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DYNAMICAL REGIMES AND FINITE TIME BEHAVIOR IN A TRAPPED

RANDOM WALK: A DIRECT ITERATIVE APPROACH

E. FLORIANI, R. LIMA AND E. UGALDE

Abstract. We consider a basic one-dimensional model of diffusion which allows to obtain a di-
versity of diffusive regimes whose speed depends on the moments of the per-site trapping time.
This model is closely related to the continuous time random walks widely studied in the literature.
The model we consider allows a detailed treatment, making it possible to study deviations from
normality due to finite time effects.

1. Introduction

1.1. The random walks with trapping times we study in this paper can be seen as the nat-
ural discrete version of the continuous time random walk (CTRW), which has been treated in
mathematical-physics literature since its introduction by Montroll and Weiss in 1965 [14]. A re-
cent account on the subject can be found in [13], where CTRWs are considered as models for
anomalous diffusion. A presentation of the relation between CTRWs and fractional diffusion can
be found in [12]. The asymptotic behavior of continuous time random walks, and consequently of
the model considered here, is well known and can be found in [2, 11]. In recent years two kind
of generalizations of the continuous time random walk have been studied: on the one hand there
are models including spatial inhomogeneities [6, 3], otherwise known as random environment; on
the other hand, some models consider correlations between the space and time variables [4]. In
both directions limit theorems have been obtained, and the relation to fractional dynamics and
anomalous diffusion has been exposed. The aim of the present work is quite modest in comparison.
We will treat in full detail, and from elementary grounds, the one-dimensional and discrete time
version of the CTRW. We will be concerned in particular with the speed of convergence towards
normal diffusion, and with the finite time deviations from normality which can be observed in the
case of trapping time with infinite variance. Our main result, then, concerns the deviations from
normality, and the emergence of a sub-diffusive behavior due to finite time effects, in the case of
infinite variance. In the case of infinite mean trapping time, we study among other phenomena, the
scaling behavior of the random walk and the deviations from this asymptotic scaling law at finite
times.

1.2. In our model, a particle performs a random walk in a one-dimensional lattice in such a way
that at each site it can stay trapped for an integer random time. The properties of the diffusion
process depend on the distribution of this trapping time. As mentioned above, the model can be
seen as a natural discrete version of the CTRW widely studied in the literature. We will recover,
from elementary grounds, a classical limit theorem, as for instance the fact that for trapping times
with finite mean, the particle performs a random walk consistent with a diffusive process with
a diffusion coefficient decreasing with the expected trapping time. In the case of infinite mean
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trapping time, a sub-diffusive behavior is obtained. In both cases we are able to determine the
squared mean displacement at all times, and to evaluate its asymptotic behavior. Our formulas give
quite precise estimates of the deviations from the asymptotic scaling at finite times. To the best of
our knowledge, these are the first results of this kind. We are also able, in the case of finite mean
trapping times, to estimate the speed of convergence towards normal diffusion, by using elementary
probability inequalities. In this way we develop a direct approach to diffusion regimes leading to
explicit estimates of rates of convergence and finite time deviations.

1.3. The paper is organized as follows: In the next section we define the model and give some
basic general results, in particular, we establish a formula allowing us to compute the evolution
of the mean squared displacement (MSD) of the random walk; in sections 3 and 4 we respectively
examine the diffusive and sub-diffusive regimes, paying special attention to the finite time behavior
of the MSD; finally, the last section is devoted to a summary of our results and some concluding
remarks.

2. Generalities

2.1. The model as a Markov chain. At each site z ∈ Z, the diffusive particle gets trapped a
random time Tz ∈ N0, after which it moves with equal probability to either of the two neighboring
sites z−1 or z+1. We will consider the homogeneous case, for which the distribution of the random
trapping time, pz(τ) := P(Tz = τ), does not depend on the site z ∈ Z. Hence, we model the process
as a discrete-time Markov chain on the set E = Z× N0, where the first component represents the
position of the random walker and the second one the trapping time. The transition probabilities
are

(1) P((X,T )t+1 = (z′, τ ′)| (X,T )t = (z, τ)) =


p(τ ′)/2 if |z − z′| = 1 and τ = 0 ,

1 if z = z′ and τ ′ = τ − 1 ≥ 0 ,

0 otherwise.

We are interested in the statistical behavior of the position Xt, as a function of the distribution
{p(τ) : τ ∈ N0}. We will assume that the particle starts its random walk at the position z = 0, so
that

(2) P((X,T )t = (z, τ)) =

{
p(τ) if z = 0,

0 otherwise,

for all t ≤ 0.

Notice that the restriction of the process to the variable T is also a Markov chain:

(3) P(Tt+1 = τ ′|Tt = τ) =


p(τ ′) if τ = 0 ,

1 if τ ′ = τ − 1 ≥ 0 ,

0 otherwise.
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Figure 1. The trajectory in the (X,T ) plane of a possible realization of the process.
The trajectory starts at (X,T ) = (0, 0) and reaches (X,T ) = (0, 4) at time t = 43.
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Figure 2. The sequence of positions Xt (solid line) and trapping times Tt (dashed
line), corresponding to the trajectory depicted in Figure 1.

2.2. The model as a subordinated random walk. We can write the trapped random walk
as a standard binary random walk subordinated to a monotonously increasing random variable
governing the jump times. For this note that the space increments

∆t := Xt+1 −Xt ∈ {−1, 0, 1},

form a sequence of random variables satisfying P(∆t = 1 |Tt = 0) = P(∆t = −1 |Tt = 0) = 1/2,
and P(∆t = 0 |Tt > 0) = 1. Here Tt denotes the trapping at time t of the random waker. A direct
computation shows that for each finite collection of times t1 < t2 < · · · < tn and corresponding
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increments ε1, ε2, . . . , εn ∈ {−1, 1}, we have

P(∆t1 = ε1, . . . ,∆tn = εk |Tt1 = · · · = Ttn = 0) =
n∏
k=1

P(∆tk = εk |Ttk = 0) =
1

2n
.

Therefore the increments ∆t are independent when conditioned to the escape level E0 := {T = 0}
which is nothing but a renewal time. From this it readily follows that

Xt+1 = Xt + χ{Tt=0}∆t,

where χ{Tt=0} is the characteristic function for the event {Tt = 0} ⊂ E0, and ∆t is a sequence of
i.i.d. random variables such that P(∆t = 1) = P(∆t = −1) = 1/2. From this we obtain

Xt+1 =
t∑

s=0

χ{Ts=0}∆s =

Nt∑
n=0

∆n,

where Nt := #{0 ≤ s ≤ t : Ts = 0} is nothing but the number of times the random walker visited
the escape level up to time t. Since ∆n and Nt are independent, then

P (Xt = z) =

t−1∑
n=0

P(Nt−1 = n)P

(
n∑

m=0

∆m = z

)

=

t−1∑
n=0

2−nP(Nt−1 = n)

(
n
n+z

2

)
.(4)

2.3. A recurrence for the MSD. In order to quantify the diffusivity of the dynamics, we focus
now on the mean squared displacement (MSD)

(5) σ2
t := E(X2

t ) =
∑
z∈Z

z2P(Xt = z).

We have the following.

Proposition 1 (Recurrence relation). Suppose that the trapped random walk {(X,T )t}t∈Z is at the
origin at time t = 0, i.e., it satisfies the initial condition (2). Then, for each t ∈ N we have,

σ2
t+1 =

∑
0≤τ≤t

p(τ)
(
σ2
t−τ + 1

)
.

