS
cases in a cascade across the remaining 24 of the country’s largest regions.

Again, as goes New York City, so goes the nation, in terms of emerging
infection.

In the USA, public health response to the perturbation of a spreading infec-
tion is organized as a large, crosslinked, institutional network, at the national,
state, large urban center, and county levels and scales of organization. There
are, unfortunately, no general metropolitan regional-scale public health institu-
tions, a central omission driven by local histories of racial segregation, i.e, the
current evolutionary incarnation of the nation’s ‘peculiar institution’.

Here, we will be particularly interested in the modalities of governance and
the dynamics of their response to a pandemic ‘perturbation’. Our central focus
will be on the impact of delays in effective institutional response to disease onset.

Think about this for a long minute.
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Figure 3: Adapted from Abler, Adams and Gould (1971). National spread of a
contagious process. The top plane represents hierarchical diffusion. Infection is
first entrained into the largest central city, where it incubates within marginal-
ized populations, and then blows down the urban hierarchy along air, rail, and
highway travel paths to other large cities. The central plane represents spatial
contagion, the spread from central cities throughout the metropolitan region
by the daily journey-to-work. The lowest level represents network diffusion,
between individuals within families, workplaces, and ordinary social contacts.
Policies must be crafted according to scale and level of organization to stop
contagious spread.
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Figure 4: Adapted from Wallace et al. (1999). AIDS spread across the 25
largest metropolitan regions of the US. Infectious disease dynamics in the US
are strongly dominated by what happens in the apex of the US urban hierarchy,
the New York Metropolitan Region, the uppermost points on the graph.
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In more detail, we explore two relatively simple models of epidemic spread
from this top-down perspective. The first applies recent results from control
theory to delayed intervention, and the second reexamines a simplified version
of the ‘R0’ model under the influence of lagged official response. We will end with
an exploration of left-weighted distributed response delay that can be considered
as institutional cognition rate.

2 Control system dynamics

The Data Rate Theorem

Consider a powerful car driven at high speed on a twisting roadway at night.
The driver’s own response time to twists in the road is convoluted with respon-
siveness of both steering and brakes, the brightness of the car’s headlamps, all in
tightly-coupled synergism with the inherent ‘twistiness’ of the road itself. This
gestalt, in its totality, determines the probability of safe completion of the trip.
This gestalt dynamic can be made formal through Control Theory’s Data Rate
Theorem (Nair et al. 2007).

Institutions facting rapidly changing environments, like the fast car on a
twisting road, are inherently unstable, since the ‘roadway’ on which they operate
can always run them into a ditch.

The Data Rate Theorem (DRT) of control theory determines the minimum
rate at which control information must be imposed for an inherently unstable
control system to remain stable.

The standard analysis makes a linear expansion of system dynamics near
the control system’s nonequilibrium steady state (nss). Assume there is an n-
dimensional vector of parameters at time t, xt that sufficiently characterizes
the system. The state at time t + 1 is then assumed to be determined by the
first-order relation

xt+1 = Axt + But +Wt (2)

A and B are fixed n-dimensional square matrices. ut is a vector of the
control information. Wt an n-dimensional vector of Brownian ‘white’ noise.

Figure 5 presents a minimal structure for a command-and-control process
influenced by that ‘noise’.

The Data Rate Theorem – an adaptation of the Bode Integral Theorem –
states that, if H is the rate at which control information is provided sufficient
to stabilize an inherently unstable control system, it must be greater than a
minimum, H0, given as

H > H0 ≡ log[|det[Am]|] (3)

det is the determinant of the matrix Am, with m ≤ n, taking Am is the
subcomponent of A with eigenvalues ≥ 1. The right hand side of Eq.(3) is char-
acterized as the rate at which the unstable system itself generates ‘topological
information’.
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Figure 5: The state of a system, X, is compared with what has been ordered,
and, on detection of ‘error’, a corrective control signal U is sent at an appropriate
rate, against the influence of a noise W . The rate of transmission of that control
signal information must exceed the rate at which the inherently unstable system
generates it’s own ‘topological information’.

The system becomes uncontrolable if this inequality is violated. For the
speeding vehicle example, if headlights go out, or if the steering becomes un-
reliable, a twisting roadway cannot be navigated, no matter how powerful the
engine or how skilled the driver.

