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Preamble  
This document is intended to serve as a reference for students taking the following courses:  

- Electronic Systems (SE, CentraleSupélec 1st Yr) 

- Capteurs Intégrés MEMS / Integrated MEMS Sensors (CIMEMS, CentraleSupélec 2nd Yr) 

- High-Performance Sensors and TRansducers (HIPSTR, SCMA mention, CentraleSupélec 3rd Yr, 

and M2 Integration-Circuits-Systems of UPSaclay) 

- Physics and Modeling of MEMS (PHYMEMS, M2 of Nanosciences of UPSaclay) 

These courses are all related to my own field of research: the modeling and design of MEMS (Micro-

electromechanical Systems) devices, in particular MEMS-based resonant sensors and oscillators.  

Although I dedicate a large part of this paper to MEMS, I try to do so within the framework of a "system" 

approach, so that the notions and approaches developed here can be transposed to devices based on 

other types of transducers. 

Part 1 of the document is thus devoted to generalities. It is fundamental for all the courses mentioned 

above:  

- Concepts of metrology 

- Components of a sensor 

- Error budget 

- Transducers 

Part 2 is devoted to the electronics associated with the sensors. This part, still very general, is of 

marginal interest for PHYMEMS students:  

- Bridge and potentiometric readouts 

- Analog Front-Ends 

- Non-idealities of electronics 

In part 3, I describe the operation of common inertial sensors, with simplified physics:  

- MEMS Accelerometers 

- MEMS Gyroscopes 

Some metrological characteristics of these sensors are determined, to illustrate the previous parts. 

Part 4 deals in broad strokes with the physics of MEMS devices:  

- Mechanics 

- Transduction 

- Dissipation 

Part 5 is dedicated to their design and modeling:  

- Top-down design approach 

- Modal analysis and model order reduction 

- Numerical simulation techniques 
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Part 6 is devoted to more advanced considerations on some sensor-specific processing, and on the 

components found in the sensor environment:  

- Lock-in detection technique 

- Closed-loop control 

- Testing, calibration compensation 

- Data fusion 

- Sensor environment (packaging, clocks, voltage references, etc.) 

Part 7 deals with resonant sensors and MEMS energy harvesters. 
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1 Fundamentals  

1.1 Concepts of metrology  
A sensor is a device that delivers information about the physical environment in which it 

operates. The "output" of the sensor takes the form of an electrical signal, analog or digital, whose 
evolution over time must be similar to that of a given physical quantity at the "input" of the sensor 
(Fig. 1.1).  

 

Fig. 1.1 - A sensor converts the variations of a physical quantity 𝐴(𝑡) into the variations of a voltage 

𝑉(𝑡), according to a certain relationship, valid over a given operating range, with the exception of 

errors. 

A linear (or affine) relationship is expected to exist between the input 𝐴(𝑡) and the output 
𝑉(𝑡) of the sensor, and that this relationship be valid in the sensor operating range, i.e. :  

- over a certain measuring interval.  

- within a certain bandwidth.  

- independently of influence quantities that affect the sensor environment. 

with the exception of systematic or stochastic errors, whose typical values are specified in the 
operating range. 

The measuring interval is the set of values of 𝐴(𝑡)  measurable by the device, i.e. 
[𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥]. A related notion is that of measurement range (or dynamic range) corresponding 
to 𝐴𝑚𝑎𝑥 − 𝐴𝑚𝑖𝑛.  

Examples:  

1 - The typical measuring interval of a clinical thermometer is [34°𝐶, 43°𝐶] . Some 
industrial thermometers have measuring ranges greater than 1000°𝐶. 

2 - A measuring interval of [−100 𝐺, 100 𝐺] (1 𝐺 = 9.81 𝑚/𝑠2) is typical of a MEMS 
accelerometer used as a crash sensor, an interval of [−10 𝐺, 10 𝐺] of an accelerometer 
used in a game controller, an interval of [−1 𝐺, 1 𝐺] an inclinometer. 

The bandwidth corresponds to the frequency range [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥] for which the output of 
the sensor is a "faithful" image of the input. In control-engineering vocabulary, the transfer 
function between the input and the output of the sensor is "constant" over this frequency band. 
The bandwidth thus determines the minimum and maximum rates of variation of 𝐴(𝑡) that the 
sensor is able to transcribe. The narrower the bandwidth of a sensor, the longer its response 
time.  
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Examples:  

1 - The response time of a mercury fever thermometer is of the order of a few tens of 
seconds, which corresponds to a bandwidth of a few tens of mHz. Infrared thermometers 
allow much higher bandwidths (of the order of kHz), and therefore much shorter 
response times.  

2 - A crash sensor must measure much more sudden changes in acceleration than a 
joystick sensor, so it requires a higher bandwidth. 

The output value of the sensor may be affected by physical quantities other than the one 
being measured. These quantities are called influence quantities. For a given sensor application, 
it is essential to know the main influence quantities, and how these affect the metrological 
performance of the device. 

Examples:  

1 - The distance between the sensor and the target is an influence quantity for infrared 
thermometers. For a mercury medical thermometer, it is the contact surface that will be 
the main influence quantity (on the response time, in particular). 

2 - Temperature is the main influence variable of most sensors that are not 
thermometers. This is particularly true for MEMS inertial sensors (the mechanical 
properties of the sensing element vary with temperature). 

3 - Many sensors deliver a signal proportional to a reference supply voltage, which is 
then an influence quantity to be taken into account. 

These three aspects determine the operating range of use of the sensor, within which its 
behavior is often (but not always) modeled by  

𝑉(𝑡) = 𝑉𝑟𝑒𝑓 + 𝑆 × (𝐴(𝑡) − 𝐴𝑟𝑒𝑓) + 𝑣𝑠𝑦𝑠 + 𝑣𝑠𝑡𝑜(𝑡)  (1.1) 

where 𝐴𝑟𝑒𝑓 is the reference value of 𝐴(𝑡) (typically the center of the measurement interval) and 

𝑉𝑟𝑒𝑓 the corresponding sensor output voltage, S is the sensor sensitivity (in V by "units of A"), 

𝑣𝑠𝑦𝑠 a systematic error term (in V) and 𝑣𝑠𝑡𝑜 a stochastic error term ("noise", also V-shaped). In 

the rest of this section, we will assume without loss of generality that 𝑉𝑟𝑒𝑓 and 𝐴𝑟𝑒𝑓 are zero, so 

the sensor behavior is modeled by 

𝑉(𝑡) = 𝑆 × 𝐴(𝑡) + 𝑣𝑠𝑦𝑠 + 𝑣𝑠𝑡𝑜(𝑡) (1.2) 

or by 

𝑉(𝑡) = 𝑆 × (𝐴(𝑡) + 𝑎𝑠𝑦𝑠 + 𝑎𝑠𝑡𝑜(𝑡)) (1.3) 

where 𝑎𝑠𝑦𝑠 = 𝑣𝑠𝑦𝑠/𝑆 and 𝑎𝑠𝑡𝑜 = 𝑣𝑠𝑡𝑜/𝑆.  

Once sensitivity has been factored out, the systematic and stochastic errors are expressed in "units 
of A": 𝑎𝑠𝑦𝑠  and 𝑎𝑠𝑡𝑜  are called input-referred errors, while 𝑣𝑠𝑦𝑠  and 𝑣𝑠𝑡𝑜  are called output-

referred errors. In order for the sensor to be "accurate" (this term needs to be specified), the 
input-referred error terms must be small with respect to the sensor's measuring range. 

The stochastic error is a random quantity: the output of the sensor does not have exactly 
the same value when a measurement is repeated under a given set of operating conditions (i.e. 
same input quantity and influence quantities). The stochastic error is commonly characterized by 
its frequency spectrum, or by its Allan variance (see Appendix A). The resolution of the sensor, 
which is the smallest variation of 𝐴(𝑡) that can be measured, is all the better as the stochastic error 
is small. A sensor with a low stochastic error is said to be "precise". 
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Remark:  

It is possible, within certain limits, to improve the resolution of a sensor:  

- by multiplying the number of sensors and averaging their outputs at a given time. This 
"expensive" solution (in terms of cost, size, consumption...) obviously assumes that the 
sensors are strictly identical and subject to the same stimuli. 

- by using a single sensor and averaging measurements taken at successive times. If the 
error 𝑣𝑠𝑡𝑜(𝑡) is a "white" (flat-spectrum) noise, averaging over 𝑁 successive samples 

improves the resolution by a factor √𝑁 but reduces the bandwidth (increases response 
time) by a factor of 𝑁. This is the resolution-bandwidth trade-off, limited by the 
"corner frequency" of the noise (below which the stochastic error is no longer white). 

For a given sensor, the systematic error is a deterministic quantity, in the sense that it is 
repeatable. Thus, its value does not change if the operating conditions of the sensor do not change. 
It includes the bias error, the sensitivity error and the non-linearity error. These three 
quantities characterize the deviation between the ideal linear model  

𝑉(𝑡) = 𝑆 × 𝐴(𝑡)  (1.4) 

and the actual behavior of the sensor. The bias error (referred to the output) corresponds to the 
value of 𝑉 read when the input quantity 𝐴 is zero. When referred to the input, it corresponds to 
the value of 𝐴  which cancels the sensor output. The sensitivity error (or scale factor error) 
results from a deviation between the nominal sensitivity of the sensor and its actual sensitivity. 
Finally, the non-linearity error concerns all deviations of the sensor behavior from an affine 
characteristic. These three types of errors are illustrated in Fig. 1.2. A sensor with a small 
systematic error is said to be "true".  

The notions of "trueness" (related to systematic error) and "precision" (related to 
stochastic error) are classically illustrated in Fig. 1.3. 

Remark:  

The ideal sensor model can of course be made more complex, for example by taking into 
account dynamic effects (the sensitivity is then modeled as a transfer function), or 
possible non-linearities (we could replace (1.4) by a polynomial model, for example).  

 

 

Fig. 1.2 - Systematic errors. From left to right: effects of a bias error, a sensitivity error and a non-

linearity error. 

 



10 
 

 

Fig. 1.3 - Trueness and precision. 

Exercise:  

Make the link between the abstract notions presented above and the datasheet of a 
commercial sensor. From the datasheet of the ADXL 1001 accelerometer, for example, 
identify the measurement range and the bandwidth of the sensor, quantify the impact of 
influence quantities such as temperature and supply voltage on the sensor 
characteristics, and determine the resolution of the sensor on a given bandwidth. 

1.2 Constituents of a sensor 
To choose and use a commercial sensor in a given application, it is sufficient to master the 

concepts presented in the previous section, and to include other elements such as cost constraints, 
consumption ... To develop a new sensor (more "optimal" than those commercially available), it is 
necessary to go down to a lower level and focus on the more fundamental components of sensors. 
The engineer's objective will then be to select and assemble these subsystems in order to meet 
specifications, metrological in particular. To this end, it will be essential to understand how the 
non-idealities of each of the subsystems affect the (systematic or stochastic) error of the overall 
sensor. 

First of all, a sensor consists of at least two distinct parts: a transducer, and a 
conditioning circuit, which delivers 𝑉(𝑡) –these are the two essential blocks of an analog sensor.  

A transducer is a physical device that converts one type of energy (for example: elastic, 
kinetic, thermal) into another, in our case: electrical, with the information being coded as voltage 
or current. From the electrical point of view, we can model a transducer as a source of current or 
voltage, whose intensity varies according to the physical quantity to be measured. The last section 
of this part is entirely dedicated to examples of common transducers. 

 

 

https://www.analog.com/en/products/adxl1001.html?doc=ADXL1001-1002.pdf
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Remarks:  

1 - Transduction phenomena are often reversible. They can be implemented within 
sensors, but also within actuators (piezoelectric positioners, LED displays, Peltier 
modules). 

2 - Transducers are also essential in energy harvesting applications, where the aim is to 
convert "ambient" energy (vibrations, temperature gradient) into electrical energy. 

The main function of the conditioning circuit associated with the transducer is to 
transform the output of the transducer into an electrical voltage. 𝑉(𝑡) whose full scale (from 𝑉𝑠𝑠 à 
𝑉𝑑𝑑 ) corresponds to the measuring range of the sensor (from 𝐴𝑚𝑖𝑛  à 𝐴𝑚𝑎𝑥 ). This generally 
requires amplification: the conditioning circuit of a transducer is therefore active. 

Example:  

One wishes to use a thermocouple to make a temperature measurement over a wide 
range (1000 °𝐶). The sensitivity of the thermocouple is 10 𝜇𝑉/°𝐶 . Thus, the output 
voltage of the transducer only varies from 10 𝑚𝑉  when the temperature spans the 
measuring interval. In order to expand this voltage excursion to 5 V (the supply voltage 
of many active circuits), the conditioning electronics must be able to amplify the 10 𝑚𝑉 
voltage deviation by a factor of 500. 

Commercially-available sensors include at least these two blocks. Digital sensors also 
include analog-to-digital converters whose function is to sample 𝑉(𝑡)  at regular times and 
quantize each sample over a certain number of bits.  

Finally, a sensor may also include  

- blocks, most often digital, allowing integrated information processing (filtering, 
correction of non-idealities, self-testing, self-calibration, feature extraction). 

- digital blocks for information transmission according to predefined protocols (I2C, SPI...). 

- power management units, voltage references, clocks, other sensors (to minimize the 
impact of influence quantities, for example, or merge measurements in one way or 
another) 
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1.3 Error budget  

 

Fig. 1.4 - Information processing chain in a sensor. 

Fig. 1.4 shows the information processing chain inside a sensor in a symbolic way. When 
designing a sensor, it is generally important to quantify the impact of the imperfections of each 
part on the overall accuracy of the measurement. For this, we can consider that only the stages of 
the analog part have an impact on the accuracy of the sensor, whether in terms of trueness or 
precision. If each of these stages is characterized by an input-referred error and if all dynamic 
effects are neglected, we have, starting from the A/D converter :  

𝑉𝑞 = 𝑉 + 𝑣𝑤ℎ𝑒𝑛 (1.5) 

where 𝑉𝑞  is the quantized and sampled voltage, and 𝑣𝑤ℎ𝑒𝑛  represents the quantization error 

(resulting from rounding errors and miscellaneous non-idealities of the converter), then, for 
example  

𝑉 = 𝐺𝑐𝑜𝑛𝑑 × (𝑣 + 𝑣𝑐𝑜𝑛𝑑) (1.6) 

where 𝐺𝑐𝑜𝑛𝑑 is the gain of the conditioning electronics, 𝑣 the output voltage of the transducer and 
𝑣𝑐𝑜𝑛𝑑 the error related to the electronics, and finally 

𝑣(𝑡) = 𝑆𝑡𝑟𝑎𝑛 × (𝐴 + 𝑎𝑡𝑟𝑎𝑛) (1.7) 

where 𝑆𝑡𝑟𝑎𝑛 is the sensitivity of the transducer and 𝑎𝑡𝑟𝑎𝑛 its intrinsic input-referred error. It is 
useful to write these relations in a more synthetic form :  

𝑉𝑞 = 𝐺𝑐𝑜𝑛𝑑 × 𝑆𝑡𝑟𝑎𝑛 × (𝐴 + 𝑎𝑡𝑟𝑎𝑛 +
𝑣𝑐𝑜𝑛𝑑

𝑆𝑡𝑟𝑎𝑛
+

𝑣𝑤ℎ𝑒𝑛

𝑆𝑡𝑟𝑎𝑛𝐺𝑐𝑜𝑛𝑑
) (1.8) 

in order to refer all errors to the sensor input. This makes it possible to compare the contributions 
of each of the elements to the total error (expressed in the dimension of the physical quantity of 
interest), and thus to choose all the elements of the chain in a reasoned manner.  

Remark: 

The same reasoning obviously applies when the transducer output is a current or a 
charge, as in the case of piezoelectric or capacitive transducers. The error reported at 
the input of the conditioning stage is then expressed in amperes or coulombs.  

This approach is also useful to understand an important principle concerning the sensor 
conditioning electronics, when it requires several amplification stages to achieve the required 
gain 𝐺𝑐𝑜𝑛𝑑. For example, suppose we try to obtain a gain 𝐺𝑐𝑜𝑛𝑑 with 2 amplification stages, with 
gains 𝐺𝑐𝑜𝑛𝑑1 and 𝐺𝑐𝑜𝑛𝑑2, as shown in Fig. 1.5, and with input-referred errors 𝑣𝑐𝑜𝑛𝑑1 and 𝑣𝑐𝑜𝑛𝑑2. 
We can then write 
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𝑉 = 𝐺𝑐𝑜𝑛𝑑1 × 𝐺𝑐𝑜𝑛𝑑2 × (𝑣 + 𝑣𝑐𝑜𝑛𝑑1 +
𝑣𝑐𝑜𝑛𝑑2

𝐺𝑐𝑜𝑛𝑑1
) (1.9) 

Thus, the contribution to the total error of the second amplification stage is all the smaller as the 
gain of the first stage is high. This first amplification stage (known as an analog front end (AFE)) 
therefore plays a crucial role in the sensor's error budget: it is the stage whose design requires 
the most attention. It is classically dimensioned to have a high gain and a "low" error (i.e. an error 
which, relative to the transducer input, is small compared to 𝑎𝑡𝑟𝑎𝑛).  

We will see in part 2 how these high-level notions are translated in terms of electronics. 

 

Fig. 1.5 - Making a gain 𝐺𝑐𝑜𝑛𝑑 = 𝐺𝑐𝑜𝑛𝑑1 × 𝐺𝑐𝑜𝑛𝑑2 from non-ideal blocks. 

1.4 Transducers  
A distinction is generally made between two types of transducers :  

- active transducers, which do not require an external power supply to convert the input 
variable into an electrical signal. 

- passive transducers, which require an external power supply. 

Simple transducers are also distinguished from composite transducers, the latter 
requiring several transduction steps to go from the physical quantity of interest to an electrical 
quantity. 

Remark:  

The distinction between active and passive transducers is universal, but "up to a plus or 
minus sign" ... Some authors consider as active transducers those requiring an external 
energy input (such as electronic circuits) and while others consider them as passive. 

1.4.1 Passive transducers  

Simple passive transducers are the most easily "accessible": they are devices similar to 
electric dipoles whose impedance 𝑍  varies according to the physical quantity to be measured. 
Many of them are simply variable resistors or capacitors. By applying a known voltage across such 
a dipole, one obtains an electric current whose variations mirror those of 𝑍 . By imposing the 
current that flows through it, one obtains a voltage whose variations mirror those of 𝑍.  
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Fig. 1.6 - Notations for resistive (left) and capacitive (right) transducers. 

Let us for example consider a linear element of a conductor characterized by a resistivity 
𝜌, a cross-section 𝑆 and a length 𝑙 (Fig. 1.6). Its resistance is given by :  

𝑅 = 𝜌𝑙/𝑆 (1.10) 

It is apparent that any variation with the input quantity 𝐴  of its dimensions ( 𝑙 , 𝑆) or of its 
resistivity 𝜌 will result in a variation of 𝑅 according to the formula :  

𝑑𝑅

𝑑𝐴
=

𝜕𝑅

𝜕𝜌
×

𝑑𝜌

𝑑𝐴
+

𝜕𝑅

𝜕𝑆
×

𝑑𝑆

𝑑𝐴
+

𝜕𝑅

𝜕𝑙
×

𝑑𝑙

𝑑𝐴
=

𝑙

𝑆
×

𝑑𝜌

𝑑𝐴
−

𝜌𝑙

𝑆2 ×
𝑑𝑆

𝑑𝐴
+

𝜌

𝑆
×

𝑑𝑙

𝑑𝐴
  (1.11) 

or to highlight the relative variation of 𝑅 with 𝐴 :  

1

𝑅

𝑑𝑅

𝑑𝐴
=

1

𝜌
×

𝑑𝜌

𝑑𝐴
−

1

𝑆
×

𝑑𝑆

𝑑𝐴
+

1

𝑙
×

𝑑𝑙

𝑑𝐴
 (1.12) 

Examples 

1 – An RTD (Resistive Temperature Detector) is a typical example of a simple resistive 
transducer. It is a resistor made of a noble metal (typically platinum) whose resistivity 
variation with temperature 𝜃  is perfectly known, and quasi-linear over a very large 
range (about 1000°C). The coefficient of expansion, which governs 𝑑𝑆/𝑑𝜃 and 𝑑𝑙/𝑑𝜃 
also varies in the same manner.  

2 - The same physical principle is implemented in thermistors, which are ceramics 
whose relative variation in resistivity with temperature is much greater than that of 
noble metals. On the other hand, the characteristic 𝜌(𝜃) is strongly non-linear, which 
limits the (linear) operating range of these devices. 

3 - The other typical example of a simple resistive transducer is the strain gauge. A 
strain gauge is a conductive wire firmly bonded to the surface of a solid whose 
deformation is to be measured at one point. As the solid deforms, the wire also deforms 
(its length increases and its cross-section decreases, or its length decreases and its cross-
section increases), resulting in a change in the resistance of the wire. The most sensitive 
strain gages are made of piezoresistive materials (presented in more detail in Part 4), 
whose variation in resistivity with deformation is 1 to 2 orders of magnitude greater 
than that induced by geometric effects. 
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4 - Strain gauges are often used in composite transducers, where the physical quantity 
of interest is first transduced into a deformation, before being transduced into a 
variation of resistance by the gauge. Thus, many pressure sensors rely on a transducer 
composed of a membrane separating the pressure to be measured from a reference 
pressure. Strain gauges are arranged around the circumference of the diaphragm, 
where the deformation induced by the pressure differential is greatest. In this way, 
pressure variations are transduced into resistance variations. 

Remark: 

All resistive transducers are subject to ohmic losses, which result in heating of the 
transducer. If not taken care of, the variation in resistance caused by this self-heating 
can become a major source of error. 

Capacitive transduction is also widespread, especially in the MEMS field. For example, the 
capacitance 𝐶 between two parallel conducting plates with surface area 𝑆 separated by a distance 
𝑔 by a medium with permittivity 𝜖 (Fig. 1.6) is equal to  

𝐶 = 𝜖𝑆/𝑔 (1.13) 

and the relative variation with an input variable 𝐴 is written as follows: 

1

𝐶

𝑑𝐶

𝑑𝐴
=

1

𝜖
×

𝑑𝜖

𝑑𝐴
−

1

𝑔
×

𝑑𝑔

𝑑𝐴
+

1

𝑆
×

𝑑𝑆

𝑑𝐴
 (1.14) 

This principle is used to make displacement or position sensors, in particular. 

Examples:  

1 - Many touch screen technologies are based on a matrix of capacitors whose value is 
affected according to the proximity of a finger or a stylus. In these cases, the capacitors 
serve as simple transducers. 

2 - In a MEMS accelerometer, a test mass 𝑀 (suspended from a "spring") moves under 

the effect of an inertial force resulting from an acceleration 𝐴 (�⃗�𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = −𝑀𝐴). This 
motion results in a variation in the capacitance between the moving mass and the fixed 
part of the structure. If a voltage is applied to this capacitor, a "motional" current is 
generated, from which the acceleration can be deduced.  

3 - Gyroscopes are devices for measuring angular velocity �⃗⃗� . MEMS gyroscopes are 
based on the conversion of angular velocity into Coriolis force, which requires making a 

proof mass 𝑀  oscillate with a certain velocity �⃗�  (�⃗�𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = −2𝑀�⃗⃗� ∧ �⃗� ). Under the 

effect of this force, the mass moves, perpendicularly to �⃗⃗�  and �⃗� . This results in a 
capacitance variation that can be transduced into a current. Note that in this case, 
energy is supplied to the system at two points, not only to convert the capacitance 
variation into an electrical quantity, but also to make the proof mass oscillate. In this 
respect, all the so-called "resonant" sensors, which require setting a test body in 
oscillation (mechanical or not) are considered as "passive", even when they are based 
on active transduction phenomena.  

4 - Capacitive pressure sensors are a common alternative to the piezoresistive pressure 
sensors described above. In this case, a capacitance is formed between the membrane 
and a fixed opposite electrode. When the membrane deforms, the inter-electrode 
distance changes, resulting in a change in capacitance.  
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Remarks:  

1 - Unlike resistive transducers, capacitive transducers are not subject to self-heating. 
Moreover, since they do not dissipate energy, they are intrinsically compatible with "low 
power" and "low noise" applications. These reasons, among others, have motivated the 
progressive shift from piezoresistive inertial sensors (e.g. an accelerometer whose spring 
elongation is measured with a strain gauge) to capacitive inertial sensors. 

2 - Capacitive transduction is a reversible phenomenon: when a voltage is applied 
between two armatures of a capacitor, they tend to attract each other. This 
phenomenon is notably exploited in the MEMS gyroscopes described above, to give a 
speed �⃗� to the structure. It is also used to generate test stimuli in accelerometers, to 
control their position, and so on. 

1.4.2 Active transducers  

Active transducers rely on "effects" whose understanding requires a good command of 
physics: thermoelectric effect, piezoelectric effect, photoelectric effect, etc. It is not our point here 
of drawing up an exhaustive inventory but rather of giving a few "classic" examples.  

Examples:  

1 - A thermocouple is made from a junction between two different conductors. Due to 
the Seebeck effect (thermoelectric effect), an electromotive force appears between the 
free ends of the thermocouple. The resulting voltage is, to the first order, proportional 
to the temperature difference between the “hot” junction (the point whose temperature 
is to be measured) and the free ends of the two conductors (supposedly regulated at a 
reference temperature). Thermocouples generally have poorer linearity than RTDs, but 
a slightly faster response time and a larger measuring range. 

2 - Some crystalline materials are piezoelectric. This means that they become polarized 
when they are deformed ("direct" effect) and, vice-versa, that they deform under the 
effect of an electric field ("inverse" effect). A layer of piezoelectric material between two 
electrodes thus constitutes an active transducer, generating an electromotive force that 
is a function of the deformation experienced. This type of transducer can be used in the 
same type of circumstances as the (piezo-)resistive strain gages seen above, with many 
advantages (no power supply, linearity, temperature stability) but at a higher cost. In 
the field of inertial sensors and miniature oscillators (time bases), piezoelectric / quartz 
technologies have long been the only ones able to address high precision measurement 
applications (especially in aeronautics). They are now competing with MEMS / silicon 
(and capacitive transduction) technologies that can offer a comparable level of 
performance at a lower cost. 

3 - The photoelectric effect is implemented in photodiodes, which emit a current 
proportional to the light intensity to which they are subjected. Current imagers are 
composed of arrays of photodiodes and their associated conditioning electronics. 

Exercises:  

1 - What is a Hall effect sensor? Is the Hall effect a passive or active transduction 
phenomenon? 

2 - Give examples of the use of the thermoelectric / piezoelectric / inverse photoelectric 
effect. 
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1.5 References  
Metrology is the science of accuracy, and the vocabulary of metrology must therefore be 

particularly accurate. To get a feel for the extreme rigor that is required in this respect, it is 
interesting to consult the following glossary (freely available on the Internet):  

[1] "International vocabulary of metrology - Basic and general concepts and associated 
terms (VIM), 3rd edition ", JCGM, 2012 

Nevertheless, one must be aware that there is a huge gap between the formal definition of 
the characteristics of a measurement and the information available in the datasheets of 
commercial sensors (go to the datasheets of Bosch accelerometers, STMicroelectronics or Analog 
Devices)... and also with the metrology notions presented in this section. In this respect, a rather 
general piece of advice for choosing between two sensors would be to pick the one with the most 
complete datasheet.  

Regarding the different types of transducers, there are plenty of references. In order to 
deepen one's knowledge of a particular type of transducer, it may be useful to first refer to the 
"generalist" articles in Techniques de l'Ingénieur (which can be accessed through the 
CentraleSupélec library). 
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2 Conditioning electronics  

2.1 Bridges and potentiometric readouts  
Passive transducers are based on the variation of an impedance 𝑍 with the quantity 𝐴 one 

wishes to measure. When 𝐴 varies by 𝛿𝐴, 𝑍 varies by 𝛿𝑍 which is often small with respect to 𝑍, 
but which alone carries information on 𝐴. This justifies the use of special bridge circuits to use 
with passive transducers.  

 

Fig. 2-1 - Two naive ideas. The arrow symbolizes that the impedance is variable (with the magnitude 

𝐴). 

For example, consider the two naive ideas shown in Fig. 2.1. In one case, the transducer is 
supplied with a voltage 𝑉𝑏 and the current flowing through it is measured using a transimpedance 
amplifier. The output voltage of this circuit is  

𝑉𝑜𝑢𝑡 = −
𝑍𝑓

𝑍+𝛿𝑍
× 𝑉𝑏 ≈ −

𝑍𝑓

𝑍
× (1 −

𝛿𝑍

𝑍
) × 𝑉𝑏 (2.1) 

In the other case, the transducer is supplied with current 𝐼𝑏 and the voltage at its terminals is 
measured with a non-inverting amplifier. The output of the circuit is then expressed as follows 

𝑉𝑜𝑢𝑡 = (1 +
𝑅2

𝑅1
) × (𝑍 + 𝛿𝑍) × 𝐼𝑏 (2.2) 

In either case, the output of the amplifier is (or can be approximated as) the sum of two terms: a 
so-called "common mode" term, which does not carry information on 𝐴  and a "useful" term 
carrying the information, all the smaller in relation to the common mode, as the impedance 
variations that are to be detected are small. The amplification that can be brought to the useful 
signal is therefore limited by the saturation of the amplifier due to the common mode signal.  