We will use this recurrence relation to quantify the diffusivity of the trapped random walk as a
function of the trapping time distribution.
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Proof. For each t ≥ 1 we have

P(Xt = z) =
∑
0≤τ

P((X,T )t = (z, τ)) =
∑
0≤τ

∑
0≤τ ′≤t−1

p(τ + τ ′)

2
P{(X,T )t−τ ′−1 = (z ± 1, 0)}

=
∑

0≤τ ′≤t−1

P{(X,T )t−τ ′−1 = (z ± 1, 0)}
∑
0≤τ

p(τ + τ ′)

2

=
∑

0≤τ ′≤t−1

P{(X,T )t−τ ′−1 = (z ± 1, 0)}
2

P(T ≥ τ ′).

where P{(X,T )t−τ ′−1 = (z ± 1, 0)} = P{(X,T )t−τ ′−1 = (z − 1, 0)}+ P{(X,T )t−τ ′−1 = (z − 1, 0)}.
Hence, the distribution of Xt is determined by its distribution restricted to the escape level E0 and
the queue of the trapping time distribution τ 7→ P(T ≥ τ). The distribution of Xt restricted to E0

satisfies the recurrence relation,

P{(X,T )t = (z, 0)} =
∑

0≤τ≤t−1

p(τ)

2
P{(X,T )t−τ−1 = (z ± 1, 0)}.

Using this we obtained

σ2
t =

∑
z∈Z

z2
∑

0≤τ ′≤t−1

P{(X,T )t−τ ′−1 = (z ± 1, 0)}
2

P(T ≥ τ ′)

=
∑
z∈Z

z2
∑

0≤τ ′≤t−1

P(T ≥ τ ′)
∑

0≤τ<t−τ ′−1

p(τ)

2

P{(X,T )t−τ ′−τ−2 = (z − 1± 1, 0)}
2

+
∑
z∈Z

z2
∑

0≤τ ′≤t−1

P(T ≥ τ ′)
∑

0≤τ<t−τ ′−1

p(τ)

2

P{(X,T )t−τ ′−τ−2 = (z + 1± 1, 0)}
2

,

which can be rewritten as

σ2
t =

∑
0≤τ≤t−1

p(τ)

2

∑
0≤τ ′≤t−τ−2

P(T ≥ τ ′)
∑
z∈Z

(z + 1)2P{(X,T )(t−τ−1)−τ ′−1 = (z ± 1, 0)}
2

+
∑

0≤τ≤t−1

p(τ)

2

∑
0≤τ ′≤t−τ−2

P(T ≥ τ ′)
∑
z∈Z

(z − 1)2P{(X,T )(t−τ−1)−τ ′−1 = (z ± 1, 0)}
2

=
∑

0≤τ≤t−1

p(τ)

2

(
σ2
t−τ−1 + 2E (Xt−τ−1) + 1

)
+

∑
0≤τ≤t−1

p(τ)

2

(
σ2
t−τ−1 − 2E (Xt−τ−1) + 1

)
=

∑
0≤τ≤t−1

p(τ)
(
σ2
t−τ−1 + 1

)
.

�

The recurrence relation just obtained already ensures the unboundedness of the trapped random
walk. Indeed, we have the following.

Proposition 2 (Unboundedness). Suppose that the trapped random walk {(X,T )t}t∈Z satisfies the
initial condition (2). Then the sequence {σ2

t }t∈N is increasing and unbounded.
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Proof. For the first claim it is enough to notice that for each t ≥ 0, ∆σ2
t+1 := σ2

t+1 − σ2
t satisfies

the recurrence relation ∆σ2
t+1 = p(t) +

∑
0≤τ≤t p(τ)∆σ2

t−τ , and since ∆σ2
1 = p(0) ≥ 0, it follows by

induction on t that ∆σ2
t ≥ 0 for all t ∈ N.

For the other claim, if we suppose on the contrary that the sequence {σ2
t }t∈N is bounded, since it

is monotonous, then it necessarily has a limit σ2
∞ := limt→∞ σ

2
t . This limit must satisfy

σ2
∞ = lim

t→∞

∑
0≤τ≤t

p(τ)
(
σ2
t−τ + 1

)
,

but this is impossible since there exist t0 ∈ N such that σ2
t ≥ σ2

∞−1/2 for each t ≥ t0, and therefore

lim
t→∞

∑
0≤τ≤t

p(τ)
(
σ2
t−τ + 1

)
≥
(
σ2
∞ + 1/2

) lim
t→∞

∑
0≤τ≤t−t0

p(τ)

 > σ2
∞.

�

3. Diffusive regime

In this section we study the situation E(Tα) < ∞, for some α ≥ 1. In this case, Xt follows
asymptotically a normal diffusion, and satisfies a central limit theorem. Nevertheless, the speed of
convergence towards the normal behavior strongly depends on the trapping time distribution tail,
and finite time deviations from normality appear. We will analyze the convergence towards normal
diffusion, by first considering the behavior of the mean squared displacement, then we will prove a
Central Limit Theorem.

3.1. Normal diffusion via MSD. In all cases when E(T ) <∞, the mean squared displacement
asymptotically follows a linear growth, with slope, or diffusion coefficient, D := (E(T ) + 1)−1.
Nevertheless, the finite time deviations from this linear growth may give place to an apparent
sub-linear growth. Our main result concerning this is the following.

Theorem 1 (Normal diffusion). Let us suppose that E(T ) <∞ and let D := (E(T ) + 1)−1. Then,
the sequence |σ2

t −D t| is bounded if and only if E(T 2) <∞. Furthermore, limt→∞D t/σ2
t = 1.

Proof. Let Rt := D
∑

τ≤t
∑

τ ′>τ (τ ′ − τ)p(τ ′) for each t ≥ 0. We start by proving

(6) e−qE(T )Rt − E(T ) ≤ σ2
t −D t ≤ Rt,

with q = − log(p(0))/(1− p(0)). For this let εt = σ2
t −D t. According to Proposition 1 we have

εt+1 =
∑

0≤τ≤t
p(τ)εt−τ + P(T ≤ t)−D

tP(T > t) + 1 +
∑

0≤τ≤t
τp(τ)

 ,

=
∑

0≤τ≤t
p(τ)εt−τ +D

∑
τ>t

(τ − t)p(τ)− P(T > t),(7)

which can be written as

(8) εt+1 =
∑

0≤τ≤t
δ+
τ Qt−τ −

∑
0≤τ≤t

δ−τ Qt−τ ,
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with δ+
τ := D

∑
τ>t(τ − t)p(τ), δ−τ := P(T > t) and Qτ defined recursively by the convolution

Qt+1 =
∑

0≤τ≤tQt−τ p(τ), starting with Q0 = 1. Since

0 < P(T ≤ t) min
τ≤t

Qτ ≤ Qt+1 ≤ P(T ≤ t) max
τ≤t

Qτ ≤ 1,

therefore

(9) e−q E(T ) = e−α
∑
τ≥0 P(T>τ) ≤

∏
τ≥0

P(T ≤ τ) ≤ Qt ≤ 1.

Finally, since 0 ≤
∑

0≤τ≤t δ
−
τ =

∑
0≤τ≤t P(T < τ) ≤ E(T ), taking into account Equations (8)

and (9), we obtain e−q E(T )
(∑

0≤τ≤t δ
+
τ

)
− E(T ) ≤ εt+1 ≤

∑
0≤τ≤t δ

+
τ , which is exactly (6) since∑

0≤τ≤t δ
+
τ = Rt.

To complete the proof, notice that

Rt := D
∑
τ≤t

∑
τ ′>τ

(τ ′ − τ)p(τ ′) = D
∑
τ≤t+1

p(τ)
τ(τ + 1)

2
+ (t+ 1)D

∑
τ>t+1

(
τ − t

2

)
p(τ).

Hence, when E(T 2) < ∞, we necessarily have t
∑

τ≥t τ p(τ) → 0 when t → ∞, and therefore

limt→∞Rt = D
(
E(T 2) + E(T )

)
/2, which implies |σ2

t−D t| bounded. If on the contrary E(T 2) =∞,
we necessarily have

lim inf
t→∞

σ2
t −D t ≥ lim inf

t→∞
D e−q E(T )

∑
τ≤t+1

p(τ)
τ(τ + 1)

2
− E(T ) =∞

In any case, the Inequalities (6) imply

e−q E(T ) lim sup
t→∞

Rt/t ≤ lim inf
t→∞

(σ2
t /t−D) ≤ lim sup

t→∞
(σ2
t /t−D) ≤ lim inf Rt/t.

