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Abstract15

We describe a multiple string pattern matching algorithm which is well-suited for approximate16

search and dictionaries composed of words of different lengths. We prove that this algorithm has17

optimal complexity rate up to a multiplicative constant, for arbitrary dictionaries. This extends to18

arbitrary dictionaries the classical results of Yao [SIAM J. Comput. 8, 1979], and Chang and Marr19

[Proc. CPM94, 1994].20
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1 The problem27

1.1 Definition of the problem28

Let Σ be an alphabet of s symbols, ξ = ξ0 . . . ξn−1 ∈ Σn a word of n characters (the input29

text string), D = {w1, . . . , w`}, wi ∈ Σ∗ a collection of words (the dictionary). We say that30

w = x1 . . . xm occurs in ξ with final position j if w = ξj−m+1ξj−m+2 · · · ξj . We say that w31

occurs in ξ with final position j, with no more than k errors, if the letters x1, . . . , xm can32

be aligned to the letters ξj−m′ , . . . , ξj with no more than k errors of insertion, deletion or33

substitution type, i.e., it has Levenshtein distance at most k to the string ξj−m′ . . . ξj (see an34

example in Figure 1). Let rm(D) be the number of distinct words of length m in D. We call35

r(D) = {rm(D)}m≥1 the content of D, a notion of crucial importance in this paper.36

The approximate multiple string pattern matching problem (AMPMP), for the datum37

(D, ξ, k), is the problem of identifying all the pairs (a, j) such that wa ∈ D occurs in ξ with38

final position j, and no more than k errors (cf. Figure 1). This is a two-fold generalisation of39

the classical string pattern matching problem (PMP), for which the exact search is considered,40

and the dictionary consists of a single word.41

A precise historical account of this problem, and a number of theoretical facts, are42

presented in Navarro’s review [8]. The first seminal works have concerned the PMP. Results43
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Figure 1 Typical output of an approximate multiple string pattern matching problem, on
an English text (alphabet of 26 characters plus the space symbol .). In this case k = 2 and
r(D) = (0, 0, 0, 0, 1, 0, 2, 1, 0, . . .). The symbols D, S and i stand for deletion, substitution and
insertion errors, while X corresponds to an insertion or a substitution.

included the design of efficient algorithms (notably Knuth–Morris–Pratt and Boyer–Moore),44

and have led to the far-reaching definition of the Aho–Corasick automata [1, 3, 7, 11]. In45

particular, Yao [11] is the first paper that provide rigorous bounds for the complexity of46

PMP in random texts. To make a long story short, it is argued that an interesting notion of47

complexity is the asymptotic average fraction of text that needs to be accessed (in particular,48

at least at this stage, it is not the time complexity of the algorithm), and is of order ln(m)/m49

for a word of length m. The first works on approximate search, yet again for a single word50

(APMP), are the description of the appropriate data structure, in [10, 4], and, more relevant51

to our aims here, the derivation of rigorous complexity bounds in Chang and Marr [5]. Yet52

again in simplified terms, if we allow for k errors, the complexity result of Yao is deformed53

into order [ln(m)+k]/m. More recent works have concerned the case of dictionaries composed54

of several words, all of the same length [9],1 however, also at the light of unfortunate flaws in55

previous literature, the rigorous derivation of the average complexity for the MPMP has been56

missing even in the case of words of the same length, up to our recent paper [2], where it is57

established that the Yao scaling ln(m)/m is (roughly) modified into maxm ln(mrm)/m (a58

more precise expression is given later on). By combining the formula of Chang and Marr for59

APMP, and our formula for MPMP, it is thus natural to expect that the AMPMP may have60

a complexity of the order maxm[ln(mrm) + k]/m. This paper has the aim of establishing a61

result in this fashion.62

Of course, the present work uses results, ideas and techniques already presented in [2],63

for the PMPM. A main difference is that in [2] we show that, for any dictionary, a slight64

modification of an algorithm by Fredriksson and Grabowski [6] is optimal within a constant,65

while this is not true anymore for approximate search with Levenshtein distance (we expect66

that it remains optimal for approximate search in which only substitution errors are allowed,67

although we do not investigate this idea here). As a result, we have to modify this algorithm68

more substantially, by combining it with the algorithmic strategy presented in Chang and69

Marr [5], and including one more parameter (to be tuned for optimality). This generalised70

algorithm is presented in Section 2.2.71

Also, a large part of our work in [2] is devoted to the determination of a relatively tight72

lower bound, while the determination of the upper bound consists of a simple complexity73

analysis of the Fredriksson–Grabowski algorithm. Here, instead, we will make considerable74

efforts in order to determine an upper bound for the complexity of our algorithm, which is75

1 This is the reason why, before our paper [2], which deals with dictionaries having words of different
length, the forementioned notion of “content” of a dictionary did not appear in the literature.
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exact approximate

single word CYao
lnm
m

(Yao) CCM
lnm+ k

m
(Chang and Marr)

dictionary Cex
1

1
mmin

+ Cex
2 max

m

ln(smrm)
m

C1k + C′
1

mmin
+ C2 max

m

ln(smrm)
m

Table 1 Summary of average complexities for exact and approximate search, for a single word or
on arbitrary dictionaries. The results are derived from Yao [11], Chang and Marr [5], our previous
paper [2], and the present paper, respectively.