In the context of a nation’s public health, a set of interlinked institutions
must generate control information at and across the various scales and levels of
organization of figure 3 at a rate greater than the infection itself is generating
topological information by spreading down the urban hierarchy, from central
city to suburb, and from person to person.

This is a harsh demand, not at all unlike that facing the Red Army on June
22, 1941.

The effect of delay

There are different delays in public health response to a suddenly emerging
infection. The most obvious is the time it takes to implement a new policy
against inherent institutional inertia. We will treat such delay using an ‘expo-
nential’ model for the control information rate H being sent out by the public
health establishment across the different scales and levels of organization of the
underlying polity, so that

dH(t)/dt = β − αH(t)
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H(t) =
β

α
(1− exp[−αt])

H(t)→ β

α
(4)

This generates an ‘inverted-J’ curve that tops out at H = β/α > H0 at a
rate determined by α.

There is a second kind of delay.
Suppose there is a significant lag, say δ, in the time it takes to actually

recognize – or admit – a threat, so that

dH/dt = β − αH(t− δ) (5)

Solving a simple differential-delay equation can be done by seeking a solution
in terms of an ‘integrating factor’ s, so that

Hs(t) =
β

α
(1− exp[st]) (6)

This generates a characteristic equation whose solution is

s =
LW (n,−αδ)

δ
(7)

where, again, LW is the Lambert W-function of order n.
Taking n = −1, α = 1, figure 6 shows the real and complex values of s as

αδ > 0 increases.
In view of Eq.(6), the range of αδ for which the complex component of s

is zero is important, since it determines the limit above which oscillation sets
in. Recall that LW (−1, x) is real only for − exp[−1 < x < 0 and that the
real part of LW (−1,−z) becomes positive for z > π/2. Hence the condition
for a non-oscillating response is that αδ < exp[−1] ≈ 0.3679. Response delay,
increasing αδ, stretches out the time over which H(t) tops out, as in figure 7.
Here, α = β = 1. The shorter delay is δ = 0.25 and the longer δ = exp[−1].

Figure 8 examines the real values of Hs(t) for αδ just to the left and right of
the point where the real component of s changes sign, from negative to positive,
here at αδ ≈ 1.59, again taking α = β = 1. For αδ below that value, the system
‘rings’ slightly before settling down. For delays above that value, the system
begins ‘hunting’, i.e., to overcorrect, then to overcorrect again, until, as it were,
the speeding vehicle runs off the road. A negative value of Re[H(t)] indicates
complete collapse.

The Lambert W-function always suggests – perhaps even mandates – some
underlying formal network. Newman (2010), Spenser (2010) and Yi et al. (2010,
2011, 2012) provide discussion and examples. Yi et al. (2012) explicitly use
Lambert W-functions to solve delay differential equations, including extending
results to multidimensional systems via the matrix Lambert W-function.

Discussion of delay-differential equations like Eq.(5) can be found in Lou
and Sun (2011) and many other standard references.
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Figure 6: The exponential ‘integrating factor’ s replaces α in Eq.(9.6). There are
two critical values of the delay δ, derived from the appearance of the Lambert
W-function. The first is at the point where the complex component becomes
nonzero, representing the onset of dying oscillatory dynamics. The second is the
point at which the real component of s becomes greater than zero, implying ex-
plosive growth in oscillations. Recall that the real part of LW (−1,−z) becomes
positive for z > π/2. Note that the periodicity, determined by the magnitude of
the complex component, changes as αδ increases beyond the first critical point.

Figure 7: Control information rates when αδ is below the first critical value at
fixed α. Rising delay slows the rate of increase of Hs.
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Figure 8: (a) Ringing of Re[H(t)] when αδ is between critical points. (b)
Unstable hunting dynamics of Re[H(t)] when δ exceeds the second critical value.
According to this model, at αδ = 1.8, the real part of H(t) reaches negative
values on the downswing, indicating complete collapse of control.

Following Mao et al. (2005), we make stochastic extension of Eqs.(6) and
(7) by observing that

dHs/dt = s(Hs(t)− β/α) (8)

This leads directly to a stochastic differential equation (Protter 2005)

dHs
t = s(Hs

t − β/α)dt+ σHs
t dWt (9)

Here, dWt is assumed to be ordinary Brownian noise, so that the second
term represents volatility of magnitude σ.

