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Abstract

In signal processing, ARMA processes are widely used to model short-memory
processes. In various applications, comparing or classifying ARMA processes is
required. In this paper, our purpose is to provide analytical expressions of the
divergence rates of the Kullback-Leibler divergence, the Rényi divergence (RD)
of order @ and their symmetric versions for two Gaussian ARMA processes,
by taking advantage of results such as the Yule-Walker equations and notions
such as inverse filtering. The divergence rates can be interpreted as the sum of
different quantities: power of one ARMA process filtered by the inverse filter
associated with the second ARMA process, cepstrum, etc. Finally, illustrations
show that the ranges of values taken by the divergence rates of the RD is sensitive
to a, especially when the latter is close to 1.
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1. Introduction

AutoRegressive Moving Average (ARMA) models are used to model short-
memory processes for different purposes such as spectral estimation, change
detection and feature extraction for signal coding or classification in different
domains such as speech processing, biomedical applications or radar processing
[1, 19, 23, 36, 45]. In some of the above-mentioned applications, the comparison
of the ARMA models is often crucial. For instance, in system identification,
the performance of an estimation method is usually evaluated by comparing
the identified model with the true one, starting from synthetic data [5, 12].
In change detection and fault diagnosis, the estimated model is continuously
updated and compared with a reference model in order to check if a change or
a fault has occurred [1, 21].

There are various standard ways to compare two ARMA models: one can con-
sider the 2-norm and/or the infinity norm of the vector storing the ARMA-
parameter differences or one can look at the poles and zeros in the z-plane
of the transfer function associated with the ARMA model. Starting from the
parameters of the ARMA models, it is also possible to determine the corre-
sponding power spectral densities and then compute the log-spectral distance
(LSD), the Itakura-Saito distance, that takes its origins in probability theory,
and the symmetric Itakura-Saito distance [48].

In this paper, the model comparison issue is addressed by analyzing the behav-
ior of the Kullback-Leibler (KL) divergence and the Rényi divergence between
the probability density functions (pdfs) of k consecutive samples of two Gaus-
sian wide-sense stationary (w.s.s.) ARMA processes, when k increases. Their
symmetric versions, known as Jeffreys divergence and the symmetric Rényi di-
vergence, are also investigated. More particularly, our purpose is to study the
difference between the divergences computed for £+ 1 and k variates and to de-
rive an analytic expression of its limit. This asymptotic increment corresponds
to what is called the divergence rate in information theory. Indeed in this

field, information measures, such as the entropy, the mutual information and



the divergence are often extended to information rates. Thus, different authors
have focused their attentions on the divergence rates for stationary Gaussian
processes: in [14], Gil first recalls the expression of the KL divergence rate
for zero-mean Gaussian processes, initially presented in [20], before giving the
Rényi divergence rate. The rates are expressed in terms of integrals depending
on functions of the power spectral densities of the processes. Moreover, to ob-
tain their results, the author takes advantage of the theory of Toeplitz matrices
and the properties of the asymptotic distribution of the eigenvalues of Toeplitz
forms.

In this paper, we get a closed form expression of the divergence rates by ex-
ploiting a different approach. Starting from the definition of the divergences,
we combine different results on ARMA processes such as the interpretation of
the ARMA process as the filtering of a white noise, the Yule-Walker equations
[36] and the link between the determinant of the covariance matrix with the AR
parameters or the reflection coefficients in order to get the expression of the di-
vergence rates. Among the results we obtain, we will see that the KL divergence
rate corresponds to the Itakura—Saito distance, up to a multiplicative factor. In
other words, using the KL divergence rate amounts to using the Itakura—Saito
distance'. As the KL divergence corresponds to the Rényi divergence of order
«a when « tends to 1, looking at the Réyni divergence rate can hence offer a
degree of freedom for ARMA-process comparison. In addition, our results are
consistent with the ones Gil obtained for zero-mean Gaussian random processes
n [14]. Although this is not visible at the first glance, we will then show that
our expression of the divergence rate of the Rényi divergence converges to the
divergence rate of the KL when the order « tends to 1. Once again, the proof

is mainly based on the properties of the ARMA processes. Finally, we will give

11t is of interest to point out this connection as some authors developed some signal pro-
cessing approches in which they suggest minimizing the Itakura-Saito distance instead of the
Kullback-Leibler divergence. This is for instance the case when dealing with the non-negative

matrix factorization [29].



some illustrations either based on synthetic data or real data. More particularly
the application deals with the characterization of a period of stress by using the
divergence rate.

It should be noted that this work is also the opportunity to correct some results
we gave in [34] and is a complementary study to the work done on the divergence
rate of the Jeffreys divergence between probability density functions of consec-
utive samples of autoregressive (AR), moving average (MA) or autoregressive
moving average (ARMA) processes and autoregressive fractionally integrated
moving average (ARFIMA) -noisy or not- in [30, 31, 33, 41].

The remainder of this paper is organized as follows: Section 2 deals with the
KL and the Rényi divergence as well as their symmetric versions, their defi-
nitions and analytic expressions in the Gaussian case. The expressions of the
increments, i.e. the differences between the divergences computed for k£ + 1
and k variates, are also given. In section 3, various properties of the Gaussian
ARMA processes are presented. Even if some results may be well known by
some readers, this section is useful as it provides all the necessary information
to derive the divergence rates. In section 4, by combining results of sections 2
and 3, the behaviors of the Rényi divergence and the KL divergence are then
analyzed for Gaussian ARMA processes. The expressions of their asymptotic
increments, i.e. their divergence rates, are derived. Connections with Gil’s work
are then made. It is also shown that the limit of the divergence rate of the Rényi
divergence tends to the divergence rate of the KL when the order tends to 1. In
section 5, simulations results are provided. An analysis on synthetic data makes
it possible to confirm the theoretical analysis. Then, an application on real data
is proposed. Finally, two appendices deal with the derivation of the expression
of the Rényi divergence in the Gaussian case and the expression of the transfer

function associated with the linear combination of two ARMA processes.