the content of Section 2.4, while we will content ourselves of a rather crude lower bound,76

derived with small effort in Section 1.3 by combining the results of [5] and [2].77

1.2 Complexity of pattern matching problems78

In our previous paper [2] we have established a lower bound for the (exact search) multiple79

pattern matching problem, in terms of the size s of the alphabet, and the content r = {rm}80

of the dictionary, involving the length mmin of the shortest word in the dictionary, and a81

function φ(r) with the specially simple structure φ(r) = maxm f(m, rm). More precisely,82

calling Φaver(r) (resp. Φmax(r)) the average over random texts, of the average (res. maximum)83

over dictionaries D of content r, of the asymptotic fraction of text characters that need to84

be accessed, we have85

I Theorem 1 (Bassino, Rakotoarimalala and Sportiello, [2]). Let s ≥ 2 and mmin ≥ 2, and86

define κs = 5
√
s. For all contents r, the complexity of the MPMP on an alphabet of size s87

satisfies the bounds88

1
κs

(
φ(r) + 1

2smmin

)
6 Φaver(r) 6 Φmax(r) 6 2

(
φ(r) + 1

2smmin

)
, (1)89

where90

φ(r) := max
m

1
m

ln(smrm) . (2)91

Note a relative factor ln s between the statement of the result above, and its original92

formulation in [2], due to a slightly different definition of complexity.93

As we have anticipated, such a result is in agreement with the result of Yao [11], for94

dictionaries composed of a single word, which is simply of the form ln(m)/m. Combining95

this formula with the complexity result for APMP, derived in Chang and Marr [5], it96

is natural to expect that the AMPMP has a complexity whose functional dependence97

on k and r is as in Table 1. Indeed, the bottom-right corner of the table is consistent98

both with the entry above it, and the entry at its left. Furthermore, it is easily seen99

that, up to redefining the constants, several other natural guesses would have this same100

functional form in disguise. Let us give some examples of this mechanism. Write X ≷101

aL/UY + bL/UZ as a shortcut for aLY + bLZ 6 X 6 aUY + bUZ. Now, suppose that we102

establish that Φ(r, k) ≷ aL/U (k + 1)/mmin + bL/U maxm (ln(mrm) + k)/m. Then we also103

have Φ(r, k) ≷ a′L/U (k + 1)/mmin + bL/U maxm ln(mrm)/m, with a′U = aU + bU (and all104

other constants unchanged). On the other side, if we have Φ(r, k) ≷ aL/U (k + 1)/mmin +105

bL/U maxm ln(mrm)/m, with aL > bL, then we also have Φ(r, k) ≷ aL/U (k + 1)/mmin +106

b′L/U maxm(ln(mrm) + k)/m, with b′L = aL − bL.107

The precise result that we obtain in this paper is the following:108

AOFA 2020



24:4 The complexity of Approximate Multiple Pattern Matching

I Theorem 2. For the AMPMP, with k errors and a dictionary D of content {rm}, the109

complexity rate Φ(D) is bounded in terms of the quantity110

Φ̃(D) := C1(k + 1)
mmin

+ C2 max
m

ln(smrm)
m

(3)111

as112

1
C1 + κsC2

Φ̃(D) 6 Φ(D) 6 Φ̃(D) , (4)113

with a = ln(2s2/(2s+ 1)), a′ = ln(4s2 − 1), κs = 5
√
s (as in Theorem 1) and114

C1 = a+ 2a′

a
; C2 = 2(a+ 2a′)

aa′
= 2
a′
C1 . (5)115

116

1.3 The lower bound117

Now, let us derive a lower bound of the functional form as in Table 1 for the AMPMP, by118

combining our results in [2] for the MPMP and the results in [5] for the APMP. Let us first119

observe a simple fact. Suppose that we have two bounds ALB(r, k) 6 Φ(r, k) 6 AUB(r, k)120

and BLB(r, k) 6 Φ(r, k) 6 BUB(r, k) (with ALB(r, k) and BLB(r, k) positive). Then, for all121

functions p(r, k), valued in [0, 1], we have122

p(r, k)ALB(r, k) + (1− p(r, k))BLB(r, k) 6 Φ(r, k) 6 AUB(r, k) +BUB(r, k) .123

We want to exploit this fact by using as bounds ALB/UB(r, k) our previous result for the124

exact search, and as lower bound BLB(r, k) the simple quantity (k + 1)/mmin. Then, later125

on, in Section 2, we will work on the determination of a bound BUB(r, k) which has the126

appropriate form for our strategy above to apply. Let us discuss why Φ(r, k) ≥ (k+ 1)/mmin.127

We will prove that this quantity is a bound to the minimal density of a certificate, over a128

single word of length m = mmin, and text ξ. A certificate, as described in [11], is a subset129

I ⊆ {1, . . . , n} such that, for the given text, the characters {ξi}i∈I imply that no occurrences130

of words of the dictionary may be possible, besides the ones which are fully contained in I.131

Some reflection shows that: (1) for the interesting case m > k, the smallest density |I|/n of132

a certificate is realised on a negative certificate, that is, on a text ξ with no occurrences of133

the word w; (2) the smallest density is realised, for example, by the text ξ = bbb · · · b, and134

the word w = aaa · · · a; (3) in such a certificate, we must have read at least k + 1 characters135

in every interval of size m, otherwise the alignment of w to this portion of text, in which we136

perform all the substitutions on the disclosed characters, would still be a viable candidate.137