Applying the Ito Chain Rule (Protter 2005) to (Hs
t )2 gives the variance as

V ar(Hs) =

(
sβ/α

σ2/2 + s

)2

−
(
β

α

)2

(10)

As above, variance becomes grossly unstable – complex – if αδ > exp[−1].
That is, as expected, delay can badly exacerbate inherent stochastic instabilities
afflicting control systems. Even if this condition is not violated, a sufficiently
large value of σ will trigger an explosive variability, since s must be both negative
and real for system stability.

3 Infection dynamics

Another approach to the dynamics of delay is via the number of infected in-
dividuals at the earliest stage of the pandemic, when there have been few if
any ‘removals’. Then, according to Eq.(1), dY/dt ≈ aY (t), a ≡ (βX − γ) > 0
so that Y (t) ≈ Y0 exp[at], i.e, exponential growth early on, in the context of a
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constant influx of infectives from surrounding areas, or via other random events,
at a rate β.

Typically, in ‘advanced’ nations, there should be a robust public health
response at the earliest stage of the pandemic, so that

dY/dt ≈ β + aY (t)− bY (t− δ)
b > a > 0 (11)

If there is no delay in robust public health response, so that δ = 0, then
some calculation finds, taking Y (t = 0) = Y0 and, again, assuming b > a > 0,

Y (t) =
β

b− a
− [β − Y0(b− a)] exp[−(b− a)t]

b− a

Y (0) = Y0 →
β

b− a
(12)

The pandemic does not propagate, but settles in to a low level endemic state,
depending on the influx rate β.

What, here, is ‘δ’? Delay in response, as Pedro et al. (2020) indicate, may
involve lagged outcomes like reported cases but, as we have seen recently with
regard to COVID-19 in the USA and elsewhere, includes executive misfeasance,
malfeasance, and nonfeasance ranging across dithering, denial, incompetence,
outright lying, and crony profiteering, structured according to preexisting power
relations across the polity. In consequence, δ can become quite large. What
then?

Using the approach of Eq.(6), we can seek a solution Y (t) under finite delay
δ as having the same form as Eq.(12), but replacing the term −(b − a)t in the
exponential with st. Then, a very similar characteristic equation calculation
gives

s =
aδ + LW

(
n,−bδ e−aδ

)
δ

(13)

Figure 9 shows Eq.(13), taking n = −1, a = 1, b = 2. It is, not surprisingly,
quite close to figure 6, and the subsequent arguments are similar.

The condition for zero complex component, however, is a little more com-
plicated,

bδ exp[−aδ] < exp[−1] (14)

Figure 10 displays Y (t) for two delays within that range, taking β = 1, Y0 =
20, a = 1, b = 2, δ = 0.1, 0.2. The longer delay slows decline of infection to a
low endemic level.

Again, figure 9 identifies two critical values for δ, the first determining onset
of oscillatory dynamics, and the second, when the real component becomes
positive, determining explosive, oscillating, growth of infection in spite of the
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Figure 9: Form of Eq.(13) for n = −1, a = 1, b = 2. Not surprisingly, the same
critical behaviors as in figure 6 are driven by increases in delay δ. Recall again
that the real part of LW (−1,−z) becomes positive for z > π/2.

Figure 10: Number of infectives vs. time for delays δ = 0.1, 0.2, within the real-
valued range of figure 9. Here, n = −1, β = 1, a = 1, b = 2, Y0 = 20, δ = 0.1, 0.2.
This is, in effect, the inverse of figure 7. Delay prolongs infection. Sufficient
delay produces oscillating explosive growth of infection similar to figure 8, in
spite of a robust public health response.
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condition b > a > 0 which, in the absence of delay, drives the infection to low
endemicity.

The stochastic DDE analysis, here in terms of the Ito Chain Rule applied
to Y (t)2 shows again that sufficient delay will grossly destabilize disease control
dynamics. Taking Y (t) as in the argument leading to Eq.(13) gives the SDE

dYt = s[Yt −
β

b− a
]dt+ σYtdWt (15)

Application of the Ito Chain Rule in second order shows

< Y 2
t >≈

(
sβ

(σ2/2 + s)(b− a)

)2

(16)

Sufficiently large σ will overcome the negative real part of s in figure 9,
leading to explosive instability in variance well before the second critical point.
Similarly, if a→ b, variance explodes.