Hence, limt→∞Rt/t exists, and since E(T ) <∞, then we necessarily have

0 ≤ lim
t→∞

Rt
t
≤ 1

2
lim
t→∞

1

t

∑
τ≤t+1

τ2 p(τ)

=
1

2
lim
t→∞

1

t

∑
τ≤
√
t

τ2 p(τ) +
1

2
lim
t→∞

1

t

∑
√
t<τ≤t

τ2 p(τ)

≤ 1

2
lim
t→∞

1√
t
E(T ) +

1

2
lim
t→∞

∑
√
t<τ∞

τ p(τ) = 0

and therefore limt→∞ σ
2
t /t = D. �

The diffusive case is the one where the T -Markov chain (3) admits a stationary distribution π(τ).
Indeed, the stationarity condition is

π(τ ′) =

∞∑
τ=0

π(τ)P(Tt+1 = τ ′|Tt = τ) = π(0)p(τ ′) + π(τ ′ + 1)
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so that

π(τ) = π(0)
∞∑
k=τ

p(k)

The normalization condition

1 =
∞∑
τ=0

π(τ) = π(0)
∞∑
τ=0

∞∑
k=τ

p(k) = π(0)
∞∑
τ=0

(τ + 1)p(τ) = π(0)(E(T ) + 1)

implies that the stationary distribution exist if and only if E(T ) is finite. In this case

π(τ) =
1

E(T ) + 1

∞∑
k=τ

p(k) =
1

D

∞∑
k=τ

p(k).

Exponential trapping time. A nice example is supplied by the exponential trapping time distribution.
Let us assume that p(τ) = (1− λ)λτ for each τ . In this case

E(T ) + 1 = (1− λ)
∞∑
τ=1

τλτ + 1 =
λ

1− λ
+ 1 =

1

1− λ
,

hence, σ2
t ∼ (1− λ) t is the expected asymptotic behavior for the MSD. If σ2

t = (1− λ) t+ εt, then,
according to Equation (7) we have

εt+1 = (1− λ)
∑

0≤τ≤t
λτ εt−τ + (1− λ)2

∑
τ>t

λτ (τ − t)− (1− λ)
∑
τ>t

λτ

= (1− λ)
∑

0≤τ≤t
λτ εt−τ + (1− λ)2λt

∑
τ≥0

λττ − λt+1 = (1− λ)
∑

0≤τ≤t
λτ εt−τ .

Since ε0 = 0, it can be easily checked, by induction for instance, that the previous recursion has
solution εt = 0 for all t ∈ N0 and in this case

σ2
t = (1− λ) t.

We have therefore an exact diffusive behavior for all times.

Power-law trapping time. Another interesting example is given by power-law distributed trapping
times. Let us assume that p(τ) = (τ + 1)−q/ζ(q) for each τ . For 2 < q ≤ 3 we have

E(T ) = ζ(q − 1)/ζ(q)− 1 <∞
but E(T 2) =∞. In this case we have

Rt :=

∑
τ≤t+1 p(τ) τ(τ + 1)/2

E(T ) + 1
+ (t+ 1)

∑
τ>t+1(τ − t/2) p(τ)

E(T ) + 1

=

∑
τ≤t+1

(
(τ + 1)−q+2 − (τ + 1)−q+1

)
2 ζ(q − 1)

+
(t+ 1)

∑
τ>t+1

(
(τ + 1)−q+1 − (t/2 + 1)(τ + 1)−q

)
ζ(q − 1)

.

From here it is easy to deduce that Rt ≥ c(t+ 2)3−q − c0 for each t ≥ 0 and constants c, c0 which
depend on q. Taking this into account, according to Theorem 1 we have

σ2
t ≥

ζ(q) t

ζ(q − 1)
+ c (t+ 2)3−q − c0
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for each t ≥ 0. Hence, in this case the diffusive behavior suffers an increasingly diverging sub-
linear deviation of the order of t3−q. In this case, although σ2

t is asymptotically dominated by
a linear behavior, the sub-linear deviation on σ2

t is enough to produce an effective sub-diffusion
at all finite times. Indeed, using the recurrence established in Proposition 1 we computed σ2

t for
1 ≤ t ≤ 217, and fitted it to a power-law σ2

t = O(tβ), with exponent β = βN (q) depending on the
time interval chosen for the fit. As expected, β(q) → 1 as the length of the fitting time interval
increases. We chose the time interval 10 ≤ t ≤ N , with N = 213, 215 and 217, to compute the
power-law approximation. The so obtained exponents βN (q) are plotted in Figure 3. For each N ,

the behavior of βN (q) can be very well fitted by a sigmoidal function β(q) = 2/(1 + er|q−3|η).

2 2.2 2.4 2.6 2.8 3
0.85

0.9

0.95

1

q

β
N

(q
)
β

(q
)

Figure 3. The curves q 7→ βN (q) correspond to the exponent of the approximated
power-law behavior of the MSD as a function of the trapping time distribution’s
exponent. We show these curves for total observation times N = 213, 215 and 217.
The curves approaches, as N →∞, the asymptotic exponent q 7→ β(q) = 1 (dashed
line).

3.2. Central Limit Theorem. Let us now focus on the distribution P(Xt = z). According to
what we deduced in subsection 2.2,

P(Xt = z) =

t−1∑
n=0

P(Nt = n)P(Sn = z)=

t−1∑
n=0

2−nP(Nt = n)

(
n
n+z

2

)
.

On the other hand, Nt can also be related to a sum of i.i.d. trapping times. Let us remind that,
Nt := #{0 ≤ s ≤ t : Ts = 0}. It can be easily verified that, for any finite collection t1 < t2 < · · · tn
and corresponding trapping times τ1, τ1 . . . , τn ≥ 0, we have

P(Tt1+1 = τ1, . . . , Ttn+1 = τn|Tt1 = · · · = Ttn = 0) =
n∏
k=1

P(Ttk+1 = τk|Ttk = 0) =
n∏
k=1

p(τk).
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From this it follows that

(10) Nt = max

{
n ≥ 0 :

n∑
k=1

(Tk + 1) ≤ t,

}

where the random variables Tk are independent copies of the trapping time T , which satisfies
P(T = τ) = p(τ). Equation (4) suggests that the shape of the probability distribution P(Xt = z)
strongly depends on the behavior of the distribution of the sum

∑n
k=0(Tk + 1). We now consider

the case where E(Tα) <∞ for some α > 1. In this case the distribution of Nt concentrates around
its mean, and this ensures the following.

Theorem 2 (Central Limit Theorem for α > 1). Let us assume that E(Tα) <∞ for some α ∈ (1, 2]

and define CT := E(|T − E(T )|α) and µ = E(T ) + 1. For each C > 8CT /µ+
√

2µ/π, there exists
t∗ = t∗(C) ∈ N such that for each bounded interval I ⊂ R and each t ≥ t∗, we have∣∣∣∣P(Xt ∈

√
t

µ
I

)
− 1√

2π

∫
I
e−x

2/2dx

∣∣∣∣ ≤ C t 1−α1+α

The proof of this result relies on two classical inequalities. On one hand the Berry-Esseen inequality
(as it appears in [9]), which gives the rate of convergence in the de Moivre-Laplace theorem.
According to it,

(11) sup
x∈R

∣∣∣∣∣∣2−n
∑
z≤x

(
n
n+z

2

)
− 1√

2π

∫ x/
√
n

−∞
e−z

2/2 dz

∣∣∣∣∣∣ < 1√
2π n

for all n ∈ N. On the other hand, we use a generalization of Chebyshev’s inequality, due to von
Bahr and Esseen. It states that if Xk, 1 ≤ k ≤ n are i.i.d. random variables such that E(Xk) = 0
and E(|Xk|α) := Cα <∞, for some α ∈ [1, 2], then

(12) P

(∣∣∣∣∣
n∑
k=0

Xk

∣∣∣∣∣ > ε

)
≤ 2nCα

εα
.

The inequality was established in [15].