2. About Kullback-Leibler and Rényi divergences

2.1. Brief state of the art on the divergences

Divergences are used by several communities in the field of signal and image
processing and statistics. On the one hand, with the entropy which can be seen
as a measure of information, it is one of the notions that is mainly exploited in
information theory. On the other hand, in some applications, divergences can be
of interest to compare two time series that can correspond to signals recorded by
different sensors. They can also be a relevant tool to detect statistical changes
in a signal. In this case, a part of the signal which is known as a reference is
compared with another one by using a sliding window. Detecting abrupt changes
in time series can be also interest [28]. In image processing, classification can
be done thanks to divergences [6, 42]. There is also a need to compare the
pdfs for statistical hypothesis tests. Finally, divergences are used in the field of
deep learning during the back-propagation step. As a consequence, divergences
can be useful in a large number of applications, from econometrics to hydrology,
from biomedical signal analysis to radar processing. See for instance [13, 33, 35].
A great deal of interest has been paid to divergences for several decades. The
Kullback-Leibler (KL) divergence, also known as KL relative entropy, is one
of the most popular divergences [26]. Starting from KL, one can easily define
the Jeffreys divergence which is its symmetric version, by interchanging the role
of the two distributions to be compared [22]. As for the Jensen-Shannon di-
vergence, it can be deduced by first introducing the distribution mean, then
evaluating the KL between each distribution to be compared and the distri-
bution mean and finally computing the mean of both KL. Jensen-Shannon di-
vergence is a particular case of the General Jensen-Shannon divergence, also
known as the skewed Jensen-Shannon divergence. In this case, instead of
computing the mean of the two KLs, the linear combination of the two KLs
is considered. Another generalization of the KL can be considered through
a-divergences, which are parameterized by a parameter . Thus, Basu et al.

introduced the density power divergences [3]. In this case, it corresponds to the



integral of a sum of quantities defined from the pdfs to be compared raised at
the value o or a + 1. Note that « also appears as a multiplicative factor. An-
other instance is the Rényi divergence of order . When « tends to 1, the Rényi
divergence tends to KL, whereas a = % leads to the Bhattacharyya distance.
Moreover, the Rényi divergence of order « is equal to the Chernoff divergence
of order a up to a multiplicative constant equal to ﬁ The KL divergence
can also be related to an f-divergence, also known as Csiszar divergence. In
this case, the divergence is defined as an integral of the product between the

second pdf and a convex function f of the ratio of the two pdfs, with f(1) = 0.
Thus, when the latter is equal to the logarithm, this leads to the KL. The Kay

2
T+t

L Tt should be noted that

divergence is another example of f-divergences where f(t) = In(+=) whereas

tlfa_

the Tsallis divergence is obtained when f(t) = *——
the Rényi divergence of order o can be expressed as a function of the logarithm
of a f-divergence, provided that f(t) = t!7® — 1. Finally, some divergences
presented above can be related to Bregman divergences. See [2] for instance.
Currently, there are various types of research activities on divergences that are
conducted. As it is difficult to be exhaustive, here are some examples:

1. Some studies deal with closed-form expressions, properties, new types or
generalizations of existing divergences [10, 24, 25, 38, 47].

2. Other address the estimation of the divergence from data that can be Gaus-
sian or not [8, 9, 37, 46].

3. Related issues deal with entropy rates, defined as the entropy per unit time
[40], [15].

In the next subsection, let us focus our attention on the KL and Rényi divergence

as well as symmetric versions.

2.2. Definitions and expression in the Gaussian case

Let z; 1 and z; 2 be two scalar real Gaussian random processes and X}, ; and

Xp,2 the k x 1 column vectors storing k consecutive samples of z; 1 and z; 2:

Xii = [T Te—1,i -+ $t7k+1,i}T fori=1,2 (1)



The pdf of X ; is given by:

1
(V2 [Qual/?

with p, ; = E[X} ;] the statistical mean, |Qg ;| the determinant of the covariance

1 _ .
pi(Xki) = xp (= 5[Xki = p,i) " Qi [ X — ) for i = 1,2 (2)

matrix Qr; = E[( Xk, — tr,i)(Xg,i — wri)T] and E[-] the expectation operator.
To study the dissimilarities between the random processes, the KL divergence
between the joint distributions of k successive values of two random processes

can be evaluated [26] and is given by:

KL{"? = /X k p1(X3) In (%) dX; (3)

For Gaussian processes, it can be shown, by substituting p;(X%) and pa(Xi)
with the expression (2) and by introducing Apy = px,2 — pg,1 and taking ad-

vantages of the properties of the trace of a matrix, that K Lg,z) satisfies [39]:

IQk,ll]
|Qr2]

1 _
KLY = 2 Tr(Qh (Qua + AunAuf)) —k —In )

where Tr denotes the trace of a matrix.