4 Distributed delay – cognition rate models

The generalization of Eq.(5) to distributed delay takes the form

dH/dt = β − α
∫ t

0

H(t− τ)f(τ)dτ (17)

where
∫
f(τ)dτ = 1. If f is a Dirac delta function in (τ − δ), then we fully

recover Eq.(5). If f(τ) is symmetric and sharply peaked at some delay, then
dynamics will again be similar. Bernard et al. (2001) show, for differential delay
equations, that distributions concentrated to the left show greater stability to
parameter variations, and we will model attention span using the exponential
distribution, which is heavily left-loaded: f(x) = m exp[−mx].

Taking H(0) = 0, applying the Laplace transform to Eq.(17) gives

L(H(t), t, s) =
β

s(αL(f(t), t, s) + s)
(18)

Using the exponential distribution of mean m, calculation and inversion of
the Laplace Transform of H(t) gives

H(t) = β × sinh

(
t
√

(−4α+m)m

2

)
e−

mt
2 (−m+ 2α)√

(−4α+m)mα
+

− cosh

(
t
√

(−4α+m)m

2

)
e−

mt
2 + 1

α

 (19)

Since exponentials must be dimensionless, m is to be interpreted as a rate.
Figure 11 shows the general pattern for higher and lower cognition rates.

Here, α = β = 1, m = 3/2, 1/6. H0 is the critical DRT limit from Eq.(3). The
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Figure 11: Control information rate H(t) for the cognition rate exponential
distribution having means m = 1/6, 3/2. α = β = 1, and H0 is the critical
control information rate from the Data Rate Theorem. The system rapidly
becomes grossly unstable under a low cognition rate.

system rings dangerously at the low cognition rate, while the higher rate quickly
stabilizes and remains stable.

The infection model of Eq.(11), under distributed delay, becomes

dY (t)/dt ≈ β + aY (t)− b
∫ t

0

Y (t− τ)f(τ)dτ (20)

The Laplace transform argument for the exponential distribution applied to
Eq.(20) gives

Y (t) =
β

b− a
+ exp [(a−m)t/2] (· · ·) (21)

where the dotted terms within the brackets again involve sinh and cosh.
Here, in contrast to the control theory model, the essential matter is the

leading exponential term exp[(a−m)t/2]. If the rate of institutional cognition
m is smaller than a, the average rate at which the infection spreads within the
population, the outbreak explodes.

The stochastic differential equation extension of Eq.(20), which involves
adding a volatility term σYtdWt, enters realms at the cutting edge of current
applied mathematics which will not be pursued here (e.g., Rene and Longtin
2017).

That being said, some thought suggests that, for very high rates of institu-
tional cognition, where the average dealy < τ >=

∫
τf(τ)dτ is very small, the

stochastic version to Eq.(20) can be approximated as dYt ≈ β − (b − a)Yt +
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σYtdWt. Using the Ito Chain Rule, the requirement for stability in second or-
der is then that σ <

√
2(b− a). As < τ > increases, stability should fail at

progressively smaller levels of σ.

5 Multiple delays

In reality, of course, there are often many sources of delay, affecting at least
five or six critical scales and levels of organization: international, national,
state/province, county, municipality, and local community or neighborhood.
From the standpoint of mathematical modeling, four or more levels, it can be
shown, will often require solution to quintic or higher polynomials, for which
general solutions do not exist.

The additive delay version of Eq.(5) et seq. is

dH/dt = β −
N∑
j=1

αjH(t− τj)

H(t) =
β∑N
j=1 αj

(1− exp[st])

−s =

N∑
j=1

αj
exp[sτj ]

(22)

Here, s has a negative real part only over a limited region of the τj centered
on zero. That is, sufficiently large τj make H(t) unstable.

For the infection model, a similar calculation involves considerably more
algebra and is left as an exercise.