This problem is essentially unique to passive transducers; active transducers generally 
deliver a useful signal that is not masked by a common mode signal. To solve this problem, 
impedance bridges, such as Wheatstone bridges, or potentiometric readouts are used. 
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Fig. 2.2 - Examples of potentiometric readouts with current (left) or voltage (right) output.  

 

Fig. 2.3 - Differential strain gauge measurement (left) and differential capacitive detection (right). 

Images from National Instruments and Analog Devices. 

2.1.1 Potentiometric readouts  

Let us first consider the case of potentiometric readouts. These require the use of two 
voltage sources of the same value 𝑉𝑏/2 and of a reference impedance 𝑍𝑟𝑒𝑓 whose value is equal to 

the nominal impedance of the transducer. The output quantity is taken at the midpoint of the two 
impedances. It can be a voltage or a current, as shown in Fig. 2.2. In either case, the common mode 
is eliminated at the input of the amplifier.  

A variant (among others) of this assembly, known as "differential", consists in replacing 
𝑍𝑟𝑒𝑓  by a transducer identical to the first one, which is affected by the quantity 𝐴 with an opposite 

sign, so that 𝑍𝑟𝑒𝑓 = 𝑍 − 𝛿𝑍. Fig. 2.3 gives practical illustrations of this in the cases of strain gages 

and capacitive transduction. This solution, which is not always feasible, has the advantage that it 
has better linearity than the previous one, is twice as sensitive to the measurand and is much less 
sensitive to the influence quantities.  

In the case of the differential potentiometer circuit with voltage output (Fig. 2.2), the 
voltage 𝑉𝑖𝑛 seen by the AFE is therefore 

𝑉𝑖𝑛 =
𝑉𝑏

2
×

(𝑍−𝛿𝑍)−(𝑍+𝛿𝑍)

(𝑍−𝛿𝑍)+(𝑍+𝛿𝑍)
= −

𝑉𝑏

2
×

𝛿𝑍

𝑍
  (2.3) 

In the case of a current output, the current 𝐼𝑖𝑛 is written 

𝐼𝑖𝑛 =
𝑉𝑏

2
×

(𝑍−𝛿𝑍)−(𝑍+𝛿𝑍)

(𝑍−𝛿𝑍)(𝑍+𝛿𝑍)
= −

𝑉𝑏

2
×

2𝛿𝑍

𝑍2−𝛿𝑍2  (2.4) 
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Fig. 2.4 – Quarter-, half- and full-bridge configurations of a Wheatstone bridge supplied with voltage 

(top) or current (bottom). Illustrations from [1]. 

2.1.2 Wheatstone bridge  

A Wheatstone bridge requires four impedances of the same kind (at least one of which is 
a transducer) instead of two, but only requires one source (of voltage 𝑉𝑏  or current 𝐼𝑏 ). The 
assembly is called "quarter-bridge", "half-bridge" or "full-bridge" depending on whether the 
number of transducers is one, two or four. The principle consists in measuring (and then 
amplifying) the voltage difference across the midpoints of the two branches of the bridge. This is 
zero when the bridge is balanced, i.e. when all impedances are equal (𝛿𝑍 = 0). Otherwise, it is 
proportional to 𝛿𝑍 to the first order (Fig. 2.4 provides the expression of the bridge output in 8 
possible configurations). The "full-bridge" solution, which requires 4 transducers, has the 
advantage of being perfectly linear, is 4 times more sensitive to the measurand than the "quarter-
bridge" solution and is much less sensitive to influence quantities. 

Remarks: 

1 - The differential potentiometric readout with voltage output is linear in 𝛿𝑍 , as 
opposed to the one with current output. 

2 - The current-supplied Wheatstone half-bridge is linear in 𝛿𝑍 , as opposed to the 
voltage-supplied one. 
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3 - Increasing the bias voltage (or bias current) increases the sensitivity of all these 
circuits. This approach is nevertheless limited by many practical reasons: consumption, 
self-heating, limitations specific to the integration technology...  

4 - Any fluctuation of 𝑉𝑏 (or 𝐼𝑏) causes a fluctuation of the sensor output, decorrelated 
from the measurand value. The bias voltage (or current) is therefore an influence 
quantity to be taken into account, which may cause a sensitivity error. 

5 - The major difficulty in the practical realization of these circuits is "matching" the 
different elements constituting them in terms of sensitivity to influence quantities. For 
example, let us consider a "quarter-bridge" circuit used to carry out a strain 
measurement, consisting of a strain gauge and 3 "passive" resistors. If the strain gauge 
and the resistors do not have precisely the same sensitivity to temperature, any variation 
in this quantity will result in a variation in the output voltage, unrelated to the strain 
that is being measured. In a potentiometric circuit, the voltage sources also need to be 
matched.  

6 - We have not made any particular hypothesis concerning 𝑉𝑏  (or 𝐼𝑏 ). If simplicity 
dictates that this source be chosen constant (DC), there are many reasons why this 
choice is not necessarily optimal, or even feasible: 

a - capacitive transducers have an infinite DC impedance, which makes it impossible to 
bias them with a constant source (except in the special case of resonant transducers). 

b - using an AC source means that the impedance variation 𝛿𝑍  becomes amplitude-
modulated. Useful information, carried by 𝛿𝑍, is thus transposed at a higher frequency. 
This reduces the impact of low-frequency noise (flicker, drift) on the accuracy of the 
measurement. 

c – power consumption can be greatly reduced if the source has no DC component. 

On the other hand, the choice of an AC source requires the implementation of a 
clock/local oscillator, requires that a demodulation be performed after the 
amplification stage and imposes constraints on the AFE (many characteristics of op-
amps degrading with frequency). 

2.2 Analog Front-Ends  
As emphasized in Part 1, the AFE should provide the majority of the gain required by the 

application, and introduce as few errors as possible. These errors are closely related to the non-
idealities of passive components and op-amps, which are discussed in section 2.3.  
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Fig. 2.5 - Transimpedance circuit for current-voltage conversion. Impedance 𝑍𝑝 models the 

interconnection between the transducer (the power source) and the electronics. 

2.2.1 Current-output transducers  

When a transducer has a current (or charge) output, the amplifier of choice is the 
transimpedance amplifier (Fig. 2.5). Its characteristic (considering an ideal op amp) is  

𝑉𝑜𝑢𝑡 = −𝑍𝑓𝐼𝑖𝑛  (2.6) 

Impedance 𝑍𝑓  often consists of a resistor 𝑅𝑓 in parallel with a capacitor 𝐶𝑓so that  

𝑍𝑓 =
𝑅𝑓

1+𝑗𝑅𝑓𝐶𝑓𝜔
  (2.7) 

The values of 𝑅𝑓  and 𝐶𝑓  are dimensioned differently depending on whether one wishes to 

integrate the current 𝐼𝑖𝑛  (one must then choose 𝑅𝑓 ≫ 1/𝐶𝑓𝜔  so that the current 𝐼𝑖𝑛  flows 

preferably through the capacitor rather than through the resistor).  

Remark:  

Another interest of a transimpedance amplifier is that it sets to zero (via virtual ground) 
the voltage of the node through which the current flows. Thus, whatever the parasitic 
impedance 𝑍𝑝 of the interconnection between the transducer and the AFE (in red in Fig. 

2.5), the characteristic (2.6) is unchanged, within the limit of the 𝑉+ = 𝑉− hypothesis. 
This property is particularly advantageous in applications where the transducer and the 
AFE are not physically close. 

2.2.2 Voltage-output transducers  

A simple non-inverting amplifier may be suitable for a transducer whose output is a 
"useful" voltage, which is not masked by a common mode signal. This solution is simple and has 
the advantage of having, in theory, an infinite input impedance.  

In the case of a bridge circuit, the instrumentation amplifier (Fig. 2.6) is preferred. From a 
"macroscopic" point of view, we can simply consider an instrumentation amplifier as a differential 
amplifier, whose input impedance is infinite. When 𝑅1 = 𝑅2 = 𝑅3 = 𝑅4 = 𝑅 , the output of the 
circuit is ideally 

𝑉𝑜𝑢𝑡 = (1 + 2
𝑅

𝑅𝑔
) × 𝛿𝑉 (2.8) 

where 𝑅𝑔 is external to the amplifier, so that the user can set the gain as desired. 
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Fig. 2.6 - Instrumentation amplifier. The resistance 𝑅𝑔 sets the circuit gain, the resistors 𝑅1, 𝑅2, 𝑅3 and 

𝑅4 are nominally equal.  

Remark:  

Instrumentation amplifiers are rarely made from individual discrete components. The 
main reason is that the proper functioning of the circuit depends on the strict matching 
of the components (op-amps, resistors) of the upper branch with those of the lower 
branch. For example, if the values of 𝑅1, 𝑅2, 𝑅3 and 𝑅4 (Fig. 2.6) are not strictly identical, 
we have 

𝑉𝑜𝑢𝑡 = (1 + 2
𝑅

𝑅𝑔
) × 𝛿𝑉 + (

1 + 𝑅2/𝑅1

1 + 𝑅3/𝑅4
−

𝑅2

𝑅1
) ×

𝑉𝑏

2
 

The useful signal will thus be marred by a common-mode error proportional to the 
bridge bias (all the more important as the mismatches are important) and will be more 
likely to drift with temperature. Commercial instrumentation amplifiers are therefore 
designed from integrated components, "trimmed" by laser to ensure as good a common 
mode rejection as possible.  

2.3 Non-idealities of electronics  
This non-exhaustive section lists the main causes that may affect the gap between the 

nominal behaviour of a signal conditioning chain and its actual behaviour. Therefore, these non-
idealities all have an impact on the error, systematic or stochastic, of a given sensor or on the 
repeatability of measurements from one sensor to another.  

2.3.1 Passive components  

2.3.1.1 Variability 

The nominal value of passive electronic components, whether discrete or integrated, 
varies from one component to another. This results from the inevitable dispersion of the 
manufacturing processes of these components. The other characteristics of these components 
(intrinsic noise, temperature coefficient, etc.) which depend on this nominal value are therefore 
also variable.  

When required, discrete "precision" resistors with tolerances (relative error to nominal 
value) of 0.005% may be used. The tolerance of discrete precision capacitors is around 1%. 
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2.3.1.2 Drift 

The term drift generally applies to any slow fluctuation in the output of a sensor that is 
unrelated to the measured variable. It covers both the effects of ageing (very slow fluctuation, 
therefore) and the effects of environmental influence quantities, such as temperature, humidity, 
etc., which affect the nominal value of passive components.  

Typical values of the temperature coefficients (TC) of discrete resistors and capacitors 
are 10-100ppm/°C (compare for example with the relative sensitivity of Pt100 RTDs of 
3850ppm/°C).  

 

Fig. 2.7 - Modelling of thermal noise in resistors. 

 

Fig. 2.8 - Examples for noise calculation. 

2.3.1.3 Noise 

All energy dissipating devices are sources of noise. Qualitatively, this is how the 
fluctuation-dissipation theorem can be summarized. While capacitors (and inductors) are 
essentially conservative systems, resistors dissipate energy (in the form of heat) when a current 
flows through them. Thus, any resistor in a conditioning circuit contributes to the stochastic error 
of the sensor. 

This noise, known as Nyquist-Johnson noise or thermal noise, can be modeled as the 
result of a random voltage source in series with the resistor, or as a random current source in 
parallel with the resistor (Fig. 2.7). It is classically described as "white" (of uniform spectrum), 
Gaussian, and of density 

𝑆𝑉𝑛𝑜𝑖𝑠𝑒
(𝑓) = 4𝑘𝐵𝑇 × 𝑅 [V2/Hz]  (2.9) 

or 

𝑆𝐼𝑛𝑜𝑖𝑠𝑒
(𝑓) = 4𝑘𝐵𝑇/𝑅 [A2/Hz]  (2.10) 

where 𝑘𝐵 = 1.38 × 10−23 J/K is Boltzmann's constant, 𝑇 is temperature and 𝑅 is resistance.  

To obtain the density resulting from a noise source at another point in the circuit, simply 
multiply (2.9) or (2.10) by the squared modulus of the corresponding transfer function. To obtain 
the noise variance at this point on a bandwidth [𝑓0, 𝑓0 + Δ𝑓] the noise density at this point must 
be integrated between 𝑓0 and 𝑓0 + Δ𝑓 (which is equivalent to multiplying the density by Δ𝑓 if the 
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density is uniform). Finally, the variance (or density) of the noise resulting from several 
independent noise sources is equal to the sum of the variances (or densities) of the contributions 
of the sources at that point. 

Example:  

Consider the transimpedance amplifier in Fig. 2. 8. One seeks the contribution of the 
resistor 𝑅𝑓 to the input- or output-referred noise, on a bandwidth [𝑓0, 𝑓0 + 𝛥𝑓]. In this 

case, the simplest way is to consider 𝑅𝑓  as having a parallel current source, whose 

density is given by (2.10). This current source can only flow in the complex impedance 
𝑍𝑓  made up of 𝑅𝑓 and 𝐶𝑓 in parallel. Thus, the output-referred noise has a density of  

𝑆𝑉𝑜𝑢𝑡
(𝑓) = |𝑍𝑓|

2
×

4𝑘𝐵𝑇

𝑅𝑓
 

and the input-referred noise density is  

𝑆𝐼𝑖𝑛
(𝑓) =

4𝑘𝐵𝑇

𝑅𝑓
 

The variance of output-referred noise is  

𝑉𝑜𝑢𝑡
2̅̅ ̅̅ ̅̅ = ∫ 𝑆𝑉𝑜𝑢𝑡

(𝑓)𝑑𝑓
𝑓0+𝛥𝑓

𝑓0

=
4𝑘𝐵𝑇

𝑅𝑓
× ∫ |𝑍𝑓|

2
𝑑𝑓

𝑓0+𝛥𝑓

𝑓0

 

that of the input-referred noise  

𝐼𝑖𝑛
2̅̅̅̅ = ∫ 𝑆𝐼𝑖𝑛

(𝑓)𝑑𝑓
𝑓0+𝛥𝑓

𝑓0

=
4𝑘𝐵𝑇

𝑅𝑓
𝛥𝑓 

Nyquist-Johnson noise is a universal phenomenon that affects all dissipative systems, 
whether "electronic" or not; this is the case for example with resistive transducers, MEMS 
transducers (whose kinetic energy is dissipated in the ambient fluid), etc.  

Exercise:  

Determine the contribution of the resistors to the input-referred noise of the non-
inverting amplifier in Fig. 2.8. 

2.3.2 Active components  

We are interested here in the non-idealities of op-amps, seen in a "macroscopic" way as 
discrete components. The tutorials available on the Analog  Devices website will be a real mine of 
information for anyone who wants to learn more about these issues. 

2.3.2.1 Variability and drifts 

Like passive components, op-amps are subject to drift and dispersion. The nominal values 
of their characteristics are therefore likely to vary from one amp to another, over time or with 
operating conditions. 

2.3.2.2 Gain and bandwidth 

An ideal op amp has an infinite open-loop gain 𝐺𝑂𝐿  and an infinite bandwidth, it can 
therefore theoretically amplify a signal with an arbitrarily large gain, regardless of its frequency. 
It is this infinite gain that imposes that 𝑉+ = 𝑉− for an ideal op amp operating in the linear regime. 

 

 

 

https://www.analog.com/en/education/education-library/tutorials/analog-electronics.html
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In reality, the open-loop gain:  

o is finite. 

o decreases with frequency. 

The gain of an op amp can be approximated as having a first-order low-pass characteristic:  

𝐺𝑂𝐿(𝑓) =
𝐺𝑂𝐿𝑚𝑎𝑥 

|1+𝑗
𝑓

𝑓𝑐
|
  (2.11) 

where 𝐺𝑂𝐿𝑚𝑎𝑥 is the maximum value of the open-loop gain, and 𝑓𝑐 is a cut-off frequency beyond 
which 𝐺𝑂𝐿 decreases. We note that, for 𝑓 ≫ 𝑓𝑐 , the gain-bandwidth product (GBP, expressed in 
Hz) 𝐺𝑂𝐿 × 𝑓 is constant and equal to 𝐺𝑂𝐿𝑚𝑎𝑥 × 𝑓𝑐. This quantity is used to characterize the op-amp: 
it corresponds to the frequency for which 𝐺𝑂𝐿 = 1.  

This characteristic limits, for example, the maximum frequency at which to bias a bridge 
or a potentiometric circuit, used for conditioning the signal from a passive transducer.  

Exercise:  

We wish to make a non-inverting amplifier with a gain of 100 from an op amp with a 
gain-band product of 100MHz. In which bandwidth will we actually have a gain of 100 
(to the nearest 3dB)? 

 

Fig. 2.9 - Op-Amp model considering a finite open-loop gain and finite input impedance. 

 

2.3.2.3 Input impedance 

The input impedance of an ideal op amp is infinite and, as a result, the currents are 𝐼+ and 
𝐼− are theoretically zero. The input impedance of a real op amp : 

o  is finite. 

o is not purely resistive and decreases with frequency. 

This impedance is modeled as in Fig. 2.9, with a "differential" impedance between the + 
and - inputs of the amp and two "common mode" impedances between the amplifier inputs and 
the ground. Each of these impedances consists of a resistive branch and a capacitive branch. In 
low-frequency applications (i.e. for a 𝑅𝐶𝜔 ≪ 1), the capacitive branch plays no role and the input 
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impedance is therefore purely resistive. At high frequencies, on the contrary, the capacitive 
component dominates.  

The fact that the input impedance is finite has an effect on the sensitivity of the sensor, 
especially when the open-loop gain of the op amp is low. Inn fact, if 𝐺𝑂𝐿 is infinite, then 𝑉+ = 𝑉− 
and no current flows in the differential part of the input impedance (the input impedance could 
therefore theoretically take an arbitrarily small value).  

The resistive component of the input impedance of commercial op-amplifiers has typical 
values ranging from 106Ω to 1012Ω. The capacitive component is of the order of a few pF. 

Exercises:  

1 - Calculate the output voltage of a transimpedance amplifier, in the case of finite gain 
/ finite input impedance. Show that the maximum value of the circuit gain is limited by 
these two quantities. 

2 - Show that the output of a non-inverting amplifier is not affected by the value of the 
input impedance if the gain of the op-amp is infinite. What else changes? 

Remark:  

In addition to the input impedances that are intrinsic to the op amp, one must also 
consider those of the interconnects, which will be discussed at greater length below. 

2.3.2.4 Common mode rejection ratio 

The output voltage of a real op-amp is written :  

𝑉𝑜𝑢𝑡 = 𝐺𝑂𝐿 × (𝑉+ − 𝑉−) + 𝐺𝑐𝑚𝑛 × (𝑉+ + 𝑉−)/2 (2.12) 

where 𝐺𝑐𝑚𝑛  is the common mode gain. This quantity is ideally zero and the common mode 
rejection ratio (CMRR) of the amp 

𝐶𝑀𝑅𝑅 =
𝐺𝑂𝐿

𝐺𝑐𝑚𝑛
  (2.13) 

is theoretically infinite (in practice, this quantity is ranges from 104  to 107  in commercial 
components). This non-ideality can for example result in a bias error, such as when the signals at 
the input of the amplifier are "useful" voltages superimposed on a constant common mode voltage.  

Like 𝐺𝑂𝐿 or the input impedance, the CMRR of an op amp decreases with frequency. 

Remark:  

Other "rejection rates" (PSRR, ripple rejection) characteristics of op-amps represent 
their ability to provide an output voltage independent of fluctuations in their supply 
voltages.    

For a sensor, the stability of the supply, bias or reference voltages of the various elements 
must be the subject of particular care. There are many methods to "stabilize" voltage 
sources to some extent, such as the use of decoupling capacitors or active voltage 
regulators (LDOs). 

All of the above-mentioned op-amp characteristics degrade with frequency. However, 
several other non-idealities, described below, also limit the use of conventional op-amps at low 
frequencies. 
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2.3.2.5 Offset voltage and bias currents 

Offset voltage and bias currents are purely static non-idealities. These non-idealities can 
be modeled as shown in Fig. 2.10. 

 

Fig. 2.10 - Model of the offset voltage and bias currents in a real op amp (left), and voltage and 

current noise (right). Only the nature (deterministic or stochastic) of the sources and their frequency 

content change. 

The offset voltage is the DC voltage that should be applied between the + and - inputs to 
make the output of the op amp strictly zero. It results from mismatches in the first stage of the 
internal architecture of the op amp (classically, a "differential pair"). The term "precision" op amp 
refers to an op amp with a typical offset voltage value below 1mV (and low noise, see below).  

Bias currents are DC currents, whose intensity can ranges from a few fA to a few nA 
depending on the technology (bipolar, FET, etc.) of the op amp. These currents are necessary for 
the proper operation of the circuit: they must therefore be able to flow to the ground or to an ideal 
voltage source (including the output of the amp). These currents result in voltage drops in the 
resistors through which they pass, and thus in bias errors.  

Many techniques exist to mitigate these two defects. For example, for a given op amp, the 
choice of adequate compensation resistors can mitigate the error introduced by the bias currents. 

Exercise:  

Determine the expression of contribution of the bias currents and offset voltage to the 
input-referred error of the transimpedance and non-inverting amplifiers in Fig. 2.8. 

 

 

 

2.3.2.6 Voltage noise and current noise 

The differential voltage and input currents of a real op amp not only have a static 
component, as described above, but also a random component (Fig. 2.10). From the point of view 
of a sensor, this random component leads to a stochastic error, just as the DC component leads to 
a systematic error.  

Accounting for these noises, independent of each other, in an error budget analysis follows 
the same pattern as in the case of passive components:  
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- determine the transfer function between the noise source and the point at which the error 
is to be calculated, 

- calculate the noise density at this point by multiplying the source density by the squared 
modulus of the transfer function, 

- integrate the density over the bandwidth of interest to obtain the variance corresponding 
to each of the random components, 

- sum these variances to obtain the total variance. 

The only real peculiarity of the noise sources associated with the op amp is their spectrum, 
which is generally not white. The transition from density to variance therefore requires a little 
more effort than in the case of Nyquist-Johnson noise in the resistors.  

 

 

Fig. 2.11 - Voltage noise characteristics for three Analog Devices op-amps: AD8099 (top left, bipolar 

input stage amp), AD8065 (top right, FET input stage amp) and ADA4528 (bottom, auto-zero amp). 

Pay attention to the axes units! 

Thus the voltage noise of an op-amp has (except in the special cases mentioned below) a 
flicker component (or pink noise or 1/f noise), as shown in Fig. 2.11. The density of the flicker 
noise is inversely proportional to the frequency. Low-frequency applications are therefore 
particularly sensitive to it. This noise is generally characterized by its corner frequency 𝑓𝑐, for 
which the pink and white noise components have the same amplitude. This corner frequency 
varies greatly from one op-amp model to another. The white component of voltage noise is the 
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result of internal dissipation within the amp (so it is partly Nyquist-Johnson noise) and other 
phenomena (e.g. shot noise). Flicker noise can have various physical origins, the most common 
being the co-existence of several independent random phenomena with different relaxation times.  

 

 

Fig. 2.12 - Current noise characteristics for three Analog Devices amps: AD8099 (top left, bipolar input 

stage amp), AD8065 (top right, FET input stage amp) and ADA4528 (bottom, auto-zero amp). Pay 

attention to the axes units! 

The current noise spectrum of op-amps may also have a flicker component (characterized 
by a corner frequency not necessarily identical to that of the voltage noise), but this is not 
necessarily the case. The current noise characteristics of various commercially available op-amps 
are shown in Fig. 2.12.  

Finally, some op-amp architectures, known as "auto-zero" or "chopper-stabilized", can 
cancel the effect of flicker noise and offset voltage, at the cost of a bandwidth limited to a few tens 
of kHz. 

Remark:  

All the characteristics mentioned in this section are obviously dependent on the ambient 
temperature. 
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2.3.3 Interconnects  

 

Fig. 2.13 - Ideal interconnect (left) vs. actual interconnect (right). 

A sensor is made up of passive and active elements... connected to each other by wires, or 
tracks in the case of printed / integrated circuits. These interconnects can contribute significantly 
to sensor performance.  

For relatively low-frequency applications, interconnects can be modeled using parasitic 
resistors and capacitors, as shown in Fig. 2.13. The most critical interconnects are those located 
furthest upstream in the conditioning chain, i.e. those between the transducer and the AFE. 

Consideration of transducer-AFE interconnect resistance is particularly important for 
transducers with small internal resistance (e.g. thermocouple, RTD) and/or bridge-mounted 
transducers. In the latter case, for example, the resistance of the interconnects influences the bias 
and sensitivity of the sensor. For passive transducers, the interconnect between the (current or 
voltage) source and the transducer is also critical. 

The higher the operating frequency, the greater the influence of interconnect capacitance. 
Depending on which method is used for integration, the transducer-AFE interconnect capacitance 
can be much higher than the input capacitance of the op amp, which consequently decreases the 
input impedance of the circuit (see above). The minimization of parasitic capacitance (due to 
interconnects, but not only) by technological means, their compensation by passive or active 
techniques (bootstrap), their modeling and calibration are part of the concerns of all "electronic 
engineers". Fig. 2.14 shows, for example, the set of parasitic capacitances surrounding a MEMS 
inertial sensor. 
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Fig. 2.14 - Sectional view of a packaged MEMS sensor (taken from 

https://doi.org/10.1016/j.sna.2020.112159). The transducer is on the left, the associated electronics 

on the right.  

2.4 References  
If you are interested in these topics, the website of Analog Devices is a real mine! 

https://www.analog.com/en/education/education-library/tutorials.html  

Two books (a little old, but not too wrinkled) in the "Technical Books" section are 
particularly useful to extend your knowledge of AFE and op-amps in general: 

[1] W. Kester, "Practical design techniques for sensor signal conditioning", Analog Devices, 
1999 

[2] W. G. Jung, "Op Amp Applications", Analog Devices, 2002 

Finally, the "Analog Electronics" section of the tutorials contains many short "factsheets" 
(typically 5-6 pages) dedicated to specific topics related to op-amps and their applications. I copy 
some of them here:  

 

Operational Amplifiers: 

1. Ideal Voltage Feedback (VFB) Op Amp (MT-032) 
I. Inverting Amplifier (MT-213) 
II. Inverting Summing Amplifier (MT-214) 
III. Half Wave Rectifier (MT-212) 
IV. Full Wave Rectifier (MT-211) 

2. Current Feedback (CFB) Op Amps (MT-034) 
3. Voltage Feedback Op Amp Gain and Bandwidth (MT-033) 
4. Open Loop Gain and Open Loop Gain Nonlinearity (MT-044) 
5. Bandwidth and Bandwidth Flatness (MT-045) 
6. Settling Time (MT-046) 
7. High Speed Voltage Feedback Op Amps (MT-056) 
8. Input Offset Voltage (MT-037) 
9. Total Output Offset Voltage Calculations (MT-039) 
10. Chopper Stabilized (Auto-Zero) Precision Op Amps (MT-055) 
11. Input Bias Current (MT-038) 
12. Input Impedance (MT-040) 
13. Power Supply Rejection Ratio (PSRR) and Supply Voltages (MT-043) 
14. Input and Output Common-Mode and Differential Voltage Range (MT-041) 
15. Common-Mode Rejection Ratio (CMRR) (MT-042) 
16. Outputs, Single-Supply, and Rail-to-Rail Topics (MT-035) 
17. Output Phase-Reversal and Input Over-Voltage Protection (MT-036) 

https://www.analog.com/en/education/education-library/tutorials.html
https://www.analog.com/media/en/training-seminars/tutorials/MT-032.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-213.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-214.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-212.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-211.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-034.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-033.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-044.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-045.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-046.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-056.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-037.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-039.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-055.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-038.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-040.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-043.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-041.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-042.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-035.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-036.pdf
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Using Op Amps 

1. Choosing Between Voltage Feedback and Current Feedback Op Amps (MT-060) 
2. Compensating for the Effects of Input Capacitance on VFB and CFB Op Amps Used in Current-

to-Voltage Converters (MT-059) 
3. Effects of Feedback Capacitance on VFB and CFB Op Amps (MT-058) 
4. Op Amp Distortion: HD, THD, THD + N, IMD, SFDR, MTPR (MT-053) 
5. Op Amp Noise (MT-047) 
6. Op Amp Noise Figure: Don't Be Mislead (MT-052) 
7. Op Amp Total Output Noise Calculations for Second-Order System (MT-050) 
8. Op Amp Total Output Noise Calculations for Single-Pole System (MT-049) 
9. Op Amp Noise Relationships: 1/f Noise, RMS Noise, and Equivalent Noise Bandwidth (MT-

048) 

Instrumentation Amplifiers 

1. Basic Two Op Amp In-Amp Configuration (MT-062) 
2. Basic Three Op Amp In-Amp Configuration (MT-063) 
3. In-Amp DC Error Sources (MT-064) 
4. Auto-Zero In Amps (MT-067) 
5. In-Amp Noise (MT-065) 
6. In-Amp Bridge Circuit Error Budget Analysis (MT-066) 
7. Difference and Current Sense Amplifiers (MT-068) 
8. In-Amp Input Overvoltage Protection (MT-069) 
9. In-Amp Input Radio Frequency Interference Protection (MT-070) 
10. A Deeper Look into Difference Amplifiers 

  

https://www.analog.com/media/en/training-seminars/tutorials/MT-060.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-059.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-058.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-053.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-047.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-052.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-050.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-049.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-048.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-048.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-062.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-063.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-064.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-067.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-065.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-066.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-068.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-069.pdf
https://www.analog.com/media/en/training-seminars/tutorials/MT-070.pdf
https://www.analog.com/en/analog-dialogue/articles/deeper-look-into-difference-amplifiers.html
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3 MEMS accelerometers and gyroscopes  
Before addressing the physics of MEMS, it seems interesting to draw a "high-level" picture 

of the operating principle and metrological characteristics of the two most common MEMS inertial 
sensors: accelerometers, which measure accelerations, and gyrometers (or, by misuse of 
language, "gyroscopes"), which measure angular velocities. Without going into too much detail, 
this will illustrate some of the concepts mentioned in the previous sections and justify the main 
developments in the following sections. 