However, the KLi divergence is not symmetric. To address this issue, various
approaches can be considered. A first idea is to take the minimum value between
KL,(:’Z) and KLl(f’l). An alternative is to compute the sum KL,(CI’Z) + KLgf’l).
As for Jeffreys divergence, denoted as J D,(Cl’Q), it aims at computing the mean

between KL;:’Q) and KLff’l). It satisfies:

1
ID = S(KLP? + KLY (5)

1

= [T (@5 (@us + A AD) + Qi3 (Quz + AmeAul)) — 2]

As mentioned in the introduction, the KL divergence is a specific case of other

divergences. Among them, the Rényi divergence (RD) of order « is defined as:

1 (e —a
RD{ (@) = 2ghn [0 (409377 (i) 4, (©)
k

In the above equation, « is a degree of freedom that can be selected by the
practitioner. Using L’Hospital rule, one can show that RD,(Cl’Q)(a) tends to
KLSQ) when « tends to 1. « = 1 is the only case when RD,(cl’z)(a) and
RD,(f’l)(a) provide the same value. For 0 < a < 1, the RD has a skew sym-

metry since RD,(CI’?)(a) = ﬁRD,(fJ)(l — «). Finally, for 0 < a1 < ag < 1,



one has +4 1_ﬂRD,(Cl’Q)(ozg) < RD](Cl’z)(oq) < RDI(;’Z)(OQ). In the Gaussian

17&1 17&1

case, combining (2) and (6) and after some mathematical developments, (See

Appendix A for proof), one has:

@2y 1 |Qk,al a —1 T
RO (0) = —5— 1)1“(|Qk,1|1fa|Qk,2|a) + S (QehdmAnl) (M)
where:
Qr,a = 0Qr2 + (1 — )Qr,1 (8)

Let us now introduce the symmetric version of the Rényi divergence (SRD).
Similarly to the KL divergence, various cases can be considered. In this paper,

the definition below is used:

SRD{ (@) = Z(RD{? () + RD () 9)

1 (|Qk,aHQk,lfa|

a 1 . -
2a—1) \[QrIQel ) + 7T @ra + Qrima) Aurdrir)

In the following, let us express the increments of these divergences.

2.8. Analysis of the divergence increments in the Gaussian case

2.8.1. Case of the Kullback-Leibler and Jeffreys divergences

Let us first compute the k" increment of the KL divergence defined as:
1,2 1,2 (1,2)
AKLM = KLY — KL (10)

Given the expression (4), one has:

1/ 1Qrs1a]| Q2
AKLM? = 2] +L ’ 11
* 2 n( Q.1 \Qk+1,2|) D
1 —1 T —1 T
+ 5 (Tr(@Qicdy 2(@Qurr + A A1) = Tr(Qi b Qe + Al — 1)

In (11), two terms can be analyzed separately: the difference of traces and the
logarithm of determinants of covariance matrices.

Let us now look at the increment of the JD. Using (5) and (11), one has:

1

AIDL? = 2 Tr(Qicki s@usrn + Qicty 1 Qe 2) = TH(QihQua + QiiQra2)  (12)

— 2+ T ((Qichra + Qi) A1 Anfir) = Tr((Qih + Q) AmeAnt)]

1 1,2 2,1
= S(AKL? + AKLEY)



2.83.2. Case of the Rényi divergence and its symmetric version

Let us address the case of the RD and its symmetric version studying the dif-
ference between RD,(CI_fl)(a) and RD,(CM)(Q) and the difference between SRD,(lel) ()
and SRD,(CI’Q)(a) respectively. Given (7) and (9), they are equal to:

«Q _ _
ARD{(a) = 5 (Tr(QkL,aAMkHAMgH) - Tr(Qk,LAMkAMZ)) (13)

2
1 ln( |Qr2|” [Qrt1,0l |Qk,1\1_a)
)

N 2(a—1 |Qr+1,2]* |Qk,al |Qrt1,1]1—
and
« _ —
ASRD{M(a) = & (Tr((QkiLa + Qkil,l_a)AumAufﬂ) (14)

- _ 1 |Qk+1,0||Qk+1,1—a||Qk,1||Qk,2]|
- T Q) AuAul )— 1 : : : :
M@+ @ii-dmant) ) - o (oG @)

In the following, we suggest analyzing the way these increments evolve when
k increases and becomes larger and larger? when comparing w.s.s. Gaussian
ARMA processes. For this purpose, in section 3, we present the properties of
the ARMA processes, especially those dealing with their covariance matrices.
Given (11), (12)-(14), two questions have to be addressed: Which interpretation
can be given to the difference of traces of matrices which are pre-multiplied by
the inverse of a covariance matrix? What is the limit of the logarithm of the

ratio between covariance-matrix determinants?

3. About w.s.s. Gaussian ARMA processes

Let us first recall that a real w.s.s. ARMA(p, q) process is described by?>:
P q
Ty = — Z aiTi—; + usr + Z T (15)
i=1 j=1

where {a;};=1,. , and {b;};=1, 4 are the ARMA parameters and the driving
2

process u; is a zero-mean w.s.s. Gaussian white process with variance o;. In

this case, x; is zero-mean. If the w.s.s. ARMA process has a mean equal to p,,

2In the following, this will be denoted by: X lim (.). Nevertheless, k remains finite.
—+oo
3For the sake of simplicity in this section, the subscript related to the number (1°¢ or 2”4)

of the process is omitted.



two ways can be considered to generate it: either a posteriori adding u, to x;
1+Z§:1 a;
>

or considering a driving process whose mean is equal to T Ha-
j=19i

The ARMA process x; can be seen as the output of an infinite-impulse-response
linear filtering whose input is the driving process. The corresponding transfer
function H(z) is defined by the poles {p;};=1,... , assumed to be inside the unit
circle in the z-plane to ensure the asymptotic stability and the zeros {z};=1,.. 4
Given 0 the normalized angular frequency, the corresponding power spectral
density (PSD) satisfies:

Su(0) = ou|H(e)? (16)
Let us now recall six properties that will be useful in the rest of the paper.
1. 29 ARMA processes of order (p,q) have the same pdf: since the
comparison between ARMA processes is based on their pdfs, it is of interest to
highlight when two different ARMA processes are undistinguishable by using the
divergences presented above i.e. when they are characterized by the same pdf.
Many possible ARMA models can be associated with the same PSD. This result
is known as the spectral factorization theorem [43, 45]. The transfer function
of the process is necessarily defined by the same poles. However, as there is no
constraint on the zeros, there are 2¢ numerators that can be defined depending
on whether the zero z; or its inverse 1/z; is chosen, for [ = 1,...,q. Once the
numerator and the denominator are defined, the variance of the driving process
can be deduced and is equal to o2 [[{_, K; with K; = 1 when the zero z; is inside
the unit circle in the z-plane and K; = |z|? when it is outside the unit-circle.
2. Minimum-phase ARMA model: if there is no zero on the unit disc, it is
always possible to determine within the set of ARMA processes described above
a minimum-phase ARMA model defined by zeros are inside the unit disc in the
z-plane [43]. Therefore, an arbitrary rational PSD can be represented by an
ARMA process whose transfer function H,,;,(z) is asymptotically stable and
minimum phase. For every non-minimum phase ARMA model, it is possible
to consider the equivalent minimum-phase spectral factor, obtained with the
following operations: Let {2 }i=1,... m<, be the zeros such that |z| > 1 with

l=1,...,m. Replace z; with 1/} for I =1,...,m to get H,,;n(%). Replace the

10



variance o, of the original ARMA model with o7 .., = o2 [[[_, K.
3. Properties of the AR parameters and the variance of the driv-
ing process: a minimum-phase ARMA process is invertible so that it can be

represented by an infinite-order AR process [7] as follows:
+oo
Tt = _Zaiﬁtfi'i‘ut. (17)
1=1

By truncating the above summation, the ARMA process can be approximated

by an AR model of finite-order 7 > max (p, q):
Ty~ — Z Qi rTo—i + Ut,r (18)
i=1

Let us now briefly recall how to estimate the AR parameters. To this end, let us
first define the covariance function r; of the real ARMA process and introduce
X}, the vector collecting k consecutive samples of the ARMA process as well as
its corresponding k x k symmetric Toeplitz covariance matrix @)} where the el-
ement located at the i** row and j** column is given by the covariance function
rj—; = Ti—; since the process is assumed to be real. When dealing with a w.s.s.
ARMA process, Y _r; is absolutely summable. As a corollary, the Toeplitz
correlation @, belongs to the Wiener class Toeplitz matrices. According to [17],
the Toeplitz covariance matrix is non singular even if the PSD of the process
is equal to zero at some frequencies. It is hence invertible. Nevertheless, the
infinite-size Toeplitz covariance matrix is no longer invertible when the corre-
sponding transfer function of the ARMA process has unit roots. The covariance

function satisfies:

2
To = =g QirT—i 0y
(19)
.
Tk :721.:1047;77—7“]@_1', ]C:L..,,T
where 02 _ is the variance of the driving process u; , of the 7/"-order AR model.

The second equation of (19) leads to the Yule-Walker equations:
0, =-Q-'r, (20)

where O is the column vector storing the AR parameters {c; ; }i=1,.. - and 1,
is the covariance vector storing the values of the covariance function for lags

equal to 1,...,7+ 1. As for the variance of the driving process, by using the first

11



equation of (19), one obtains:
ot =ro—rr (@) =ro— 1T Q. (21)

Remark: The purpose of the Levison-Durbin algorithm is to compute, in a recur-
sive way the coefficients of increasing-order AR models [45]. In this case, the pa-
rameters {c ; }i=1, .. r can be computed from the knowledge of {cv; r—1 }i=1,..r—1.
The Levinson-Durbin algorithm is initialized with 0370 = 1o and the variance of
the driving process is updated as follows:

Ui,r = (1 - 0(72-;) 0_121,,7—71 =To H(l - ai,n) (22)

n=1

where the AR parameters appearing in (17) can be considered as the limits of

these parameters when the model order 7 tends to infinity:

o = limr 4o @i r fori=1,2,....
2 2 2 (23)

. . -

11m7’*>+00 Ou,r = hm‘rﬂ+00 To Hn:1(1 - an,n) = Ou,min

The parameter o, 5, is known as the nth reflection coefficient and its modulus is
such that 0 < |ay, | < 1. Its square corresponds to the square of the the partial
autocorrelation function? (PACF). Therefore, one can have the same reasoning
with these quantities.

4. Properties of the determinant of the covariance matrix: The LDL
factorization of ) involves the product between a lower unit triangular matrix
Lj, and a diagonal matrix Dy defined from the AR parameters and the variance
of the driving process of the AR processes whose order varies from 0 to k — 1.

Indeed, it can be obtained by expressing each element of X as an AR process

4 After expressing the process = at times t and t — n as linear combinations of the n values
Tt—1,...,T¢t—n+1 and their corresponding residuals, the PACF is defined as the correlation

coefficient computed between both residuals.