Note in particular that deletion and insertion errors do not lead to higher lower bounds138

(although, for large m, they lead to bounds which are only slightly smaller).139

As a result, recalling the expression for the lower bound in Theorem 1, by choosing p(r, k)140

to satisfy p
1−p = κsC2

C1
we have141

Φ(r, k) ≥ (1− p)k + 1
mmin

+ p

κs
φ(r) = p

κsC2

(
C1
k + 1
mmin

+ C2φ(r)
)

=
C1

k+1
mmin

+ C2φ(r)
C1 + κsC2

.142

This proves the lower bound part of Theorem 2. Note that we could confine all the dependence143

from {rm} to the function φ (in particular, the choice p
1−p = κsC2

C1
only depends on the size144

of the alphabet s).145



F. Bassino, T. Rakotoarimalala and A. Sportiello 24:5

2 The (q, L) search algorithm, and the upper bound146

2.1 Definition of alignment147

We define a partial alignment α of the word w = x1 . . . xm to the portion of text ξi1 . . . ξi2 ,148

with k errors, and boundary parameters (ε, ε′) ∈ N, as the datum α = (w; i1, i2; ε, ε′;u),149

where u is a string in {C, Sa, D, Ia}∗, (these letters stand for correct, substitution, deletion150

and insertion, respectively, and the index a runs from 1 to s). Two integer parameters (for151

example i2 and ε′) are not independent, as they are deduced (say) from i1, ε and the length152

of u. Indeed, say that the string u has mC symbols C, mD symbols D, mS symbols of type153

Sa (for all a’s altogether) and mI symbols of type Ia, then154

k = mS +mD +mI (number of errors)155

ε+ ε′ = m− (mC +mS +mD) (portion of the word on the sides)156

i2 − i1 + 1 = mC +mS +mI (length of the aligned portion of text)157
158

The alignment has the following pattern (with a dash − denoting a skipped character, in the159

text or in the word):160

i1 i2
ξi1 · · · ξi2 = ... ξi1 ... wj ... − ... a ... a ... ξi2 ...

u = ... C ... D ... Sa ... Ia ...

w = w1 · · ·wε︸ ︷︷ ︸
ε

wε+1 ... wj ... wj′ ... wj′′ ... − ... wm−ε′ wm−ε′+1 · · ·wm︸ ︷︷ ︸
ε′

161

For example, if w = counteroffers, in our reference text of Figure 1 we have the alignment162

α = (w; i1, i2; ε, ε′;u) = (w; 14, 24; 3, 1;u) with k = 4 and u = CCCCI CCS SoIuC, as163

indeed164

i1 = 14 i2 = 24
ξ = · · · t h e . w i n t e r . o f . o u r . d i s c o n t e n t · · ·
u = C C C C I C C S So Iu C

w = c o u︸ ︷︷ ︸
ε = 3

n t e r - o f f e - r s︸︷︷︸
ε′ = 1

165

This example shows an important feature of this notion: several strings u may correspond166

to equivalent alignments among the same word and the same portion of text, and with the167

same offset ε. For example, the three last errors of u = · · ·S SoIuC can be replaced as in168

u′ = · · ·S IoSuC or as in u′′ = · · · I SoSuC. As the underlying idea in producing an upper169

bound from an explicit algorithm is to analyse the algorithm while using the union bound on170

the possible alignments, it will be useful to recognise classes of equivalent alignments, and,171

in the bound, ‘count’ just the classes, instead of the elements (we are more precise on this172

notion in Section 2.3).173

We define a full alignment to be likewise a partial alignment, but with ε = ε′ = 0. That174

is, the goal of any algorithm for the AMPMP is to output the list of (say) positions i2 of the175

full alignments among the given text and dictionary. Note that we can always complete a176

partial alignment with k errors and boundary parameters (ε, ε′) to a full alignment with no177

more than k + ε+ ε′ errors, and no less than k errors, by including substitution or insertion178

errors at the two sides.179

We define a c-block partial alignment as the generalisation of the notion of partial180

alignment to the case in which the portion of text consists of c non-adjacent blocks. In this181

AOFA 2020
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now.is.the.winter.of.our.discontent.made.glorious

deformed.pattern def
I

ormed.pat-te
D
n

def
I

ormed.pat-te
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rn

Figure 2 Typical outcome for the search of the pattern deformed pattern in our reference text.
In this example L = 3 and q = 12, the number of full blocks is c(α) = 2, and can be aligned to the
disclosed portion of the text (denoted by underline) with k = 3 errors: one deletion on the first
block, one insertion in the second block, and one deletion somewhere in between the two blocks. On
the bottom line, another alignment of the same word, in which, instead of inserting the letter r in
the second block, we have substituted n by r, still with k = 3. These two alignments are sufficiently
different to contribute separately to our estimate of the complexity, within our version of the union
bound (because the values of ε are different).