For the cognition rate models, matters are a little more complicated. Here,
the basic relations involve the Laplace transform of H(t) as

dH/dt = β −
N∑
j=1

αj

∫ t

0

H(t− τj)mj exp[−mjτj ]dτj

sL(H(t), t, s) =
β

s
−

 N∑
j=1

αjmj

s+mj

L(H(t), t, s) (23)

Solving for, and inverting the Laplace transform L(H(t), t, s) gives H(t) as
a sum across terms in exp[Ajt], where the Aj are the solutions to a polynomial
of degree N + 1 in αj and mj . Aj has negative real parts only for sufficiently
large cognition rates mj .

In our ‘real world’, N is large, the delays are long, and cognition rates are
low indeed.

Again, a similar calculation can be performed for the endemic infection
model.
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The Mathematical Appendix explores ways in which to extend the underly-
ing approach.

6 Reconsidering COVID-19 dynamics

Dynamic networks are notoriously hard to stabilize. The US-Canadian power
grid suffered a large-scale outage on August 10, 1996 (Rogers 2000). Figure
12a, adapted from the Rogers book, shows details of the line flow transient,
power in megawatts vs. time, over about a one hundred second interval, while
the grid’s power control system attempted corrections of increasing amplitude
until the system collapsed in a blackout. Figure 12b shows a seven day running
average of the reported number of COVID-19 cases through April 29, 2021. The
oscillations are again of increasing amplitude.

These are suspiciously similar to figure 8b and the low cognition rate plot of
figure 11.

We have invoked national public health as a dynamic networked structure
at and across various levels of governance, from the national through the state,
county, and municipal levels. Response to the perturbation of an emerging in-
fection can be indexed by the temporal dynamics of that infection. That is,
infection patterns in modern states are not simply matters of host-pathogen
population dynamics. They are environmental indices of underlying responses
of governing networks, particularly influenced by the delay of concerted institu-
tional response.

Let us reexamine New Zealand’s COVID-19 pattern in time. Again, figure
1 shows the number of reported verified cases by day across the country, from
March 1, 2020 through March 8, 2021.

The New Zealand example seems to index something quite like figure 8a:
onset of heavy control, followed by minor oscillations.

The outbreaks in the USA, Brazil, England, South Africa and elsewhere –
figure 2 – are quite different, as is the global example of figure 12b.

Here, we appear to see the oscillatory delay-and-lose-control dynamic of
figures 11 and 8b, with increasing disease peaks as polities either fail to respond
quickly, or prematurely ease social distancing restrictions, in the context of
a catastrophic vaccine rollout. Recalling the ‘free Michigan’ tweets from the
Trump White House, the compounded delay in recognition of New York City’s
dire circumstances at both the municipal and state levels, and the central role
of New York City in the nation’s urban hierarchy, this is not, perhaps, entirely
unexpected.

Since New York City so strongly dominates the US urban hierarchy, public
health policy in the City and State will effectively determine national patterns
of the spread of infectious disease. As described, figure 4, from Wallace et al.
(1999), provides a case history, showing how the New York Metropolitan Region
(NYMR) drove the spread of AIDS nationally.

COVID-19 was first detected in the NYMR on March 1 and 2, 2020. Good-
man (2020) describes subsequent events as follows:

19



Figure 12: (a). Oscillating collapse of the US/Canadian Power Grid during the
August, 1996 blackout event. The onset of increasing amplitude oscillations is
characteristic of failure through critical delay in system control. (b). Adapted
from the NY Times 5/1/21. A seven day running average of reported world-
wide COVID-19 cases through 4/29/21. Oscillations appear to be of increasing
amplitude.
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...[T]he initial efforts by New York officials to stem the outbreak
were hampered by their own confused guidance, unheeded warnings,
delayed decisions and political infighting...

[As former CDC Director Thomas R. Frieden put it] ‘You have
to move really fast. Hours and days. Not weeks. Once it gets a head
of steam, there is no way to stop it.’

Dr. Frieden said that if the state and city had adopted widespread
social distancing measures a week or two earlier, including closing
schools, stores and restaurants, then the estimated death toll from
the outbreak might have been reduced 50 to 80 percent.

Goodman (2020) reports that, at a private meeting on March 12, 2020, the
New York City Health Commissioner predicted 70 % of city residents could
become infected if no steps were taken. Finally, City and State officials agreed
to a widespread shutdown, including the closings of schools, for March 22. By
then, of course, it was far too late.