Accelerometers and gyroscopes are used in a multitude of applications, in extremely 
varied fields: detection of motion, vibration, shock, tilt, for consumer applications (e.g. rotating 
the image on a smartphone screen according to its orientation), for automotive safety (e.g. 
triggering airbags in case of impact, stabilizing the attitude of a vehicle), for monitoring civil 
engineering structures or the human body (fall detection, pacemaker regulation), for example. 
These applications require a wide range of performances from inertial sensors, from a 
metrological point of view (measurement range, bandwidth, error), but also in terms of price, 
consumption and sensor size. Instrument navigation applications ("dead reckoning") are the most 
demanding in terms of error. Indeed, the position of a "vehicle" (autonomous car, missile, drill-
head) can theoretically be computed by integrating acceleration measurements twice over time, 
and its orientation by integrating angular velocity once over time. But measurement errors are 
also integrated over time, so that, for example, an acceleration bias error results in a position error 
that increases as 𝑡2 . Other measurements, such as those from magnetometers, velocimeters, 
barometric pressure sensors, GPS, etc., are necessary to "resetting" such a system on a regular 
basis.  

In what follows, we will focus on sensitivity and noise in inertial (single-axis) MEMS 
sensors, and the link between these quantities and the parameters of the mechanical structure 
and electronic architecture constituting them.  

3.1 MEMS accelerometers  
Two essential functional blocks can be distinguished in a MEMS accelerometer: a 

transducer that converts the acceleration into an impedance variation, and conditioning 
electronics that transform this impedance variation into a useful electrical signal. Today, the vast 
majority of commercial MEMS accelerometers rely on capacitive transduction, so this is the case 
we are looking at.  

As mentioned in part 1, capacitive transduction makes it possible to convert a 
displacement into an impedance variation. A necessary prerequisite to make a capacitive 
accelerometer is therefore to convert acceleration into displacement.  

Macroscopically, this can be done very simply with a dynamometer, or load cell, (Fig. 3.1) 
whose elongation can be used to determine the weight (i.e. the product of mass by acceleration) 
suspended from the hook. Typically, a load cell is used to measure an unknown mass assuming 
constant and known acceleration (gravity). But one can just as well reason with a constant known 
mass and use the elongation of the spring as a measure of the acceleration experienced. 

"Single-axis" MEMS accelerometers are based on the same principle. They consist of a 
mass 𝑀 suspended by an elastic structure designed to be flexible in one direction, along which 
acceleration is sensed, and very stiff in the others.  
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Fig. 3.1 - Examples of load cells, taken from http://www.lecompendium.com, from the "Traité de 

Physique Elémentaire" (Drion and Fernet, 1885) and the "Dictionnaire de l'Industrie et des Arts 

Industriels" (E.O. Lami, 1887). 

3.1.1 Sensitivity  

Under the effect of a constant acceleration 𝐴 in the direction of interest, the mass moves 
by 

𝑋 = −
𝑀

𝐾
× 𝐴 (3.1) 

where 𝐾  is the mechanical stiffness of the transducer. We can consider an acceleration as 
"constant" if its spectrum is limited to a bandwidth [0, Δ𝑓]where Δ𝑓 is small with respect to the 
resonance frequency of the structure :  

𝑓0 =
1

2𝜋
× √

𝐾

𝑀
 (3.2) 

It is this mechanical resonance frequency that sets the maximum bandwidth of an accelerometer. 

When 𝑋 varies (in response to acceleration), the capacitance between the moving mass 
and the fixed part of the device also varies. If possible, the geometry of the structure is designed 
so that a capacitance increases with 𝑋 and another decreases with 𝑋 in the same proportions (see 
Fig. 2.3), in order to implement a differential potentiometric readout. This is, for example, the case 
of the accelerometer in Fig. 3.2 for which we have  

𝐶+ = 𝑁 ×
𝜖0𝑆

𝑔+𝑋
= 𝐶0 ×

1

1+𝑋/𝑔
 (3.3a) 

𝐶− = 𝑁 ×
𝜖0𝑆

𝑔−𝑋
= 𝐶0 ×

1

1−𝑋/𝑔
 (3.3b) 

where 𝑁 is the number of "fingers" of the structure (we consider here that the total capacitance 
results from 𝑁 plane capacitors) and 𝐶0 is the capacitance in the absence of acceleration. 

http://www.lecompendium.com/
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Fig. 3.2 - Simulation of a capacitive MEMS accelerometer using MEMS+. On the left, overview of the 

structure: moving parts (mass) and deformable parts (suspensions / springs) in green, fixed parts 

(anchors, electrodes) in yellow. On the right, simulation of an acceleration directed towards the right 

(resulting in a displacement to the left). The capacitance between the moving fingers and the left 

electrodes increases, that formed with the right electrodes decreases. 

The potentiometric readout is biassed with a voltage 𝑉𝑏 at frequency 𝑓𝑏as shown in Fig. 
2.2, so that the quasi-static capacitance variation is modulated around 𝑓𝑏 . In the case of the 
differential potentiometric readout with voltage output, the voltage 𝑉𝑖𝑛 seen by the AFE is  

𝑉𝑖𝑛 = −
𝑉𝑏

2
×

𝑋

𝑔
  (3.4) 

and the output voltage of a non-inverting amp  

𝑉𝑜𝑢𝑡 = −(1 +
𝑅2

𝑅1
) ×

𝑉𝑏

2
×

𝑋

𝑔
= (1 +

𝑅2

𝑅1
) ×

𝑉𝑏

2
×

𝑀

𝐾𝑔
× 𝐴  (3.5) 

In the case of a readout with current output, the current 𝐼𝑖𝑛 is written 

𝐼𝑖𝑛 = −𝐶0 ×
𝑑𝑉𝑏

𝑑𝑡
×

𝑋

𝑔

1−
𝑋2

𝑔2

≈ −𝐶0 ×
𝑑𝑉𝑏

𝑑𝑡
×

𝑋

𝑔
 (3.6) 

where the approximation is valid if |𝑋2| ≪ 𝑔2. If this current is integrated in a capacitor 𝐶𝑓 using 

a transimpedance amplifier, we have 

𝑉𝑜𝑢𝑡 ≈
𝐶0

𝐶𝑓
× 𝑉𝑏 ×

𝑋

𝑔
=

𝐶0

𝐶𝑓
× 𝑉𝑏 ×

𝑀

𝐾𝑔
× 𝐴  (3.7) 

Remarks:  

1 - Relationships (3.1) and (3.2) illustrate a first compromise in accelerometer design, 
between high sensitivity (large 𝑀/𝐾) and wide bandwidth (large 𝐾/𝑀). 
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2 - As highlighted in (3.5) and (3.7), the sensitivity of the sensor, in 𝑉/(𝑚/𝑠2) , depends 
on parameters that are specific to the transducer, and others that are specific to the 
electronics. From the point of view of a sensor designer, these expressions are very useful. 
For example, in the case of a current output, a compromise must be found between 𝑀 
and 𝐶0  to maximize sensitivity. These two quantities cannot be maximized 
simultaneously for a given transducer area.  

3 - The nominal capacitance does not appear in (3.5), which suggests that the 
accelerometer would work as well with 𝑁 = 1 finger as with 𝑁 = 100 fingers. However, 
this is only true within the limits of the ideal models (of op-amp and interconnects) 
underlying (3.5)!  

 

 

Fig. 3.3 - High-level representation of the transduction and conditioning chain of an accelerometer. 

The spectra marked by numbers correspond to different points in the chain: (1) acceleration or 

inertial force, (2) total force (inertia + thermomechanical) acting on the structure, (3) displacement 

or capacitance variation (limited by the resonance frequency 𝑓0), (4) bridge output voltage 

(capacitance variations are modulated around the frequency 𝑓𝑏) (5) voltage at the AFE input (and at 

its output by assimilating the op amp to a static gain), (6) 𝑉𝑜𝑢𝑡 after demodulation, (7) filtered sensor 

output. 

3.1.2 Noise  

To facilitate the understanding of this section, refer to Fig. 3.3. 

As mentioned in Part 2, Nyquist-Johnson noise affects all dissipative systems, including 
mechanical systems (it is also called thermomechanical noise in this context). Assuming the 
system is subject to a linear dissipative force 𝐹𝑑𝑖𝑠𝑠 = −𝐵�̇� characterized by dissipation coefficient 
𝐵, one may show that there also exists a random force 𝐹𝑀𝐸𝑀𝑆,𝑛 of uniform density ("white") 

𝑆𝐹𝑀𝐸𝑀𝑆,𝑛
= 4𝑘𝐵𝑇 × 𝐵 [N2/Hz] (3.8) 

acting on the system. In the case of MEMS accelerometers, the main cause of dissipation is the 
friction of the moving mass in the ambient fluid. 
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This noise obviously has repercussions on the motion of the mass and on the detection of 
the acceleration (on the "precision" of the measurement). In a bandwidth Δ𝑓  (supposedly small 
with respect to 𝑓0), one may write 

𝑋 = −
𝑀

𝐾
× 𝐴 +

𝐹𝑀𝐸𝑀𝑆,𝑛

𝐾
= −

𝑀

𝐾
× (𝐴 −

𝐹𝑀𝐸𝑀𝑆,𝑛

𝑀
)  (3.9) 

which highlights that the displacement is the superposition of an acceleration-dependent term 
and a stochastic error term. The term 𝐹𝑀𝐸𝑀𝑆,𝑛/𝑀, which is homogenous to an acceleration, is the 

“input-referred” thermomechanical noise of the transducer. Its variance is equal to 

𝐴𝑀𝐸𝑀𝑆,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 4𝑘𝐵𝑇 ×

𝐵

𝑀2 × Δ𝑓 [(m/s2)2] (3.10) 

The accelerometer "noise floor" set by (3.10) is intrinsic to the transducer; it can only be 
lowered by increasing the mass of the device, reducing friction (e.g. by vacuum-packaging of the 
transducer) or reducing the bandwidth.  

Noise due to the electronic part of the system must be added to this intrinsic noise. For 
example, in the case of a potentiometric readout with a voltage output, we have 

𝑉𝑜𝑢𝑡 = (1 +
𝑅2

𝑅1
) × (

𝑉𝑏

2
×

𝑀

𝐾𝑔
× (𝐴 −

𝐹𝑀𝐸𝑀𝑆,𝑛

𝑀
) + 𝑉𝐴𝐹𝐸,𝑛) (3.11) 

where 𝑉𝐴𝐹𝐸,𝑛 is the voltage noise due to the electronics (passive and active components), referred 

to the input of the AFE. This noise can be referred to the input of the system as an acceleration 
noise with variance 

𝐴𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ =

1

(
𝑉𝑏,1

2
×

𝑀

𝐾𝑔
)
2 × 𝑉𝐴𝐹𝐸,𝑛

2̅̅ ̅̅ ̅̅ ̅̅  [(m/s2)2]  (3.12) 

where 𝑉𝑏,1 is the amplitude of the first harmonic of 𝑉𝑏 (which may be harmonic, square, etc.) and 

𝑉𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅  is the variance of 𝑉𝐴𝐹𝐸,𝑛  calculated on the bandwidth [𝑓𝑏 − Δ𝑓, 𝑓𝑏 + Δ𝑓]. As discussed in 

Part 1 of the handout, the contribution of the AFE to the stochastic error of the sensor can be 
reduced by increasing the "gain" (i.e. sensitivity) of the stage preceding the AFE (i.e. the 
transducer). Similarly, the contribution of a second amplification stage would be reduced by 
increasing the gain of the transducer or that of the AFE, i.e. 

𝐴
2𝑛𝑑 𝑠𝑡𝑎𝑔𝑒,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

(1+
𝑅2
𝑅1

)
2
(
𝑉𝑏,1

2
×

𝑀

𝐾𝑔
)
2 × 𝑉

2𝑛𝑑 𝑠𝑡𝑎𝑔𝑒,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [(m/s2)2] (3.13) 

The resolution of most commercially available MEMS accelerometers is limited by the 

noise of the AFE, not by the intrinsic noise of the transducer, i.e. 𝐴𝑀𝐸𝑀𝑆,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ ≪ 𝐴𝐴𝐹𝐸,𝑛

2̅̅ ̅̅ ̅̅ ̅̅ .  

3.1.3 Dynamic effects in accelerometers  

To account for the effect of broadband accelerations (e.g. shocks and vibrations), a 
dynamic model of the transducer is required: 

𝐾𝑋 + 𝐵�̇� + 𝑀�̈� = −𝑀𝐴 ⇔  𝑋 = −
𝑀

𝐾
× 𝐻(𝑝) × 𝐴 (3.14-a) 

𝐻(𝑝) =
1

1+
𝐵

𝐾
𝑝+

𝑀

𝐾
𝑝2

=
1

1+
1

𝑄

𝑝

𝜔0
+(

𝑝

𝜔0
)
2.  (3-14-b) 

which then replaces (3.1). In (3.14), 𝑝  is the Laplace parameter, 𝜔0 = 2𝜋𝑓0 = √𝐾/𝑀  is the 

resonance pulsation of the structure and 𝑄 = √𝐾𝑀/𝐵 its quality factor. As shown by (3.14-b), 
above 𝑓0, which typically ranges between 100 Hz and 10 kHz, the structure responds less and less 
to acceleration. The transfer function 𝐻(𝑝) is plotted in Fig 3.4 for different values of 𝑄and the 
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response of the transducer to an acceleration step. Strictly speaking, dynamic effects must be 
taken into account in all noise calculations. 

 

Fig. 3.4 - Frequency response (left) and step response of 𝐻(𝑝) for 𝜔0 = 1 and various quality factors. 

The value 𝑄 = 1/2 is optimal in terms of response time without overshoot. A number of 
physical parameters may have an influence on 𝐵 and therefore on 𝑄 (essentially viscosity of the 
ambient gas and dimensions of the gas films formed between the fixed and mobile electrodes). 
However, increasing 𝐵  also means increasing the noise floor (3.10). This is not necessarily 
problematic, as long as electronic noise dominates. One may also use feedback control to force the 
system to reach its steady-state regime faster than the response time dictated by a large 𝑄. This 
solution, which has the advantage of not raising the noise floor of the accelerometer, nevertheless 
makes the design of the system more complex. It essentially requires two steps, which can be 
carried out more simply in the digital domain:  

- a "state estimation", which consists in determining, from the digitized signals, the 

estimates �̂� and �̂̇� the position and velocity of the moving mass. This operation is more or 
less complex depending on the degree of prior knowledge on the system to be controlled.  

- the generation of a control 𝐶 according to the estimated state. This can be as simple as 

𝐶 = 𝑎�̂� + 𝑏�̂̇� 

in which case one modifies the effective stiffness and damping coefficients of the 
transducer (via the coefficients 𝑎 and 𝑏 respectively). A common alternative is to use a 
proportional-integral-derivative control. 

𝐶 = 𝛼(�̂� − 𝑋𝑟𝑒𝑓) + 𝛽 ∫(�̂� − 𝑋𝑟𝑒𝑓)𝑑𝑡 + 𝛾
𝑑

𝑑𝑡
(�̂� − 𝑋𝑟𝑒𝑓) 

Because of the integral term, the control becomes larger the more �̂� and 𝑋𝑟𝑒𝑓 are different 

over time. In practice, this control law is used to keep the position of the mass set to 𝑋𝑟𝑒𝑓 , 

within a certain bandwidth, for which it can be considered that the inertial force acting on 
the moving mass is exactly compensated by the force resulting from the control. 

The control must obviously be transduced into a force in order to act on the moving mass. This 
requires not only a DAC when the controller is digital, but also specific electrodes to actuate the 
moving mass, or a time-division multiplexing scheme to perform actuation and detection with the 
same electrodes. A high-level schematic of such a system is shown in Fig. 3.5. 
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Fig. 3.5 - Simplified diagram of a feedback-controlled accelerometer. 

 

Exercises:  

1 - In the case of an accelerometer without feedback control, how is value of 𝐴𝑀𝐸𝑀𝑆,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 

affected by taking into account transfer function 𝐻(𝑝)? And that of 𝐴𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ? 

2 - Establish the expression of the transfer function between the inertial force and the 
control 𝐶in the case of a proportional-integral feedback control (𝛾 = 0), supposing �̂� is 
proportional to the output of the analog-to-digital converter and 𝑋𝑟𝑒𝑓 = 0 so that one 

may write:  

𝐶 = (𝛼 +
𝛽

𝑝
) �̂� 

What is the bandwidth of such a sensor? What is the input-referred noise of the sensor?  

 

3.2 MEMS gyroscopes  
Literally, a “gyroscope” is a sensor used for measuring an angle, and a “gyrometer” is a 

sensor used for measuring an angular velocity. To my knowledge, all MEMS sensors marketed 
under the name "gyroscope" are in fact gyrometers. They can therefore measure an angle only by 
integrating over time the result of an angular velocity measurement, which is not without risk 
since this measurement is marred by errors, as already mentioned in the introduction of this 
section. In what follows (and in the rest of this handout), the same abuse of language will be 
committed and we will specify "true gyroscope" when it comes to a ... true gyroscope. 

MEMS gyroscopes rely on the Coriolis force that is exerted on a moving mass when its 
frame of reference is rotated 

�⃗�𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = −2𝑀Ω⃗⃗⃗ ∧ �⃗⃗�,  (3.15) 

where 𝑀 is the mass of the device, �⃗⃗�  its speed and Ω⃗⃗⃗ the angular speed at which the rotation 
occurs. The detection of this force follows more or less the same principle as the detection of the 
inertial force due to an acceleration, in the case of the accelerometer: the force is converted into 
displacement, the displacement into a capacitance variation, the capacitance variation into 
current or voltage.  
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However, there are many differences between gyroscopes and accelerometers. To 
mention only the most obvious:  

- the transduction of angular velocity into Coriolis force (3.15) is a passive transduction 
scheme, in the sense that it requires an external (kinetic) energy input. In the absence of 
this “velocity bias”, there is no Coriolis force. In practice, the structure is actuated by 
electrostatic forces (see part 4) to vibrate harmonically in a given direction, called the 
drive direction, with frequency 𝑓𝑑.  

- Coriolis force is orthogonal to �⃗⃗�. The mechanical structure of a gyroscope must therefore 
allow motion in this "sense" direction as well as in the "drive" direction. From a 
mechanical point of view, this makes the design of gyroscopes more complex than that of 
accelerometers. 

- in the case of the accelerometer, the displacements and capacitance variations have the 
same frequency domain as the acceleration being measured. In the case of the gyroscope, 
the displacements resulting from the Coriolis force, and the consequent variations in 
capacitance, are centered around the frequency 𝑓𝑑  (the angular velocity information is 
modulated at this frequency).  

3.2.1 Sensitivity  

Fig. 3.6 shows a single-axis MEMS gyroscope geometry that can be referred to as an 
illustration of this section. 

The behavior of a gyroscope can be described in a simplified way by means of two coupled 
equations, one for the drive mode, one for the sense mode 

𝐾𝑑𝑋 + 𝐵𝑑�̇� + 𝑀�̈� = 𝐹𝑑  (3.16-a) 

𝐾𝑠𝑌 + 𝐵𝑠�̇� + 𝑀�̈� = −2𝑀Ω�̇� (3.16-b) 

where 𝑋 is the displacement of the mass 𝑀 in the drive direction, 𝑌 its displacement in the sense 
direction, and Ω the angular velocity (around the normal to the 𝑋𝑌 plane). This model is valid 

when Ω ≪ 𝜔𝑑 , where 𝜔𝑑 = √𝐾𝑑/𝑀 = 2𝜋𝑓𝑑 . In addition, we define 𝜔𝑠 = √𝐾𝑠/𝑀 = 2𝜋𝑓𝑠 , 𝑄𝑑 =

√𝐾𝑑𝑀/𝐵𝑑 ≫ 1 and 𝑄𝑠 = √𝐾𝑠𝑀/𝐵𝑠 ≫ 1. The structure is actuated in the drive direction by a force 

𝐹𝑑 = 𝐹 × sin𝜔𝑑𝑡 generated using an oscillator. 

As the drive mode is excited at its natural frequency 𝑓𝑑 we can approximate (3.16-a) by :  

𝐵𝑑�̇� = 𝐹𝑑  (3.17) 

so that (3.16-b) becomes 

𝐾𝑠𝑌 + 𝐵𝑠�̇� + 𝑀�̈� = −2𝑀
𝐹𝑑

𝐵𝑑
Ω (3.18) 

Finally, if 𝑓𝑑 < 𝑓𝑠 (so-called "split-mode" gyroscope) and if the bandwidth Δ𝑓 of Ω is small with 
respect to 𝑓𝑠 − 𝑓𝑑, the right-hand term of (3.18) can be considered to vary slowly. Then, (3.18) is 
simplified into 

𝑌 = −2𝑀
𝐹𝑑

𝐾𝑠𝐵𝑑
Ω (3.19) 

Sense displacement 𝑌 can therefore be described as a harmonic signal at frequency 𝑓𝑑, amplitude-
modulated by Ω, which is in phase with 𝐹𝑑 and in quadrature with 𝑋 so that the center of gravity 
of the mass describes an ellipse, more or less flattened depending on Ω. 

By forming ad hoc capacitorss between the fixed parts of the device and the moving part, 
a capacitive transduction of displacement 𝑌 can be performed so that 
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𝐶+ = 𝐶0 ×
1

1+𝑌/𝑔
  (3.20-a) 

𝐶− = 𝐶0 ×
1

1−𝑌/𝑔
  (3.20-b) 

where we assume a detection via the variation of the gap 𝑔 of plane capacitors. 

 

 

Fig 3.6 - Simulation of a capacitive MEMS gyroscope using MEMS+ software. Top: geometry of the 

structure consisting of a central mass (perforated part) suspended by four beams allowing the 

movement according to 𝑋 (blue axis) and 𝑌 (red axis), to detect rotations around 𝑍 (green axis). The 

drive mode (bottom left) is activated by means of the electrode combs on either side of the structure. 

The Coriolis force causes an oscillation of the sense mode (bottom right), which results in a change in 

the capacitance formed between the moving mass and the electrode underneath. 

 

To convert these capacitance variations into an electrical signal, the variable capacitors 
are biased using a potentiometric readout. The main difference with the accelerometer case is that 
here the circuit can be biased with a constant voltage, because 𝐶+ and 𝐶− are modulated around 
frequency 𝑓𝑑. In the case of a voltage output 
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𝑉𝑖𝑛 = −
𝑉𝑏

2
×

𝑌

𝑔
 (3.21) 

and for a current output 

𝐼𝑖𝑛 = −𝐶0𝑉𝑏
𝑑

𝑑𝑡
(

𝑌/𝑔

1−𝑌2/𝑔2)  ≈ −𝐶0𝑉𝑏  ×
𝑑

𝑑𝑡
(
𝑌

𝑔
) (3.22) 

Remarks :  

1 - The sensitivity of a split-mode gyroscope depends not only on the mass and stiffness 
of the sense mode (like a conventional accelerometer), but also on the excitation force 
and the dissipation coefficient of the drive mode. 

2 - The drive mode can be set to oscillate at its resonance frequency with a voltage-
controlled oscillator (VCO), whose frequency is set so that the phase between driving 
force 𝐹𝑑  (at the output of the oscillator) and measured displacement 𝑋 is 90° (which 
corresponds to resonance, see Fig. 3.4). This obviously requires to transduce 𝑋 into a 
voltage. 

3 - A differential capacitive detection scheme is obviously not possible with the 
(simplistic) structure shown in Fig. 3.6. To achieve this, one could fabricate two similar 
structures side by side, and drive them in phase opposition. In this way, the two 
structures would see the same Coriolis force, but with opposite signs. Consequently, the 
displacements according to 𝑌 and the corresponding capacitance variations would also 
be equal of equal magnitudes, but opposite signs. 

3.2.2 Noise  

The same analysis scheme as for accelerometers can be applied to gyroscopes. It is the 
thermal noise of the sense mode that determines the noise floor, but the noise of the electronics 
is often a few orders of magnitude above this limit, at least for split-mode gyroscopes. It is 
therefore electronic noise which determines the sensor resolution.  

Taking into account thermomechanical noise, displacement 𝑌 is written 

𝑌 = −2𝑀
𝐹𝑑

𝐾𝑠𝐵𝑑
Ω +

𝐹𝑀𝐸𝑀𝑆,𝑛

𝐾𝑠
 (3.23) 

which means that, on the bandwidth of interest Δ𝑓, we have 

Ω𝑀𝐸𝑀𝑆,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = 2𝑘𝐵𝑇 ×

𝐵𝑠

𝑀2 ×
𝐵𝑑

2

𝐹2 × Δ𝑓 [(rad/s)2] (3.24) 

The noise contribution of the AFE in the case of a voltage output is 

Ω𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ =

1

(
𝑉𝑏
2𝑔

×
2𝑀

𝐾𝑠
×

𝐹

𝐵𝑑
)
2 × 𝑉𝐴𝐹𝐸,𝑛

2̅̅ ̅̅ ̅̅ ̅̅  [(rad/s)2] (3.25) 

where 𝑉𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅  is the voltage noise of the AFE on the [𝑓𝑑 − Δ𝑓, 𝑓𝑑 + Δ𝑓] frequency band, referred to 

the input. For a current output, we find 

Ω𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅̅ =

1

(𝐶0𝜔𝑑×
𝑉𝑏
𝑔

×
2𝑀

𝐾𝑠
×

𝐹

𝐵𝑑
)
2 × 𝐼𝐴𝐹𝐸,𝑛

2̅̅ ̅̅ ̅̅ ̅ [(rad/s)2] (3.26) 

where 𝐼𝐴𝐹𝐸,𝑛
2̅̅ ̅̅ ̅̅ ̅ is the current noise of the AFE on the [𝑓𝑑 − Δ𝑓, 𝑓𝑑 + Δ𝑓] frequency band, referred to 

the input.  

Remarks:  
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1 - The drive mode is also subject to noise: thermomechanical noise, but also electronic 
noise (generated in the oscillator loop), which obviously affects the gyroscope's 
performance.  

2 - The sense mode of a gyroscope can be controlled to improve its response time and/or 
increase its operating range, as in the case of accelerometers.  

3.2.3 Mode-matched gyroscopes  

Some high-end gyroscopes rely on the use of two modes with the same resonance 
frequency. These are called "degenerate mode" or "mode-matched" gyroscopes. In this case, 
(3.19) can be replaced by 

�̇� = −2𝑀
𝐹𝑑

𝐵𝑠𝐵𝑑
Ω (3.27) 

Consequently, the amplitude of the sense displacement 𝑌 is 𝑄𝑠 ≫ 1 times greater than in the case 
of a "separate mode" gyroscope.  

Two modes can be considered degenerate if they cannot be spectrally resolved, i.e. 
|𝑓𝑠 − 𝑓𝑑| ≪ 𝑓𝑠/𝑄𝑠 . This condition is very difficult to achieve in practice: the frequencies of the 
vibration modes must not only have the same value, but also the same temperature dependence; 
otherwise active drift compensation strategies must be implemented (again, a form of feedback-
control). Furthermore, the use of degenerate modes restricts the bandwidth of Ω  to 𝑓𝑠/𝑄𝑠  as 
opposed to 𝑓𝑠 − 𝑓𝑑 in the case of separate modes. This is again a form of compromise between 
sensitivity and bandwidth. 

If the gyroscope has degenerate modes, one may verify that the variance of the input-
referred thermomechanical noise is still given by (3.24). Thus, as far as the noise floor is 
concerned, there is therefore no difference between separate or degenerate mode gyroscopes. On 
the other hand, the variance of the noise due to the electronics is reduced by a factor of 𝑄𝑠

2 
compared to (3.25) or (3.26).  

3.2.4 Quadrature error  

A major difficulty encountered in the design of gyroscopes (with separate modes or not) 
is the existence of a so-called “quadrature” error. This error is caused by a parasitic oscillation at 
frequency 𝑓𝑑 of the sense mode in the absence of rotation (Ω = 0). This oscillation is itself the 
result of a coupling between the drive and sense directions (anisoelasticity) related to 
manufacturing or design defects.  