case, besides the natural alignment parameters ε, ε′, and i1,a, i2,a, and ua, for the blocks182

a = 1, . . . , c, we have c− 1 parameters δa ∈ Z, associated to the offset between the alignment183

of the word to the blocks with index a and a+ 1. As a result, in order to extend a c-block184

partial alignment to a full alignment, we need to perform at least −δa further insertion errors,185

or +δa further deletion errors, depending on the sign of δa, for each of the c− 1 intervals186

between the portions of text. That is, any c-block partial alignment α with k errors can be187

completed to a full alignment with no less than k +
∑
a |δa| errors.188

Note that in the following we will not need to count all of the possible ways in which189

these deletions or insertions can be performed, as it may seem natural in a naïve perspective190

on the use of the union bound. This fact will allow us to efficiently bound the number of191

possible multi-block partial alignments arising in our algorithm analysis (instead of counting192

directly the possible full alignments, which would result in a too large bound).193

2.2 The algorithm194

Here we introduce an algorithm for AMPMP, concentrating on the pertinent notion of195

complexity, which is the ratio between the number of accesses to the text and the length of196

the text, and neglecting all implementation issues, and analysis of time complexity.197

The algorithm is determined by two integers q and L, such that k+1 6 L < q 6 mmin−k.198

The emerging inequality 2k + 1 < mmin is not a limitation, as when this inequality is not199

satisfied we have to read a fraction Θ(1) of the text, and in this regime there is no point in200

showing that some algorithm can reach a complexity which is optimal up to a multiplicatve201

constant. When L = 1, the algorithm coincides with the one described by Fredriksson and202

Grabowski [6], and already analysed in detail in [2] for the MPMP. When we have a single203

word of length m, and q has the maximal possible value q = m− k, the algorithm coincides204

with the one used by Chang and Marr [5] for their proof of complexity of the APMP. As205

we will see in Section 2.5, choosing the optimal values of q and L for a given dictionary D206

(when the words are of different length) is not a trivial task.207

Call the interval ξbqξbq+1 · · · ξbq+L−1 of the text ξ the b-th block of text. The text is thus208

decomposed in a list of blocks of length L, and of intervals between the blocks, of length209

q − L. To every possible full alignment α of the word w to the text, are associated two210

integers: c(α) is the number of blocks which are fully contained in the alignment, and b(α) is211

the index of the rightmost of these blocks. Furthermore, we define c(w) as the minimum of212

c(α) among the possible alignments involving w (indeed, it is either c(α) = c(w) for all α, or213

c(α) ∈ {c(w), c(w) + 1} for all α, and, of course, at fixed q and L, c(w) only depends on the214

length |w| of the word).215
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Our algorithm accesses the text in three steps, namely, for every block index b =216

0, 1, . . . , dn/qe − 1:217

We read all the characters ξi of the text, for bq 6 i < bq + L, that is we read the b-th218

block;219

We consider the possible c-block partial alignments α (with c = c(α)) such that b(α) = b,220

and associated to the intervals of text read so far. If any of these alignments is not221

excluded or determined positively, we read also the characters ξi for i = bq− 1, bq− 2, . . .,222

one by one, in this order, up to when all partial alignments are either excluded, or reach223

ε = 0. For a given instance of the problem, call EL(b) (left-excess at block b) the set of224

positions of further characters that we need to access by this second step (with indices225

shifted so that the block starts at 1), and eL(b) = |EL(b)|.226

If at the previous step we still have partial alignments which are not excluded, we read227

also the characters at positions i = bq + L, bq + L+ 1, . . ., in this order, up to when all228

partial alignments are either excluded, or completed to a full alignment. Similarly to229

above, introduce ER(b) and eR(b) = |ER(b)| (right-excess at block b).230

An example with c(α) = 2 is in Figure 2. Note that, at all steps, the pattern of the accessed231

part of the text consists of some blocks of length L and spacing q, plus one rightmost block232

with length L′ ≥ L and spacing q′ 6 q. A typical situation within the second step is as233

follows (here c = 5, L = 3, q = 8, L′ = 12 and q′ = 7):234

�� �� �� �� �� �� �� �� �� ���� ��L L L L′
q q q′

235

Call E(b) = EL(b) ∪ ER(b), and e(b) = eL(b) + eR(b). Call Ψexact
h the average over random236

texts of the indicator function for the event that e(b) ≥ h. Clearly, the average complexity237

rate of our algorithm is bounded by the expression238

Φalg(D) 6 L+ E(e(b))
q

=
L+

∑
h≥1 Ψexact

h

q
,239

where the average is taken over random texts, at fixed dictionary. Note that, because of our240

choice of range for q and L, c(α) ≥ 1 for all α, and c(|w|) ≥ 1 for all w.241

Let α be a full alignment associated to the block b. Call E [α] the set of extra positions of242

the text (besides the blocks) that we need to access in order to determine the alignment α.243

Then clearly E(b) =
⋃
α E [α].244

2.3 Proof strategy for the upper bound245

Our proof strategy is to prove that there exists a choice of parameters L and q, with the246

properties that q = Θ(mmin), L/q = Θ(φ(r(D))), and E(e(b)) = Θ(1). This last condition247

is equivalent to the requirement that Ψexact
h is a summable series, and we will see that248

indeed the first can be bounded by a geometric series, and the second is rather small. Up to249

calculating the pertinent multiplicative constants, such a pattern would imply the functional250

form of the complexity anticipated in Section 1.2.251

The idea is that the exact calculation of E(e(b)) or of Ψexact
h , even at q and L fixed (which252

is easier than optimising w.r.t. these parameters), is rather difficult, but we can produce a253

simpler upper bound by:254

For alignments α with c(α) > 1, neglect the information coming from the e(b′) extra255

characters that we have accessed at blocks b′ < b. This allows to separate the analysis on256

the different blocks of text.257
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Naïvely, for different (full) alignments α, we could perform a union bound, that is,258

e(b) = |E(b)| = |
⋃
α E [α]| 6

∑
α |E [α]|, which thus separates the analysis over the259

different alignments. We will make an improved version of this bound, namely we use this260

bound, not with full alignments, but rather with “classes of equivalent partial alignments”.261