Proof. It follows from Eq. (10) that

P (Nt ≤ n) = P

(
n+1∑
k=1

(Tk + 1) ≥ t+ 1

)
,(13)

P (Nt ≥ n) = 1− P (Nt ≤ n− 1)

= 1− P

(
n∑
k=1

(Tk + 1) ≥ t+ 1

)
= P

(
n∑
k=1

(Tk + 1) ≤ t

)
.(14)

for each n ∈ N.



DYNAMICAL REGIMES IN A TRAPPED RANDOM WALK 11

Let n1 := (t + 1 − d1)/µ − 1 and n2 := (t + d2)/µ − 1 be integer numbers, with d1, d2 yet to be
specified. Let d = min(d1, d2), then, taking (13) and (14) into account, we obtain

P (Nt /∈ (n1, n2)) ≤ P

(∣∣∣∣∣
n1+1∑
k=1

(Tk + 1)− (n1 + 1)µ

∣∣∣∣∣ ≥ d1

)
+ P

(∣∣∣∣∣
n2+1∑
k=1

(Tk + 1)− (n2 + 1)µ

∣∣∣∣∣ ≥ d2

)

≤ 2(n1 + n2 + 2)CT
µdα

=
2(2 t+ 1 + d2 − d1)CT

µdα

for each t ∈ N. From now on we will suppose that t > (1+µ)1/β 2−1/β, which ensures that n1 < n2.
Now, by taking β ∈ (1/α, 1) and d1, d2 such that |tβ − d1|, |tβ − d2| ≤ µ, we obtain

P (Nt /∈ (n1, n2)) ≤ 2(2 + (1 + 2µ)t−1)CT
µ (1− µ t−β)α

t1−αβ.

From now on, g1(t) := (1 + 1/2(1 + 2µ)t−1)/(1− µ t−β)α. From the previous inequality and Berry-
Esseen’s, it follows∣∣∣∣∣P

(
Xt ∈

√
t

µ
I

)
− 1√

2π

n2∑
n=n1

P (Nt = n)

∫
√

t
µ n

I
e−z

2/2 dz

∣∣∣∣∣ ≤ g1(t)
4CT
µ

t1−αβ +
2√

2π n1

= g1(t)
4CT
µ

t1−αβ + g2(t)

√
2µ

π t
(15)

where g2(t) := 1/
√

1− tβ−1 − (2µ− 1)t−1.

For n ∈ (n1, n2) we have∣∣∣∣∣
∫
√

t
µ n

I
e−z

2/2 dz −
∫
I
e−z

2/2 dz

∣∣∣∣∣ ≤
∫
√

t
µ n

I ∆ I
e−z

2/2 dz ≤
√

t

n1µ

(
1−

√
n1

n2

)

≤ 1√
1− tβ−1 − (2µ− 1)t−1

1−

√
1− tβ−1 − (2µ− 1)t−1

1 + tβ−1 + 2µ t−1


≤ 2(tβ−1 + (4µ− 1) t−1),

provided t ≥ t1 := min
{
t ∈ N : (tβ−1 + (4µ− 1) t−1)(tβ−1 + (2µ− 1)t−1) ≤ 1

}
. Finally, using this

in (15), and taking into account that P (Nt /∈ (n1, n2)) ≤ g1(t) (4CT /µ) t1−αβ, we finally obtain∣∣∣∣P(Xt ∈
√
t

µ
I

)
−
∫
I
e−z

2/2 dz

∣∣∣∣ ≤ g1(t)
8CT
µ

t1−αβ + g2(t)

√
2µ

π t
+ g3(t)

√
2

π
tβ−1,

with g3(t) := (1 + (4µ− 1) t−β). Now, optimizing β ∈ (1/α, 1) we obtain∣∣∣∣P(Xt ∈
√
t

µ
I

)
−
∫
I
e−z

2/2 dz

∣∣∣∣ ≤
(
g1(t)

8CT
µ

+ g2(t)

√
2µ

π
t
− 3−α

2(α+1) + g3(t)

√
2

π

)
t
1−α
1+α .

The theorem follows by taking into account that max(g1(t), g2(t), g3(t))→∞ when t→∞. �
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Remark 1. If the distribution of trapping times has exponential moments, i.e., if E(exp(q T )) <∞
for some q ≥ 0, then the upper bound on the rate of convergence can be improved by replacing
van Bahr-Esseen’s inequality by a tighter inequality, using a Chernoff’s bound. In that case we can
take |µn1 − t| and |µn2 − t| of order

√
t log(t), which gives a rate of convergence of the order of

1/
√
t. This is the case of the exponential trapping time distribution p(τ) = (1− λ)λτ .

The case E(T ) < ∞ and E(Tα) = ∞ for each α > 1 has to be treated separately. In this case
we are unable to give a general explicit bound for the rate of convergence towards normality, since
we can no longer use an explicit concentration inequality. In this case our proof relies on the
attractiveness of the Cauchy distribution and applies only to trapping time distributions of the
kind p(τ) = τ−2 L(τ) with L(τ) a slowly varying function.

Theorem 3 (CTL for α = 1). Let E(T ) < ∞ and define µ = E(T ) + 1 as above. If in addition
limτ→∞ P(T ≥ t τ)/P(T ≥ τ) = t−1 for each t ∈ R+, then

lim
t→∞

∣∣∣∣P(Xt ∈
√
t

µ
I

)
− 1√

2π

∫
I
e−x

2/2dx

∣∣∣∣ = 0.

Remark 2. Notice that limτ→∞ P(T ≥ t τ)/P(T ≥ τ) = t−1 for all t ∈ R+ implies that E(Tα) =∞
for each α > 1. For this it is enough to remark that if

∑
τ∈N τ

1+εp(τ) < ∞ for some ε > 0, then∑
τ∈N τ

ε P(T ≥ τ) <∞, and necessarily

lim inf
τ→∞

(t τ)ε P(T ≥ t τ)

τ ε P(T ≥ τ)
= lim inf

τ→∞

tε P(T ≥ t τ)

P(T ≥ τ)
= c ∈ (0, 1),

for each t ∈ R+, and therefore lim infτ→∞ P(T ≥ t τ)/P(T ≥ τ) = c t−ε for all t ∈ R+.

Proof. As mentioned before, the proof of this result relies on the attractiveness of the Cauchy
distribution. Indeed, the condition limn→∞ P(T ≥ t n)/P(T ≥ n) = t−1 ensures that T belongs
to the domain of attraction of a stable distribution with index α = 1. Furthermore, since T > 0,
then the stable limiting distribution, which necessarily has characteristic function t 7→ exp(−|t|),
is nothing but the Cauchy distribution, x 7→ π/(1 + x2) (see [8] for instance). Therefore, ac-
cording to Gnedenko’s Theorem [7], there are sequences {an}n∈N in N and {bn}n∈N in R such
that

∑n
k=1 Tk/an − bn converges in law to x 7→ π−1

∫
t≤x dt/(1 + t2). Furthermore, we can take

an := min{τ ∈ N : P(T > τ) ≤ 1/n} and bn = n (
∑

τ≤an τ p(τ))/an (see for instance Theorem 3.7.4

in [5]). It follows that there exists a positive sequence {εn}n∈N converging to zero, such that for
each x ∈ R and n ∈ N we have

P
(∑n

k=1 Tk
an

− bn ≤ t
)
≤ 1

π

∫ t

−∞

dx

1 + x2
+ εn.

Let t 7→ d(t) be a positive diverging function, yet to be specified, and define

n1 := max{n ≤ t/µ : t > n+ an (bn + d(t))}, n2 := min{n ≥ t/µ : t < n+ an+1 (bn+1 − d(t))}.
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With this we have

P (Nt ≤ n1) = P

(
n1∑
k=1

Tk ≥ t− n1

)
≤ 1

π

∫ ∞
d(t)

dx

1 + x2
+ εn1 ,

=
1

2
− arctan(d(t))

π
+ εn1

P (Nt ≥ n2) = P

(
n2+1∑
k=1

Tk ≤ t− n2

)
≤ 1

π

∫ d(t)

−∞

dx

1 + x2
+ εn2+1

=
1

π

∫ ∞
d(t)

dx

1 + x2
+ εn2+1

=
1

2
− arctan(d(t))

π
+ εn2+1.