In the presence of such non-idealities, (3.16b) becomes  

𝐾𝑠(𝑌 + 𝜂𝑋) + 𝐵𝑠�̇� + 𝑀�̈� = −2𝑀Ω�̇� (3.28) 

If there is no rotation, the error signal (in the “separate mode” case) can be written 

𝑌𝑒𝑟𝑟 = −𝜂𝑋  (3.29) 

which should be compared to the displacement due to the Coriolis force, given by (3.19), which is 
rewritten here as 

𝑌𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 = −2
𝑀

𝐾𝑠
�̇�Ω (3.30) 

On the one hand, we can see that the two terms 𝑌𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠  and 𝑌𝑒𝑟𝑟  are in quadrature, which, in 
theory, is sufficient to discriminate by demodulation the useful signal from the error signal. This 
is easy as long as the amplitude of the error signal 𝑌𝑒𝑟𝑟  is less than that of the largest signal 𝑌𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 
that must be measured (both signals must pass through the same amplification chain). We have, 
from (3.29) and (3.30) 
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|𝑌𝑒𝑟𝑟|

|𝑌𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠|
=

𝜂|𝑋|

2
𝑀

𝐾𝑠
𝜔𝑑|𝑋|Ω

=
𝜂

2

𝜔𝑠
2

𝜔𝑑Ω
 (3.31) 

which means that the coefficient of anisoelasticity must at least verify  

𝜂 ≤ 2
Ω

𝜔𝑑
×

𝜔𝑑
2

𝜔𝑠2
  (3.32) 

In practice, coefficient 𝜂 can be adjusted post-manufacturing by "trimming" techniques or 
through the application of electrostatic forces that will "straighten" the structure. 

Exercises 

1 - Resume the study of quadrature error in the case of "degenerate modes". Is the 
problem the same? Is it worse? Is it improved? 

2 - What is the Analog Devices accelerometer with the lowest noise? On which range (of 
acceleration, frequency and temperature) does it operate? How does temperature affect 
its metrological performance? How much does this component cost?  

3 - Repeat the same study for STMicroelectronics and Bosch accelerometers. 

4 - Repeat the same study for the gyroscopes of these three companies. 

3.3 References  
A similar treatment of MEMS accelerometers and gyroscopes can be found in:  

[1] V. Kaajakari, "Practical MEMS", Small Gear Publishing, 2009. 

Gyroscopes in particular are discussed in detail in 

[2] C. Akar, A. Shkel, " MEMS Vibratory Gyroscopes. Structural Approaches to Improve 
Robustness ", Springer, 2009 
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4 Physics of MEMS  

4.1 Introduction 
The approach developed in part 3 makes it possible to translate specifications expressed 

at the "application" level in terms of performance (sensitivity, range, response time, resolution) 
into specifications at the "system" level, expressed in terms of gains, voltage or current noise and 
various non-idealities (for the electronic part), in terms of stiffness, damping coefficient, mass, 
capacitance, forces (for the "electromechanical" part).  

A designer of integrated sensors must be able to translate these "system" specifications 
into "physical" terms: for example, what geometry to give to a MEMS structure to achieve a certain 
stiffness, a certain damping coefficient, a certain resonance frequency? The same type of work is 
obviously necessary for the design of the electronic part, but this is largely outside the scope of 
this course, dedicated more specifically to the MEMS transducer than to its associated electronics.  

The design of a MEMS transducer is complex for many reasons. First of all, because MEMS 
are multi-physical devices, which require mechanical, electrostatic, fluidic and thermal 
manipulation. The physical phenomena are coupled, more or less strongly, which forces design 
compromises: for example, reducing the gaps between the moving part and the fixed part of a 
MEMS structure increases the efficiency of capacitive transduction, but accentuates the influence 
of the inter-electrode air film on the damping coefficient of the system. Similarly, the geometry of 
a gyroscope suspensions must allow the displacement of a mass in two orthogonal directions, 
while minimizing thermoelastic or radiation losses at the anchoring points.  

The designer must also have a good knowledge of the technologies at his disposal to 
fabricate the transducer: obviously of the constraints they impose on the minimum dimensions of 
the structures or gaps, but also dispersions and other non-idealities (residual stresses, stress 
gradients, etc.) likely to affect the characteristics of the post-manufactured structure. The 
packaging that houses the transducer also has a considerable influence on the behavior, both 
static and dynamic, of MEMS structures and is particularly crucial for their long-term behavior. 
These technological aspects are outside my area of expertise and are therefore not covered in 
detail in this handout.  

In what follows, we are interested in MEMS physics seen in an idealized light, i.e. forgetting 
at first most of the imperfections due to the technology. This design predicate effectively makes it 
possible to translate "system" specifications into "physical" or “geometrical” specifications. Once 
this step has been completed, it will be possible to validate the transducer design using numerical 
simulation tools at a lower level of abstraction (e.g. finite elements). This will make it possible to 
confirm (or invalidate) the simplifying assumptions made to arrive at the "physical" specifications 
and to verify, by simulation, the influence of the technological manufacturing process, and of the 
encapsulation, on the performance of the device. These numerical tools are presented in Part 5.  

4.2 Mechanics of MEMS 

4.2.1 Fundamental principles 

Most MEMS structures are made of silicon, doped enough to be considered conductive. 
Silicon is a material that is almost perfectly elastic up to its yield strength, i.e. there is a linear 
relationship between the geometrical deformations of the medium, described by the tensor 𝝐, 
which is the symmetrical part of the displacement gradient, and the internal forces, or stresses, 
described by the tensor. 𝝈.  
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This relationship, known as Hooke's Law, is written for an isotropic medium 

𝝈 =
𝐸

1+𝜈
(𝝐 +

𝜈

1−2𝜈
𝑇𝑟(𝝐)𝑰) (4.1) 

where 𝐸 is Young's modulus (𝐸 ≈ 160GPa for Si) and 𝜈 is Poisson's ratio (𝜈 ≈ 0.22 for Si). Hooke's 
law is simplified into  

𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 (4.2-a) 

𝜖𝑦𝑦 = 𝜖𝑧𝑧 = −𝜈𝜖𝑥𝑥 (4.2-b) 

in the case where the medium is subject to uni-axial stress in direction 𝑥 (Fig. 4.1). Equation (4.2-
b) describes the lateral expansion of the material when it is compressed according to 𝑥  or its 
contraction when it is stretched. Equation (4.2-a) describes a "spring" type behaviour, 𝐹 =
−𝐾𝑎𝑥𝑖𝑎𝑙𝑋 where 

𝐾𝑎𝑥𝑖𝑎𝑙 =
𝐸𝑆

𝐿
  (4.3) 

with 𝐿 the dimension along which the stress is applied, and 𝑆 the surface where it is applied (Fig. 
4.1).  

 

Fig. 4.1 - Uni-axial deformation of an elastic material (the force 𝐹𝑥  applies on both sides). 

Writing Newton’s second law in the medium  

𝑑𝑖𝑣(𝝈) + 𝒇 = 𝜌
𝜕2𝒖

𝜕𝑡2  (4.4) 

where 𝒖 is the displacement field (from which the deformations derive), 𝒇 a volume force and 𝜌 
the density of the material (𝜌 = 2330kg/m3  for Si), and combining with (4.1), we obtain the 
Navier’s equation 

1

2

𝐸

1+𝜈
(Δ𝒖 +

1

1−2𝜈
𝑔𝑟𝑎𝑑(𝑑𝑖𝑣(𝒖))) + 𝒇 = 𝜌

𝜕2𝒖

𝜕𝑡2    (4.5) 

This is a good starting point for a numerical validation of a choice of geometry of a MEMS 
transducer, by the finite element method for example. However, this formulation is far too general 
(and the solution tools it requires are far too costly) to be effectively used for the design and 
dimensioning of a MEMS structure. In a first approach, it is more interesting to design a MEMS 
device by reducing it to a set of simple components whose behavior is more easily modeled: rigid 
masses (as in inertial sensors), membranes (as in pressure sensors or microphones), 
flexures/suspensions (of inertial sensors) and beams (resonant strain gauges, for example).  
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Remarks:  

1 - The influence of temperature  𝑇 on the behavior of MEMS structures can be taken 
into account by modifying (4.1) as follows :  

𝝈 =
𝐸

1+𝜈
(𝝐 + (

𝜈

1−2𝜈
𝑇𝑟(𝝐) −

1+𝜈

1−2𝜈
𝛼(𝑇 − 𝑇0)) 𝑰) (4.6) 

where 𝑇0  is a reference temperature and 𝛼  the coefficient of linear expansion of the 
material (𝛼 ≈ 2.6𝑝𝑝𝑚/K for silicon).  

2 - In this form, Hooke's law makes it possible, for example, to take into account a 
variation in the global temperature of the structure (such as that due to a change in the 
ambient temperature): an increase in temperature thus results in an expansion of the 
structure if it is free to deform, or an increase in its state of stress in the opposite case.  

3 - It also makes it possible to account for local temperature variations resulting from 
deformations and the thermoelastic losses they generate. 

4 - The values of 𝐸 and 𝜈 given above are valid for polysilicon, which can be considered 
as an isotropic material. Monocrystalline silicon, on the other hand, is anisotropic. Its 
Young's modulus typically varies between 130𝐺𝑃𝑎  and 170𝐺𝑃𝑎  depending on the 
considered orientation. 

4.2.2 Beams and suspensions  

A beam is a quasi-monodimensional solid, one dimension of which (the length 𝐿) is very 
large with respect to the other two (the width 𝑏, the height ℎ). This section is restricted to the case 
of straight beams with rectangular cross-section under certain types of loads, as shown in Fig. 4.2.  

 

Fig. 4.2 - Geometry of the beam (left) and considered load cases (right). From top to bottom: pure 

traction, pure bending and pure torsion. 
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Remark:  

In this section we avoid talking about "thickness". Thickness is a technological 
parameter designating the thickness of the structural layer in which the MEMS structure 
is manufactured (in the case of surface micromachining). A MEMS structure can bend 
according to its thickness (out-of-plane) or perpendicularly to it (in-plane). 

4.2.2.1 Bending of beams 

Under the effect of a moment of force around the 𝑦 axis or under the effect of a force 
according to 𝑧, the beam bends. This bending is governed by Euler-Bernoulli's theory, valid for 
small deformations of slender beams.  

 

 

 

Fig. 4.3 - Finite element simulation of the bending of a girder fixed at both ends (bridge). At the top, 

initial mesh of the beam without stress. In the middle, deformation of the girder under the effect of a 

uniform force applied to the upper side. At the bottom, contours of the beam deformation (red = 

elongation, blue = shortening). 

Euler-Bernoulli's theory is based on the kinematic hypothesis that the sections that are 
straight and perpendicular to the beam axis remain straight and perpendicular during bending. 
Consequently, bending results in deformations (and constraints) in the 𝑥 direction which vary 
linearly according to 𝑧 and of opposite signs on either side of the beam axis (Fig. 4.3, see also 
appendix B). In this framework, the shape of the beam is entirely determined by the shape 𝑤(𝑥, 𝑡) 
taken by its axis. This is obtained by writing the balance between the external forces and moments 
applied to the beam and the internal forces and moments, resulting from stresses or inertia. In a 
very general way, we have 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 − 𝑁
𝜕2𝑤

𝜕𝑥2 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓 + ∑ 𝐹𝑖𝛿(𝑥𝐹𝑖
)𝑖 + ∑ 𝑀𝑗𝛿

(1) (𝑥𝑀𝑗
)𝑗  (4.7) 

where 𝐼 = 𝑏ℎ3/12 is the moment of inertia of the beam, 𝑆 = 𝑏ℎ its section, 𝑁 the "normal" force 
along the axis of the beam, 𝑓(𝑥, 𝑡) the linear density of force applied along the beam, the 𝐹𝑖 are 
forces concentrated at the points 𝑥𝐹𝑖

, the 𝑀𝑗 are couples concentrated at the points 𝑥𝑀𝑗
.  
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Fig. 4.4 - Examples of MEMS structures using beams and suspensions operating in bending. Anchor points are circled in 

red, the main direction of motion is indicated in green. Top: cantilever (left) and bridge (right). Middle: accelerometer 

suspended by 4 serpentine flexures (left) and detail of a flexure (right). Bottom: SEMATECH micro-switch suspended by 

four serpentine flexures (left) and Draper Labs double mass gyroscope suspended by “folded-beam” flexures (right). 
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Some boundary conditions that can be associated with (4.7) are 

   𝑤 = 0  (4.8-a),  
𝜕𝑤

𝜕𝑥
= 0   (4.8-b),  

   
𝜕2𝑤

𝜕𝑥2 = 0 (4.8-c),  
𝜕3𝑤

𝜕𝑥3 = 0 (4.8-d) 

which correspond respectively to zero displacement, zero slope, no couple around 𝑦  or force 
according to 𝑧 at either end of the beam. Three common boundary conditions are 

- fixed end: zero displacement (4.8-a) and zero slope (4.8-b). The term "bridge" is used to 
describe a beam fixed at both ends. 

- free end: zero moment (4.8-c) and zero force (4.8-d). A beam fixed at one end and free at 
the other end is called a "cantilever". 

- sliding end: zero slope (4.8-b) and zero force (4.8-d). Many inertial sensor suspensions 
may be modeled as assemblies of fixed-sliding beams. 

Examples of MEMS beams and suspensions are shown in Fig. 4.4. More in-depth considerations 
about boundary conditions can be found in Appendix B. 

Suspensions 

The suspensions of MEMS structures, such as accelerometers or gyroscopes, are often 
composed of straight segments, similar to beams working essentially as flexures, connected at 
their ends by rigid segments (Fig. 4.4). Appendix C provides some beam design elements that 
make it possible to go a little further than this first approximation. 

The use of "serpentine" suspensions instead of straight ones not only makes the design 
more compact, but also minimizes the influence of normal stress, which is difficult to control in 
practice, on the stiffness of the structure. For example, a rise in ambient temperature would result 
in the appearance of a normal compressive stress in the straight suspensions of the structure in 
Fig. 4.5-a (the beams seeking to expand, but not being free to deform), and thus in a variation of 
stiffness. On the opposite, a serpentine geometry, as in Fig. 4.5-b, allows the suspension to deform 
and limits the occurrence of temperature-related normal stress. Moreover, the surface area 
occupied by the structure in Fig. 4.5-b is less, for an equivalent stiffness. 

 

Fig. 4.5 - Two accelerometer designs with identical sensitivity. 
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As the inertia of these suspensions is negligible compared to the inertia of the mass 
suspended from them, they can be represented using a static model. Each of the segments is 
assimilated to a fixed-sliding beam subject to a force at its end. Thus, the shape taken by each 
segment is a solution of :  

𝐸𝐼
𝑑4𝑤

𝑑𝑥4 = 𝐹𝛿(𝐿) (4.9-a) 

𝑤(0) = 0  (4.9-b),  
𝑑𝑤

𝑑𝑥
|
𝑥=0

 = 0  (4.9-c),  

𝑑𝑤

𝑑𝑥
|
𝑥=𝐿

= 0 (4.9-d),  
𝑑3𝑤

𝑑𝑥3 |
𝑥=𝐿

= 0 (4.9-e) 

We find that the displacement 𝑤(𝐿)  at the free end of the segment is given by 𝐹 =
𝐾𝑠𝑒𝑔𝑚𝑒𝑛𝑡 × 𝑤(𝐿) where 

𝐾𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 12
𝐸𝐼

𝐿3 (4.10) 

is the stiffness of the segment. The stiffness 𝐾𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛  of each suspension is obtained by 

considering that the individual segments are springs placed "in series", end to end 

1

𝐾𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛
= ∑

1

𝐾𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑖
𝑖  (4.11) 

Finally, the total stiffness of the structure (in the direction of bending) 𝐾𝑡𝑜𝑡𝑎𝑙 is the sum of the 
stiffness of each suspension (often 4, sometimes 2) 

𝐾𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐾𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛𝑗𝑗  (4.12) 

4.2.2.1.1 Cantilevers 

For a cantilever whose inertia can be neglected, subject to a force at its extremity, Euler 
Bernoulli's equation is written as follows  

𝐸𝐼
𝑑4𝑤

𝑑𝑥4 = 𝐹𝛿(𝐿) (4.13-a) 

𝑤(0) = 0  (4.13-b),  
𝑑𝑤

𝑑𝑥
|
𝑥=0

 = 0  (4.13-c),  

𝑑2𝑤

𝑑𝑥2 |
𝑥=𝐿

= 0 (4.13-d),  
𝑑3𝑤

𝑑𝑥3 |
𝑥=𝐿

= 0 (4.13-e) 

which results in an equivalent stiffness of  

𝐾𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 = 3
𝐸𝐼

𝐿3 (4.14) 

Note that a fixed-sliding beam of length 𝐿 can be seen as two cantilevers of length 𝐿/2 put end-to-
end. This makes it possible to simply deduce (4.10) from (4.14), and vice versa.  

From a practical point of view, this static model may be useful for the design of certain 
accelerometers (those made using volume micromachining techniques) or energy harvesters, 
whose suspensions can be approximated as cantilevers supporting a large mass. The sensing 
element of an atomic force microscope in "contact" mode can also be modeled in this way.  
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Fig. 4.6 - "NEMS" cantilever for mass sensing fabricated by CEA-LETI (taken from the thesis of S. 

Labarthe). Oscillation is achieved by means of electrostatic forces. The two beams on either side of the 

base of the cantilever work in tension/compression. They are in fact piezoresistive nano-gauges 

allowing the detection of movement. 

It is the resonant behavior of cantilevers which is most often implemented. For example, 
some mass sensors rely on cantilevers that have been "functionalized" so that the molecules to be 
detected are adsorbed onto them (Fig. 4.6). This results in a variation of the density of the 
cantilever, and thus of its resonance frequency. This resonance frequency can then be measured 
by using the cantilever as the resonant element of an oscillator (see part 3 and the drive mode of 
the gyroscopes). The beam, subject to a drive force generally distributed over its length and its 
own inertia, is governed by 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓 (4.15) 

where 𝑓 is the linear density of force (both that of the drive and that exerted by the surrounding 
fluid). The fundamental resonance frequency of such a system corresponds to that of the first 
eigenmode of the beam (see Appendix D) 

𝜔𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 ≈ 1.015 × √
𝐸

𝜌
×

ℎ

𝐿2   (4.16) 

The relative change of cantilever frequency is thus related to that of the density and that of the 
mass by 

Δ𝜔𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟

𝜔𝑐𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟
= −

1

2
×

Δ𝜌

𝜌
= −

1

2
×

Δ𝑚

𝑚
 (4.17) 

Thus, the sensitivity of this type of sensor is all the higher as the nominal mass of the resonator is 
low. This possibility of realizing ultra-sensitive gas sensors has largely motivated the enthusiasm 
for NEMS technologies. 

Resonant cantilevers are also used in various microscopy techniques, such as atomic force 
microscopy (in “non-contact” mode). 

4.2.2.1.2 Bridges 

Although bridges are rarely used as suspensions, it is interesting to study from such an 
example the influence of normal stress on the behaviour of structures. The deformation of a bridge 
subject to static loading at its center and normal stress 𝑁 is governed by 
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𝐸𝐼
𝑑4𝑤

𝑑𝑥4 − 𝑁
𝑑2𝑤

𝑑𝑥2 = 𝐹𝛿 (
𝐿

2
) (4.18-a) 

𝑤(0) = 0  (4.18-b),  
𝑑𝑤

𝑑𝑥
|
𝑥=0

 = 0  (4.18-c),  

𝑤(𝐿) = 0  (4.18-d),  
𝑑𝑤

𝑑𝑥
|
𝑥=0

 = 0  (4.18-e),  

Assuming the normal force is low, i.e. 𝑁𝐿2/𝐸𝐼 ≪ 1, we can look for an approximate solution to 
(4.18) in the form 

𝑤 ≈ 𝑤𝑏𝑒𝑛𝑑 +
𝑁𝐿2

𝐸𝐼
𝑤𝑐𝑜𝑟𝑟 (4.19) 

where 𝑤𝑏𝑒𝑛𝑑 and 𝑤𝑐𝑜𝑟𝑟 verify boundary conditions (4.18-b,c,d,e) and  

𝐸𝐼
𝑑4𝑤𝑏𝑒𝑛𝑑

𝑑𝑥4 = 𝐹𝛿 (
𝐿

2
) (4.20-a) 

𝑑4𝑤𝑐𝑜𝑟𝑟

𝑑𝑥4 =
1

𝐿2 ×
𝑑2𝑤𝑏𝑒𝑛𝑑

𝑑𝑥2  (4.20-b) 

This results in a stiffness equal to  

𝐾𝑏𝑟𝑖𝑑𝑔𝑒 = 192
𝐸𝐼

𝐿3 ×
1

1−
1

40

𝑁𝐿2

𝐸𝐼

 (4.21) 

The case 𝑁 = 0 corresponds to "pure" bending: it is notable that the same solution can be 
obtained by considering a bridge of length 𝐿 as two fixed-sliding "segments" of length 𝐿/2 loaded 
at their end (4.10). When 𝑁 > 0 (tensile stress), the effective stiffness of the bridge increases. It 
decreases if 𝑁 < 0 (compressive stress). 

  

 

Fig. 4.7 - Schematic diagram of a 2-axis resonant accelerometer (left) and practical realization 

(right). What are the differences? Work carried out at Politecnico di Milano in collaboration with ST. 

This sensitivity of bridge stiffness to normal stress is used for making resonant sensors. 
Fig. 4.7 shows the operating principle of a resonant accelerometer: under the effect of 
acceleration, the mass moves. This generates normal forces (proportional to the acceleration) of 
opposite signs in the resonators, which can be modeled as bridges, and thus a variation in their 
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stiffness and resonance frequency. Each bridge, subject to a drive force generally distributed over 
its length and to its own inertia, is governed by 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 − 𝑁
𝜕2𝑤

𝜕𝑥2 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓 (4.22) 

where 𝑓 is the linear density of force (both that of the drive and that exerted by the surrounding 
fluid). The fundamental resonance frequency of the bridge is given by (see Appendix D) 

𝜔𝑏𝑟𝑖𝑑𝑔𝑒 ≈ 6.459 × √
𝐸

𝜌
× (1 + 0.0246

𝑁𝐿2

𝐸𝐼
) ×

ℎ

𝐿2  (4.23) 

The relative variation of the bridge frequency is therefore given by 

Δ𝜔𝑏𝑟𝑖𝑑𝑔𝑒

𝜔𝑏𝑟𝑖𝑑𝑔𝑒
≈ 0.0123 ×

𝑁𝐿2

𝐸𝐼
 (4.24) 

Note that it is necessary to be able to discriminate frequency variations due to variations 
in the physical quantity to be measured (e.g. acceleration) from those due to temperature. For 
example, the heating of a bridge results in the appearance of a normal force equal to  

𝑁 = −𝐸𝑆 × 𝛼(𝑇 − 𝑇0) (4.25) 

opposing exactly (under the hypothesis of perfectly rigid anchors) its expansion in the direction 
𝑥. This normal stress due to thermal expansion justifies the choice of a differential measurement 
for the accelerometer in Fig. 4.7. 

Remarks:  

1 - The manufacturing processes of MEMS devices result in structures in which stresses 
(called "residual stresses") remain after release. When the stresses are positive, the 
devices are stiffer than expected (this is the case of the bridge in Fig. 4.4 whose resonance 
frequency was 33% higher than predicted with the pure bending model). When the 
stresses are negative, the devices are less stiff, which may possibly lead to buckling. 
Buckling is the "catastrophic" collapse of a slender structure under normal compressive 
stress. The buckling point is reached when the fundamental resonance frequency of the 
bridge is zero (𝜔𝑏𝑟𝑖𝑑𝑔𝑒 = 0) i.e. 

𝑁 ≈ −40.72 ×
𝐸𝐼

𝐿2  (4.26) 

according to (4.23). An exact calculation gives as a critical value of the normal force 
𝑁 = −4𝜋2 × 𝐸𝐼/𝐿2which is very close to (4.26). 

2 - One of the main causes for the existence of residual stresses is the difference in the 
coefficients of expansion of the layers of materials deposited during the fabrication of 
the device. To quantitatively assess the influence of temperature on the mechanical 
behavior of a MEMS device (including post-fabrication), it is therefore necessary to take 
into account the thermomechanical behavior of its entire environment (including the 
packaging). From this point of view, (4.25), which assumes "perfectly rigid" anchors, 
must be taken with caution. 

3 - A bending bridge sees its length increase (the shortest path between the two ends of 
the bridge being the straight line). Thus, any bending of a bridge is accompanied by an 
elongation, and thus an increase in the normal stress. Using Hooke's law, we have 
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𝑁 ≈
𝐸𝑆

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
 (4.27) 

Consequently, the more a bridge deforms, the stiffer and more resistant to deformation 
it becomes. This "hardening" phenomenon results in a non-linear spring behavior (𝐹 =
−𝐾 × (1 + 𝛾𝑋2) × 𝑋, 𝛾 > 0). 

4 - These stresses (residual, thermal, elongation) affect, to some extent, all MEMS 
structures that are geometrically similar to a bridge. Many mechanical design 
techniques can reduce their impact, such as the use of right-angled beams ("crab-leg", 
as shown in Fig. 3.6), serpentine or "box" beams, or the fabrication of the structure 
around a single anchor point (Fig. 4.9).  

 

Fig. 4.9 - 2-axis accelerometer from ST with capacitive transduction, with a single anchor point 

(center). The similarity with the structure in Fig. 4.7 is striking. This accelerometer equipped the 

IPhone 4 (image taken from MEMS Journal). 

5 - Structures that are geometrically similar to cantilevers (with a single anchor point, 
therefore) are sensitive to the stress gradient existing in the thickness of the material. If 
such a gradient exists, the structure after release is bent out of plane (Fig. 4.10). 
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6 - Regardless of the boundary conditions, the stiffness of a bending beam is proportional 
to its moment of inertia. 𝐼 = 𝑏ℎ3/12  and inversely proportional to 𝐿3  (4.10) (4.14) 
(4.21). To minimize the stiffness of a beam, it is therefore sufficient in theory to make it 
as long and as thin as the manufacturing process allows. Many practical considerations, 
some of which, such as compactness, have already been mentioned, limit this simplistic 
reasoning:  

o devices with minimum dimensions are more prone to manufacturing 
dispersion (the difference between the predicted dimension and the actual 
manufactured dimension, which varies randomly from one device to another). 
This is obviously not desirable if uniformity of sensor performance is to be 
guaranteed.  

o a thin and long beam has an increased sensitivity to normal stress (4.21) 
(4.23), and thus to temperature (in particular).  

o some dissipation mechanisms (such as surface losses) are all the more marked 
as the flexible parts of the structure are thin.  

 

Fig. 4-10 - Consequence of a stress gradient in a MEMS structure. 

4.2.2.2 Tension and torsion 

The stiffness of a beam in tension/compression (subject to normal stress alone, along the 
beam axis, and deforming in the direction of that stress) is given directly by Hooke's law 

𝐾𝑎𝑥𝑖𝑎𝑙 =
𝐸𝑆

𝐿
  (4.28) 

Finally, the following formula gives the torsional stiffness of a beam used as a torsion 
spring, fixed at one end and subject to a couple (around the beam axis) at the other end 

𝐶𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
𝐺𝐽

𝐿
.  (4.29) 

where 𝐺 = 𝐸/2(1 + 𝜈)  is the torsional modulus of the material, and 𝐽 the torsional moment of the 
beam around the axis 𝑥. For a beam with a rectangular cross-section, we have 
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𝐽 = 𝐷𝑑3 × (
1

3
− 0.21

𝑑

𝐷
(1 −

1

12

𝑑4

𝐷4)) (4.30) 

where 𝐷 = max(𝑏, ℎ) is the larger lateral dimension and 𝑑 = min(𝑏, ℎ) the smaller.  

  

 

Fig. 4.11 - 1-axis ST accelerometer with capacitive transduction (left, same source as Fig. 4.9) and operating principle 

(Politecnico di Milano). 

Remark 

In some rare cases, it may be necessary to take into account the inertia of a beam 
working in tension or torsion, or the existence of forces distributed along it. The 
following models can be used 

𝐸𝑆
𝜕2𝑢

𝜕𝑥2 + 𝑓 = 𝜌𝑆
𝜕2𝑢

𝜕𝑡2  (4.31) 

for a beam in tension/compression (the displacements 𝑢 and forces 𝑓 are according to 
𝑥) and 

𝐺𝐽
𝜕2𝜃

𝜕𝑥2 + 𝑚 = 𝜌𝑆
𝜕2𝜃

𝜕𝑡2  (4.32) 

for a torsion beam (the angles 𝜃 and the moments 𝑚 are around 𝑥). 

4.2.2.3 Beam assemblies and complex suspensions 

Please refer to Appendix C of this document. 

4.2.3 Plates and membranes  

To be completed (plates, membranes, Von Karman, adaptive optics, pressure sensor, 
microphone). 
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4.3 Electromechanical transduction  

4.3.1 General overview 

The following sections focus on electromechanical transduction at the MEMS scale: how 
to convert a motion into an electrical signal? How to electrically generate forces to set a MEMS 
structure in motion (or attenuate the motion of a MEMS structure)? In an over-simplified way, 
sensing the motion or deformation of a structure is useful for "sensor" type applications 
(accelerometer, pressure sensor), the generation of forces for "actuator" type applications (e.g. 
micro-switches, micro-mirrors, DMD Fig. 4.12). However, it is not uncommon to combine sensing 
and actuation within the same application, as in the following examples. 

  

Fig. 4.12 - Digital Mirror Display (DMD) from Texas Instruments, at various magnification levels. The pixels (which are 

supported by torsion bars) are turned on or off by means of electrostatic forces. 