As we anticipated, the crucial point is that we count partial alignments instead of full262

alignments. A further slight improvement of the bound comes from considering these ‘classes263

of equivalent partial alignments’, instead of just the partial alignments. These two facts are264

motivated by the same argument, that we now elucidate.265

Consider the two following notions: (1) Each set Ah(w) of partial alignments is partitioned266

into classes I. (2) There is a subset Āh(w) ⊆ Ah(w) of alignments, that we shall call basic267

alignments. Now, suppose that the two following properties hold: (i) I ∩ Āh(w) 6= ∅268

for all classes I of Ah(w). (ii) For each α ∈ I, there exists a ᾱ ∈ I ∩ Āh(w), such that269

E(α) ⊆ E(ᾱ). In this case it is easily estalished that the bound above can be improved into270

e(b) = |E(b)| = |
⋃
α E [α]| 6

∑
ᾱ |E [ᾱ]|, where the sum runs only on basic partial alignments.271

Thus, calling Ψh :=
∑
w∈D

∑
α∈Āh(w) P(|E [ᾱ]| ≥ h), we have Ψh ≥ Ψexact

h .272

We propose the following definition of basic alignment. Let α be in Ah(w). In the string273

u, suppose that we write Ca instead of C, whenever the well-aligned character is a, and274

Da when the deleted character is a (this is clearly just a bijective decoration of u). For275

α ∈ Āh(w), we require that there are no occurrences of CaIa as factors of u (as these are276

equivalent to IaCa), of CaDa (as these are equivalent to DaCa) and of IaDb or DbIa (as277

these are equivalent to Ca or Sa, depending if a = b or not). If α can be obtained from α′ by278

a sequence of these rewriting rules, then α and α′ are in the same class I.279

It is easy to see that this definition of basic alignment and classes has the defining280

properties above.281

2.4 Evaluation of an upper bound at q and L fixed282

Let us call pc,h,ε′(w) the probability that, for a given word w and parameter ε′, there exists283

an alignment α ∈ Ah(w), to a text consisting of c− 1 blocks of length L and one block of284

length L+ h, which is visited by the algorithm (that is, it makes at most k errors), that is,285

in particular,286

Ψh 6
q−1∑
ε′=0

pc,h,ε′(w) . (6)287

288

We have the important fact289

I Proposition 3.

pc,h,ε′(w) 6 βs−(cL+h)BcL+h+c−1,k (7)290

for all ε′, where β = (2s−1)L+k
(2s−1)L−k and BL,k = (2s− 1)k

(
L+k
k

)
.291

The proof of this proposition is slightly complicated, and is presented in Appendix A. Note292

however that for the special case c = 1, and with exactly k errors (instead of at most k errors),293

the bound s−(L+h)(2s)k
(
L+k
k

)
can be established trivially. Also note that the bound does294

not depend on ε′, and, in particular, it only depends on h = |EL|+ |ER| for the alignments α295

at given w and ε′, and not separately on the two summands.296

We are now ready to evaluate the expressions for the upper bound on the quantity Ψh297

in (6), in light of (7). Call Rc =
∑
m : c(m)=c rm =

∑q(c+1)+L−2
m=qc+L−1 rm, and pc,h as q times the298
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RHS of (7) (that is, an upper bound to
∑q−1
ε′=0 pc,h,ε′(w)). We have the bound299 ∑

h

Ψh 6
∑
c

Rc
∑
h

pc,h =
∑
c

Rc
∑
h

β q s−(cL+h)BcL+h+c−1,k . (8)300

301

Recalling that302 ∑
h≥0

s−h
(
a+ k + h

k

)
6

1
1− 1

s
a+k+1
a+1

(
a+ k

k

)
,303

(and that q < mmin), substituting in (8) gives304

Φalg(D) 6 1
q

(
L+ βq

∑
c

Rc
1

1− 1
s
cL+k+c
cL+c

s−cL
(
cL+ c− 1 + k

k

)
(2s− 1)k

)
6

1
q

(
L+ βmmin(2s− 1)k

1− 1
s
L+k
L

∑
c

Rc s
−cL
(
c(L+ 1) + k

k

))
. (9)305

We want to prove that306

Φalg(D) 6 C1k + C ′1
mmin

+ C2 max
m

ln(smrm)
m

, (10)307

with suitable constants C1, C ′1 and C2 (it will turn out at the end that we can set C ′1 = C1308

and C1, C2 to be as in Theorem 2, but at this point it is convenient to let them be three309

separate variables). This would prove the upper bound part of Theorem 2.310

Note that, if k/mmin ≥ 1/C1, the upper bound expression (10) is larger than the trivial311

bound Φalg(D) 6 1, and there is nothing to prove. So we can assume that k/mmin < 1/C1.312