Therefore

(16) P (Nt /∈ (n1, n2)) ≤ 2

(
εn1 +

1

2
− arctan(d(t))

π

)
≤ 2

(
εn1 +

2

d(t)

)
,

provided d(t) is sufficiently large. Following exactly the same computations as in the proof of
Theorem 2, we obtain∣∣∣∣P(Xt ∈

√
t

µ
I

)
−
∫
I
e−z

2/2 dz

∣∣∣∣ ≤ 4

(
εn1 +

2

d(t)

)
+

√
t

n1µ

(
1−

√
n1

n2

)
+

2√
2π n1

provided µn1 ≤ t ≤ µn2.

To complete the proof we need to find a diverging function t 7→ d(t) such that n2/n1 → 1 as
t → ∞. For this, consider g(τ) := τ P(τ). Since g(τ) ≤

∑
τ ′≥τ τ p(τ

′) and E(T ) < ∞, then

limτ→∞ g(τ) = 0. On the other hand, by the hypothesis on P(T ≥ τ), for each ε > 0, the function
τ 7→ gε(τ) := τ ε g(τ) is regularly varying of order ε, i.e. limτ→∞ gε(t τ)/gε(τ) = tε for each t ∈ R+.
Therefore gε(τ) diverges for all ε > 0, which proves that g(τ) converges to zero slower than any
power-law. Now, since by definition g(n) ≥ an/n ≥ g(n + 1) − P(T ≥ an + 1), then {n/an}n∈N is
a diverging sequence growing slower than any power-law, and indeed n 7→ n/an is a slowly varying
function, i.e. a regularly varying function of order zero. Taking all this into account, it follows that
the function

n 7→ h(n) := min

{
τ

aτ
: τ ≥ n

}
,

diverges monotonously and slower than any power-law. Furthermore, it is a slowly varying function.
Finally, let d(t) :=

√
h([t/µ]), which is monotonously diverging and slow varying as well. To

conclude, notice that from the definition of n1, n2, and h(t), we have on the one hand,

n1 + 1 ≥ t

µ
− an1+1 d(t)

µ
≥ t

µ
−
a[t/µ]+1 d(t)

µ
≥ t

µ
− (t/µ+ 1) d(t)

µh([t/µ] + 1])
≥ t

µ
− (t/µ+ 1)

µd(t)
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and on the other hand

n2 − 1 ≤ t

µ
+
an2 d(t)

µ
+
n2
∑

τ>n2
τ p(τ)

µ
≤ t

µ
+
n2 d(t)

µh(n2)
+
n2
∑

τ>n2
τ p(τ)

µ

≤ t

µ
+

n2 d(t)

µh([t/µ])
+
n2
∑

τ>t/µ τ p(τ)

µ
,

and therefore n2

(
1− (µd(t))−1 − µ−1

∑
τ>t/µ τ p(τ)

)
− 1 ≤ t/µ. Hence,

1 ≤ n2

n1
≤

(t/µ+ 1)
(

1− (µd(t))−1 − µ−1
∑

τ>t/µ τ p(τ)
)−1

t/µ
(

1− (1 + µ t−1) (d(t)µ)−1
) → 1, as t→∞,

and the proof is done. �

4. Sub-diffusive regime

In this section we study trapping time distributions leading to a sub-normal diffusion. First, we
will analyze the sub-linear growth of the MSD in the case of a trapping time distribution with
diverging first moment. In the particular case of power-law distributed trapping times, we are able
to determine the behavior of this sub-linear growth, which turns out to be a power-law as well.
Then, we study the concentration of the number of steps made by the trapped random walker, for
the larger class of distributions for which E(Tα) <∞, for some α < 1.

4.1. Sub-diffusion via MSD. Let us consider power-law decaying probability distributions for
which the mean trapping time diverges. In this case we loose the asymptotic normal behavior since
the MSD now follows a sub-linear power-law growth. Let us start by establishing the sub-linearity
of the MSD with respect to time, which holds in all cases when E(T ) =∞.

Proposition 3 (Sub-diffusion). Suppose that the trapped random walk satisfies the initial condi-
tion (2). If the trapping-time has infinite mean, then limt→∞ σ

2
t /t = 0.

Proof. Let us assume that σ2
t = α t + εt for some α > 0 and each t ≥ 0. Using (7) we obtain

εt+1 =
∑

0≤τ≤t εt−τp(τ) + δt, with

δt = P(T ≤ t)− α

(t+ 1)P(T > t) +
∑

0≤τ≤t
(τ + 1)p(τ)

 .

Following the same reasoning as in the proof of Theorem 1 we obtain εt+1 =
∑

0≤τ≤tQt−τδτ , with

Qτ recursively defined by Qt+1 =
∑

0≤τ≤tQt−τ p(τ), and such that Q0 = 1. Taking this into
account we have,

εt+1 =
∑

0≤τ≤t
Qt−τδτ ≥ −α

 ∑
0≤τ≤t

(τ + 1)P(T > τ) +
∑

0≤τ≤t

∑
0≤τ ′≤τ

(τ ′ + 1)p(τ ′)


≥ −α (t+ 1)

 t+ 2

2
P(T ≥ t+ 1) +

∑
0≤τ≤t

(τ + 1) p(τ)

 ,
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for all t ∈ N. Since E(T ) = ∞, then limt→∞ δt = −∞ which implies that δt < 0 eventually for all
t. Hence, there exists t1 ∈ N such that εt+1 =

∑
0≤τ≤tQt−τδτ ≤

∑
0≤τ<t1 |δτ | for all t ∈ N. Thus,

we have the inequalities

−α (t+ 1)

 t+ 2

2
P(T ≥ t+ 1) +

∑
0≤τ≤t

(τ + 1) p(τ)

 ≤ εt+1 ≤
∑

0≤τ<t1

|δτ |

for all t ∈ N, from which it follows that

−∞ ≤ lim sup
t→∞

σt
t

= α+ lim sup
t→∞

εt
t
≤ α.

The proposition follows from the fact that σ2
t > 0 for each t ≥ 0, taking into account that α > 0

can be taken arbitrarily small. �

Variation slower than any power-law . In the case of trapping time distributions decaying as a power-
law, the growth of the MSD is dominated by a power-law sub-linear growth. The exponent of the
power-law governing the MSD growth directly depends on the exponent of the power-law decay of
the trapping time distribution. To be more precise we need the following definition. We will say
that a strictly positive function τ 7→ g(τ) varies slower than any power-law if limt→∞ g(t) t−ε = 0
and limt→∞ g(t) tε = ∞ for any ε > 0. In particular, any regularly varying function of order zero
varies slower than any power-law.

In the following we will need some basic properties satisfied by functions varying slower than any
power-law, the proof of which is postponed to the Appendix A.

Claim 1. Let t 7→ g(t) and t 7→ h(t) be two functions varying slower than any power-law. Then
the following are functions varying slower than any power-law.

a) t 7→ λ g(t) with λ > 0, b) t 7→ g(t) + h(t), c) t 7→ g(t)h(t),
d) t 7→ 1/g(t), e) t 7→ minµ t≤τ≤λ t g(τ), f) t 7→ maxµ t≤τ≤λ t g(τ) with 0 ≤ µ < λ.

Furthermore, if g(t) ≤ f(t) ≤ h(t) for each t ∈ N, then
g) t 7→ f(t) varies slower than any power-law,
and, if τ 7→ P (τ) ≥ 0 is such that 0 <

∑
s≥1 P (s) (s+ 1)ε0 <∞ for some ε0 > 0, then

h) t 7→
∑

s≥1 P (s) maxs t<τ≤(s+1) t g(τ), varies slower than any power-law as well.

We are now able to prove the following.

Theorem 4. Let suppose that p(τ) = (τ + 1)−q g(τ), with 1 < q ≤ 2 and τ 7→ g(τ) varying slower
than any power-law. Then there exists τ 7→ h(τ), varying slower than any power-law, such that
σ2
t = h(t) tq−1 for all t ∈ N.