The numbers from the Delayed Auditory Feedback (DAF) experiments allow
perspective on the critical response time of New York City’s public health es-
tablishment. The time constant for human consciousness is about 100ms, while
the critical lag for DAF is about 175ms, say double. Taking Frieden’s seat-of-
the-pants criterion of ‘Hours and days’ as the time constant, as a base, then the
stable zone of figure 5, where the real component is negative, is very short for
New York City, certainly less than a week, understanding that as goes the City,
so goes the NYMR, and, ultimately, the nation. Acting forcefully within that
period, you might get some ringing nationally, but eventual convergence on zero,
as suggested by figure 8a. Wait two or three weeks for plague to spread in New
York City, and you get the rapidly growing amplifications of figure 8b, leading
to the national pattern of figure 2. Again, see Gould and Wallace (1994) and
Wallace et al. (1997, 1999) for a worked-out case history of the ‘slow plague’
(Gould 1993) of AIDS.

Similar stories can be written for Brazil, England, and South Africa and,
apparently, globally as well.

Hours and days to control a highly contagious outbreak in the peak of the
urban hierarchy. After that, national disaster.

With regard to Brazil, Castro et al. (2021) comment that

In Rio de Janeiro, political chaos compromised a prompt and
effective response. Leaders were immersed in corruption accusations,
the governor was removed from office and faced an impeachment
trial, and the Secretary of Health was changed three times between
May and September, one of whom was arrested...

...[P]rompt and equitable responses, coordinated at the federal
level, are imperative to avoid fast virus propagation and dispari-
ties in outcome.. Yet the COVID-19 response in Brazil was neither
prompt nor equitable. It still isn’t...

21



Figure 13: ‘Bring out your dead’. Kingsbridge, the Bronx, in the Year of the
Plague.

7 Discussion

Let us again imagine a driver on an all-night run over a poorly-maintained
highway. At first, the sudden impact of a pot hole is quickly corrected: figure
7. As the drive continues, the driver begins to tire. There is now an increased
delay in corrective response after hitting a bump, and the vehicle will fish-tail
slightly before stabilizing: figure 8a. Toward morning, the driver is fatigued and
overtired, and response rate has slowed even further, so that significant delay in
correction after perturbation leads to fishtailings of increasing amplitude until
the vehicle cannot remain on the road: figures 8b and 12. Cognition rate models
are simpler, in a sense: take your eyes off a growing fire, and it explodes.

This is not rocket science, but it does take much effort to see beyond cultural
blinders (e.g., Heine 2001) that both demand and reward focus on the popula-
tion dynamics of individual-level infection rather than on the dynamics of the
interlinked network of institutions tasked with the maintenance and control of
public health. Those dynamics are ever and always channeled and constrained
by the underlying power relations between subgroups within the polity, a matter
affecting – indeed, determining – public health research funding streams. These
are not dynamics that can be overcome by medical treatments of individuals,
including large-scale vaccination.

Ever more complicated models of institutional pandemic control dynamics
can be constructed, moving far beyond the burdens of Eqs.(5-23). The central
point of such models, as the mathematical ecologist E.C. Pielou (1977) has
emphasized, lies not answering questions, but in raising them for empirical and
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observational study. Such study is the only possible source of new knowledge
as opposed to new speculation. Mathematical and computational models are
speculation, and, via Eqs.(5-23), we have explored how delays in recognition of,
and response to, emerging infection is likely to trigger large-scale instabilities
of a nation’s disease control system, causing massively increased morbidity and
mortality: figure 2 vs. figure 1.

Policy implications are clear, but solutions less so. Business community
‘economic’ concerns have almost always opposed early imposition of draconian
disease control tactics. Messengers bearing bad news are never welcomed by
the powerful, discouraging forceful statements by increasingly frantic public
health authorities. Typically, egomaniacal ‘dear leaders’ at multiple scales of
governance often denigrate expert opinion and recommendations in favor of
soothing anodynes from cronies and sycophants.

Of central significance, metropolitan regions, the central agents of national
and local disease diffusion according to figures 3 and 4, remain fragmented both
within and between themselves regarding public health planning and authority.