2.5 Optimisation of q and L313

We now have to analyse the expression (9), in order to understand which values of q and L314

make the bound smaller. The sum over c is the most complicated term. We simplify it by315

using the fact that, for all ξ ∈ R+, ln
(
a+k
k

)
6 k ln(1 + ξ) + a ln(1 + ξ−1), which gives316

T := mmin(2s− 1)k
∑
c

Rc s
−cL
(
c(L+ 1) + k

k

)
317

6
∑
c

1
c2

exp
[
− c
(
LA− 1

c
(ln(Rcmmin) + k ln((1 + ξ)(2s− 1)))− ln c2

c
− ln(1 + ξ−1)

)]
318

=
∑
c

1
c2

exp
[
−c(LA− φ′(c)− ln(1 + ξ−1))

]
, (11)319

320

where A = ln(sξ/(1 + ξ)), A′ = ln((1 + ξ)(2s− 1)) and321

φ′(c) = ln(c2Rcmmin) + kA′

c
. (12)322

Ultimately, we want to choose L such that T is bounded by a constant, as its summands323

over c are bounded by a convergent series. With this goal, let c∗ be the value maximising324

the expression φ′(c), and φ∗ the value of the maximum. The sum above is then bounded by325 ∑
c

1
c2

exp[−c(LA− φ∗ − ln(1 + ξ−1))] .326
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For any value of ξ such that A > 0 (that is, for ξ > (s− 1)−1), there exists a positive smallest327

value of L such that the exponent in the expression above is negative. So we set328

L∗ =
⌈
φ∗ + ln(1 + ξ−1)

A

⌉
,329

(as the choice of ξ is free, we can tune it at the end so that the ratio is an integer), and330

recognise that the RHS of equation (11), specialised to L = L∗, is bounded by
∑
c

1
c2 = π2/6.331

Note that332

φ∗ ≥ φ′(1) ≥ kA′333

so that334

L∗

k
≥ A′

A
= ln((1 + ξ)(2s− 1))

ln(s ξ/(1 + ξ)) ,335

which implies that we can set β = 2s−1+A/A′
2s−1−A/A′ , and336

1
1− 1

s
L+k
L

6
1

1− 1
s (1 +A/A′)

= 1
1− 1

s
ln(sξ(2s−1))

ln((1+ξ)(2s−1))

.337

Now, let us choose q =
⌊
mmin−k

2
⌋
, which coincides with the choice of the analogous parameter338

in Chang and Marr [5]. This is the largest possible value such that c(w) ≥ 1 for all w ∈ D.339

With this choice,340

1
q
6

2
mmin

C1

C1 − 1 .341

Collecting the various factors calculated above, we get that the expression (9) is bounded by342

Φalg(D) 6 2
mmin

C1

C1 − 1

(
L∗ +

β π
2

6
1− 1

s (1 +A/A′)

)
.343

We are left with two tasks: choosing suitable values for ξ and C1 (both of order 1), and344

recognising that the expression for L∗ (and for φ∗) can be related to the quantity φ(r) in345

(2). Let us start from the latter. Note that, as for any m ≥ mmin346

m− k
q
− 2 6 c(m) 6 m

q
347

we can write2 m 6 mminc(m) 6 s2m, which gives348

max
c

1
c

ln(c2mminRc) 6 max
m

mmin

m
ln(s2m2rm) 6 2mminφ(r) .349

As, of course maxc(X(c) + Y (c)) 6 maxcX(c) + maxc Y (c), we have in particular that350

φ∗ 6 2mminφ(r) + kA′ L∗ 6
2mminφ(r) + kA′ + ln(1 + ξ−1)

A
,351

352

2 Because s > 2, and we anticipate that, under our choice, C1 ≥ 5, thus

m 6 2(m− k − q) 6 mmin

(
m− k
q
− 2
)
6 mminc(m) 6 mmin

m

q
6 2
(

C1

C1 − 1

)
m 6 s2m.
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2 4 6 8 10

s

5

10

15

Figure 3 Plot of the constant C1(s), C′
1(s) and C2(s), as given by the expressions in (13)

(respectively, in blue, green and red). The asymptotic values are 5, 5π2/12 and 0 respectively.

which thus implies353

Φalg(D) 6 2
mmin

C1

C1 − 1

(
2mmin

A
φ(r) + k

A′

A
+

β π
2

6
1− 1

s (1 +A/A′)
+ ln(1 + ξ−1)

A

)
= 2C1

C1 − 1

[
A′

A

k

mmin
+
(

β π
2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
A

)
1

mmin
+ 2
A
φ(r)

]
.354

Let us choose C1 = 2A′/A+ 1. The expression above simplifies into355

Φalg(D) 6 C1k

mmin
+ 2A′ +A

AA′

[(
Aβ π

2

6
1− 1

s (1 + A
A′ )

+ ln(1 + ξ−1)
)

1
mmin

+ 2φ(r)
]
,356

in particular, this justifies the notation C1, which in the introduction was chosen to denote357

the coefficient in front of the k
mmin

summand. Now we shall choose the optimal value of ξ.358

The dependence on ξ is mild, provided that we are in the appropriate range ξ > 1/(s− 1).359