Test - Most commercially available MEMS inertial sensors have a built-in self-test function 
to verify their functionality throughout their lifetime. This test consists in applying a pre-
determined stimulus to the sensing element using an electromechanically generated force. If 
certain characteristics of the response deviate from the specifications, then the measurements 
made by this sensor can be rejected, or corrected according to the test results. A typical test for an 
inertial sensor is to apply a force step to determine, based on the step response of the structure, 
its stiffness 𝐾 and its damping coefficient 𝐵 (the mass 𝑀 being unlikely to change over time). This 
makes it possible to check the airtightness of the packaging over time, or the wear of the structure.  

Feedback control - To increase the measurement range of a sensor and improve its 
dynamic behavior or linearity, it is sometimes essential to use feedback control techniques. In the 
absence of feedback control, the measuring range of a capacitive accelerometer, with mass 𝑀, 
stiffness 𝐾 and gap 𝑔 is strictly limited to ±𝐾𝑔/𝑀. This is the value of the acceleration for which 
the mass would come into contact with the opposite electrodes. In a feedback-controlled 
accelerometer, a force 𝐹 is exerted on the mass in order to keep it at a reference position, typically 
𝑋 = 0. In this way, 𝐹 opposes exactly the force of inertia (and thus provides a measure of it). The 
measuring range is then limited to ±𝐹𝑚𝑎𝑥/𝑀 where 𝐹𝑚𝑎𝑥 is the maximum value of the force that 
can be applied to the structure. This is interesting because 𝐹𝑚𝑎𝑥 > 𝐾𝑔 is a design objective that 
can be easily achieved at the MEMS scale, for example using electrostatic actuation.  

Oscillators and resonant sensors - Finally, micromechanical oscillators, such as time 
references (Fig. 4.13) and all "resonant" sensors in the broad sense (amplitude-modulated 
gyroscopes, as seen in Part 3, frequency-modulated mass sensors or resonant accelerometers as 
seen in the previous sections), are devices that intrinsically combine detection and actuation. 
Indeed, to set a mechanical structure in oscillation at its resonance frequency, it is necessary to 
apply a "drive" force in quadrature with its displacement. Thus, one must be able to sense the 
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motion of the structure, on the one hand, and to generate a force according to a certain control 
law, on the other hand.  

  

  

Fig. 4.13 - SiTime's silicon resonators are becoming increasingly fierce competitors to quartz 

resonators, which are larger in size and more costly, for the generation of ultra-stable clock signals. 

Images and characteristics taken from the SiTime site. Bottom right, block diagram of the MEMS 

oscillator. 

4.3.2 Detection  

Capacitive and resistive detection have already been discussed in part 2 from an electronic 
point of view. In the next two sections, their implementation in the specific field of MEMS is 
discussed.  

4.3.2.1 Capacitive detection 

Capacitive detection is the sensing principle most commonly implemented in MEMS 
devices. It requires the fabrication of a fixed electrode in close proximity to the structure whose 
motion is to be measured. The electrode and the structure can be realized in the same step of the 
manufacturing process, which makes capacitive sensing a "cheap" method, in addition to being 
efficient. For example, one can compare the relative complexity of MEMSCAP's SOIMUMPS and 
PiezoMUMPS processes, in Appendix H, adapted respectively to capacitive and piezoelectric 
sensing and actuation. 

The plane capacitor approximation is to the electrostatics of MEMS what beam theory is 
to the mechanics of MEMS: an extremely useful starting point for a first drafting of a system using 
an analytical approach, to be refined in a validation phase by more precise models (analytical or 
numerical, see Appendix E). 
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For a rectangular plane capacitor, with gap 𝑔 and side dimensions 𝐿1 and 𝐿2 (𝐿1,2 ≫ 𝑔) we 

have 

𝐶 = 𝜖0
𝐿1𝐿2

𝑔
 (4.33) 

Due to the fact that 𝐿1,2 ≫ 𝑔, this capacitance is mainly sensitive to changes in 𝑔, much less 
to those of 𝐿1 and 𝐿2. Mathematically, we can write 

𝛿𝐶 ≈ (𝜖0
𝐿2

𝑔
𝛿𝐿1 + 𝜖0

𝐿1

𝑔
𝛿𝐿2 − 𝜖0

𝐿1𝐿2

𝑔2 𝛿𝑔) = 𝐶 × (
𝛿𝐿1

𝐿1
+

𝛿𝐿2

𝐿2
−

𝛿𝑔

𝑔
) (4.34) 

Thus, a displacement 𝑋 of the mobile electrode will have a much greater impact on the value of 𝐶 
if it is in the direction of the gap (𝛿𝑔 = 𝑋) than in the lateral directions (𝛿𝐿1,2 = 𝑋), since 𝑋/𝑔 ≫
𝑋/𝐿1,2. On the other hand, the maximum displacement is limited in one case to 𝑔, in the other to 
𝐿1 or 𝐿2. This is still a form of trade-off between sensitivity and measurement range (which can 
be overcome by feedback-control techniques in some cases). As a consequence, capacitive “gap-
closing” detection is preferable to transduce small displacements into electrical signals, while 
surface variation is more appropriate to transduce large displacements.  

In the case of accelerometers, for example, the fact that gap-closing detection is very 
widely used is justified by the fact that the displacements which must be detected are very small. 
The same applies to the detection of the sense mode of gyroscopes. In both cases, the 
displacements are proportional to the mass of the device, therefore to the surface occupied by the 
device, which is generally desired as small as possible to reduce the unitary cost of the sensor.  

Surface variation detection is mainly used in resonant applications. For example, we saw 
in part 3 that a gyroscope is all the more sensitive as it oscillates with a large amplitude along the 
drive direction. Since this large amplitude motion must be transduced into an electrical signal (in 
order to make the structure oscillate at its resonance frequency), surface variation detection is 
adapted. In addition, resonant applications generally take advantage of a low dissipation 
coefficient. As a film of air dissipates much less energy per cycle when it is “sheared” (as in surface 
variation detection) than when it is "compressed" (as in gap-closing detection, see "slide-film" and 
"squeeze-film" in section 4.4), this also speaks in favor of surface variation detection for resonant 
applications limited by fluidic damping.  

Remarks 

1 - To increase the sensitivity of capacitance to displacement, "comb" structures are 
commonly used (see Fig. 4.4 for an example - bottom right - of surface variation 
detection, Fig. 4.9 and Fig. 4.14 for examples of gap-closing detection). For a given 
surface area, the number of "fingers" of a comb is limited primarily by the accuracy of 
the manufacturing process (which will determine the minimum gap between fixed and 
movable fingers, as well as the minimum width of the fingers).  

2 - Many design trade-offs come into play to determine the parameters of a comb 
structure. In particular, any surface occupied by combs results in a decrease of the useful 
mass of the device, which is detrimental to inertial measurements. In addition, a 
compromise must also be found between the number of fingers per unit length and the 
stiffness of the fingers (their resonance frequency must be sufficiently high with respect 
to that of the structure to which they are attached). 

3 – On the whole, a manufacturing process is all the more adapted to capacitive 
detection as it makes it possible to fabricate devices with narrow gaps and large lateral 
dimensions. 𝐿1,2. 
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Fig. 4.14 - Mask of an Analog Devices accelerometer. The structure moves laterally under the effect of 

acceleration, as indicated by the double arrow. The central combs are used to detect the motion of the 

structure by differential gap-closing detection. Those on the sides are used to generate test stimuli. 

4.3.2.2 Piezoresistive detection 

At the MEMS scale, resistive sensing - in contrast to capacitive sensing - does not rely on 
geometric effects (or only to a small extent). Indeed, silicon has quite marked piezoresistive 
properties: its resistivity varies with its state of stress much more than its geometry. One may 
plunge into the book by M.H. Bao for a precise description of the phenomenon and the calculation 
of piezoresistivity coefficients. Here, a more functional description of the phenomenon, borrowed 
from V. Kaajakari's book, is sufficient.  

 

Table 4. 1 - Piezoresistivity coefficients of weakly doped silicon (dopant concentration less than 

1017𝑐𝑚−3). Taken from Kaajakari. 

Piezoresistivity coefficients 𝜋𝑙 and 𝜋𝑡 (longitudinal and transverse) relate the variation in 
resistivity 𝜌  in one direction and the constraints 𝜎𝑙  and 𝜎𝑡 , respectively according to and 
perpendicular to the considered direction  

𝛿𝜌

𝜌
= 𝜋𝑙𝜎𝑙 + 𝜋𝑡𝜎𝑡  (4.35) 

The piezoresistance coefficients (in Pa−1 ) are given in Table 4.1 for common 
crystallographic orientations in the case of 𝑛-doped or 𝑝-doped silicon.  
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According to (4.35) and Hooke's law (4.1), a piezoresistive gauge of length 𝑙 and lateral 
dimensions 𝐿1  and 𝐿2  undergoing a purely tensile stress 𝜎  along its length (and therefore a 
longitudinal deformation 𝜖 = 𝜎/𝐸) will thus see its resistance 

𝑅 = 𝜌
𝑙

𝐿1𝐿2
 (4.36) 

vary from 

𝛿𝑅 = 𝑅 × (
𝛿𝜌

𝜌
+

𝛿𝑙

𝑙
−

𝛿𝐿1

𝐿1
−

𝛿𝐿2

𝐿2
) = 𝑅 × (𝜋𝑙 × 𝐸 + 1 + 2𝜈) × 𝜖 (4.37) 

It can be verified that for the values of 𝜋𝑙 data given in Table 4.1, the gauge factor  

𝐺𝐹 = 𝜋𝑙 × 𝐸 + 1 + 2𝜈 ≈ 𝜋𝑙 × 𝐸 (4.38) 

is far greater than 1.  

Remarks: 

1 - This detection method has a "historical" importance, in the sense that it has now been 
replaced by capacitive detection in many applications (inertial in particular). The 
reasons for this are multiple:  

- Temperature affects not only the piezoresistivity coefficients of silicon, but also its 
resistivity. Without a rigorous temperature compensation strategy, piezoresistive 
MEMS sensor measurements are not usable. This constraint is much less strong for 
capacitive sensing, which is essentially only affected by the geometrical consequences 
of temperature variations. 

- the fabrication of piezoresistive strain gauges (by local implantation of p-charge 
carriers in n-doped silicon, for example, or vice versa) typically requires a few specific 
manufacturing steps, making the manufacturing process longer (and more expensive). 
On the opposite, the moving and fixed electrodes required for capacitive sensing are 
realized in a single step of the manufacturing process (at least for structures 
deforming in the plane). 

- As pointed out in part 2, resistors are sources of noise. The same applies to 
piezoresistors. These generate not only white noise (Nyquist-Johnson noise), but also 
flicker noise (called Hooge noise, in the case of piezoresistors). The higher the voltage 
at the terminals of the piezoresistor, the higher the flicker noise. It is therefore not 
possible to reduce its influence by increasing the bias of the resistors. On the contrary, 
a capacitance is intrinsically noiseless. 

2 - Nevertheless, piezoresistive detection is still used for sensors whose structure deforms 
out of plane, mainly pressure sensors, as in Fig. 4.15. CEA-LETI has also developed a 
piezoresistive detection technique for in-plane movements, particularly adapted for 
gauges at the nanometer scale (cf. mass sensor in Fig. 4.6).  
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Fig. 4. 15 - Melexis pressure sensor (image from the SystemPlus website). The square membrane in the 

center bends under the effect of pressure. This deformation is measured using 4 piezoresistive gauges. 

Those on the left and right are arranged in such a way that they are subject to longitudinal strain 

(with respect to the direction of current), those at the top and bottom to transverse strain (also with 

respect to the direction of current). One of the gauges is highlighted in the inset at the bottom left. 

4.3.2.3 Other detection methods 

Other detection principles can be implemented at the MEMS scale to transduce a 
displacement into an electrical signal:  

- Piezoelectric detection: typically using silicon as the structural material and gauges of 
piezoelectric material to detect its movement (e.g. MEMSCAP's PiezoMUMPS process). It 
has several advantages (linearity, low intrinsic noise, no need for bias) over piezoresistive 
and/or capacitive sensing, but is generally more expensive (due to the larger number of 
manufacturing steps) and is limited to detecting certain types of motion. It is also possible 
to use a piezoelectric material (instead of silicon) as a structural material. Quartz, for 
example, makes it possible to fabricate devices, generally resonant (inertial sensors, as at 
ONERA, clocks...) with a much better temperature stability than silicon, but with larger 
dimensions and (therefore) a much higher unitary cost. 

- FET (Field-Effect Transistor) detection: this is a variant of capacitive detection, where the 
MEMS structure forms the moving gate of a transistor, so that a displacement of the 
structure modulates the current flowing through its channel. The very first MEMS device 
("resonant gate transistor", Nathanson, Fig. 4.16) is based on this principle, which is only 
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rarely used commercially - again, mainly due to the complexity and cost of the required 
manufacturing processes. 

- optomechanical detection: in this case, a MEMS resonator is coupled with an optical 
resonator, whose properties are modulated by the motion of the MEMS structure (Fig. 
4.17). This type of device is used in the laboratory for fine material characterization or 
mass measurement.  

 

Fig. 4.16 - The very first MEMS device actually consists in a "vibrating antenna": when the wavelength 

of the incident wave is tuned to the length of the beam, the beam enters into mechanical resonance, 

which modulates the current flowing through the transistor channel at the end. Image from patent 

US3413573A. 
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Fig. 4.17 - Principle of an optomechanical AFM: the displacement of the "cantilever" modulates the 

effective index of the disc (optomechanical coupling), and thus its natural frequencies; this results in a 

variation of the optical coupling coefficient between the disc and the fiber, and thus of the optical 

intensity at the fiber output. Work carried out at NIST and U. Maryland. Images taken from DOI: 

10.1364/OE.20.018268.  

4.3.3 Actuation  

The physics of MEMS is particular in that surface phenomena play a much more important 
role than at the macroscopic scale: by reducing all the dimensions of an object by one order of 
magnitude, one divides the effect of volume forces by three orders of magnitude, the effect of 
surface forces by two orders of magnitude only. These scaling laws partly explain why MEMS 
sensors are so singular-looking compared to their macroscopic counterparts.  

Capacitive actuation (or electrostatic actuation) is the main method used to apply forces 
in a controlled manner to MEMS structures, thus setting them in motion, controlling their position, 
etc. Because of its "surface" nature (it takes advantage of the electrostatic pressure on the surface 
of charged conductors), it is suitable for the microscopic scale. In addition, it is inexpensive to 
implement, requiring no special manufacturing step, which explains its great popularity. Most of 
this section is devoted to it. 

4.3.3.1 Capacitive actuation 

4.3.3.1.1 Principle 

 

Fig. 4. 18 - Closed system consisting of an ideal voltage source and a capacitor. 

The most intuitive way to understand electrostatic forces is to start from the system 
shown in Fig. 4.18, which describes a capacitor 𝐶 to which a voltage 𝑉 is applied. The potential 
energy of the system is written 

𝐸𝑝𝑜𝑡 = 𝐸𝑠𝑜𝑢𝑟𝑐𝑒 + 𝐸𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑜𝑟 = −𝑄𝑉 +
1

2
𝐶𝑉2 (4.39) 

where 𝑄 is the charge provided by the source. As 𝑄 = 𝐶𝑉, the potential energy is written 
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𝐸𝑝𝑜𝑡 = −
1

2
𝐶𝑉2 (4.40) 

Now assume that one of the armatures of the capacitor can move freely in one direction 𝑋, so that 
capacitance 𝐶  depends on 𝑋 . In the absence of voltage, 𝐸𝑝𝑜𝑡(𝑋) = 0  and all positions are 

equivalent. On the other hand, if 𝑉 ≠ 0 (and regardless of the sign of 𝑉), the system evolves 
towards a minimum of 𝐸𝑝𝑜𝑡(𝑋), that is to say towards a maximum of 𝐶(𝑋).  

Physically, this reflects the existence of an electrostatic force acting in direction 𝑋, deriving 
from 𝐸𝑝𝑜𝑡(𝑋) according to 

𝐹𝑒𝑙𝑒𝑐 = −
𝜕𝐸𝑝𝑜𝑡

𝜕𝑋
=

1

2

𝜕𝐶

𝜕𝑋
𝑉2 (4.41) 

Two configurations, gap-closing or surface variation (also called "comb-drive"), are particularly 
used.  

 

Fig. 4.19 - Geometry of a "comb-drive". The red electrode is attracted inside the black electrode. 

The typical geometry of a "comb-drive" is shown in Fig. 4.19. Using the plane capacitor 
approximation, one can write  

𝐶 = 2𝜖0
𝑋𝐿2

𝑔
 (4.42) 

Using (4.41), we can deduce the following 

𝐹𝑐𝑜𝑚𝑏−𝑑𝑟𝑖𝑣𝑒 = 𝜖0
𝐿2

𝑔
𝑉2 (4.43) 

In this configuration, a force is generated that attracts the moving fingers between the fixed 
fingers. Remarkably, this force is independent of 𝑋 . This holds as long as the plane capacitor 
hypothesis is verified, that is to say neither at the beginning (𝑋 = 0), nor at the end of the stroke 
(𝑋 = 𝐿1), and, obviously, provided 𝑉 is independent of 𝑋.  

"Comb-drive" actuation is used for the gyroscope in Fig. 4.4., for example 
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Fig. 4.20 - Gap-closing geometry. The red electrode is attracted to the black electrode. 

The gap-closing geometry is illustrated in Fig. 4.20. We have  

𝐶 = 𝜖0
𝐿1𝐿2

𝑔−𝑋
 (4.44) 

from which we deduce  

𝐹𝑔𝑎𝑝−𝑐𝑙𝑜𝑠𝑖𝑛𝑔 =
𝜖0

2

𝐿1𝐿2

(𝑔−𝑋)2
𝑉2 (4.45) 

Once again an attractive force is generated, but it depends strongly on the position 𝑋, to to 
the point of tending towards infinity at the end of the stroke (𝑋 = 𝑔). This position dependence 
may or may not be advantageous, depending on the context. 

The test electrodes of the accelerometer in Fig. 4.14 are gap-closing capacitive actuators.  

Remarks:  

1 – There is a trade-off between force and travel range for capacitive actuation, just like 
there is a trade-off between sensitivity and travel range for capacitive detection. One has 
indeed 

𝐹𝑔𝑎𝑝−𝑐𝑙𝑜𝑠𝑖𝑛𝑔

𝐹𝑐𝑜𝑚𝑏−𝑑𝑟𝑖𝑣𝑒
≈

𝐿1

2𝑔
≫ 1 (4.46) 

 

Fig. 4.21 - Electrode configuration suitable for electrostatic levitation. Image from 

doi.org/10.1016/j.elstat.2008.03.005 
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2 - Although electrostatic forces are often attractive, they may also be repulsive. In 
particular, the geometry shown in Fig. 4.21, found in many comb structures, results in 
more or less pronounced electrostatic “levitation”: the structure rises when a voltage is 
applied to the electrodes. This effect is all the less pronounced as one gets closer to the 
plane capacitor hypothesis. 

3 - Capacitive detection requires a bias voltage to be applied across at least one pair of 
electrodes. This generates an electrostatic force and (depending on the configuration of 
the detection electrodes) a displacement and/or softening of the structure, regardless of 
whether the bias voltage is DC (case of MEMS resonators) or AC (case of accelerometers). 
In the case of an AC bias with pulsation 𝜔, the force has not only a DC component, but 
also a component at 2𝜔. In particular, it can cause an oscillation of the structure if 𝜔 is 
not properly selected. 

4.3.3.1.2 Electrostatic softening and pull-in 

As the electrostatic force is conservative and generally depends on 𝑋, it is customary to 
compare it to the restoring force of a spring by defining its "electrostatic stiffness" 

𝐾𝑒𝑙𝑒𝑐(𝑋) = −
𝜕𝐹𝑒𝑙𝑒𝑐

𝜕𝑋
= −

1

2

𝜕2𝐶

𝜕𝑋2 𝑉2 (4.47) 

In the case of gap-closing actuation, when 𝑋 ≪ 𝑔, the electrostatic stiffness is equal to 

𝐾𝑒𝑙𝑒𝑐−𝑔𝑎𝑝−𝑐𝑙𝑜𝑠𝑖𝑛𝑔(0) = −2𝜖0
𝐿1𝐿2

𝑔3 𝑉2 (4.48) 

Since the electrostatic stiffness is negative, this phenomenon is called "electrostatic softening". 
The effective stiffness of a structure subject to electrostatic softening is 𝐾 + 𝐾𝑒𝑙𝑒𝑐  where 𝐾  is 
mechanical stiffness. The effective stiffness of a MEMS structure - and thus its resonant frequency 
- can therefore be adjusted by playing on the voltage applied to the structure. This softening 
phenomenon provides a powerful means for post-manufacturing adjustment of the resonance 
frequency of a MEMS structure.  

 

Fig. 4.22 - Potential energy of a gap-closing structure subject to an elastic restoring force.  
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A phenomenon closely linked to electrostatic softening is "pull-in". Pull-in corresponds to 
a "collapse" of the moving electrode on the fixed electrode, above a certain value of displacement 
𝑋. It usually results in irreparable damage to the electrodes and the structure. Fig. 4.22 provides 
a qualitative understanding of the phenomenon (neglecting all dynamic effects): it shows the 
potential energy of a structure subject to an elastic restoring force (𝐹 = −𝐾𝑋) and gap-closing 
actuation, for different values of 𝑉. For  

𝑉 < 𝑉𝑝𝑖 = √
8

27

𝐾𝐺3

𝜖0𝑆
 (4.49) 

there are two positions of equilibrium, solutions of  

−𝐾𝑋 +
𝜖0

2

𝑆

(𝑔−𝑋)2
𝑉2 = 0 (4.50) 

where 𝑆 is the surface area of the capacitor. One, 𝑋𝑠 , is stable (of positive effective stiffness), the 
other, 𝑋𝑖 , is unstable (of negative effective stiffness). The amplitude of displacement of the 
structure is then limited by 𝑋𝑖 , above which the structure collapses. When the voltage reaches 𝑉𝑝𝑖 

we have  

𝑋𝑖 = 𝑋𝑠 = 𝑔/3  (4.51) 

and the effective stiffness is zero at this position. For 𝑉 ≥ 𝑉𝑝𝑖 , there is simply no longer a stable 

equilibrium position.  

For a "comb-drive", according to (4.43) and (4.47), the electrostatic stiffness is zero. 
Therefore, there is no electrostatic softening or pull-in in the 𝑋 direction. However, the structure 
necessarily has a finite stiffness in the 𝑌 direction (be it the suspensions or the fingers of the 
combs), along which there can be pull-in.  

Remark: 

MEMS micro switches (Fig. 4.23) are mechanical switches on a microscopic scale. Their 
interest compared to electronic switches is the outstanding quality of the insulation they 
provide in the open state. On the other hand, they are much slower, even if they take 
advantage of the pull-in phenomenon to cause an abrupt collapse of the structure. These 
devices have only recently become widely available on the market, although they have 
been under study for more than 40 years. The main difficulty is to limit the wear 
(mechanical, electrical, thermal...) of the structure that undergoes repeated switching, 
to guarantee the repeatability of the switching operation over a large number of cycles. 

 

Fig. 4.23 - Analog Devices MEMS micro-switch (image extracted from their site).  
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4.3.3.1.3 Voltage linearization 

There are several ways to linearize the relationship between the electrostatic force and 
the dynamic control to be applied to the structure. These are very dependent on the type of 
structure (resonant or not), on the control one wishes to apply (broadband or not, to control the 
structure to a certain position or to generate an oscillation) and on the amplitude of the 
displacements one wishes to obtain. Here we only describe a few principles, in the case where 
electrostatic softening is negligible.  

The most immediate solution, at the electronic level, is to work around a voltage operating 
point, i.e. to choose 𝑉 = 𝑉𝑏𝑖𝑎𝑠 + 𝑉𝑐𝑡𝑟𝑙 where 𝑉𝑐𝑡𝑟𝑙 is proportional to the control and 𝑉𝑏𝑖𝑎𝑠 ≫ 𝑉𝑐𝑡𝑟𝑙 is 
a bias voltage, usually DC. We then have 𝐹𝑒𝑙𝑒𝑐 ∝ 𝑉𝑏𝑖𝑎𝑠

2 + 2𝑉𝑏𝑖𝑎𝑠𝑉𝑐𝑡𝑟𝑙 . The electrostatic force is 
therefore the sum of a constant term and a term proportional to the control. If the static 
displacement due to the constant term is not inconvenient, then the desired linearity is achieved.  

 

Fig. 4.24 – Differential capacitive actuation. 

For the static component of the force to be zero, it is necessary to act at the geometry level. 
Thus, differential actuation can be achieved by using electrodes located on either side of the 
structure, as shown in Fig. 4.24. Each electrode can then “pull” the structure in its own direction. 
For example, by applying a voltage 𝑉+ = 𝑉𝑏𝑖𝑎𝑠 + 𝑉𝑐𝑡𝑟𝑙  on one side and 𝑉− = 𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑐𝑡𝑟𝑙  on the 
other, we obtain 𝐹𝑒𝑙𝑒𝑐 ∝ 4𝑉𝑏𝑖𝑎𝑠𝑉𝑐𝑡𝑟𝑙. 

Finally, using a control on two “logical” levels makes it possible to overcome the 𝑉2 non-
linearity. It is in fact possible to translate an “analog” command into a “bitstream” by means of a 
ΣΔ modulator (Fig. 4.25) or PWM or to use a “bang-bang” control scheme. Similarly, the use of a 
voltage square wave or pulse train (Fig. 4.25) may be just as effective as a harmonic excitation to 
bring a structure to resonance.  
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Fig. 4.25 – On the left, 𝛴𝛥 modulation of an analog signal (sine wave) into a binary bitstream. Locally, 

the average values of the two signals are equal. On the right, the amplitudes of the first harmonics of 

the three signals are the same. 

 

 

Fig. 4.26 - Before and after fabrication (from Pierre Prache’s thesis). On the left, layout of the mask of 

a cantilever with capacitive gap-closing actuation and detection. The cantilever and its electrodes 

(green with brown border) are defined in the same metal layer of a standard CMOS process. A 

"window" (gray) is defined in the uppermost layer of the process. An acid etch (HF) is used to etch 

away the oxide (black) located under the window and to simultaneously release the cantilever and the 

electrodes. On the right, obtained result. Bottom, equivalent electrical diagram. 
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Fig. 4.27 - 1-port configuration for simultaneous capacitive actuation and detection. 

4.3.3.1.4 Simultaneous actuation and detection 

When it is necessary to implement capacitive actuation and detection simultaneously, the 
simplest solution is to use different sets of electrodes. This is the case for the cantilever in Fig. 4.26 
or for the bridge in Fig. 4.14: the beam carries a DC voltage 𝑉𝑏𝑖𝑎𝑠, the left electrode drives the 
structure at resonance with an AC voltage 𝑉𝑐𝑡𝑟𝑙 ≪ 𝑉𝑏𝑖𝑎𝑠, and the right electrode is held at virtual 
ground, being connected to a transimpedance amplifier. Neglecting the direct capacitive coupling 
("feedthrough") between the left and the right electrode, we have 

𝑖𝑚𝑒𝑎𝑠 =
𝑑

𝑑𝑡
(𝐶(𝑋) × 𝑉𝑏𝑖𝑎𝑠) =

𝑑𝐶

𝑑𝑡
𝑉𝑏𝑖𝑎𝑠 =

𝜕𝐶

𝜕𝑋
𝑉𝑏𝑖𝑎𝑠 × �̇� = 𝑖𝑚𝑜𝑡 (4.52) 

The measured current is thus equal to the motional current, and proportional to the velocity of 
the structure. 

It is also possible (and sometimes desirable for the compactness of the design) to use the 
same electrodes for detection and actuation. In this case, one difficulty is to separate, in the 
measured signals, the motional component from the parasitic component resulting from 
feedthrough. In the so-called "1-port" configuration, shown in Fig. 4.27, for example, when the 
voltage 𝑉𝑏𝑖𝑎𝑠 is DC, the measured current is written as follows 

𝑖𝑚𝑒𝑎𝑠 =
𝑑

𝑑𝑡
(𝐶(𝑉𝑏𝑖𝑎𝑠 + 𝑉𝑐𝑡𝑟𝑙)) ≈

𝑑𝐶

𝑑𝑡
𝑉𝑏𝑖𝑎𝑠 + 𝐶

𝑑𝑉𝑐𝑡𝑟𝑙

𝑑𝑡
= 𝑖𝑚𝑜𝑡 + 𝑖𝑓𝑒𝑒𝑑𝑡ℎ𝑟𝑜𝑢𝑔ℎ

 (4.53) 

When possible, increasing 𝑉𝑏𝑖𝑎𝑠  is the simplest way to obtain a good ratio between the useful 
signal and the parasitic signal. Another solution is also to separate in time the actuation phases 
from the detection phases.  

Remark: 

Only the exact calculation of the capacitances between the different conductors 
constituting the MEMS makes it possible to quantify precisely these phenomena. This is 
an essential step in the validation of a new design. 

4.3.3.1.5 Illustration 

A 3-axis gyroscope (capable of detecting an arbitrarily oriented rotation) from ST 
Microelectronics is shown in Fig. 4.28. By studying the geometry of the suspensions, and armed 
with your knowledge of capacitive actuation and detection, try to interpret the operation of this 
structure from the elements shown. 
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Fig. 4.28 - View of a 3-axis gyroscope from ST Microelectronics at the scanning microscope (top, taken 

from the Twitter Nanographs account), at the optical microscope (bottom, taken from the 

MEMSJournal site). 