New tactics are badly needed for public health strategy. Central to this is
a necessary reorientation of power relations between groups. Governance must
be taken from the hands of semi-demented, narcissistic ‘dear leaders’, their
courts of crony jesters, and the many, sometimes clandestine, beneficiaries of
the system who have, in fact, put them in power, and placed in the hands of
the saner modalities of civil society.

A defining context for such efforts is the inevitability of spillovers much more
deadly than COVID-19. These will emerge from increasingly prevalent factory
farming and neocolonial, neoliberal land use policies (Wallace and Wallace 2015;
Wallace et al. 2018, 2020). African Swine Fever has, at this date, killed about
half the hog population in China. The hog immune system is so similar to the
human that there is serious discussion of growing human organs in hogs for
transplant.

As has been said in another setting, ‘Winter is coming’.

Mathematical Appendix: Extending the models

Figure 3 suggests that we must, ultimately, explore spread and control of infec-
tion on a ‘sociogeographic’ network of linked metropolitan regions, convoluted
with subordinate subnetworks of spatial contagion and social network diffu-
sion. Sociogeographic ‘space’ and time then become inextricably mixed, while
infection propagates across the underlying manifold at some characteristic rate
c. This suggests, as in physical theory, introducing a Riemannian formalism,
replacing time in the developments above with a composite index S written as

dS2 = c2dt2 −
∑
j

dx2j (24)

Then the defining relations subject to discrete delay become, now in S,
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dH/dS = β − αH(S − δ)
dY/dS = aY (S)− bY (S − δ) (25)

and their distributed delay versions.
More generally, S should be represented via a metric tensor G defined by the

particular underlying social structures, so that

dS2 ≡ Gµνdxµdxnu (26)

where we have introduced the usual summation convention in the indices.
Stochastic extensions of this approach are again possible, at the expense

of singular mathematical complications (e.g., Herrmann 2009; Castro Villarrea
2010). We do not pursue these matters further here.

References

Abler, R., J. Adams, P. Gould, 1971, Spatial Organization: The geographer’s
view of the world, Prentice-Hall, New Jersey.

Ali, M., Z. Hou, N. Noori, 1998, Stability and performance of feedback
control systems with time delays, Computers and Structures 66:241-248

Bailey, N., 1975, The Mathematical Theory of Infectious Diseases and Its
Applications, Second Edition, Hafner Press, New York.

Bernard, S., J. Belair, M. Mackey, 2001, Sufficient conditions for stability
of linear differential equations with distributed delay, Discrete and Continuous
Dynamical Systems – Series II, 1:233-256.

Castro, M., S. Kim, L. Barberi, A. Riberio, S. Gurzenda ,K. Ribeiro, E. Ab-
bott, J. Blossom, B. Rache, B. Singer, 2021, Spatiotemporal pattern of COVID-
19 spread in Brazil, Science Reports doi:10.1126/science.abh1558.

Castro Villarrea, P., 2010, Brownian motion meets Riemann curvature,
arXiv:1005.0650v1.
Covid Tracking Project, 2021, https://covidtracking.com/data/charts/us-

currently-hospitalized.
Ferguson, N., and 29 others, 2020, Impact of non-pharmaceutical interven-

tions (NPIs) to reduce COVID-19 mortality and health care demand. Download
available from the Imperial College website.

Goodman, J.D., 2020, How Delays and Unheeded Warnings Hindered New
York’s Virus Fight, New York Times, April 8, July 18,

https://www.nytimes.com/2020/04/08/nyregion/new-york-coronavirus-
response-delays.html

Gould, P, 1993, The Slow Plague: A Geography of the AIDS Pandemic,
Blackwell, Cambridge, MA.

Gould, P., R. Wallace, 1994, Spatial structures and scientific paradoxes in
the AIDS pandemic, Geografiska Annaler B 76:105-116.

24



Heine, S., 2001, Self as cultural product: an examination of East Asian and
North American selves, Journal of Personality, 69:881-906.

Herrmann, J., 2009, Diffusion in the special theory of relativity, Physical
ReviewE 80:05110.