The choice of ξ, in turns, determines the ratio between the lower and upper bound, which360

has the functional form C ′1 + κsC2 (with notations as in the theorem). A choice which is361

a good trade-off among the three summands in this expression, and for which the analytic362

expression is relatively simple, is to take ξ = 2s. Under this choice we have363

C1 = 1 + 2 ln(4s2 − 1)
ln(2s2/(2s+ 1)) , C2 = 4

ln(2s2/(2s+ 1)) + 2
ln(4s2 − 1) ,364

C ′1 = C2

2

[
ln 2s+ 1

2s + βπ2

6
s ln(2s2/(2s+ 1)) ln(4s2 − 1)

(s− 1) ln(4s2 − 1)− ln(2s2/(2s+ 1))

]
,365

366

or, in a more compact way, calling a = A|ξ=2s = ln(2s2/(2s + 1)) and a′ = A′|ξ=2s =367

ln(4s2 − 1), and substituting back the value of β,368

C1 = a+ 2a′

a
, C2 = a+ 2a′

a

2
a′
, (13a)369

C ′1 = a+ 2a′

a

(
ln s− a
a′

+ π2

6
(2s− 1)a′ + a

(2s− 1)a′ − a
as

(s− 1)a′ − a

)
. (13b)370

371
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The behaviour in s of these constants is depicted in Figure 3.372

It can be verified that, with our choice of ξ, C ′1 < C1 for all s ≥ 2.3 we can replace C ′1 by373

C1 in the functional form (10) for the bound on Φalg(D), and thus obtain the statement of374

Theorem 2. This concludes our proof.375
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A Proof of Proposition 3401

In this section we evaluate an upper bound to pc,h,ε′ , which is the probability that, for a402

given word w with c(|w|) = c, the disclosed text composed of c− 1 intervals of size L and403

one interval of size L+ h corresponds to at least one basic alignment α by making no more404

than k errors. The statement of the result, equation (14) below, is given in Proposition 3.405

Let us introduce the recurring quantity406

BL,k := (2s− 1)k
(
L+ k

k

)
.407

First, let us analyse the case in which we have a single block, and exactly k errors. For w a408

word of length m, it is clear that the result depends only on the m− ε′ left-most characters409

of the word, not on the ε′ right-most ones, so we can assume without loss of generality that410

ε′ = 0. Call HL,k(m) the number of different words of length L obtained by transforming411

the suffixes of w and making exactly k errors. We have412

B Proposition A.1. For all L ≥ k ≥ 1, HL,k 6 BL,k.413

Proof. Note that the analogous statement with 2s− 1 replaced by 2s in BL,k is trivial, as we414

have exactly 2s types of errors (one deletion, s insertions and s− 1 substitutions), and the415

counting of their possible positions in the string u is a function of the length of the string,416

bounded from above by the worst case, associated to all insertion errors.417

We can gain the factor 2s− 1 instead of 2s by restricting to basic alignments, but this418

requires a finer analysis involving generating functions. Let us call f(u, y, z) the generating419

function such that [uayLzk]f(u, y, z) is the number of basic alignments of length L obtained420

by transforming a word of length a and making exactly k errors. Calculating f(u, y, z) exactly421

is a difficult task, and the result would depend on w as a word, not only on m = |w|, but we422

will calculate a simpler upper bound fUB(u, y, z), which in particular only depends on m. In423

this context, a generating-function upper bound is an upper bound for partial sums, that424

is g � f if
∑k
h=0[uayLzh](g(u, y, z)− f(u, y, z)) ≥ 0 for all L and a. Let us construct fUB425

by starting from f0(u, y, z) := uy
1−uy , which is the generating function f specialised to z = 0,426

and let us introduce the various types of errors one at the time.427

The first operation corresponds to allow for insertion errors. The restriction to basic428

alignments, however, brings to a subtlety. For example, starting with a word w = abcd, in429

order to get the alignment aaabcd we can proceed in several ways: aaabcd or aaabcd or by430

aaabcd (bold letters correspond to insertions). Under the notion of basic alignment we avoid431

to overcount these manifestly equivalent alignments, as of these expressions we would only432

keep the latter, aaabcd, that is, at the left of a letter a we can only insert letters different433

from a. On the other hand, at the right end of the word one can insert strings consisting of434

any character of the alphabet.435

Calling fi the generating function in which insertion errors are allowed, we thus get436

fi(u, y, z) = 1
1− syz f(u, y, z)|

uy→uy
(

1
1−(s−1)z

) = uy

(1− syz)(1− uy − (s− 1)yz) .437

We now introduce deletion errors, which, consistently, we allow only on the characters of438

the initial string (not on the ones which have just been insterted). Thus, any given original439

character can be either left as is, or deleted. This gives the generating function fi,d, with440

fi,d(u, y, z) = fi(u, y, z)|uy→uy+uz = uz + uy

(1− syz)(1− uy − uz − (s− 1)yz) .441
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Finally, for substitution errors, again we can either substitute any initial character with one442

of the s− 1 other characters of the alphabet, or leave it unchanged, which brings to fi,d,s,443

with444

fi,d,s = fi,d(u, y, z)|uy→uy+(s−1)uyz = u(syz − yz + y + z)
(1− syz)(1− uz − (s− 1)(u+ 1)yz) .445