4.3.3.2 Other actuation principles 

Piezoelectricity is a reversible phenomenon that can be used both to detect the motion of 
a MEMS structure and to control it. Piezoelectric actuation has essentially the same advantages 
and limitations as piezoelectric sensing described above.  

Fig. 4.29 shows some principles used in electro-thermomechanical actuators, which take 
advantage of thermal expansion to induce the deformation of a structure. Heating is obtained by 
the Joule effect, when a current flows through the structure. The advantage of this actuation 
technique is that it can generate very large displacements or forces, but it does not necessarily 
require a particular manufacturing step. Its main defects are linked to its "resistive" nature 
(consumption, noise...). 
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Fig. 4.29 - Two geometries of electro-thermomechanical actuators (images from 

doi:10.3390/act8040069) that can generate in-plane motion. On the left, so-called "Guckel" geometry: 

the thin arm heats up more than the wide arm, due to the difference in resistance, resulting in a 

bending movement of the structure, in the direction of the cold arm. On the right, so-called "chevron" 

geometry: the structure can expand neither to the right and nor to the left and thus deforms upwards. 
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4.4 Dissipation  

4.4.1 General overview 

The predictive quantitative determination of dissipation is probably the most difficult part 
of MEMS device design. On the one hand, because of the very large number of physical phenomena 
responsible for this dissipation: fluidic, electrical, thermal, acoustic, etc. On the other hand, 
because the analytical models of these phenomena are limited to simplistic device geometries or 
to hypotheses that are not always verified in practice. Therefore, it is advisable to be particularly 
cautious with regard to the estimates provided by the few models presented in this section: more 
complete references are given at the end of the chapter, to which it will be useful to refer if 
necessary. 

The primary cause of dissipation on a microscopic scale is the viscosity of the fluid 
surrounding the device. The effect of viscosity is accentuated in thin films of fluid, such as those 
that are formed by the electrode armatures used for capacitive actuation and detection. For a 
given geometry, fluid damping becomes progressively less marked as the pressure of the 
surrounding fluid is reduced, until other dissipative phenomena become predominant: electrical 
losses, thermoelastic losses, anchor losses, etc. Ultimately, dissipation is limited by losses intrinsic 
to the material being used.  

Within certain limits, one can model the influence of dissipation on the dynamics of a 
device by a viscous frictional force. 

𝐹 = −𝐵�̇� (4.54) 

where the coefficient 𝐵 results from the superposition of the different dissipative phenomena, 
according to 

𝐵 = 𝐵𝑓𝑙𝑢𝑖𝑑 + 𝐵𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐 + 𝐵𝑡ℎ𝑒𝑟𝑚𝑜𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + ⋯+ 𝐵𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 (4.55) 

or 

1

𝑄
=

1

𝑄𝑓𝑙𝑢𝑖𝑑
+

1

𝑄𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐
+

1

𝑄𝑡ℎ𝑒𝑟𝑚𝑜e𝑙𝑎𝑠𝑡𝑖𝑐
+ ⋯+

1

𝑄𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙
 (4.56) 

Different design objectives can be pursued, depending on the type of transducer being 
considered. In the case of resonant transducers, such as gyroscopes, a large quality factor 𝑄 i.e. 
low dissipation 𝐵 is desirable. In the case of non-resonant transducers such as capacitive 
accelerometers, a moderate quality factor is preferable (𝑄 = 1/2  being optimal from the point of 
view of response time). This requires to focus essentially on fluidic phenomena in the non-
resonant case, whereas all phenomena are important in the resonant case. From a practical point 
of view, this also means that there are important differences in the packaging - and therefore in 
the cost - of these two types of transducers: sealed for non-resonant transducers, sealed and 
vacuum-packaged for resonant transducers. 

Finally, one should keep in mind that dissipation also results in a random force 𝐹𝑛 that can 
be treated as a white noise with density 

𝑆𝐹𝑛
= 4𝑘𝐵𝑇 × 𝐵 [N2/Hz] (4.57) 

which fundamentally limits the precision of MEMS transducers. 
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4.4.2 Fluidic losses  

4.4.2.1 Navier-Stokes equations 

The constitutive relationship describing the behavior of a viscous fluid is known as the 
Stokes relationship. It relates the value of the stress field 𝝈 (internal forces) in the fluid to its 
deformation rate 𝒆 (symmetrical part of the velocity gradient 𝒗) and pressure 𝑃 

𝝈𝑣𝑖𝑠𝑐 = 2𝜇𝒆 + (𝜆𝑇𝑟(𝒆) − 𝑃)𝑰 (4.58) 

via viscosity coefficients 𝜇  and 𝜆 . It should be noted that at the microscopic scale, or at low 
pressure, the description of air as a continuous medium, and therefore the notion of viscosity, may 
be inappropriate. This is discussed in the next section. 

In a fluid medium, the fundamental law of dynamics is written in a slightly different form 
from (4.4), to take into account the effects of convection 

𝑑𝑖𝑣(𝝈) + 𝒇 =
D(𝜌𝒗)

Dt
= 𝜌

𝜕𝒗

𝜕𝑡
+ 𝒗.𝒈𝒓𝒂𝒅(𝒗) (4.59) 

where 𝜌 is the density of the fluid and 𝒇 a volume force field. Combining (4.58) and (4.59), we the 
Navier-Stokes equations are obtained 

(𝜆 + 𝜇)𝒈𝒓𝒂𝒅(𝑑𝑖𝑣(𝒗)) + 𝜇𝚫𝒗 + 𝒇 − 𝒈𝒓𝒂𝒅(𝑃) = 𝜌
𝜕𝒗

𝜕𝑡
+ 𝒗.𝒈𝒓𝒂𝒅(𝒗) (4.60) 

which, coupled with the conservation of the mass 

𝑑𝑖𝑣(𝜌𝒗) +
𝜕𝜌

𝜕𝑡
= 0 (4.61) 

and the law of perfect gases  

𝑃

𝜌
= 𝐶𝑡𝑒 (4.62) 

are necessary to describe an (isothermal) flow of air in an arbitrary geometry. The peculiar 
dimensions and geometries of MEMS devices generally allow to make simplifying assumptions to 
make these equations more meaningful, as explained further in the case of air films. The validity 
of these assumptions will obviously have to be verified, or even tested by numerical simulation. 

4.4.2.2 From the continuous regime to the free molecular regime 

The assumption that air is a continuous medium is challenged at a small scale and/or at 
low pressure. This can be accounted for through the Knudsen number 

𝐾𝑛 =
Λ

𝐷
  (4.63) 

where Λ is the mean free path of air molecules, i.e. the average distance they travel between two 
interactions, and 𝐷  is a characteristic dimension of the flow (typically the inter-electrode 
distance). If 𝐷 is large compared to Λ (𝐾𝑛 ≪ 1), we can consider air as a continuous medium. On 
the contrary, when 𝐾𝑛 ≫ 1, the air molecules no longer interact with each other at the scale of the 
flow ("free molecular" regime) and the effective viscosity of the fluid is zero.  

The mean free path Λ is equal to Λ0 = 64 nm at atmospheric pressure (𝑃0 = 1 bar) and is 
inversely proportional to pressure 
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Λ = Λ0 ×
𝑃0

𝑃
 (4.64) 

Provided the Knudsen number is not too large, continuum models can be used in which 
viscosity 𝜇 is replaced by an effective viscosity 𝜇𝑒𝑓𝑓, which depends on 𝐾𝑛 and flow geometry. For 

a squeezed film of air (“squeeze-film damping”), we have 

𝜇𝑒𝑓𝑓(𝐾𝑛) ≈
𝜇

1+6𝐾𝑛
 (4.65) 

whereas for a sheared film of air (“slide-film damping”) we have 

𝜇𝑒𝑓𝑓(𝐾𝑛) ≈
𝜇

1+2𝐾𝑛
 (4.66) 

These expressions are valid for 𝐾𝑛 ≤ 1. We can refer to the articles by Bao and Frangi for cases 
where 𝐾𝑛 > 1. 

4.4.2.3 "Slide-film damping"  

Slide-film damping occurs when a film of air is sheared between two surfaces moving 
parallel to each other (as in a "comb-drive"). When the lateral dimensions of the surfaces are large 
in relation to the gap separating them (Fig. 4.30), and provided that the flow can be considered 
extremely laminar (Couette flow), i.e. 𝑅𝑒 ≪ 1 (where 

𝑅𝑒 =
𝜌𝑉𝐷

𝜇
 (4.67) 

is the Reynolds number, and velocity 𝑉 and distance 𝐷 are characteristic of the flow), the Navier-
Stokes equations can be summarized as follows  

𝜕2𝑣𝑋

𝜕𝑧2 = 0 (4.68) 

The velocity profile in the film is therefore a linear function of height 𝑧 and, according to (4.58), a 
purely viscous force acts on the moving surface. 

𝐹𝑠𝑙𝑖𝑑𝑒 = −𝜇𝑒𝑓𝑓
𝑆

𝑔
�̇� (4.69) 

where 𝑆 is the surface area and 𝑔 is the gap. 

 

 

Fig. 4.30 - "Slide-fim damping". 

By relaxing the assumption that 𝑅𝑒 ≪ 1 and by taking into account inertial effects (Stokes 
flow), we end up with a more complex behavior  
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𝜇𝑒𝑓𝑓
𝜕2𝑣𝑋

𝜕𝑧2 = 𝜌
𝜕𝑣𝑋

𝜕𝑡
 (4.70) 

The velocity profile in the film is no longer linear and the force acting on the moving surface 
verifies 

𝐹𝑠𝑙𝑖𝑑𝑒 + 𝜏𝐹�̇�𝑠𝑙𝑖𝑑𝑒 = −𝜇𝑒𝑓𝑓
𝑆

𝑔
(�̇� + 𝜏�̇��̈�) (4.71) 

where 𝜏𝐹 < 𝜏�̇�these two quantities being proportional to 𝜌𝑔2/𝜇𝑒𝑓𝑓. At intermediate frequencies, 

a "dynamic spring" behavior (�̇�𝑠𝑙𝑖𝑑𝑒 ∝ �̇�) prevails. At high frequencies, we find a purely viscous 
behavior, as at low frequencies.  

4.4.2.4 "Squeeze-film damping"  

Squeeze-film damping occurs when a thin film of air is compressed between two surfaces 
moving perpendicular to each other (Fig. 4.31). It is widely associated with gap-closing actuation 
and detection. Fluidic phenomena, like electrostatic phenomena, are more complex in this 
configuration. 

 

 

Fig. 4.31 - "Squeeze-film damping". 

Under the same assumptions as above (𝑅𝑒 ≪ 1, large lateral dimensions compared to 𝑔), 
one may show that the velocity profile in the air film is parabolic (Poiseuille flow). Taking 
advantage of (4.61) and (4.62), assuming that the surfaces facing each other remain parallel, that 
the displacements 𝑋 are small compared to 𝑔, that pressure variations 𝑝 are small with respect to 
the ambient pressure 𝑃𝑎𝑚𝑏 and that 𝑝 is independent of height in the air film, we end up with the 
linearized Reynolds equation 

Δ𝑝 −
12𝜇𝑒𝑓𝑓

𝑔2𝑃𝑎𝑚𝑏

𝜕𝑝

𝜕𝑡
= −

12𝜇𝑒𝑓𝑓

𝑔3 �̇� (4.72) 

whose exact solution depends on the geometry of the surfaces and their boundary conditions (𝑝 =
0 on free edges, 𝜕𝑝/𝜕𝒏 = 0 if the air cannot escape). Regardless of the exact geometry, when the 
squeeze number 𝜎 is small,  

𝜎 = 12
𝜇𝑒𝑓𝑓𝜔𝐷2

𝑃𝑎𝑚𝑏𝑔2   (4.73) 

where 𝐷  is a characteristic dimension of the lateral extension of the surfaces, the behavior is 
purely viscous. When 𝜎 ≫ 1, the term in Δ𝑝 can be neglected in (4.72), and a dynamic spring 
behavior can be highlighted once more. One can write, when 𝜎 ≪ 1 
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𝐹𝑠𝑞𝑢𝑒𝑒𝑧𝑒 = −𝜇𝑒𝑓𝑓
𝑆

𝑔
�̇� ×

𝐷2

𝑔2 (4.74) 

and, more generally, for higher values of 𝜎 

𝐹𝑠𝑞𝑢𝑒𝑒𝑧𝑒 + 𝜏𝐹�̇�𝑠𝑞𝑢𝑒𝑒𝑧𝑒 = −𝜇𝑒𝑓𝑓
𝑆

𝑔
�̇� ×

𝐷2

𝑔2 (4.75) 

where 𝜏𝐹 ∝ 𝜇𝑒𝑓𝑓𝐷
2/𝑃𝑎𝑚𝑏𝑔

2.  

For example, in the case of a flat surface 𝑆 = 𝑏 × 𝐿 with 𝑏 ≪ 𝐿 (finger of a comb), one can 
choose 𝐷 = 𝑏 in the above expressions. 

 

 

Fig. 4.32 - Optimization of the perforation size for a device that has to move out of plane (images 

taken from https://doi.org/10.1007/s10470-019-01560-5). 
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Remarks 

1 - According to (4.69) and (4.74), as 𝐷 ≫ 𝑔, it is clear that the squeeze-film forces are 
much larger than the slide-film forces when the films have similar geometries. 

2 - The fact that  

𝐹𝑠𝑞𝑢𝑒𝑒𝑧𝑒

𝐹𝑠𝑙𝑖𝑑𝑒
=

𝐷2

𝑔2 ≫ 1 (4.76) 

is to be compared with (4.46). The price to pay for generating large electrostatic forces 
is therefore a high damping - unless, of course, a vacuum is created around the structure. 
In the case of squeeze-film, design trade-offs between high capacitance and high 
dissipation can also be found by playing on the characteristic distance 𝐷. This can be 
done, for example, by using perforations for out-of-plane movements (Fig. 4.32), or non-
planar electrodes for in-plane movements (Fig. 4.33). 

 

Fig. 4.33 - Optimization of the finger geomety of a kinetic energy harvester (device converting 

ambient vibrations into electrical energy - dissipation must be minimized, but not at the expense of 

capacitance). Image from DOI 10.1038/s41378-018-0025-2.  

3 - It should be noted that squeeze-film damping is a highly non-linear phenomenon (in 
the same way as gap-closing actuation), the damping coefficient having in fact a non-
trivial dependence on 𝑋. This is masked in the above expressions by the assumption that 
𝑋 ≪ 𝑔. 

4 - The expressions (4.69) and (4.74) indicate a dependence as 1/𝑔3 for the squeeze-film 
coefficient, as 1/𝑔 for that of "slide-film". While this is true at low Knudsen numbers, one 
must keep in mind that 𝜇𝑒𝑓𝑓 also depends on the gap (4.65) (4.66). Thus, at moderate or 

large Knudsen numbers, the slide-film coefficient no longer depends on 𝑔. The squeeze-
film coefficient varies as 1/𝑔2 for moderate Knudsen number, as 1/𝑔 for large Knudsen 
number. 
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5 - The relationship between the quality factor of a device and Knudsen number is 
represented classically, in an idealized way, as in Fig. 4.34. For a sufficiently large 
Knudsen number, fluid damping is no longer the dominant source of dissipation and 
many other phenomena, described below, must be taken into account. The paper by 
Mohanty and Imboden, especially dedicated to the case of NEMS resonators, is a good 
starting point on the subject. 

 

Fig. 4.34 - Qualitative behavior of the quality factor of a MEMS structure as a function of the Knudsen 

number. For a sufficiently high Knudsen, 𝑄 is no longer set by viscous dissipation. 

4.4.3 Thermoelastic losses  

When a mechanical resonator is deformed, some of its parts expand, while others contract 
(see for example Fig. 4.3). These local deformations are sources of heat 

𝑞(𝑥, 𝑦, 𝑧, 𝑡) ∝
𝜕

𝜕𝑡
(𝑇𝑟(𝝐)) (4.77) 

which diffuse within the resonator, according to the heat equation 

𝜕𝑇

𝜕𝑡
= 𝜒Δ𝑇 + 𝑞 (4.78) 

The local deformations therefore result in a non-uniform temperature field, in phase or in 
quadrature with the deformations, depending on whether or not the latter are fast with respect 
to the characteristic time constant of the heat exchanges (proportional to 𝐷2/𝜒  where 𝐷  is a 
characteristic dimension of the resonator, typically its vibrating height ℎ in the case of a flexural 
resonator).  

According to (4.6), these temperature variations give rise to a field of thermal stresses 
opposing the movement of the resonator, in phase or in quadrature with it. We find qualitatively 
the same behavior as in the previous examples: at low frequency, a "viscous damping" type 
behavior, at high frequency, a "dynamic spring" behavior. This last type of behavior is obviously 
more desirable when an important quality factor is targeted.  
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An ingenious approach to limit thermoelastic dissipation consists in reducing the effective 
thermal diffusivity of the material by defining slits in the resonator that slow down the heat 
exchanges between its hot and cold parts (Fig. 4.35). 

 

Fig. 4.35 - MEMS time reference, work by PoliMi and ST Microelectronics. Operating principle (a), 

vibration mode used (b) and SEM view (c). The resonator is split along its entire length to limit 

thermoelastic losses (images from DOI 10.1109/TIE.2019.2938465). The same type of pattern can be 

seen on the SiTime resonator in Fig. 4.14. 

4.4.4 Anchor losses  

Where fluid losses can be ignored, acoustic radiation at the resonator anchors is usually a 
major cause of dissipation. These anchor losses depend on the acoustic impedance matching 
between the oscillation mode of the resonator and what is on the "other side" of the anchor(s), i.e. 
the resonator support. The energy leaving the resonator can be radiated and lost in the support, 
to the detriment of the resonator quality factor, or reflected and confined in the resonator.  

An analytical expression of the dissipation coefficient can be obtained by assuming a 
simplistic geometry for the support (infinite half-space, etc., cf. Hao's article), to which the 
resonator is assumed to be weakly coupled. This type of model leads to the general conclusion 
that in order to limit dissipation in the anchor, the resonator must have a large aspect ratio (ratio 
of length to vibrating height). In other words, the greater the oscillation wavelength relative to the 
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characteristic dimension of the anchor point, the less energy the resonator dissipates through the 
anchor.  

Several approaches exist to limit this phenomenon, such as the use of acoustic reflectors 
at the anchor (Fig. 4.36), that of double resonators oscillating in phase opposition so that the total 
force seen by the support is zero (tuning fork principle, to which the resonators in Figs. 4.13 and 
4.35 are related), or more generally that of resonators anchored at their nodal points.  

 

Fig. 4.36 - Use of "acoustic reflectors" to confine energy to the resonator (piezoelectric). 3D view of the 

resonator (top) and studied modes (bottom). Images taken from DOI 10.1088/0960-

1317/21/8/085021) 

 

Fig. 4.37 - Modeling of the finite conductivity of a resonator by a parasitic resistor 𝑟. 

4.4.5 Electrical losses  

Ohmic losses may also be significant contributors to dissipation in MEMS resonators. 
These can result not only from the finite conductivity of the MEMS structure, but also from 
imperfections in the electronics associated with the resonator, such as an op-amp finite gain.  

For example, in Fig. 4.37, the diagram in Fig. 4.26 is reproduced, with the addition of a 
small resistor 𝑟  between the resonator and the input of the circuit, representing the finite 
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conductivity of the resonator and the interconnections with the electronics. As a result, the voltage 
across the variable capacitor 𝐶  is no longer equal to 𝑉𝑏𝑖𝑎𝑠  but to 𝑉𝑏𝑖𝑎𝑠 − 𝑣 where 𝑣 ≪ 𝑉𝑏𝑖𝑎𝑠 . 
Neglecting electrostatic softening, the force on the resonator verifies 

𝐹𝑒𝑙𝑒𝑐 ∝ (𝑉𝑏𝑖𝑎𝑠 − 𝑣)2 − (𝑉𝑏𝑖𝑎𝑠 − 𝑉𝑐𝑡𝑟𝑙)
2 ≈ 2𝑉𝑏𝑖𝑎𝑠𝑉𝑐𝑡𝑟𝑙 − 2𝑉𝑏𝑖𝑎𝑠𝑣 (4.79) 

The total force is therefore the sum of a "drive" term and an ohmic term due to resistor 𝑟. It is easy 
to show that  

𝑣 ≈ 𝑟 ×
𝜕𝐶

𝜕𝑋
𝑉𝑏𝑖𝑎𝑠 × �̇� (4.80) 

so that the ohmic term of the electrostatic force behaves as a viscous force, whose dissipation 
coefficient is proportional to 𝑉𝑏𝑖𝑎𝑠

2 . 

The same type of behavior can be attributed to the imperfections of the AFE. For example, 
if we take into account the finite gain 𝐴 of the amplifier of the transimpedance circuit in Fig. 4.38, 
one may show that  

𝑣 = 𝑉− = −
𝑉𝑜𝑢𝑡

𝐴
≈

𝑍

𝐴
×

𝜕𝐶

𝜕𝑋
𝑉𝑏𝑖𝑎𝑠 × �̇� (4.81) 

or 

𝑣 + 𝑅𝑓𝐶𝑓�̇� ≈
𝑅𝑓

𝐴
×

𝜕𝐶

𝜕𝑋
𝑉𝑏𝑖𝑎𝑠 × �̇� (4.82) 

Thus, a viscous behavior is observed below the cut-off frequency of the circuit, a dynamic 
spring behavior above it.  

 

Fig. 4.38 - Transimpedance amplifier. Ohmic losses in 𝑅𝑓 affect the quality factor of the resonator due 

to the finite gain of the op amp. 

4.4.6 Other losses  

As one dissipation phenomenon is minimized, another one takes over and becomes 
preponderant. Thus, energy can be dissipated because of the roughness of the resonator surface 
("surface" losses, all the more marked as the characteristic dimensions decrease and the surface 
/ volume ratio increases), because of irregularities in the crystal structure ("volume" losses, all 
the more marked as the crystal lattice has defects), because of quantum phenomena (phonon-
phononon interactions or "Akhiezer effect").  
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Remarks  

1 - A figure-of-merit commonly used to compare different resonators is the 𝑄 × 𝑓 
product, i.e. the product between the quality factor of the resonator and its resonance 
frequency. This 𝑄 × 𝑓 product is naturally bounded by the ratio between the intrinsic 
stiffness of the material and its intrinsic dissipation, i.e. 

𝑄 × 𝑓 ≤
1

2𝜋
× (

𝐾

𝐵
)
𝑚𝑎𝑥

  (4.83) 

For (monocrystalline) silicon, the maximal 𝑄 × 𝑓 product is of the order of 3 × 1013 𝐻𝑧, 
as limited by the Akhiezer effect. Typical MEMS flexural resonators have 𝑄 × 𝑓 values 
well below this upper limit. This is explained by the preponderance of the loss 
phenomena described above. 

2 - As previously pointed out, except in the case of simple resonator geometries, it is 
difficult to predict the dissipation coefficient of a MEMS resonator accurately using 
analytical approaches alone. The use of numerical models of dissipation phenomena can 
obviously be useful to adapt the parameters of analytical models to more complex 
geometries. 

3 - A semi-empirical approach to damping phenomena consists in using the Rayleigh 
model (or the Caughey model, which is a generalization of it). This approach consists in 
postulating that dissipation has structural/intrinsic causes, on the one hand, and 
inertial/extrinsic causes, on the other hand, which is translated by 

𝐵𝑖 = 𝛼𝐾𝑖 + 𝛽𝑀𝑖 (4.84) 

where the 𝐾𝑖, 𝐵𝑖  and 𝑀𝑖 are respectively the stiffness, dissipation and mass coefficients 
of the 𝑖𝑡ℎ  mode of the structure (see appendix D), and 𝛼  and 𝛽  are the Rayleigh 
coefficients (common to all modes). These coefficients are determined empirically by 
measuring the resonance frequencies and quality factors of the different modes and by 
"fitting" the coefficients 𝛼 and 𝛽 as well as possible to these measurements. This only 
makes sense if one suspects that the same dissipation phenomena are at work for the 
modes under consideration. One may assume that these coefficients vary little if the 
geometry under study is close to the geometry on which the measurements were made, 
and thus reuse the empirically-estimated coefficients in the models used for the design. 
This approach is a leap of faith if it is not supported by a good knowledge of the physics 
of the studied devices, but it can be very useful. 
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4.5 References  
The calculation of classical MEMS suspensions is discussed in detail in Gary Fedder's 

thesis, which is a reference work on the subject. It is available here:  

[1]G. Fedder, "Simulation of microelectromechanical systems", ECE Berkeley, 1994 
https://users.ece.cmu.edu/~fedder/phd_thesis/ 

These structures are assessed with respect to gyroscope applications in Andrei Shkel's book, cited 
in the previous chapter. A calculation form for “complex” beams is also available in appendix C of 
this handout.  

Concerning micro-scale transduction methods, some rather old, but useful, books are 

[2] G. Kovacs, "Micromachined transducers sourcebook", McGraw Hill, 1998. 

[3] M.H. Bao, " Micromechanical transducers: pressure sensors, accelerometers, and 
gyroscopes ", Elsevier, 2000 

Good starting points for understanding dissipation phenomena affecting MEMS and NEMS 
are  

[4] M. Imboden, P. Mohanty, " Dissipation in nanoelectromechanical systems ", Physics 
Reports, vol. 534, 2014 

5] M.H. Bao, H. Yang, "Squeeze film air damping in MEMS", Sensors and Actuators A, vol. 
136, 2007 

[6] A. Frangi, et al, "Near vacuum gas damping in MEMS: simplified modeling", vol. 26, 
2017 

[7] R. Lifschitz, M. L. Roukes, " Thermoelastic damping in micro- and nanomechanical 
systems ", Physical Review B, vol. 61, 2000 

[8] Z. Hao, A. Erbil, and F. Ayazi, " An analytical model for support loss in micromachined 
beam resonators with in-plane flexural vibrations ", Sensors and Actuators A, vol. 109, 2003 

Just open a recent issue of the Journal of Microelectromechanical Systems (IEEE/ASME), Sensors 
Journal (IEEE), Sensors and Actuators (Elsevier) or the Journal of Micromechanics and 
Microengineering (IOP) to discover the "trends" and the state of the art in the field, which are 
evolving in line with advances in microfabrication. At present, the teams of T. Kenny (Stanford U.) 
and G. Langfelder (PoliMi) are producing numerous, often original and interesting works on 
MEMS, especially on resonators.  

https://users.ece.cmu.edu/~fedder/phd_thesis/
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5 MEMS design and modeling  

5.1 Introduction  
In the industry, the design of an integrated electronic system generally follows a top-down 

approach, from the highest level, the system specifications, to the lowest level: mask design, 
manufacturing, assembly and packaging (Fig. 5.1). In the case of a sensor, a major difficulty lies in 
the need for a dialogue between electronic design and (mechanical/multiphysical) transducer 
design, which require different tools, fields of knowledge and technological processes. Due to the 
dichotomy between electronics and transduction, the design flow is usually split in two, with co-
simulation of the two parts being possible only at a high level. 

 

Fig. 5.1 - "Structured" design of an integrated MEMS sensor. Image from the works of Gary Fedder 

(10.1109/MEMSYS.1999.746742).  

 

In the idealized design flow shown in Fig. 5.1, the sensor specifications appear at the 
highest level. From these specifications, the system architecture is described, in the form of sub-
blocks each performing a function (transduction, amplification, filtering, modulation, A/D 
conversion, etc.). The inputs and outputs of each of the blocks being defined and their 
performances specified, the blocks can be designed at circuit level, where choices of structures are 
made, and at the level of the components of these structures. Once all the active (transistors) or 
passive (resistors, capacitors, masses, suspensions) elements have been dimensioned, the masks 
can be laid out before being sent to manufacturing. As one goes down the design flow, the 
description of the system is more and more precise, and the tools used, in particular the models, 
are more and more precise and complex. Although globally top-down, the design flow also 
includes locally "bottom-up" phases, making it possible to adjust the tools and models used at 
higher levels, to re-evaluate design choices, and even specifications. 

As far as the electronic part is concerned, one can generally conform to this very 
hierarchical approach to design, as the effects of the relative arrangement of the circuit 
components and their geometrical design (the mask layout) only marginally challenge the choices 
made at higher levels. On the other hand, for the transduction part, the distinction between the 

https://doi.org/10.1109/MEMSYS.1999.746742
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component level and the mask level is more blurred, as the properties of MEMS components are 
so dependent on their actual geometry.  

5.2 MEMS design flow  
In a more concrete way, we may formalize a top-down design flow for the transducer part 

as follows:  

(1) Different transducer geometries are selected to implement the function to be 
performed.  

(2) A high-level model of "reasonable" order is assembled for each geometry, based 
on the description of the geometry.  

(3) A constrained optimization procedure of the model parameters is launched.  

(4) Low-level simulations are performed to validate the results and the underlying 
assumptions of the optimized high-level model. 

5.2.1 Geometry selection  

Step (1), geometry selection, consists not only in choosing a geometry, but also the 
alternative ways of detecting the motion of the structure (capacitive, resistive, resonant 
transduction, etc.) or actuating it if necessary. These are absolutely crucial choices, since they 
determine the space in which the design/optimization of the transducer will take place. However, 
it is difficult to talk about them except in a very general way.  