12



with a different order using (18). In other words, one has:

L' Xe =Us
_1 Q1 k—1 Q2 k-1 .- Oék—l,k—l-
0 1 Q1 k-2 .. Oh—2k-2
L' =|: 0 1 : (24)
1,1
0o o 0 1
Ur = [Ut,k—1 Ut—1,k—2 ... ut_k+170]T
Therefore, the following equality holds:
LEIQk(LkH)_l =Dy = diag(Ui,kA e Ui,o) (25)

with diag(x) the diagonal matrix whose main diagonal is .
After taking the determinant of (25) and showing that |L{| = |Lx| = 1 by
carrying out the expansion of the determinant with respect to the first column

or row, and then doing that again for each smaller determinants, one obtains:

k—1
Qx| = Dkl =[] oan (26)
n=0

and consequently by taking into account (22):

1Qkl

|Qr—1] whl

(27)

Note that considering the two remarks in property (iii), the above ratio could
be also expressed from the reflection coeflicients or the PACFs. Given (23), one

has for a minimum-phase ARMA process:

|Qk| Ui,min (28)

k=400 [Qp—1] -
5. Premultiplication by the inverse of the covariance matrix: Let us
express the covariance matrices of the two vectors Xj; and Xj o storing k
consecutive values of two minimum-phase ARMA processes z;; and z;2, by

using their eigenvalues and eigenvectors:

Qri=E [(Xk,z- — B[Xei])(Xes — E[Xk,i])T] = PeiDyiPL; (29)

13



where the subscript i = 1,2 defines the i*" process under study, Py, ; denotes
the unitary matrix storing the k eigenvectors of Q) ; and Dy ; is the diagonal
matrix defined with the & non-null real positive eigenvalues.

Pre-multiplying Xy 1 — E[X) 1] by D,;l/ 2P,€T7 1 consists in whitening the process
vector. As the process is assumed to be w.s.s. and when k tends to infinity, this
amounts to filtering all the samples stored in X, 1 — E[X} 1] by the inverse filter
defined by the transfer function Hy 711'7,7,71(2) Similarly, pre-multiplying X1 —
E[X) 1] by D];é/zPﬁ2 amounts to filtering the vector Xy 1 — E[X}j 1] by the

inverse filter H, L n(2). Therefore, one has:

lim Tr(Qp !y 2Qrr1.1) — Tr(Qy 4Qr1) = PH? (30)

k—r+oo

where P(12) is the power of the 1% zero-mean ARMA process filtered by
H-!

2.min (%) associated with the inverse filter associated with the second zero-

mean minimum-phase ARMA process.
For the same reason, if the w.s.s ARMA processes are not zero-mean, their
means are constant. The vectors Apgy1 and Apy respectively store k + 1 and

k times the same value p; — po. Therefore, one has:

. 1 _ _
lim (77 (Qity oA Adr) = Tr(QubAmAuT) ) (31)

k~>+o<>2

2
=) ()

6. Sum of processes: The sum of two stationary independent ARMA pro-
cesses x4 1 and x4 o, respectively of orders (p1, ¢1) and (p2, ¢2), is an ARMA(p, q)
process with p < p; + pa, ¢ < maz(p1 + q2,p2 + ¢1) [16]. As a consequence,
the same result holds for the linear combination z;, = a2 + mﬁﬂm-
Multiplying z¢ 2 and @1 by v/a and /1 — « affects only the variances of the
corresponding driving processes that are multiplied by o and 1 — a.

In the next section, given the above properties, let us deduce the divergence

rate when dealing with Gaussian w.s.s. ARMA processes.
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4. Asymptotic analysis of the increment of the divergence for w.s.s.

Gaussian ARMA processes

Now we propose to analyze the way the increments of the divergences evolve
when £ increases and tends to infinity. The results for the KL divergence and
its symmetric version are first addressed. Then, we focus our attention on the
Rényi divergence and its symmetric version. In each case, the expression of the
so-called divergence rate is presented for non-zero mean ARMA processes. As
comparing two ARMA processes by means of their pdfs amounts to comparing
the corresponding minimum-phase ARMA processes, the properties presented
in the section 2 are used. This explains why the divergence rates will depend
on the transfer functions of the inverse filters and the variances of the driving
processes of the corresponding minimum-phase ARMA processes, i.e. for i =
1,2, H; pi(2) and o2, . = o2 T[}, K with K;; = 1 when the zero of
the i*" ARMA process z1,; is inside the unit circle and K;; = \zl,i|2 when it is

outside the unit-circle in the z-plane.

4.1. Divergence rate of the Kullback-Leibler divergence
Given (11), (28), (30) and (31), the asymptotic KL increment satisfies:

AKL™? = lim AKL{"? (32)

k—+oco

2 2
_Mg) H71 2 1 Uu,l,min
2 | 2,min(z)|z:1 - 511127

_ %(P(l,z) —1)+ (Nl -
The divergence rate depends on three terms: the first one is related to P(12) the
power of the first process filtered by the inverse filter associated with the second
process. The second term takes into account the difference of the continuous
parts of both processes when it is filtered by the inverse filter associated with the
second process. The last term deals with the variances of the driving processes

associated with the minimum-phase ARMA processes.

2
When both processes have the same mean, the term %H{Q_l ()2,

,min

2

and Uu,?,min

vanishes. When the variances o2

wlmin are equal, the logarithm is

equal to 0.
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When the processes are zero-mean and if S7(0) and S2(6) denote the PSD of the
first and the second process to be compared, the expression of the KL divergence

rate for Gaussian processes® given in [20] and [14] is:

1,2) _ 1 T 51(9) 51(9)
AKLS >—E/7ﬂ(sz(9)—l—lnsz(9))d9 (33)

Firstly, we can notice that this expression also corresponds to the Itakura—Saito

distance up to a multiplicative factor equal to % Moreover, using the notation

P(1:2) the KL divergence rate (33) can be rewritten and decomposed as follows:

1 1,1 T 1 T
12) _ 2 p(12) _ 1y _ 21 _
AKL = 2(P 1) 2(27T /ﬁlnSl(G)dﬁ 5 /4 In S2(0)d6) (34)
In (34), the ARMA-process PSD can be expressed from its transfer function and
its driving process, but also from the transfer function and the driving process

of the corresponding minimum-phase ARMA process. This leads to:

I S:(0)d0 = oy ; pin + l/ In|Hi,min(0)|d6 for i = 1,2 (35)
™

2w —r -

In (35), the quantity 2 [7 In|H; ;in(0)|df can be interpreted as the cepstrum

¢i(0) = 2 ffﬂ In |Hi’mm(0)|ej”9d9|n:0 of the impulse response associated with

-
the minimum-phase ARMA process. As the cepstrum ¢;(n) = W can

be expressed from the complex cepstrum le(n) of the impulse response, (35)

becomes®:

% In S;(0)df = In o7, ; yin + hi(0) + hi(0) = In o ; min (36)
Substituting (36) into (34), one retrieves the result we obtain in (32) by com-

bining different properties of the Gaussian ARMA processes.