Proof. Let β = β(q) := sup{b ≥ 0 : lim supn→∞ σ
2
t /t

b = ∞}. Proposition 2 ensures that
limt→∞ σ

2
t = ∞, which implies β(q) ≥ 0. It is easy to verify that limt→∞ σ

2
t /t

b = ∞ for each
0 ≤ b < β and limt→∞ σ

2
t /t

b = 0 for each b > β.
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For β defined as above, the function t 7→ h(t) := σ2
t /t

β varies slower than any power-law. This fol-
lows from Claim 1-h, and the fact that both h1(t) := min0≤τ≤t σ

2
τ/τ

β and h2(t) := max0≤τ≤t σ
2
τ/τ

β

vary slower than any power-law. Indeed, for each ε > 0 we have

lim
t→∞

h1(t) t−ε = lim
t→∞

(
min

1≤τ≤t

{
σ2
τ

τβ

}
min

1≤τ≤t

{
τ−ε
})
≤ lim

t→∞

(
min

1≤τ≤t

σ2
τ

τβ+ε

)
≤ lim

t→∞

σ2
t

tβ+ε
= 0,

lim
t→∞

h2(t) tε = lim
t→∞

(
max

1≤τ≤t

{
σ2
τ

τβ

}
max

1≤τ≤t
{τ ε}

)
≥ lim

t→∞

(
max

1≤τ≤t

{
σ2
τ

τβ−ε

})
≥ lim

t→∞

σ2
t

tβ−ε
=∞.

On the other hand, taking into account that inft∈N σ
2
t /t

b > 0 for each b < β, and supt∈N σ
2
t /t

b <∞
for each b > β, we have

lim
t→∞

h1(t) tε = lim
t→∞

(
min

1≤τ≤t

{
σ2
τ

τβ

}
tε
)
≥ lim

t→∞

(
min

1≤τ≤t

{
σ2
τ

τβ−ε/2

}
tε/2
)

≥
(

inf
t∈N

σ2
t

tβ−ε/2

)
lim
t→∞

tε/2 =∞,

lim
t→∞

h2(t) t−ε = lim
t→∞

(
max

1≤τ≤t

{
σ2
τ

τβ

}
t−ε
)
≤ lim

t→∞

(
max

1≤τ≤t

{
σ2
τ

τβ+ε/2

}
t−ε/2

)
≤
(

sup
t∈N

σ2
t

tβ+ε/2

)
lim
t→∞

t−ε/2 = 0.

To conclude the proof verify that β(q) = q − 1. For this, according to Proposition 2, σ2
s − σ2

t ≥ 0
whenever s ≥ t. Then, using this and Proposition 1 we obtain

(17) P(T > t)σ2
t = P(T ≤ t)−

∑
τ≤t

(
σ2
t − σ2

t−τ
)
p(τ)−

(
σ2
t+1 − σ2

t

)
.

for each t ≥ 1. This implies that σ2
t ≤ 1/P(T > t) and therefore, for each b > q − 1 and t ∈ N we

have

σ2
t

tb
≤ t−b+q−1∑

τ>t g(τ) tq−1 (τ + 1)−q
≤ t−b+q−1(∑

t<τ≤2 t g(τ) (τ/t+ 1)−q
)
t−1

≤ t−b+q−1

mint<τ≤2 t g(τ)
(∑

t<τ≤2 t(τ/t+ 1)−q
)
t−1
≤ t−b+q−1

3−q mint<τ≤2 t g(τ)

Since by Claim 1-e, t 7→ mint<τ≤2 t g(τ) varies slower than any power-law, then limσ2
t /t

b = 0 for
each b > q − 1, hence β(q) ≤ q − 1.
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Let us assume that q < 2. In this case, using σ2
t = h(t) tβ in Equation (17), and taking into account

that β ≤ q − 1 and p(τ) = g(τ) (τ + 1)−q, we obtain

P(T > t)σ2
t ≥ P(T ≤ t)−max

τ≤t
h(τ)

∑
τ≤t

(
1− (1− τ/t)β

)
p(τ) +

(
1− (1− 1/t)β

) tβ

≥ P(T ≤ t)−max
τ≤t

h(τ)

∑
τ≤t

τ p(τ) + 1

 tβ−1(18)

≥ P(T ≤ t)−max
τ≤t

h(τ)

(
max
τ≤t

g(τ)

(
1 +

(t+ 1)2−q

2− q

)
+ 1

)
tβ−1

≥ P(T ≤ t)−max
τ≤t

h(τ)

(
max
τ≤t

g(τ)

(
1 +

1

2− q

)
+ 1

)
(t+ 1)β+1−q.

If β = q − 1, then we have nothing to prove. Otherwise, if β < q − 1, since by Claim 1-f ,
t 7→ maxτ≤t h(τ) and t 7→ maxτ≤t g(τ) both vary slower than any power-law, then there exists t0
such that for all t ≥ t0 we have 2σ2

t ≥ 1/P(T > t). Hence, for each b < q − 1 and t ≥ t0 we have

σ2
t

tb
≥ t−b+q−1∑

s≥1 s
−q
(∑

s t<τ≤(s+1) t g(τ)
)
t−1
≥ t−b+q−1∑

s≥1 s
−q maxs t<τ≤(s+1) t g(τ)

.

Claim 1-h ensures that t 7→
∑

s≥1 s
−q maxs t<τ≤(s+1) t g(τ) varies slower than any power-law, there-

fore limσ2
t /t

b = ∞ for each b < q − 1, hence β(q) ≥ q − 1. For the remaining case, q = 2,
Inequality (18) implies

P(T > t)σ2
t ≥ P(T ≤ t)−max

τ≤t
h(τ)

(
max
τ≤t

g(τ) (1 + log(t+ 1)) + 1

)
tβ−1,

and since t 7→ maxτ≤t h(τ), t 7→ maxτ≤t g(τ) and t 7→ log(t + 1) vary slower than any power-law,
then 2σ2

t ≥ 1/P(T > t) for all t sufficiently large, and from there we can proceed as in the previous
case, concluding that β(2) ≥ 1. And with this we finish the proof. �

Power-law trapping time. For power-law distributed trapping times with exponent q ≤ 2, the finite-
time behavior of the MSD can be reasonably well fitted by a power-law. Using Proposition 1 we
computed σ2

t for 1 ≤ t ≤ 217 and fitted the behavior to a power-law, σ2
t = O(tβ), with an exponent

βN (q), which deviates from the expected exponent β(q) = q − 1. We plot this effective exponent
in Figure 4 for time intervals 10 ≤ t ≤ N , with N = 213, 215 and 217. For each N , the behavior of
βN (q) can be very well fitted by a sigmoidal function β(q) = c+ 2(1− c)/(1 + er|d−3|η).

4.2. Sub-diffusion via Xt. In this subsection we will consider trapping time probability distri-
butions satisfying E(Tα) < ∞ and E(T β) = ∞, for some α ∈ (0, 1) and all β > α. This case is
consistent with a sub-linear growth of the MSD dominated by a power-law of order α. We will
show that the expected number Nt of steps the random walker makes up to time t grows like tα.
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Figure 4. The curves q 7→ βN (q) correspond to the exponent of the approximated
power-law behavior of the MSD as a function of the trapping time distribution’s
exponent. We show these curves for total observation times N = 213, 215 and 217.
The curves approach, as N →∞, the asymptotic exponent q 7→ β(q) = q−1 (dashed
line).

Proposition 4 (Nt concentration for α < 1). Let us assume that E(Tα) < ∞ and E(T β) = ∞,
for some α ∈ (0, 1) and all β > α. Then there exists a function t 7→ h(t) varying slower than any
power-law and converging to 0, and a constant C > 0 such that

P
(
Nt /∈ tα

[
h(t), h−2(t)

])
≤ C h(t)

for each t ∈ N.

Proof. We will start by observing that P(T ≥ τ) = h(τ) (τ + 1)−α for some function τ 7→ h(τ)
varying slower than any power-law and converging to zero. For this notice that if q ≤ 1− α, then

∑
0≤τ

(τ + 1)−q P(T ≥ τ) =
∑
0≤τ

p(τ)

 ∑
0≤τ ′≤τ

(τ + 1)−q

 ≤ E
(
(T + 1)1−q)

1− q
<∞.