5.2.2 High-level modeling  

Step (2), high level modeling, can be approached with different degrees of finesse. An 
analytical approach is generally only possible by making strong kinematic assumptions about the 
displacement of the structure (e.g. "the structure only deforms according to dimension 𝑋", or 
"only the first vibration mode of the structure is excited"). It also requires simplifying the physics 
of the transducer in all domains ("perfectly rigid masses", Euler-Bernoulli hypotheses, plane 
capacitors, etc.). However, it makes it possible to arrive at models of a completely "reasonable" 
complexity (1 or 2 degrees of freedom) that are easy to simulate and optimize, and sometimes 
offer a satisfactory degree of fidelity while remaining "intelligible". This approach also has the 
advantage that the models are fairly simple to "adjust" to the results of low-level simulations, or 
even characterizations of real devices. The alternative to this approach is to use a software such 
as MEMS+: it makes it possible to assemble a high-level model from pre-defined "primitives" 
(straight beam, curved beam, serpentine, rigid mass, etc.), each of which is described without any 
particular kinematic hypothesis - but with simplified physics. The resulting models typically have 
from 10 to 1000 degrees of freedom, depending on the complexity of the designed structure, with 
the lower limit being "reasonable" and the upper limit not, at least in terms of co-simulation with 
the electronic part. These models are obviously of better fidelity than those obtained "by hand", 
with an analytical approach, at the price of increased complexity. Their co-simulation with the 
electronics typically requires an "order reduction" step.  

Additional elements for obtaining high-level analytical models of suspended structures 
are given in Appendix C. The analytical approach to modal analysis is described in Appendix D. 
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5.2.3 Optimization  

Phase (3), optimization, consists in determining the best parameters of the high-level 
model with respect to the specifications (in terms of sensitivity, noise, systematic error, etc.). 
Some parameters can be continuous (length and width of a beam, for example, diameter of 
perforations), while others can take discrete values (number of fingers of a comb). The 
optimization must also take design constraints into account. These are related in particular to the 
manufacturing process (typically minimum gap size, minimum width and maximum length of the 
beams, see appendix H), to particular specifications (maximum size of the device, operating 
temperature range, measurement range), to physical assumptions underlying the high-level 
model (rigid fingers and masses, plane capacitors, beam, etc.). Except for some very simple 
geometries, there is no analytical solution to this type of problem and optimization must be done 
numerically (when it is not done heuristically or empirically). The optimization then repeatedly 
calls upon the simulation of the high-level model designed in step (2). Consequently, the lower the 
level of the model, the less complex the optimization is from a computational point of view (but 
the results of the latter may be less relevant than with a model of increased complexity). A "multi-
grid" approach, in which one first optimizes a high level analytical model, which is used as a 
starting point for the optimization of a finer model, makes it possible to obtain a good compromise 
between complexity and fidelity. 

If the optimization is successful (i.e. if there is a set of optimal parameters for which the 
design objectives are met), a low-level model of the geometry is assembled: step (4) is then carried 
out. If the optimization does not succeed for any of the geometries tested, step (3) should be 
restarted with a relaxed set of specifications, even if it means tightening those on the electronic 
part, or new geometries should be selected. 

5.2.4 Low-level modeling  

Phase (4), low-level modeling, verifies the relevance of the optimization results. 
Phenomena occurring inside the structure ("intrinsic" to the structure) are modeled using the 
finite element method (FEM) applied to their fundamental governing equations: this is notably 
the case of elasticity and thermoelasticity, governed by the Navier’s and Fourier’s equations. The 
("extrinsic") phenomena of interaction between the structure and its environment are typically 
modeled using the Boundary Element Method (BEM), applied to Poisson’s equation for the 
calculation of electrostatic forces (see Appendix E) or to the Navier-Stokes or Boltzmann’s 
equations for the calculation of fluid friction (at low or high Knudsen). This type of "high-fidelity" 
model can be composed of  105  à 107  degrees of freedom, coupled in a non-linear way; its 
simulation is therefore particularly complex and costly. This is why it is only used sparingly, and 
the optimization of the device, which is based on repeated simulations for different sets of 
parameters, is done on the basis of a high-level model.  

If phase (4) makes it possible to validate the design choices made using the high-level 
model, a "reduced order model" of the transducer is generated, for co-simulation with the 
electronic part. This reduced-order model may simply consist in a “re-set” version of the high-
level model of phase (2), with parameters re-adjusted to the results of the low-level simulations. 
Alternatively, there are many available numerical methods for reducing, in a semi-automatic way, 
the complexity of a large system. These methods typically consist in the projection of the low-level 
model on the basis of a few "suitably chosen" eigenmodes of the structure and the approximation 
of non-linearities on this same basis. These are described in somewhat more detail in Appendix D. 

Finally, if phase (4) is not conclusive, the high-level model of phase (2) can be refined and 
the optimization procedure (3) restarted on this new model. Otherwise, the constraints of the 
optimization procedure can be re-evaluated, including those underlying the physical assumptions 
of the high-level model. 
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5.3 Co-simulation  
Different levels of representation (figure). 

5.3.1 Equivalent electrical models  

Butterworth-Van Dyke. To be completed. 

5.3.2 Hardware description languages  

VHDL-AMS, Verilog-A. To be completed. 

5.4 References  
The books  

[1] S. Senturia, "Microsystem design", Springer, 2001 

[2] T. Bechtold et al, "System-level modeling of MEMS", Wiley, 2013. 

offer interesting insights into the field of MEMS design, the first in an in-depth but slightly dated 
manner, the second in a slightly more superficial but more up to date manner. 

The more or less automated generation of reasonable order models is a research area in 
itself. The tools presented in this handout (including the appendix) are sufficient to achieve 
analytical high-level models for many simple geometry MEMS structures. One may also refer to  

[3] V. Zega et al., "Numerical modelling of non-linearities in MEMS resonators", Journal of 
Microelectromechanical Systems, vol. *, 202* (to be published)  

for a recent take on the problem (in addition to the interesting approach, this article proposes an 
extensive bibliography of the subject). 

Finally, one may browse with interest the technical documentation of Coventor's software, 
CoventorWare and MEMS+, which are industrial standards in the field. 
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6 Around sensors  

6.1 Components 
- Voltage supplies 

- Voltage references 

- Clocks 

- Other sensors (T, multi-axis, etc.) 

- ADC and DAC 

- Digital 

6.2 Processing 
- Lock-in detection / switched capacitors. 

- Testing, calibration and compensation 

- Feedback control (at mass / accelerometer / gyro level, at readout level) 

- Power management 

- Data fusion 

6.3 Environment 
- Packaging 

 

To be completed. 

7 FM resonant sensors and energy harvesters  
To be completed. 
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8 Appendices  

A - PSD, variance and Allan variance  
The power spectral density (PSD) provides a frequency representation of the stability of a 

signal. 𝑣(𝑡). It is equal, to the nearest multiplicative factor, to the squared modulus of the Fourier 
transform of 𝑣(𝑡) and, under certain hypotheses, to the Fourier transform of its autocorrelation 
function. In this handout, we note it 𝑆𝑣(𝑓) where 𝑓 is the frequency (𝑓 > 0, it is therefore a "one-
sided" PSD). It is expressed in "units of 𝑣 "squared per Hertz.  

When 𝑣(𝑡) is stationary, its variance 𝜎𝑣
2 is then given by  

𝜎𝑣
2 = ∫ 𝑆𝑣(𝑓)𝑑𝑓

∞

0
 (A1) 

In the event that 𝑣(𝑡) is not stationary, for example if  

𝑆𝑣(𝑓) = ℎ𝛼 × 𝑓𝛼 (A2) 

with 𝛼 = −1 (flicker noise) or 𝛼 = −2 (Brownian noise), this integral is no longer defined. Other 
variance estimators can then be used to characterize temporally the instability of 𝑣(𝑡). This is the 
case of the Allan variance, or two-sample variance. This quantity gives information on the 
difference between the averages of 𝑣(𝑡) obtained on successive time windows of duration 𝜏. The 
definition of Allan's variance is 

𝜎𝑣
2(𝜏) =

1

2
〈(�̅�𝑘+1 − �̅�𝑘)2〉 (A3) 

where the operator 〈 〉 designates an average over an infinite time and  

�̅�𝑘 =
1

𝜏
× ∫ 𝑣𝑘(𝑡)𝑑𝑡

𝑡𝑘+1

𝑡𝑘
  (A4) 

and 𝑡𝑘 = 𝑘𝜏 (see Fig. A1). 

 

Fig. A1 - Notations for Allan variance 

Allan's variance provides information on the short or long term fluctuations of 𝑣(𝑡) 
depending on whether 𝜏  is small or large, respectively. If 𝑣(𝑡)  is the output of a sensor, the 
minimum of the Allan variance indicates the time over which to average 𝑣(𝑡) to get the most 
precise measurement, i.e. whose value changes the least two successive samples. The Allan 
variance 𝜎𝑣

2(𝜏) is related to the spectrum 𝑆𝑣(𝑓) by the formula  

𝜎𝑣
2(𝜏) = 2∫

sin4(𝜋𝜏𝑓)

(𝜋𝜏𝑓)2
𝑆𝑣(𝑓)𝑑𝑓

∞

0
 (A5) 

For more details, see the websites of David Allan 
(http://www.allanstime.com/AllanVariance/), Enrico Rubiola (rubiola.org) and the article :  
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A. Makdissi, F. Vernotte, E. De Clercq, "Stability variances: a filter approach. ", ARXIV : 
0904.2660, 2009  



98 
 

B - From Hooke's law to Euler-Bernoulli 

B.1 Derivation of Euler-Bernoulli’s equation 

A “bending” deformation of a beam is a deformation where the curvature of the beam 
changes due to an external force. The effect of this curvature can be described as an axial strain 
gradient on either side of a so-called “neutral” axis, with no net elongation, as shown in Fig. B1.  

 

Fig. B1 - Bending deformation and Euler-Bernoulli hypothesis 

Euler-Bernoulli's hypothesis, widely verified for small deformations of thin beams, is that 
the straight sections of the beam remain perpendicular to the axis during deformation. Under this 
hypothesis, the study of the deformation of the beam is reduced to the determination of the shape 
𝑤(𝑥, 𝑡)  taken by the axis, from which the stress and strain fields in the whole beam can be 
deduced. 

 

Fig. B2 - Displacement field in the beam 

Euler-Bernoulli's hypothesis implies that the displacement field in direction 𝑥  can be 
written (Fig. B2) 

𝑢𝑥 ≈ −𝑧
𝜕𝑤

𝜕𝑥
 (B1) 

from which we deduce the longitudinal strain and stress along 𝑥 

𝜖𝑥𝑥 =
𝜕𝑢𝑥

𝜕𝑥
= −𝑧

𝜕2𝑤

𝜕𝑥2  (B2) 

𝜎𝑥𝑥 = 𝐸𝜖𝑥𝑥 = −𝐸𝑧
𝜕2𝑤

𝜕𝑥2   (B3) 

using Hooke's law and assuming that 𝜎𝑥𝑥 is very large compared to other stress components. 
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Fig. B3 - Notations for internal forces and moments. 

We are interested in the forces and moments resulting from the stresses acting on each straight 
section of the beam: normal force 𝑁, shear force 𝑉 and bending moment 𝑀 (Fig. B3). The latter is 
written 

𝑀 = ∬𝑧𝜎𝑥𝑥𝑑𝑦𝑑𝑧 = −𝐸𝐼
𝜕2𝑤

𝜕𝑥2  (B4) 

where 𝐼 = ∬𝑧2𝑑𝑦𝑑𝑧 is the moment of inertia of the beam. We can now write the balance of the 
moments according to 𝑦 , the balance of forces according to 𝑥  and the fundamental law of 
dynamics according to 𝑧 (i.e. we ignore inertia according to 𝑥 and rotational inertia according to 
𝑦). According to Fig. B3, we have 

𝜕𝑀

𝜕𝑥
− 𝑉 + 𝑁

𝜕𝑤

𝜕𝑥
= 0 (B5) 

𝜕𝑁

𝜕𝑥
= 0  (B6) 

𝑓 +
𝜕𝑉

𝜕𝑥
= 𝜌𝑆

𝜕2𝑤

𝜕𝑡2  (B7) 

where 𝑆 is the cross-section of the beam. The internal forces and moments of (B4-B7) are easily 
eliminated to arrive at the Euler-Bernoulli equation 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 − 𝑁
𝜕2𝑤

𝜕𝑥2 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑥, 𝑡) (B8) 

B.2 Boundary conditions 

We can see that the absence of a couple at one end of the beam is well translated, through (B4), 
into the nullity of the second derivative of 𝑤. Equation (B5) implies that the condition "zero force 
at one end" is written as follows 

−𝐸𝐼
𝜕3𝑤

𝜕𝑥3 + 𝑁
𝜕𝑤

𝜕𝑥
= 0 (B9) 

which reduces to the nullity of the third derivative of 𝑤 when the normal effort is zero or when 
the slope is zero at the considered end. 

Two other boundary conditions are useful: the case where the end of the beam is held by (i) a 
spring (ii) a torsional spring. The first case corresponds to a shear force at the end that verifies  
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𝑉 = 𝐾 × 𝑤 (B10) 

Using (B5), this boundary condition is written as follows 

−𝐸𝐼
𝜕3𝑤

𝜕𝑥3 + 𝑁
𝜕𝑤

𝜕𝑥
= 𝐾 × 𝑤 ⇔ 𝑤 = −

1

𝐾
× (𝐸𝐼

𝜕3𝑤

𝜕𝑥3 − 𝑁
𝜕𝑤

𝜕𝑥
) (B11) 

One may verify that, when the spring stiffness tends towards infinity, the boundary condition on 
the shear force "degenerates" into a boundary condition displacement 𝑤, which must then be zero. 

The second case is similar, it corresponds to a couple at the end such that 

𝑀 = −𝐶 ×
𝜕𝑤

𝜕𝑥
 (B12) 

which, using (B4), becomes 

𝜕𝑤

𝜕𝑥
=

𝐸𝐼

𝐶

𝜕2𝑤

𝜕𝑥2  (B13) 

When the torsional stiffness tends towards infinity, the "degenerate" boundary condition of zero 
slope at one end is obtained. 

A fixed end is therefore equivalent to a spring combined with a torsion spring, both of 
infinite stiffness.  
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C - From simple beams to complex suspensions  

 

Fig. C1 - Configurations of the bending beam seen in this section 

We are interested here in the case of beams in pure bending or torsion, in the absence of 
normal stress, loaded at their ends with “non-trivial” boundary conditions. Many suspensions can 
be modeled as combinations of these different cases. 

C.1Torsion beam – Fixed at 𝑥 = 0, couple at 𝑥 = 𝐿  

This case is modeled as a torsion spring, with torsional stiffness 

𝐶𝑡𝑜𝑟𝑠𝑖𝑜𝑛 =
𝐺𝐽

𝐿
 (C1) 

where 𝐺 = 𝐸/2(1 + 𝜈)  is the torsional modulus of the material, and 𝐽 the torsional moment of the 
beam around the axis 𝑥. For a beam with a rectangular cross-section, we have 

𝐽 = 𝐷𝑑3 × (
1

3
− 0.21

𝑑

𝐷
(1 −

1

12

𝑑4

𝐷4)) (C2) 

where 𝐷 = max(𝑏, ℎ) is the largest of the lateral dimensions and 𝑑 = min(𝑏, ℎ) the smallest. 

C.2 Bending Beam – Fixed at 𝑥 = 0, force at 𝑥 = 𝐿 

Under the effect of a force 𝐹 the displacement at the end is 

𝑤(𝐿) =
𝐿3

3𝐸𝐼
× 𝐹  (C3) 

and the slope at the end is 

𝜃(𝐿) =
𝑑𝑤

𝑑𝑥
|
𝑥=𝐿

=
𝐿2

2𝐸𝐼
× 𝐹 (C4) 

C.3 Bending Beam – Fixed at 𝑥 = 0, couple at 𝑥 = 𝐿  

Under the effect of a moment 𝑀, the displacement at the end is 

𝑤(𝐿) =
𝐿2

2𝐸𝐼
× 𝑀 (C5) 

and the slope at the end is 
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𝜃(𝐿) =
𝐿

𝐸𝐼
× 𝑀   (C6) 

C.4 Bending beam –Fixed at 𝑥 = 0, sliding + force at 𝑥 = 𝐿 

Under the effect of a force 𝐹, the displacement at the end is 

𝑤(𝐿) =
𝐿3

12𝐸𝐼
× 𝐹  (C7) 

and the slope at the end is 

𝜃(𝐿) = 0 (C8) 

This result can be derived from the two previous load cases. A fixed-sliding beam subject to a force 
𝐹 can effectively be seen as a cantilever subject to a force 𝐹 and to a couple 𝑀 = −𝐹𝐿/2 which 
guarantees (C8), by linear combination of (C4) and (C6). 

C.5 Bending beam – Spring at 𝑥 = 0, sliding + force at 𝑥 = 𝐿 

According to (B11), the boundary condition in 𝑥 = 0 is written 

𝐾 × 𝑤(0) − 𝐸𝐼
𝑑3𝑤

𝑑𝑥3 |
𝑥=0

= 0 (C9-a) 

𝑑𝑤

𝑑𝑥
|
𝑥=0

= 0 (C9-b) 

Under the effect of a force 𝐹 the displacement at the end is : 

𝑤(𝐿) =
𝐿3

12𝐸𝐼
× 𝐹 × (1 +

12𝐸𝐼/𝐿3

𝐾
) (C10) 

By developing this expression (written in this form to emphasize the stiffness ratio), we highlight 
the fact that we can consider this case as two simple springs put in series.  

C.6 Bending beam – Torsional spring at 𝑥 = 0, sliding + force at 𝑥 =
𝐿 

According to (B12), the boundary condition in 𝑥 = 0 is written 

𝑤(0) = 0 (C11-a) 

𝐶 ×
𝑑𝑤

𝑑𝑥
|
𝑥=0

− 𝐸𝐼
𝑑2𝑤

𝑑𝑥2 |
𝑥=0

= 0 (C11-b) 

Under the effect of a force 𝐹, the displacement at the end is 

𝑤(𝐿) =
𝐿3

12𝐸𝐼
× 𝐹 × (1 + 3

𝐸𝐼/𝐿

𝐶

1+
𝐸𝐼/𝐿

𝐶

) (C12) 

In this form, one recognizes in the right member the ratio of torsional stiffness 𝐶 and that of a 
cantilever with a couple at its end (C6). One finds the fixed-sliding case (C7) in the limiting case of 
large 𝐶, and the cantilever case (C3) in the limiting case of small 𝐶. 

C.7 General model of a beam with end loads  

The kinematic hypotheses underlying the above calculations (bending in a single 
direction, for example) do not make it possible to perfectly capture the behavior of suspensions 
with complex geometry. Armed with a little courage, it is however possible to establish a general 
model of a Euler-Bernoulli beam, with 6 degrees of freedom (3 translations, 3 rotations) and 
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subject to 6 concentrated loads (forces and couples in the 3 dimensions) at each end, in the form 
of 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝐹𝑥(0)

𝐹𝑦(0)

𝐹𝑧(0)

𝑀𝑥(0)

𝑀𝑦(0)

𝑀𝑧(0)

𝐹𝑥(𝐿)

𝐹𝑦(𝐿)

𝐹𝑧(𝐿)

𝑀𝑥(𝐿)

𝑀𝑦(𝐿)

𝑀𝑧(𝐿)]
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑆

𝐿
0 0 0 0 0 −

𝐸𝑆

𝐿
0 0 0 0 0

0
12𝐸𝐼𝑧

𝐿3
0 0 0

6𝐸𝐼𝑧
𝐿2

0 −
12𝐸𝐼𝑧

𝐿3
0 0 0

6𝐸𝐼𝑧
𝐿2

0 0
12𝐸𝐼𝑦

𝐿3
0 −

6𝐸𝐼𝑦
𝐿2

0 0 0 −
12𝐸𝐼𝑦

𝐿3
0 −

6𝐸𝐼𝑦
𝐿2

0

0 0 0
𝐺𝐽𝑥
𝐿

0 0 0 0 0 −
𝐺𝐽𝑥
𝐿

0 0

0 0 −
6𝐸𝐼𝑦
𝐿2

0
4𝐸𝐼𝑦

𝐿
0 0 0

6𝐸𝐼𝑦
𝐿2

0 −
2𝐸𝐼𝑦

𝐿
0

0
6𝐸𝐼𝑧
𝐿2

0 0 0
4𝐸𝐼𝑧

𝐿
0 −

6𝐸𝐼𝑧
𝐿2

0 0 0
2𝐸𝐼𝑧

𝐿

−
𝐸𝑆

𝐿
0 0 0 0 0

𝐸𝑆

𝐿
0 0 0 0 0

0 −
12𝐸𝐼𝑧

𝐿3
0 0 0 −

6𝐸𝐼𝑧
𝐿2

0
12𝐸𝐼𝑧

𝐿3
0 0 0

6𝐸𝐼𝑧
𝐿2

0 0 −
12𝐸𝐼𝑦

𝐿3
0

6𝐸𝐼𝑦
𝐿2

0 0 0
12𝐸𝐼𝑦

𝐿3
0 −

6𝐸𝐼𝑦
𝐿2

0

0 0 0 −
𝐺𝐽𝑥
𝐿

0 0 0 0 0
𝐺𝐽𝑥
𝐿

0 0

0 0 −
6𝐸𝐼𝑦
𝐿2

0 −
2𝐸𝐼𝑦

𝐿
0 0 0 −

6𝐸𝐼𝑦
𝐿2

0
4𝐸𝐼𝑦

𝐿
0

0
6𝐸𝐼𝑧
𝐿2

0 0 0
2𝐸𝐼𝑧

𝐿
0

6𝐸𝐼𝑧
𝐿2

0 0 0
4𝐸𝐼𝑧

𝐿 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑢𝑥(0)

𝑢𝑦(0)

𝑢𝑧(0)

𝜃𝑥(0)

𝜃𝑦(0)

𝜃𝑧(0)

𝑢𝑥(𝐿)

𝑢𝑦(𝐿)

𝑢𝑧(𝐿)

𝜃𝑥(𝐿)

𝜃𝑦(𝐿)

𝜃𝑧(𝐿)]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

this relation being valid for a straight beam of length 𝐿, cross-section 𝑆, torsional moment 𝐽𝑥 and 
moments of inertia 𝐼𝑦 and 𝐼𝑧 (and neglecting the effect of normal stress on flexural stiffness). One 

may then determine the static characteristics of a suspension made up of straight segments by 
applying this model to each of its parts. Thus one gains in generality what is lost in intelligibility. 

This is the approach used in Coventor's MEMS+ software, which makes it possible to 
"build" MEMS transducers assembled like Lego, element by element (see Fig. C3 the available 
element library), and thus to generate small numerical models, offering an excellent compromise 
between computational complexity and accuracy. From this point of view, MEMS+ is a form of 
"missing link" between (i) simplified models with 1 or 2 degrees of freedom, essential for an 
intuitive approach to the dimensioning and behavior of a transducer, as well as for transducer-
electronic co-simulation, and (ii) finite element models based on 3D elasticity. 

An example of a structure modeled with MEMS+ is shown in Fig. C4: it is a resonator – 
central beam + "H" for capacitive actuation and detection – associated with electrostatically 
actuated microlevers – these make it possible to adjust the normal force in the resonator, and thus 
its resonance frequency.  
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Fig. C3 - Library of elements available in MEMS+. Several underlying physical models are available (Bernoulli, 

Timoshenko, etc.). 

 

 

Fig. C4 - Structure modeled with MEMS+ and stiffness matrix associated with one of the elements 

(Euler-Bernoulli beam). The model includes 55 elements (only 16 beam-type deformable elements) 

and 239 degrees of freedom (mechanical, but also fluid and electrostatic). 
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D - Eigenmodes and model order reduction  

D.1 Galerkin's method  

We are trying to determine an approximation of the solution of a differential equation  

Λ𝑤 = 𝑓 + 𝐵𝐶 (D1) 

where Λ is a linear differential operator (spatial and temporal), 𝑓 a source/force term (possibly 
dependent on 𝑤) and 𝐵𝐶 designates boundary conditions. 

Galerkin's method - more precisely Bubnov-Galerkin's method - is one method to achieve 
this. It consists in  

(ii) approximating 𝑤 in the form of a linear combination �̂� of "suitably chosen" 
functions forming a basis of the solution space of (D1). 

(iii) determining the coefficients of this linear combination by projection on the 
same basis of functions. This guarantees that the residual 𝑤 − �̂� is orthogonal 
to the chosen basis. 

Galerkin's method, combined with the choice of "eigenmodes" as basis functions, is 
nothing more than an elaborate form of Fourier analysis. It leads to the "spectacular" result that 
the modal coefficients can be determined independently of each other when 𝑓 does not depend 
on 𝑤 in a non-linear way. It simplifies the initial problem by decomposing it into 𝑛 simpler sub-
problems. In many case studies, 𝑛 can be chosen small or even equal to 1. 

For an engineer who can be contented with approximations, Bubnov-Galerkin's methods 
also have the appeal of providing results that are extremely robust to the exact choice of basic 
functions. Hereafter we present its application in the case of a bending beam, for different load 
cases: this study has a strong practical interest (the sensitive element of many resonant MEMS 
sensors is often a simple beam), while being educational, being treated in a quasi-analytical way. 
It may also be put into perspective with the numerical approach of model order reduction, 
discussed in section D.3.  

D.2 Modal analysis of a simple resonator  

In this section we are interested in a beam of length 𝐿, width 𝑏, height ℎ, moment of inertia 
𝐼 = 𝑏ℎ3/12, cross-section 𝑆, made of a material with Young's modulus 𝐸  and density 𝜌. When 
subject to a linear density of force 𝑓(𝑥, 𝑡), the beam takes a shape 𝑤(𝑥, 𝑡) which is governed by  

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑥, 𝑡) + 𝐵𝐶 (D2) 

where BC designates 4 boundary conditions that are assumed to be "trivial" (4.8), i.e. no 
concentrated force or couple at the beam ends.  

D. 2.1 - Eigenmodes of a pure bending beam 

The eigenmodes 𝑤𝑘(𝑥) of a pure bending beam can be defined as the non-trivial solutions 
of  

𝐸𝐼
𝑑4𝑤𝑘

𝑑𝑥4 − 𝜌𝑆𝜔𝑘
2𝑤𝑘 = 0 + 𝐵𝐶 (D3) 

where 𝜔𝑘 > 0 is the angular eigenfrequency associated with the mode. It can be shown that they 
form a complete base for the solutions of (D2) and that this base is orthogonal with respect to the 
scalar product 
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〈𝑢. 𝑣〉 =
1

𝐿
× ∫ 𝑢(𝑥) × 𝑣(𝑥)𝑑𝑥

𝐿

0
  (D4) 

which represents the average value of the product of 𝑢 and 𝑣 on [0, 𝐿]. As the 𝑤𝑘(𝑥) verify the 
boundary conditions of (D2) and as these are trivial, it is clear that any linear combination of these 
modes 

�̂�(𝑥, 𝑡) = ∑ 𝑎𝑘(𝑡)𝑤𝑘(𝑥)𝑘=1…𝑛   (D5) 

also verifies the boundary conditions. 

According to (D3), 𝑤𝑘(𝑥) has the general form 

𝑤𝑘(𝑥) = 𝐴𝑘 sin(𝛾𝑘
𝑥

𝐿
) + 𝐵𝑘 cos(𝛾𝑘

𝑥

𝐿
) + 𝐶𝑘 sinh(𝛾𝑘

𝑥

𝐿
) + 𝐷𝑘 cosh(𝛾𝑘

𝑥

𝐿
)  (D6) 

where we defined 𝛾𝑘 such that 

𝜔𝑘
2 =

𝐸𝐼

𝜌𝑆𝐿4 𝛾𝑘
4  (D7) 

It should be noted that, according to our definitions, the modes 𝑤𝑘 are dimensionless, as are the 
coefficients 𝛾𝑘  ; as a result, the modal components 𝑎𝑘  are homogeneous to displacements. The 
(dimensionless) coefficients 𝐴𝑘 , 𝐵𝑘 , 𝐶𝑘  and 𝐷𝑘  are solutions of a homogeneous linear system, 
which depends on the boundary conditions. For example, for a beam fixed at both ends 

𝑤𝑘(0) = 0 ⟺ 𝐵𝑘 + 𝐷𝑘 = 0 (D8-a) 

𝑤𝑘
′ (0) = 0 ⟺ 𝐴𝑘 + 𝐶𝑘 = 0 (D8-b) 

𝑤𝑘(𝐿) = 0 ⟺ 𝐴𝑘 sin(𝛾𝑘) + 𝐵𝑘 cos(𝛾𝑘) + 𝐶𝑘 sinh(𝛾𝑘) + 𝐷𝑘 cosh(𝛾𝑘) = 0 (D8-

c) 

𝑤𝑘
′ (𝐿) = 0 ⟺ 𝐴𝑘 cos(𝛾𝑘) − 𝐵𝑘 sin(𝛾𝑘) + 𝐶𝑘 cosh(𝛾𝑘) + 𝐷𝑘 sinh(𝛾𝑘) = 0 (D8-

d) 

This system has a trivial solution, except in the case 𝛾𝑘 verifies 

1 − cos(𝛾𝑘) cosh(𝛾𝑘) = 0 (D9) 

One finds 𝛾1 ≈ 4.730, and 𝛾𝑘+1 ≈ 𝛾𝑘 + 𝜋. 