4.2. Divergence rate of the Jeffreys divergence
The divergence rate can be obtained in two manners: either by looking at

the limit of (12) when k tends to infinity by using (28) and (30), or by combining

5With no a priori made on the correlation properties.

aj -1
_ I, A=z )

SWhen H;(z) = ~i5t with |z;| < 1 and |p;| < 1, the complex cepstrum is:
[, A=pi2)

ill(’n) = — ?;1 Zzi + ﬁl % forn >0
hi(n) =0 for n <0
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(12) and (32):

AJD' = lim AJD? = (AKL(I’Q) +AKL®Y) (37)
—+o00
1, 1,2 (2,1) (1 — ) 2
:Z(P +P _2)+ (| mzn( )|z 1+|H1 mln( )|z:1)

When both processes have the same mean, the term £2=K2)- “2 (| 5, S ()2 +
|H{ mm( 2)|?_,) vanishes. Once again, the results provided in (37) is consistent
with the expression we would obtain by using the KL divergence rate in (34)
for zero-mean stationary Gaussian processes and the definition of the Jeffreys

divergence rate.

4.8. Divergence rate of the Rényi divergence
Given (13) and the results presented in section 3, the divergence rate of the

Rényi divergence of order « is equal to:

ARDM? () = Jim ARD"? (a) (38)
k—+oco
(lu’ ) 2 1 0121. NeY H?al Kl ,
=q—= " —1 — In
Hain s = =G, T, R o T, =)
( ) 2 1 Ou,a,min
= - 1 o
REETI | “ mln( )|Z_1 2(& - 1) n( (aﬁ,Q,min)a(o—ﬁ,l,min)l_a)
where Uiﬂ)mm and H,, ! in(2) are the variance of the driving process and the

inverse filter associated with the minimum-phase ARMA process zj defined as
the linear combination of the two ARMA processes: z§ = \/azi2++vV1—azq

whose order is g,. Kj o is similarly defined as Kj but it is related to z¢.

2
When both processes have the same mean, the term a%|H&l(z) 2,
vanishes. In this case, the divergence rate depends on 0'2717mm, 0372,"”4” and
0% o.min- One could think that this divergence rate is independent of the dy-

namical properties of the ARMA processes, such as their ARMA parameters
or their poles and zeros, and hence would not be a good measure to evalu-

ate the dissimilarity between two ARMA. However, o2 and o2

u,l,min may

u,2,min

depend on the zeros of the ARMA process when the zeros have their moduli

larger than 1. Moreover, and this is the most important reason, o> depend

uocmzn

on the transfer functions and the variances of the driving processes of the two

processes to be compared, as mentioned in the appendix B.
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When the processes are zero-mean, the expression of the Rényi divergence rate
that Gil [14] obtained for zero-mean Gaussian processes by using a theorem
related to the asymptotic distribution of the eigenvalues of Toeplitz form is the

following:

ARDD = (- /W n((1-a)+a

S2(6) a [T S2(0)
2a—1)\2r 50)% %/_ﬂln i @) (39)

0)

The latter can be re-expressed as follows:

a___ 1 1.7 (A=a)5i(0) +a5:(0)
ARD®® =~ 2W(/_ﬂl @50 )d@) (40)

1 1 (7 Sa(0)
= - — = \dh
2(a—1)2m /_W n(SS‘(H)Si_C“(@)
Following a similar reasoning as the one we made for the KL divergence rate

based on the cepstrum, one has:

1" Sa(6) o2 o 122, Kia
—_— In(————+——)do =1 J = . 41
ar | "S55 0) n((03,2 12, Ki2)* (02, T2, Kz,l)l—a) (1)

Our result is hence consistent with the one obtained by Gil while we do not

address the problem in the same way.

4.4. Divergence rate of the symmetric version of the Rényi Divergence

Using (14), (30), (31), one obtains:

1
ASRDY? () = Jim ASRD(" (a) = 3 (ARD™? (a) + ARD®" (a)) (42)
(Nfl - /142)2 —1 2 -1 2 1 O'ﬁ e mino—ﬁ 1—a,min
— A H . i H - . i _ ( es) ) > )
g (Homin Gz + 1o min(2)l:=1) da—1) o2, oz

When both processes have the same mean, the term a%(\H;}nm(z) 2+
|H (2)]2_;) vanishes.

l—a,min

5. Link between the KL divergence rate and the RD divergence rate

The divergence rate of the KL is expected to be the limit of the divergence
of the RD when « tends to 1. When looking at (32) and (38) at the first glance,
it does not seem to be the case. In this section, we propose to give a proof by
taking advantage of the properties related to ARMA processes. Note that Gil
[14] did it for the expressions (33) and (39) he obtained for Gaussian processes.
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First of all, let us look at the limit of the first term in (38). Since x;, =
Vazis 4+ 11— awxy, the inverse filter H ! . (2) tends to H2_71 (z) when «

a,min min

tends to 1. Therefore, one has:

2 2
. M1 — p2 - M1 — p2 -
im0 12y = e (13)
2
Concerning the second term in (38), i.e. —2(0}71)ln<(02 ")y(x;;m )17‘1),
u,2,min u,l,min

we suggest using L’Hospital rule” as done in the proof to show that the Rényi
divergence tends to the KL divergence when the order « tends to 1. For this

purpose, let us introduce the two following functions:

0-121,,04 H?il Kl,a )
(05,2 [12, Kl,2)a(‘7724,1 2 Kia)t-e

g(a) = —2(a— 1) and f(a) = m( (44)

Their ratio is hence equal to the quantity to be analyzed. In this case, their

derivates with respect to a are equal to:

4 d dln(oﬁ,a H?lel,a) +ln(0'12t’1 [T, Kz,l)

el = _9 il = 4
~g(a) = =2 and -~ f(a) — AR, @

Let us focus our attention on the first term %ln(ogya | ) Klﬂ). In the fol-
lowing, we assume that the second process has no zero on the unit-circle 8. In
this case, the minimum-phase ARMA process whose covariance matrix is equal
t0 Qro = aQk2 + (1 — @)Q,1 can be expressed as an infinite-order AR pro-
cess whose driving process variance and AR parameters satisfy the Yule-Walker
equations. By applying the properties of the AR processes presented in section
3 t0 y,q, where O o = *Q;}aﬁk,a is the column vector storing the AR param-
eters of z; o and ry , is the column vector storing the value of the covariance
function from 1 to k, one has:

2 _ . T _ . T —1
Ou,a,min — kgl;{loo(TO’a +£]€’a6k,a) =T0,a — kETwﬂk’an’atk’a (46)

7This rule states that if the functions f and g are differentiable on an open interval except

possibly at a point ¢, if the following three properties are satisfied: 1/ lim f(a) = 0 and
a—cC

f'(a)
g’ ()

lim g(a) =02/ ¢’(a) # 0 for any « in the open interval except ¢ 3/ if lim exists, then
a—rc a—rc

/
lim £&) — iy £
a—rc 9(0) a—e 9" (@)
8This necessarily means that x o and x¢1-« correspond to an ARMA processes whose

transfer functions have no zero on the unit-circle. Indeed, if the second process has no zero
on the unit circle, the corresponding PSD is never equal to 0. Therefore, the PSDs of x o

and ¢ 16 cannot be null at a frequency.
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In the above equation (46), one can replace rgo by arg2 + (1 — a)rg1 and take

advantage of the matrix inversion lemma® to express Q;}l as follows:
_ 1 l—a _ 11—
(0Qk2 + (1= 0)Qk1) ™" = —Quz — ——Qua(aQp; + (1 - )Qr2) 'Rz (47)

Finally, one has also:
Tha = QT o+ (1- 0‘)%,1 (48)

In (46), let us now rewrite the variance of the driving process by taking into

account (47) and (48):

2 _ _ _ . _ T
Ormin = aro2+ (=)o = lim ((res+(1—a)r,) (49)
1 l—a —1 1 —1\—1 -1
an,z T o Qk,2(an,1 +(1 - Q)Qk,z) Qk,Z (ﬁk,z + (1 - a)ﬁk,l)

Our goal is to obtain an analytic expression of the following limit:

d . e 1 d
olél—)Hll da Inoy a,min = il_rg m%au,a,min (50)

Given (50), let us first look at the limit of o7, ,, ,,.;,, When a tends to 1. One has:
lim 0% min = 1 (0.2 =1y 5Qha2) = Tuzimin (51)

Let us now calculate %Uz,a,min' When the right-hand side of the equality in

(49) is developed, it consists of ten terms that depend on «. They are listed in

the Table 1 as well as their derivatives with respect to a. Therefore, by taking

2
u,0,min

2

. _ . T —1 .
into account that o7 5 ., = khm T0,2 — I 2Q oT) 2, the derivate of o

—+o0
with respect to a when « tends to 1 can be expressed as follows:

. d - . T -1 T -1 -1
Olgnl daau,a,min = kEToo (7"072 —To,1 — ik,sz,zﬂk,z - Ek,sz,sz,le,zik,z (52)

T -1 T -1
+71,2Qk 2Tk 1 +£k,1Qk,2Ek,2)

. 2 T —1 —1 T —1 T —1
= kl}rfoo (Uu,2,min —To,1 — fklek,QQk,IQk,kayg +fk,2Qk,2fk,1 +fk,1Qk,2fk,2>

Moreover, given the Yule-Walker equation applied to the second process, i.e.

Op2 = —Q,;lzﬁzz, this leads to:

. d . 1
lim do In Ui,a,min =1- lm ——— (7“0,1 + @g,sz,lekg + ez,sz’l +f£1®k,2)

a—1 do k—+oo Uu,2,min

—1-—pt2

U+ V)L =U"t—U (VI +U )T UL
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Terms lim -&

a1 do
Qarp,2 0.2
(1—a)roa —ro4
—arf,Qp btk s T, Q A
a(l = o)l (QrbaQit + (1 - @) '@ )i —rFaQiQuiQibres
—(1— a)rf yQxh7sn T Qi bria
(1= aPrf 5 (Quaa@} + (1 Qi)' Qit )iy 0
—(1 = a)rf, Qs fz:le_.éfk,,z
(1= 0], (QrAaQz} + (1= )Qh) ' Qih )i 0
— O Qs 0
Oer T (QRbaQE) + (1 - Qi hQh )i 0

Table 1: Terms and the limits of their derivates with respect to @ when « tends to 1