On the other hand, if q > 1− α, then

∑
0≤τ

(τ + 1)−q P(T ≥ τ) ≥
E
(
(T + 1)1−q)− 1

1− q
=∞.
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Hence, limτ→∞ P(T ≥ τ) (τ +1)β = 0 for all β ≤ α while limτ→∞ P(T ≥ τ) (τ +1)β =∞ for β > α.
Now, for n ≥ tα h(t)−2 we have

P (Nt ≥ n) = P

 ∑
1≤k≤n+1

Tk ≤ t− n

 ≤ (1− P(T ≤ t− n))n ≤ (1− P(T ≤ t))n

=
(
1− h(t) (t+ 1)−α

)n
=

(
1− h(t)

(t+ 1)α

)tα h(t)−2

≤ exp

(
− tα

(t+ 1)α h(t)

)
≤
(
− tα

(t+ 1)α h(t)

)
≤ h(t)

(1 + t−1)α
,

provided h(t) ≤ (1 + t−1)α. By taking t0 := min{t ≥ (21/α− 1)−1 : h(τ) ≤ (1 + τ−1)α ∀τ ≥ t} and
h0 = min0≤t≤t0 h(t) we have P(Nt ≥ tα h(t)−2) ≤ max(h−1

0 , 2)h(t) for all t ∈ N.

For the other inequality, suppose that n − 1 ≤ tα h(t) ≤ n. Using Eq. 10 and Bahr-Esseen’s
inequality we have

P (Nt ≤ n) = P

 ∑
1≤k≤n

Tk ≥ t− n

 ≤ nE(Tα)

(t− n)α
≤ E(Tα)

g(t) (1− tα−1 h(t)− t−1)α
.

Let t1 = min{t ∈ N : 1 − τα−1 h(τ) − τ−1 < 2−1/α ∀ τ ≥ t} and h1 = min0≤t≤t1 h(t), then

P(Nt ≤ tα h(t)) ≤ max(h−1
1 , 2E(Tα))h(t) for all t ∈ N.

The proof is done by taking C := max(h−1
0 , h−1

1 , 2, 2E(Tα)). �

Remark 3. According to Gnedenko’s Theorem, for P (T ≥ t) = (t + 1)−α h(t) with t 7→ h(t) a

slowly varying function, the sequence of distributions x 7→ P
(
n−1/α

∑n
k=1 Tk ≤ x

)
converges in law

to x 7→
∫ x
−∞ Fα(z) dz, where Fα is an α-stable distribution with support in R+. This result and

Barry-Esseen Inequality allow us to derive an analogous to the Central Limit Theorem. We have
the following.

Theorem 5. Let us assume that P (T ≥ t) = (t+1)−α h(t) with t 7→ h(t) a slowly varying function.
Then

lim
t→∞

P
(
Xt

tα/2
∈ I
)

=

∫
R+

Fα(z) dz
1√
2π z

∫
I

exp

(
−x

2

2z

)
dx.

Remark 4. Under the hypotheses of this theorem, E(T γ) <∞ and E(T β) =∞, for all γ < α < β.
In this case it is not possible, in general, to explicitly determine Fα or the speed of convergence, but
still some features of the limit behavior can be derived from this expression, for instance the fact
that it is a symmetric distribution and that all absolute moments of order larger than α diverge.
The scaling indicates that the support of the measure is concentrated around tα, but this was
already clear form Proposition 4.
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Proof. For each δ > 0 and w ∈ R+ we have

P
(
w ≤ Nt

tα
≤ w + δ

)
= P

[tα w]∑
k=1

Tk ≤ t− tαw

− P

[tα (w+δ)]+1∑
k=1

Tk ≤ t− tα (w + δ)


= P

(∑[tα w]
k=1 Tk

[tαw]1/α
≤ t− tαw

[tαw]1/α

)

− P

( ∑[tα (w+∆)]+1
k=1 Tk

([tα (w + δ)] + 1)1/α
≤ t− tα (w + δ)

([tα (w + δ)] + 1)1/α

)
.

Hence, by virtue of Theorems 4.2.1 and 4.2.2 in [10], we obtain∣∣∣∣∣P (Nt/t
α ∈ [w,w + δ])−

∫ w−1/α

(w+δ)−1/α

Fα(z) dz

∣∣∣∣∣ ≤ g1(t w1/α),

where s 7→ g1(s) > 0 is monotonously decreasing, such that lims→∞ g1(s) = 0. On the other hand,
for m > n we have∣∣∣∣∣

∫
√
tα/n I

e−x
2/2dx−

∫
√
tα/mI

e−x
2/2dx

∣∣∣∣∣ ≤ e−1/2

(√
m

n
− 1

)
.

Hence, taking into account Equation (10), Barry-Esseen’s inequality and Proposition 4, we obtain∣∣∣∣∣∣P
(
Xt

tα/2
∈ I
)
− 1√

2π

d(h−2(t)−h(t))/δe∑
k=1

∫ (h(t)+(k−1)δ)−1/α

(h(t)+kδ)−1/α

Fα(z)

∫
I/
√
z
e−x

2/2 dx dz

∣∣∣∣∣∣ ≤ g2(t, δ),

with g2(t, δ) = g1(t h(t)1/α) + 2/
√

2π tαh(t) + e−1/2(
√

(h(t) + δ)/h(t) − 1). Finally, by taking
δ = δ(t) := h2(t) we obtain∣∣∣∣∣P

(
Xt

tα/2
∈ I
)
−
∫ h(t)−1/α

h2/α(t)
Fα(z)

1√
2π z

∫
I

exp

(
−x2

2z

)
dx dz

∣∣∣∣∣ ≤ g3(t),

with g3(t) = g2(t, h2(t)) + h(t)2/α+4/α, and the result follows. �

5. Summary and final remarks

5.1. Summary.

A. Thanks to the recurrence relation established in Proposition 1, we were able to characterize
the dynamical regimes of the trapped random walk. According to Proposition 2, regard-
less of the trapping time distribution, the MSD of the walk will always diverge. Hence,
dynamical confinement is impossible in this model. Depending on the characteristics of
the trapping time distribution, the random walk can display a diffusive or sub-diffusive
dynamics.
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B. The diffusive behavior, which takes place when the mean trapping time is finite, can be
observed at finite time if the second moment of the trapping time is finite, as established in
Theorem 1. On the contrary, for trapping time distributions with finite mean and diverging
second moment, the diffusive behavior takes place asymptotically, and for any finite time
we can measure an effective sub-diffusive behavior. To illustrate this sub-diffusive behavior
we have computed the MSD as a function of time using a collection of power-law trapping
time distributions (see Figure 3).

C. We consider a class of trapping time distributions consisting of a leading power-law behavior
with fluctuations around this leading behavior, varying slower than any power law. As
established in Theorem 4, in this case the MSD of the walk grows following a power-law
directly related to the leading term of the trapping time distribution. This power-law
behavior holds asymptotically, but at any finite time a deviation of smaller order can be
observed. We illustrate this deviation with numerical computations from a collection of
power-law distributions (see Figure 4).

In the next table we summarize the behavior of the MSD as a function of the trapping time
distribution, for power-law trapping time distributions of the type p(τ) = τ−q/ζ(q).

Exponent MSD leading term Finite time deviation
q > 3 D t O(1)

2 < q ≤ 3 D t O(t3−q)
1 < q ≤ 2 tq−1 h(t) tq−1

Here t 7→ h(t) is a function varying slower than any power-law and converging to 0.

In Figure 5.1 we depict the exponent of the approximated power-law behavior for different finite
observation times for the same family of trapping time distributions.