For a cantilever beam 

𝑤𝑘(0) = 0 ⟺ 𝐵𝑘 + 𝐷𝑘 = 0 (D10-a) 

𝑤𝑘
′ (0) = 0 ⟺ 𝐴𝑘 + 𝐶𝑘 = 0 (D10-b) 

𝑤𝑘
′′(𝐿) = 0 ⟺ −𝐴𝑘 sin(𝛾𝑘) − 𝐵𝑘 cos(𝛾𝑘) + 𝐶𝑘 sinh(𝛾𝑘) + 𝐷𝑘 cosh(𝛾𝑘) = 0 (D10-

c) 

𝑤𝑘
(3)(𝐿) = 0 ⟺ −𝐴𝑘 cos(𝛾𝑘) + 𝐵𝑘 sin(𝛾𝑘) + 𝐶𝑘 cosh(𝛾𝑘) + 𝐷𝑘 sinh(𝛾𝑘) = 0 (D10-

d) 

This system has a trivial solution, except in the case 𝛾𝑘 verifies 

1 + cos(𝛾𝑘) cosh(𝛾𝑘) = 0 (D11) 

One finds 𝛾1 ≈ 1.875, and 𝛾𝑘+1 ≈ 𝛾𝑘 + 𝜋. 

Regardless of the boundary conditions, one can then choose 𝐴𝑘 in an arbitrary manner, 
and the coefficients 𝐵𝑘 , 𝐶𝑘  and 𝐷𝑘  accordingly. In the following, we will assume that we have 
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chosen 𝐴𝑘 so that max|𝑤𝑘| = 1. The functions 𝑤𝑘(𝑥) corresponding to this choice are shown in 
Fig. D1, and the values of the coefficients 𝛾𝑘, 〈𝑤𝑘〉 and 〈𝑤𝑘

2〉 are given in Table D1.  

 

Fig. D1 – Pure bending eigenmodes of a bridge (top left, first three symmetric modes; top right, first 

three antisymmetric modes) and of a cantilever (bottom). 

  𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 

Bridge 

𝛾𝑘 4.730 7.853 11.00 14.14 17.28 
〈𝑤𝑘〉 0.523 0 0.241 0 0.153 
〈𝑤𝑘

2〉 0.397 0.439 0.437 0.437 0.437 

Cantilever 

𝛾𝑘 1.875 4.694 7.855 11.00 14.14 
〈𝑤𝑘〉 0.392 -0.217 0.127 -0.091 0.071 
〈𝑤𝑘

2〉 0.25 0.25 0.25 0.25 0.25 

Table D1 - Characteristics of bridge and cantilever eigenmodes. 

We can look for an approximation of the solution of (D2) as a linear combination of 
eigenmodes (D5). By replacing 𝑤 by �̂� in (D2), one obtains 

∑ 𝐸𝐼𝑎𝑘

𝑑4𝑤𝑘

𝑑𝑥4
+ 𝜌𝑆𝑤𝑘�̈�𝑘

𝑘=1…𝑛

= 𝑓(𝑥, 𝑡) 

⟺ ∑ (𝜔𝑘
2𝑎𝑘 + �̈�𝑘) × 𝑤𝑘𝑘=1…𝑛 =

1

𝜌𝑆
× 𝑓(𝑥, 𝑡) (D12) 

By projecting, in the sense of (D4), this equation on the basis formed by the 𝑛 eigenmodes , a set 
of 𝑛 equations is obtained 
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𝜔𝑘
2𝑎𝑘 + �̈�𝑘 =

1

〈𝑤𝑘
2〉

×
1

𝜌𝑆
× 𝑓𝑘(𝑡) (D13) 

where 𝑓𝑘(𝑡) = 〈𝑓. 𝑤𝑘〉.  

The 𝑛 equations governing the 𝑎𝑘 are independent (as long as 𝑓 does not depend on 𝑤) 
and highlight a "mass-spring" type behavior for each of the modes. The coefficients  

𝑀𝑘 = 〈𝑤𝑘
2〉 × 𝜌𝑆 𝐿 (D14) 

𝐾𝑘 = 𝜔𝑘
2 × 𝑀𝑘 = 𝛾𝑘

4 × 〈𝑤𝑘
2〉 ×

𝐸𝐼

𝐿3 (D15) 

are generally referred to as "modal mass"and "modal stiffness", respectively. 

The larger the order 𝑘 of a mode, the higher its eigenfrequency and the larger its modal 
stiffness. For a cantilever, for example, the second eigenmode is about 40 times stiffer than the 
first. For a bridge, the second eigenmode is about 8 times stiffer than the first, and the third is 
about 30 times stiffer than the first. Indeed, from Fig. D1, one may well understand that a much 
larger force is required to give a beam the shape of a high order mode. Note also that, by 
construction, the mass of each mode is less than the mass of the real system. 

In practice, the relevant modes to represent the solution of (D2) are the modes  

(i) that are most compliant.  

(ii) whose natural frequency is greater than or equal to the characteristic 
frequency of 𝑓(𝑡). 

(iii) for which the modal force 𝐹𝑘 = 𝑓𝑘𝐿 is significant. 

The following sections illustrate the use of modal analysis for modeling a beam in different load 
cases 𝑓(𝑥, 𝑡). 

D.2.2 - Uniform load 

The boundary value problem is written 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑡) + 𝐵𝐶 (D16) 

By projecting this equation, in the sense of (D4), on the basis formed by the eigenmodes, we obtain 
for every 𝑘 

𝐾𝑘𝑎𝑘 + 𝑀𝑘�̈�𝑘 = 𝐹𝑘(𝑡) = 𝑓(𝑡)𝐿 × 〈𝑤𝑘〉 (D17) 

where 〈𝑤𝑘〉  is the average value of the mode on [0, 𝐿] . For a cantilever, 〈𝑤𝑘〉  decreases 
monotonously with 𝑘 . For a bridge, the 〈𝑤2𝑘〉  are all zero, and the 〈𝑤2𝑘+1〉  decrease in a 
monotonous way. Thus, in the case of uniform loading, modal force 𝐹𝑘 is a decreasing function of 
𝑘.  

D.2.3 - Viscous friction and thermoelastic losses 

The beam subject to a viscous friction and the same uniform loading as above is governed 
by 

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 + 𝑐
𝜕𝑤

𝜕𝑡
+ 𝜌𝑆

𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑡) + 𝐵𝐶 (D18) 

where 𝑐 is homogeneous to a viscosity. By projecting this equation on the basis formed by the 
eigenmodes we obtain, for any 𝑘 
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𝐾𝑘𝑎𝑘 + 𝐵𝑘�̇�𝑘 + 𝑀𝑘�̈�𝑘 = 𝐹𝑘(𝑡)  (D19) 

where  

𝐵𝑘 = 〈𝑤𝑘
2〉 × 𝑐𝐿 (D20) 

is a modal dissipation coefficient. 

If thermoelastic losses are also taken into account, we find, below the thermoelastic cut-
off frequency (see section 4.4 and Appendix H) 

𝐸𝐼
𝜕4

𝜕𝑥4 (𝑤 + 𝜏
𝜕𝑤

𝜕𝑡
) + 𝑐

𝜕𝑤

𝜕𝑡
+ 𝜌𝑆

𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑡) + 𝐵𝐶 (D21) 

By projection on the basis of eigenmodes, we obtain, for every 𝑘 

𝐾𝑘𝑎𝑘 + (𝐾𝑘𝜏 + 𝐵𝑘)�̇�𝑘 + 𝑀𝑘�̈�𝑘 = 𝐹𝑘(𝑡) (D22) 

This form is quite interesting, since it allows a more physical interpretation of the Rayleigh 
damping, presented at the end of section 4.4: it highlights the fact that the coefficient 𝛼  is 
characteristic of intrinsic losses (such as TED) of the resonator, while coefficient 𝛽  is 
characteristic of extrinsic losses (such as fluidic losses). 

D.2.4 – Influence of normal force  

A bridge subject to a normal force 𝑁 is governed by  

𝐸𝐼
𝜕4𝑤

𝜕𝑥4 − 𝑁
𝜕2𝑤

𝜕𝑥2 + 𝜌𝑆
𝜕2𝑤

𝜕𝑡2 = 𝑓(𝑡) + 𝐵𝐶  (D23) 

Note that, despite the slightly more complex form of (D23) compared to (D2), it is relatively simple 
to find a basis of eigenmodes 𝑣𝑘 associated to angular eigenfrequencies 𝜛𝑘 which verify 

𝐸𝐼
𝑑4𝑣𝑘

𝑑𝑥4 − 𝑁
𝑑2𝑣𝑘

𝑑𝑥2 − 𝜌𝑆𝜛𝑘
2𝑣𝑘 = 0 + 𝐵𝐶  (D24) 

and thus allowing to "diagonalize" rigorously (D23), assuming that 𝑁 is independent of 𝑤 (which 
excludes the case of a normal stress due to a lengthening of the beam). Rather than taking this 
rigorous approach, one can use the pure bending eigenmodes 𝑤𝑘(𝑥)  to find an approximate 
solution to (D23) using Galerkin's method - as pointed out at the beginning of this part, this 
method is robust to the choice of basis functions. Moreover, it can be verified a posteriori that this 
choice gives quantitatively correct results. 

The projection of (D23) on the basis of the 𝑤𝑘 gives 

𝐾𝑘𝑎𝑘 +
𝑁

𝐿
× ∑ 𝑅𝑘𝑗𝑎𝑗𝑗 + 𝑀𝑘�̈�𝑘 = 𝐹𝑘(𝑡)  (D25) 

where  

𝑅𝑘𝑗 = 𝑅𝑗𝑘 = 𝐿2 × 〈
𝑑𝑤𝑘

𝑑𝑥
.
𝑑𝑤𝑗

𝑑𝑥
〉 (D26) 

The derivatives of 𝑤𝑘(𝑥) do not form an orthogonal basis: the matrix 𝑹 is therefore not diagonal - 
as illustrated below in the case 𝑛 = 5 

𝑹 =

[
 
 
 
 
4.88 0 4.05 0 3.17
0 20.2 0 7.50 0

4.05 0 43.2 0 10.64
0 7.50 0 75.0 0

3.17 0 10.6 0 115 ]
 
 
 
 

 

The equations governing the modal components are therefore no longer independent of each 
other. By restricting our basis to a single eigenmode, 𝑘 = 1, we have 
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(𝐾1 +
𝑁

𝐿
𝑅11)𝑎1 + 𝑀1�̈�1 = 𝐹1(𝑡) (D27) 

which illustrates the influence of normal stress on the effective stiffness of the bridges and their 
resonance frequency. The coefficients appearing in (4.26) are in fact obtained from (D27). 

On the other hand, any diagonalization becomes impossible, whatever the basis functions, 
as soon as the system becomes non-linear, e.g. when the normal force reflects the effect of the 
elongation of the bridge, i.e.  

𝑁 =
𝐸𝑆

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)
2
𝑑𝑥

𝐿

0
 (D28) 

By replacing 𝑤 by �̂� in (D28), one can write 

𝑁 ≈
𝐸𝑆

2𝐿2
∑ ∑ 𝑅𝑖𝑗𝑎𝑖𝑎𝑗𝑗𝑖   (D29) 

and the equations governing the modal components are obtained by replacing 𝑁 in (D25) by the 
latter expression. By restricting oneself to the first eigenmode, one obtains 

(𝐾1 +
𝐸𝑆

2𝐿3 𝑅11
2 𝑎1

2)𝑎1 + 𝑀1�̈�1 = 𝐹1(𝑡) (D30) 

This highlights a hardening spring effect (Duffing phenomenon).  

D.2.5 - Electrostatic force 

If the beam is separated by a gap 𝑔 from a plane electrode with lateral dimensions 𝑏, 𝐿 ≫
𝑔, it is subject to electrostatic force density 

𝑓𝑒𝑙𝑒𝑐(𝑥, 𝑡) =
𝜖0𝑏

2
𝑉2 ×

1

(𝑔−𝑤(𝑥,𝑡))
2 (D31) 

where 𝑉 is the voltage applied across the beam and the electrode. The projection of 𝑓𝑒𝑙𝑒𝑐(𝑥, 𝑡) on 
the basis of eigenmodes results in modal forces 

𝐹𝑘 =
1

2
𝑉2 × 𝜖0𝑏𝐿 × 〈𝑤𝑘.

1

(𝑔−�̂�)2
〉 = −

1

2
𝑉2 𝜕𝐶

𝜕𝑎𝑘
 (D32) 

There is no simple analytical expression of these modal forces. The most common 
approach, which is well-adapted when 𝑤 is small compared to the gap 𝑔, consists in expanding 
𝑓𝑒𝑙𝑒𝑐  in Taylor series. If we restrict ourselves to the first eigenmode of the beam, we can 
approximate 𝐹1 by 

�̂�1 =
𝜖0𝑏𝐿

2𝑔2 𝑉2 × 〈𝑤1〉 ×
1+0.017�̃�1

(1−�̃�1)3/2  (D33) 

for a bridge, or by  

�̂�1 =
𝜖0𝑏𝐿

2𝑔2 𝑉2 × 〈𝑤1〉 × (
1+0.783�̃�1

1−�̃�1
+ (0.531 + 0.114�̃�1) log(1 − �̃�1)) (D34) 

for a cantilever, where �̃�1 = 𝑎1/𝑔 is the maximal displacement of the beam non-dimensionalized 
with respect to the gap. These expressions, obtained in a "semi-analytical" manner from the 
asymptotic expansion of 𝐹1 , have the advantage of being valid even when �̃�1 → 1 . They also 
highlight the fact that, for a given amplitude �̃�1, electrostatic non-linear effects are less marked for 
cantilevers than for bridges (and for bridges than for plane capacitors). 
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It should be noted that, in the general case, modal forces 𝐹𝑘  depend on all modal 
components 𝑎1, …, 𝑎𝑛. This illustrates once again the fact that non-linearity generates coupling 
between modes.  

D.2.6 - Squeeze-film damping 

We can model the effect of a film of air with viscosity 𝜇𝑒𝑓𝑓 squeezed between the beam 

and the electrode by a force density 

𝑓𝑓𝑙𝑢(𝑥, 𝑡) = −𝜇𝑒𝑓𝑓
𝑏3

(𝑔−𝑤(𝑥,𝑡))
3 ×

𝜕𝑤

𝜕𝑡
 (D35) 

A significant number of assumptions, which are assumed to be fulfilled, are necessary to arrive at 
this expression (see Appendix G). The projection of 𝑓𝑓𝑙𝑢(𝑥, 𝑡) on the basis of eigenmodes results 

in modal forces 

𝐹𝑘 = −𝜇𝑏3𝐿 〈𝑤𝑘 .
𝑤𝑘

(6Λ+𝑔−�̂�)(𝑔−�̂�)2
〉 �̇�𝑘  (D36) 

in which the dependence of 𝜇𝑒𝑓𝑓  to 𝑤  and mean free path Λ has been made explicit. Thus the 

modal forces are written 𝐹𝑘 = −𝐵𝑘 × �̇�𝑘  where coefficients 𝐵𝑘 depend in a non-trivial way on all 
the set of modal components (another inter-modal coupling). 

In the case where one can restrict oneself to the study of the first mode and where Λ ≪ 𝑔, 
the following approximations are valid 

�̂�1 = −
𝜇𝑏3𝐿

𝑔3 × 〈𝑤1
2〉 ×

1+0.012�̃�1

(1−�̃�1)5/2 (D37) 

for a bridge, and 

�̂�1 = −
𝜇𝑏3𝐿

𝑔3 × 〈𝑤1
2〉 × (

1+0.381�̃�1

(1−�̃�1)2
+ (0.165 + 0.091�̃�1) log(1 − �̃�1)) (D38) 

for a cantilever.  

D.3 Numerical models and modal analysis  

For complex transducer geometries, obtaining a model of small dimensions - the so-called 
"reduced order model" - is not as immediate as in the case of a simple geometry, where 
eigenmodes can be expressed analytically. A preliminary step to obtaining the reduced order 
model is the construction of a more or less complex numerical model of the structure and its 
physical environment.  

Here, we assume that this numerical model (obtained for example with the finite element 
method) is put in the form 

𝑲𝒙 + 𝑩�̇� + 𝑴�̈� = 𝒇(𝒙, 𝑡) (D39) 

where 𝒙 ∈ ℝ𝑵 represents the 𝑁 degrees of freedom of the structure (displacements, rotations), 𝑲 
and 𝑴  are respectively stiffness and mass matrices of size 𝑁 × 𝑁 . The dissipation matrix is 
Rayleigh type, i.e. 

𝑩 = 𝛼𝑲 + 𝛽𝑴  (D40) 

and 𝒇(𝒙, 𝑡) includes the effect of forces acting on the structure (linear or non-linear) and other 
non-linearities (elongations for example). More generic formulations can of course be considered 
to take into account, for example, the effect of non-linear damping phenomena, etc. 

The direct simulation of (D39), i.e. the determination of the solution 𝒙(𝑡) at time steps 
𝑡1, 𝑡2 … is generally not easy because of the dimension 𝑁  of the problem and because of non-
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linearity; at each calculation step 𝑡𝑖, a non-linear set of 𝑁 equations must be solved, typically with 
an iterative method like the Newton-Raphson method. At each iteration of this method, a linear 
system of dimensional 𝑁 must be resolved and 𝑁 non-linear functions must be evaluated (which 
may in turn require… solving a nonlinear system). These last operations can be extremely costly - 
in terms of resources and computing time - to such an extent that switching to a reduced order 
model, of dimension 𝑛 ≪ 𝑁, is highly desirable.  

A basis generated from 𝑛 "properly chosen" eigenmodes of the structure, 𝑛 ≪ 𝑁, is the 
most common choice to approximate the solution of (D39). In this numerical context, an 
eigenmode 𝒖𝑘 associated with an angular eigenfrequency 𝜔𝑘 verifies 

𝑲𝒖𝑘 − 𝜔𝑘
2𝑴𝒖𝑘 = 𝟎 (D41) 

which is the discrete counterpart of (D3). As in the continuous case, the eigenmodes form an 
orthogonal base, which can be "normalized" arbitrarily, for example so that 

𝒖𝑗
𝑇𝑴𝒖𝑘 = 𝛿𝑘𝑗   (D42) 

By letting 𝑼 = [𝒖1, … , 𝒖𝑛]  the basis of 𝑛  modes considered, one may approximate the 
solution of (D39) as 

�̂�(𝑡) = 𝑼𝒂(𝑡)  (D43) 

where 𝒂(𝑡) is the vector of 𝑛 modal components. By injecting �̂� in (D39), we get 

𝑲𝑼𝒂 + 𝑩𝑼�̇� + 𝑴𝑼�̈� = 𝒇(𝑼𝒂, 𝑡) 

⇔ 𝑴𝑼𝑾𝒂 + (𝛼𝑴𝑼𝑾 + 𝛽𝑴𝑼)�̇� + 𝑴𝑼�̈� = 𝒇(𝑼𝒂, 𝑡)  (D44) 

where 

𝑾 = 𝑑𝑖𝑎𝑔(𝜔1
2, … , 𝜔𝑛

2)  (D45) 

is a diagonal matrix of size 𝑛 × 𝑛 . Equation (D44) is the discrete counterpart of (D12). To 
determine the equations governing the 𝑛 unknowns of the problem, Galerkin's method is used, i.e. 
(D44) is projected onto 𝑼, which yields 

𝑼𝑇𝑴𝑼𝑾𝒂 + (𝛼𝑼𝑇𝑴𝑼𝑾 + 𝛽𝑼𝑇𝑴𝑼)�̇� + 𝑼𝑇𝑴𝑼�̈� = 𝑼𝑇𝒇(𝑼𝒂, 𝑡) (D46) 

As, according to (D42), 𝑼𝑇𝑴𝑼 = 𝑰𝑛, this last equation reduces to 

𝑾𝒂 + (𝛼𝑾 + 𝛽)�̇� + �̈� = 𝝓(𝒂, 𝑡) (D47) 

where 𝝓(𝒂, 𝑡) = 𝑼𝑇𝒇(𝑼𝒂, 𝑡). Equation (D47) is the discrete equivalent of (D13).  

The left-hand side of (D47) is nice-looking, since it is diagonalized. In the absence of non-
linearity, the equations governing the modal components could therefore be studied 
independently. The whole difficulty lies in the right-hand side: although, formally, 𝝓 is a function 
of ℝ𝑛 in ℝ𝑛, its calculation remains expensive. Indeed, its evaluation requires expand 𝒂 into ℝ𝑁 
and to calculate the 𝑁 components of 𝒇 (as mentioned above, this operation may be very costly). 
Similarly, in the case of the bending beam, the modal force expressions (D32) and (D36) required 
the (costly) evaluation of integrals on [0, 𝐿]. 

To get over this last difficulty - which is in fact the only real difficulty of this type of 
procedure - it is necessary to resort, as in the continuous case, to approximations of modal forces, 
based on Taylor series, asymptotic developments or any other "machine learning" method 
adapted to the exact form of non-linearity (electrostatic, fluidic, elongations, etc.). This constitutes 
a more or less complex / costly task depending on the method used and the validity domain being 
sought for the reduced order model. Once this task has been performed, the reduced order model 
is ready to be used. 
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E - Beyond plane capacitors  

E.1 Analytical approach  

The following formulas are particularly useful when the validity of the plane capacitor 
hypothesis  

𝐶 = 𝜖0
𝑏𝐿

𝑔
 (E1) 

- where 𝑔  is the gap, and 𝑏  and 𝐿  are the lateral dimensions of the conductors - must be 
questioned.  

 

Fig. E1 - Flat capacitor type geometry (top), Palmer type (bottom left) and Leus-Elata type (bottom 

right). 

The best known is Palmer's formula, which is valid for two facing electrodes of which only 
one of the lateral dimensions 𝐿 is supposed to be very large compared to the gap, without any 
particular hypothesis on 𝑏. The capacitance is written 

𝐶 = 𝜖0
𝑏𝐿

𝑔
× (1 +

𝑔

𝜋𝑏
+

𝑔

𝜋𝑏
log (

2𝜋𝑏

𝑔
)) (E2) 

This formula has been adapted by Elata and Leus to take into account the finite height. ℎ 
of the facing conductors  

𝐶 = 𝜖0
𝑏𝐿

𝑔
× (1 +

𝑔

𝜋𝑏
+

𝑔

𝜋𝑏
log (

2𝜋𝑏

𝑔
) +

𝑔

𝜋𝑏
log (1 +

2ℎ

𝑔
+ 2√

ℎ

𝑔
+

ℎ2

𝑔2)) (E3) 

[1] H. B. Palmer, " Capacitance of a parallel-plate capacitor by the Schwartz-Christoffel 
transformation ", Trans. AIEE, vol. 56, 1927 

[2] V. Leus, D. Elata, "Fringing field effect in electrostatic actuators", Technical Report ETR-
2004-2, Technion, 2004.  

E.2 Electrostatic boundary element method  

The Boundary Element Method is a method for numerically solving certain types of partial 
differential equations. It is mainly applied to homogeneous (no source term), static (no time 
dependence) and linear problems. In a MEMS context, it is used to solve electrostatic or fluidic 
problems. It has the advantage of requiring only a meshing of the boundaries of the problem 
(unlike finite elements, which also require meshing the inside of the problem) and naturally 
makes it possible to take into account boundary conditions "at infinity". 
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A typical example of use is the resolution of Laplace’s equation in 3 dimensions  

Δ𝑉 = 0 in Ω (E4-a) 

𝑉 = Φ𝑛 on 𝜕Ω𝑛, 𝑛 = 1. . . 𝑁 (E4-b) 

which corresponds to the equation governing the electrostatic potential created in Ω  by 𝑁 

conductors with surface 𝜕Ω𝑛 at potential Φ𝑛in the absence of space charge density. In a MEMS 

context, the resolution of this problem is necessary to determine the value of the capacitance 

between several structures. The boundary element method (which can be formalized as a Petrov-

Galerkin method) makes it possible to numerically compute the charge distribution on the 

different conductors by requiring only a mesh of the boundaries 𝜕Ω𝑛 of the domain.  

 

Fig. E2 – Principle of the BEM in electrostatics. The potential at any point 𝑃 is written as the sum of 

the contributions of all the panels with unknown charge density. By taking 𝑃 to be at the center of 

each panel, where the potential is known, as many equations as required can be assembled and solve 

for the charge densities. 

To derive intuitively the numerical formulation of the problem, one can proceed as 
follows: 

1) Discretize the surfaces 𝜕Ω𝑛 of the 𝑁 conductors into "small panels" noted 𝜕Ω𝑛
𝑗

, 𝑗 =

1… 𝐽𝑛 on which it is assumed that the load density 𝜎𝑛
𝑗
 is uniform.  

The potential created at any point 𝑃 of Ω by panel 𝜕Ω𝑛
𝑗

 is then written 

𝑉𝑛
𝑗(𝑃) =

𝜎𝑛
𝑗

4𝜋𝜖0
× ∬

𝑑𝑀𝑛
𝑗

𝑟(𝑃,𝑀𝑛
𝑗
)𝜕Ω𝑛

𝑗 = 𝜎𝑛
𝑗
× 𝐼(𝑃, 𝜕Ω𝑛

𝑗
) (E5) 

where 𝑟(𝑃,𝑀𝑛
𝑗
) represents the distance between the point 𝑃 and the current point 𝑀𝑛

𝑗
 of panel 

𝜕Ω𝑛
𝑗

. The double integral 𝐼(𝑃, 𝜕Ω𝑛
𝑗
) represents the influence of the charge of panel 𝜕Ω𝑛

𝑗
 on the 

potential at point 𝑃. The total potential at point 𝑃 created by all the panels is written 
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𝑉(𝑃) = ∑ ∑ 𝜎𝑛
𝑗
× 𝐼(𝑃, 𝜕Ω𝑛

𝑗
)𝑗=1…𝐽𝑛𝑛=1…𝑁  (E6) 

The potential constructed in this way necessarily verifies (E4-a), but not necessarily (E4-b). It is 

then a question of finding the values of the densities 𝜎𝑛
𝑗
 ensuring that the boundary conditions are 

met "at best". For example: 

2) Use (E6) to write the value of the potential at the center 𝐶𝑚
𝑘  of each panel 𝜕Ω𝑚

𝑘 , 
where, by (E4-b), it is known that the potential is equal to Φ𝑚i.e. 

∀𝑚 = 1…𝑁,  ∀𝑘 = 1… 𝐽𝑛 

𝑉(𝐶𝑚
𝑘 ) = ∑ ∑ 𝜎𝑛

𝑗
× 𝐼(𝐶𝑚

𝑘 , 𝜕Ω𝑛
𝑗
)𝑗=1…𝐽𝑛𝑛=1…𝑁 = Φ𝑚 (E7) 

All that remains is to solve the linear system (E7) to determine the charge densities 𝜎𝑛
𝑗
, the values 

of the voltages Φ𝑚 being known, and the coefficients of influence 𝐼(𝐶𝑚
𝑘 , 𝜕Ω𝑛

𝑗
) which depend only 

on the geometry of the problem, being easily computable.  

There are many variants of this method, whether in the assumptions (non-uniform load 
density on each panel), in the choice of collocation points (elsewhere than in the center of the 
panels), in the way of approximating the influence coefficients, or in the way of numerically 
solving the system (E7).  

FASTCAP, a reference boundary element code developed by MIT, is available at this 
address:  

https://www.rle.mit.edu/cpg/research_codes.htm 

For simple geometries (e.g. in 2 dimensions), a few lines of Matlab are sufficient to 
implement this method and check the range of validity of the expressions (E1) (E2) or (E3). 

  

https://www.rle.mit.edu/cpg/research_codes.htm
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F - From Navier-Stokes to squeeze-film damping  
+ modal analysis of squeeze-film 

To be completed 

G - From Fourier to thermoelastic damping  
+ modal analysis of TED 

To be completed 
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H - Manufacturing processes  
Step by step description of the SOIMUMPS process and design rules 

http://www.memscap.com/__data/assets/pdf_file/0019/1774/SOIMUMPs.dr.v8.0.pdf  

Step-by-step description of the PiezoMUMPS process and design rules 

http://www.memscap.com/__data/assets/pdf_file/0020/5915/PiezoMUMPs.DR.1.3a.pdf 

Video presentation of the THELMA process from ST Microelectronics 

https://www.youtube.com/watch?v=KFBOmLwJyP4 

Presentation of the MIDIS process (Teledyne DALSA) 

https://www.teledynedalsa.com/download/10592c83-ffca-4ec7-8e5a-eff027d62a78/  

General presentation of Bosch products (very nice pictures) 

https://www.bosch.com/stories/bosch-mems-sensor-applications/ 

 

  

http://www.memscap.com/__data/assets/pdf_file/0019/1774/SOIMUMPs.dr.v8.0.pdf
http://www.memscap.com/__data/assets/pdf_file/0020/5915/PiezoMUMPs.DR.1.3a.pdf
https://www.youtube.com/watch?v=KFBOmLwJyP4
https://www.teledynedalsa.com/download/10592c83-ffca-4ec7-8e5a-eff027d62a78/
https://www.bosch.com/stories/bosch-mems-sensor-applications/
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I - Summary of poly-Si / mono-Si / Air properties  
To be completed 
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J - Labs  

K - Projects  
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