Note that, by this procedure, we have already produced an upper bound, as fi,d,s � f (in446

the sense defined above). Note also that it is not fi,d,s = f , because, for example, we have447

overcounted the equivalent cases in which in a word w = · · · aa · · · we have deleted the first448

or the second character.449

If the word w is shorter than L+ k, we may miss some alignments because they do not450

fit in the text interval. As we are evaluating an upper bound, we can restrict to the case in451

which w is long enough for this not to happen, and thus sum over all suffixes by just setting452

u = 1, and conclude that HL,k 6 [yLzk]f ′(1, y, z). Thus, in order to conclude, we must show453

that [yLzk]f ′(1, y, z) 6 BL,k. Let us call454

FL,k = [yLzk] 1
(syz − 1)(2syz − 2yz + y + z − 1) .455

We can rewrite the inequality above as HL,k 6 FL−1,k +FL,k−1 + (s− 1)FL−1,k−1, and thus,456

if we can prove that FL,k 6 BL,k, for all pairs of integers L > k, we could conclude in light457

of the fact that458

HL,k 6 BL−1,k +BL,k−1 + (s− 1)BL−1,k−1 = (2s− 1)k
(
L+ k

k

)
−RL,k ,459

where RL,k = (2s− 1)k−1
(

2(s− 1)k−1
L

(
L+k−2
k−1

))
is indeed easily checked to be non-negative460

for all L > k > 1.461

So, to finish the proof, let us show that FL,k 6 BL,k. First,462

FL,k = [yLzk]
(

1
1− syz + 2syz − 2yz + y + z

1− 2syz + 2yz − y − z

)
= δL,ks

k + FL−1,k + FL,k−1 + 2(s− 1)FL−1,k−1 .463

Since L > k > 1, we have RL,k > δL,ks
k for s > 2, and BL,k > FL,k > HL,k.464

To conclude, we just check the boundary conditions in the recursion above for FL,k465

and BL,k, which again are in agreement with the inequality. Indeed we have, for (L, k) ∈466

{(0, 0), (0, 1), (1, 0)}, F0,0 = B0,0 = 1, B0,1 = 2s − 1 ≥ 1 = F0,1 and B1,0 = 4s − 2 ≥ 3s =467

F1,0. J468

Now we want to deal with the more general case, in which we have more than one block, and469

we sum over the number of errors up to k. We will prove a more general statement, in which470

we have c blocks of lengths L1, . . . , Lc, separated by gaps of lengths q1, . . . , qc−1, which in471

particular is so general to allow us to treat in one stroke the case in which we add characters472

at the left or at the right of the b-th algorithm block.473

Similarly to the argument above, in order to produce an upper bound we can set without474

loss of generality that ε′ = 0, all the qi’s are larger than k and that m is larger than475 ∑
Li +

∑
qi + k, as any variant of this would give no more alignments. So, we will call476

pL1,...,Lc;k the corresponding quantity, in which the dependence from the qi’s and m has been477

dropped.478
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EE
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�
��

• •

• •

�
�
�
�
�
�
�

•

•

•

•

L1︷ ︸︸ ︷
q1+L1︷ ︸︸ ︷

L2︷ ︸︸ ︷
q2+L2︷ ︸︸ ︷

︸ ︷︷ ︸
ε

Lc︷ ︸︸ ︷

︸ ︷︷ ︸
ε′

q1+δ1︷ ︸︸ ︷ q2+δ2︷ ︸︸ ︷

bq

u1 u2 u3

Figure 4 Example of multi-interval alignment analysed for the estimate of pL1,...,Lc;k.

For multi-block partial alignments, we have parameters δ1, . . . , δc−1 for the offset among479

the different consecutive blocks of the partial alignment, and, if we have an offset δi in the480

alignment of two blocks, we have to perform at least |δi| deletions or insertions errors when481

completing the partial alignment to a full one (cf. figure 4).482

Calling L̄ =
∑c
i=1 Li, this leads to the following sum483

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
k1,k2,...,kc∈N

k1+k2+...+kc=t−∆

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL1,k1BL2,k2 . . . BLc,kc .484

From the Vandermonde convolution formula,
k∑
i=0

(
l1+i
i

)(
l2+k−i
k−i

)
=
(
l1+l2+k+1

k

)
, which implies485 ∑

hBL1,hBL2,k−h = BL1+L2+1,k, we can simplify the expression above into486

pL1,...,Lc;k 6 s−L̄
k∑
t=0

t∑
∆=0

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

BL̄+c−1,t−∆ .487

The sum over the δi’s gives488

∑
δ1,δ2,...,δc−1∈Z

δ1+δ2+...+δc−1=∆

1 = [z∆]
(

1 + z

1− z

)c−1
489

that is, by recognising that BL,k−h 6 BL,k

(
k

(2s−1)L

)h
, we get490

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= k

(2s−1)(L̄+c−1)

.491

This is all we shall say at this level of generality. Now note that, in our patterns, L̄+c−1 ≥ cL492

(and k 6 L), so that, in this range of parameters,493

pL1,...,Lc;k 6 s−L̄BL̄+c−1,k

(
(1 + z)c−1

(1− z)c

)∣∣∣∣
z= 1

(2s−1)c
k
L

6
(2s− 1) + k

L

(2s− 1)− k
L

s−L̄BL̄+c−1,k . (14)494
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