Johns Hopkins, 2021, https://www.arcgis.com/apps/opsdashboard/index.html/
bda7594740fd40299423467b48e9ecf6.
Lou, A., J. Sun, 2011, Complex Systems: Fractionality, Time-delay and

Synchronization, Springer, New York.
Mao, X., C. Yuran, J. Zou, 2005, Stochastic differential delay equations

of population dynamics, Journal of Mathematical Analysis and Applications,
304:296-320.

Nair, G., F. Fagnani, S. Zampieri, and R. Evans, 2007, Feedback control
under data rate constraints: An overview, Proceedings of the IEEEE, 95:108137.

Newman, M., 2010, Networks: An Introduction, Oxford University Press,
New York.

Nisbett, R., K. Peng, C. Incheol, A. Norenzayan, 2001, Culture and systems
of thought: Holistic vs. analytic cognition, Psychological Review, 108:291-310.

Pedro, S., F. Ndjomatchoua, P. Jentsch, J. Tchuenche, M. Anand, C. Bauch,
2020, Conditions for a second wave of COVID-19 due to interactions between
disease dynamics and social processes, frontiers in Physics 8: Article 574514
doi: 10.3389/fphy.2020.574514.

Pielou E.C., 1977, Mathematical Ecology, Wiley, New York.
Protter, P., 2005, Stochastic Integration and Differential Equations: A new

approach, Second edition, Springer, New York.
Rene, A., A. Longtin, 2017, Mean, covariance, and effective dimension of

stochastic distributed delay dynamics, CHAOS 27:114322.
Rogers, G., 2000, Power System Oscillations, Springer, New York.
Shayak, B., M. Sharma, M. Gaur, A. Mishra, 2021, Impact of reproduction

number on the multiwave spreading dynamics of COVID-19 with temporary
immunity: A mathematical model, International Journal of Infectious Diseases
104:649-654.

Spenser, J., 2010, The giant component: a golden anniversary, Notices of
the American Mathematical Society, 57:720-724.

Wallace, D., R. Wallace, 2020, COVID-19 in New York City: An ecology of
race and class oppression, Springer, New York.

Wallace, R.G., R. Wallace (eds), 2016, Neoliberal Ebola: Modeling Disease
Emergence from Finance to Forest and Farm, Springer, New York.

Wallace, R., D. Wallace, H. Andrews, 1997, AIDS, tuberculosis, violent crime
and low birthweight in eight US metropolitan areas: public policy, stochastic
resonance and the regional diffusion of inner-city markers, Environment and
Planning A 29:525-555.

Wallace, R., D. Wallace, J.E. Ullmann, H. Andrews, 1999, Deindustrializa-
tion, inner-city decay, and the hierarchical diffusion of AIDS in the USA: how
neoliberal and cold war polices magnified the ecological niche for emerging in-
fections and created a national security crisis, Environment and Planning A
31:113-139.

25



R. Wallace and R.G. Wallace, 2015, Blowback: new formal perspectives on
agriculturally driven pathogen evolution and spread, Epidemiology and Infec-
tion, 143(SE10):2068-2080.

R. Wallace et al., 2018, Clear-Cutting Disease Control: Capital-led defor-
estation, public health austerity, and vector-borne infection, Springer, New
York.

R. Wallace et al., 2020, Agribusiness vs. Public Health: Disease control in
resource-asymmetric conflict, https://hal.archives-ouvertes.fr/hal-02513883.

Yates, A., 1963, Delayed auditory feedback, Psychological Bulletin 60:213-
232.

Yi, S., P.W. Nelson and A.G. Ulsoy, 2010, Time-Delay Systems: Analysis
and Control Using the Lambert W Function, World Scientific, New Jersey.

Yi, S., S. Yu, J. H. Kim, 2011, Analysis of neural networks with
time-delays using the Lambert W function, Proceedings of the 2011 Amer-
ican Control Conference, San Francisco, CA, USA, 2011, pp. 3221-3226,
doi:10.1109/ACC.2011.5991085.

Yi, S., S. Duan, P. Nelson, A. Ulsoy, 2012, The Lambert W function approach
to time delay systems and the LambertW DDE toolbox, Proceedings of the 10-
the IFAC Workshop on Time Delay Systems, IFAC, doi: 10.3182/20120622-3-
US-4021.00008.

26