D. If the mean trapping time is finite, then the trapped random walk satisfies a Central Limit
Theorem. The normalization required as well as the speed of convergence towards the
normal distribution both depend on the characteristics of the trapping time distribution.
In Theorem 2 we treat the case where the trapping time has a finite fractional moment
strictly larger than one, for which we prove a power-law convergence towards the limit
normal distribution. In the case of a trapping time distribution belonging to the domain
of attraction of the Cauchy distribution, Theorem 3, the convergence we found towards the
limit normal law is slower than any power-law.

E. Finally, when the mean trapping time diverges, any trapping time distribution belonging
to the domain of attraction of a stable law leads to a limiting distribution for the trapped
random walk, once the length is properly re-normalized. The limit distribution is a con-
vex combination, governed by the corresponding stable law, of normal distributions (see
Theorem 5).

In the next table we present the behavior of the required normalization and the speed of convergence
towards the normal distribution as a function of the trapping time leading exponent, for trapping
time distributions of the type p(τ) = τ−q/ζ(q).
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Figure 5. The curves q 7→ βN (q) correspond to the exponent of the approximated
power-law behavior of MSD as a function of the trapping time distribution’s expo-
nent. We show these curves for total observation times N = 213, 215 and 217. The
curves approach, as N → ∞, the asymptotic exponent q 7→ β(q) = min(1, q − 1)
(dashed line).

Exponent Normalization Speed of convergence

q > 2 (t/µ)1/2 O
(
t2/q−1

)
1 < q ≤ 2 tα/2 Slower than any power-law.

In Figure 6 we depict several possible trajectories of the random walk in the diffusive regime. In
the figure we also depict the behavior of the standard deviation σt ∝

√
t. According to Theorems 2

and 3, the random walk spreads around the vertical line Xt = 0, with oscillations contained inside
the curves t 7→ ±σt. With high probability, the number of steps made by the random walker lies
between n1 ≈ (t/µ)(1 − 1/d(t)) and n2 ≈ (t/µ)(1 + 1/d(t)), with t 7→ d(t) a diverging function
which can be either a sub-linear power-law (in the case E(Tα) <∞ for some α > 1) or a function
varying slower than any power-law (when E(Tα) = ∞ for each α > 1). The image in the case of

the sub-diffusive regime σt ∼ tα/2, is qualitatively the same. In this case, the spread of the random
walk is bounded, with high probability, between the curves h(t) tα and h−2(t) tα, where h(t) is a
positive function converging to zero slower than any power law, which can be computed from the
trapping time distribution.

5.2. Final Remarks.

A. In the case of finite mean trapping time we have two scenarios: either it exists α > 1 such
that E(Tα) <∞, or E(Tα) =∞ for each α > 1. In the first case the behavior of the system
is controlled by the exponent

γ = sup{α > 1 : E(T ) <∞} = inf{α > 1 : E(T ) =∞}.
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Figure 6. Five possible trajectories for the random walk. The spread of the random
walk around the vertical line Xt = 0 is concentrated around σt.

In this case
√
µ/tXt converges in law to the normal distribution, with a speed of the order

(1− γ)/(1 + γ). This fact can be easily derived from Theorem 2, taking into account that
all constants involved in upper bounds vary continuously with the exponents. In the case
where E(Tα) = ∞ for each α > 1, then in order to ensure convergence to the Gaussian,
we have to restrict ourselves to trapping times in the domain of attraction of Cauchy’s
distribution (Theorem 3). The same kind of restriction has to be assumed when dealing
with distributions with infinite mean trapping time (Theorem 5). It remains to determine
whether these restrictions are of an essential nature or can be weakened and replaced by
a hypothesis concerning only the value of the exponent of the largest finite moment as in
Theorem 2.

B. In Theorem 4 and Proposition 4 we consider trapping time distributions with a leading
power-law behavior, modified by a term varying slower than any power-law. This is required
to ensure the power-law growth of the MSD. Nevertheless, the convergence towards a limit
law for the corresponding random walk requires a little more control on the decay of the
distribution: to insure convergence, the distribution has to be regularly varying, which is
a strictly stronger condition. In this case, the condition cannot be weakened since regular
variation is a necessary condition for being in the domain of attraction of a stable law.
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Appendix A. Variation slower than any power-law

A strictly positive function g : N→ (0,∞) varies slower than any power-law if limt→∞ g(t) t−ε = 0
and limt→∞ g(t) tε = ∞ for any ε > 0. In particular, any regularly varying function of order zero
varies slower than any power-law. We have the following.

Claim 1. Let t 7→ g(t) and t 7→ h(t) be two functions varying slower than any power-law. Then
the following are functions varying slower than any power-law.

a) t 7→ λ g(t) with λ > 0, b) t 7→ g(t) + h(t), c) t 7→ g(t)h(t),
d) t 7→ 1/g(t), e) t 7→ minµ t≤τ≤λ t g(τ), f) t 7→ maxµ t≤τ≤λ t g(τ) with 0 ≤ µ < λ.

Furthermore, if g(t) ≤ f(t) ≤ h(t) for each t ∈ N, then
g) t 7→ f(t) varies slower than any power-law,
and, if τ 7→ P (τ) ≥ 0 is such that 0 <

∑
s≥1 P (s) (s+ 1)ε0 <∞ for some ε0 > 0, then

h) t 7→
∑

s≥1 P (s) maxs t<τ≤(s+1) t g(τ), varies slower than any power-law as well.

Proof. Items a) to d) are easily proved and are let to the reader.

For e) let `t = max {µ t ≤ τ ≤ λ t : g(τ) = minµ t≤s≤λ t g(s)}. Supposing that limt→∞ `t = ∞, we
have

lim
t→∞

t−ε min
µ t≤τ≤λ t

g(τ) = lim
t→∞

t−ε g(`t) ≤ λε lim
t→∞

`−εt g(`t) = 0,

lim
t→∞

tε min
µ t≤τ≤λ t

g(τ) = lim
t→∞

tε g(`t) ≥ λ−ε lim
t→∞

`εt g(`t) =∞.

Now, if limt→∞ `t = ` <∞, in which case µ = 0, then g(`) ≤ minτ≤λ t g(t) ≤ maxτ≤` g(τ) for each
t ∈ N, and therefore t 7→ minτ≤λ t g(t) varies slower than any power-law.

Item f) directly follows from e) and d) by noticing that maxµ t≤t≤λ t g(τ) = (minµ t≤τ≤λ t 1/g(τ))−1.

For g), it is enough to notice that

lim
t→∞

t−ε f(t) ≤ lim
t→∞

t−ε h(t) = 0,

lim
t→∞

tε f(t) ≥ lim
t→∞

tε g(t) =∞.

for each ε > 0.
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For h), let us,t = max {s t < τ ≤ (s+ 1) t : g(τ) = maxµ t≤s≤λ t g(s)}. For each ε ≤ 2 ε0 we have

t−ε
∑
s≥1

P (s) max
s t<τ≤(s+1) t

g(τ) = t−ε/2
∑
s≥1

P (s) g(us,t)u
−ε/2
s,t

(
t

us,t

)−ε/2
≤ t−ε/2

∑
s≥1

P (s) (s+ 1)ε/2 g(us,t)u
−ε/2
s,t ,

tε
∑
s≥1

P (s) max
s t<τ≤(s+1) t

g(τ) = tε/2
∑
s≥1

P (s) g(us,t)u
ε/2
s,t

(
t

us,t

)ε/2
≥ tε/2

∑
s≥1

P (s) (s+ 1)−ε/2 g(us,t)u
ε/2
s,t .

Since limt→∞ g(t) t−ε/2 = 0 then g(t) t−ε/2 is bounded, and therefore

lim
t→∞

t−ε
∑
s≥1

P (s) max
s t<τ≤(s+1) t

g(τ) ≤
(

max
s≥1

g(s) s−ε/2
) ∑

s≥1

P (s) (s+ 1)ε/2

 lim
t→∞

t−ε/2 = 0.

On the other hand, since g(t) tε/2 diverges, then

lim
t→∞

tε
∑
s≥1

P (s) max
s t<τ≤(s+1) t

g(τ) ≥

∑
s≥1

P (s) (s+ 1)−ε/2

 lim
t→∞

tε/2 =∞.

The same obviously holds for ε > 2ε0. �
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