Indeed, the 1% process is filtered by the BIBO-stable minimum phase inverse
filter associated with the second process. The latter can be expressed as an
infinite-order AR process characterized by its set of AR parameters O, =

lim ©y. The transfer function is equal to — (1 + Z;‘f ai,gz_i). Let

k—4o00 w,2,min
y be the filtered output of the inverse filter associated with the second process

when the filter input is the first process 1. One has:

1 =
Yy = ———— Zai,zxz—i,l (53)

o .
w,2,min i—0

1 1
= X1+ —

Ou,2,min Owu,2,min <

= 1 1

. T
g Q;2Ti—i1 = Te1 + lim ©j Xk 1
i=1

Ou,2,min Ow,2,min k—+oo

Therefore, the correlation function satisfies for a lag equal to 0 (i.e. the power):

1

PU) = Blyf] = ——E[ lim (21 + O Xe1) (@01 + Xi1Or2)]  (54)
u,2,min k—+oo
1 .
= ——— lim (7"0,1 + @z,szJ@kﬁ + 95,2% 1 +£Zl@k,2)
Uu,2,min k—+oo ’ ’

Using (43) and the above result, one retrieves the KL divergence rate.

6. Additional remarks

In the above section, Hy(z) was assumed to have a minimum phase when
dealing with the KL and the RD. The same assumption was made on H;(z) for
the JD and the SRD. In the following, let us look at specific cases.
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6.1. About specific cases of the KL divergence rate and the RD divergence rate

Let us analyze what happens on the divergence rates when Hs(z) has a zero
on the unit circle in the z-plane. To this end, let us define the process t(k) which
corresponds to the output of the inverse filter Hy 1(,z) whose input was the 15¢

process. Its power is equal to P(2) and its z-transform satisfies:
Ur(2)Hi(2)Hy ' (2) = T(2) (55)

If H,(z) has the same unit-zero as Hy(z), then P12 is finite. Otherwise, it
will be infinite. Therefore, according to (32) the KL divergence rate will go
to infinity. In addition, due to the term M|HQ_1(2) 2_, in (32), the KL
divergence rate will go to infinity if Ho(z) has a zero equal to 1 and p3 — e # 0.
As for the RD rate, it may go to infinite only when p; — puo # 0 provided that
H,y(z) and Hs(z) have a common zero equal to 1. Indeed, this is the only case

where H,(z) has a zero equal to 1.

Therefore, using the RD rate reduces the risk to have an infinite rate.

6.2. About specific cases of the JD rate and the SRD divergence rate

Following the same reasoning as above, the JD rate may go to infinite if:
1. the powers P12 and P31 go to infinite. This happens if one process has
a zero on the unit-circle that is not shared by the second one.
2. when py — pg # 0, if Hi(2) and/or Ha(z) has a zero equal to 1. As for
the SRD rate, it may go to infinite only when p; — uo # 0 and provided that
H,y(z) and Hz(z) have a common zero equal to 1. Indeed, this is the only case
where H,(z) and H;_,(z) have a zero equal to 1. Therefore, the corresponding

inverse filters would have an infinite gain at the null frequency.

7. Applications

In this section, our purpose is twofold: first of all, we propose to check if the
theoretical results we have presented in the previous sections are confirmed by

simulation results. Then, a practical case is presented.
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7.1. Simulation results confirming the theory: sensitivity of the estimation of

the divergence rate

To confirm the theoretical results, the theoretical divergence rates given by
(32), (37), (38) and (42) are compared with the increments of the divergences
estimated from different realizations of two wide-sense-stationary real ARMA
processes of orders (2,4). To analyze the consistency of the results, the mean
and the variance of the normalized error, i.e. the absolute value of the difference
between the the divergence rate and its estimate which is then divided by the
divergence rate, are computed. Two arbitrarily-chosen examples are first given
for illustrations. Then, an analysis is based on ARMA processes whose poles

and zeros are randomly drawn.

7.1.1. Example 1: comparing ARMA(2,4) processes with very different spectra

Let us consider the two ARMA(2,4) processes x¢1 2 defined by the fol-
lowing zeros, poles, driving noise variances and means: z;; = 3exp (j%’r),
221 = 211, 231 = %exp (1%) za1 = 273 and py 1 = 0.7exp(j5), P21 = Pi1s

371 =1,y =1 z12 = 085exp(jg), 222 = 272, 232 = O.Semp(j%”),

o
212 = 255 and pip = 0.dexp(j§), 22 = Pio, 04y = 9. p2 = 0.5. Fig. 1
shows the periodograms and the power spectral densities of the two ARMA
processes. Due to the zeros z1; and 291, the first ARMA process is clearly
a non-minimum phase ARMA process. The comparison can be performed by

considering the corresponding minimum-phase spectral factor, which is charac-

terized by the zeros 211 = L exp (&), 22,1 = 251

23



Spectral analysis of the signals to be compared
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Figure 1: Periodogram of one realization of each ARMA process and the corresponding PSDs,

Example 1

For each ARMA model, 20 realizations of 100000 samples have been considered.
For each realization, the covariance matrices and the means are first estimated.
Then, the estimations of the divergences for consecutive samples are computed
by using (4), (5), (7) and (9) for a equal to 0.99, 0.995, 0.999 and 0.9999.
Finally, the divergence increments are computed. The evolutions of the JD and
SRD divergences and their increments when £ increases are presented in Fig. 2.
Since KL and RD exhibit similar behaviours, the corresponding figures have not
been reported for the sake of space.

One can notice that whatever the realizations of the ARMA processes, the
estimations of the increments converge to the theoretical divergence rates.

In Tables 2 and 3, the theoretical divergence rates are compared with the last
computed increments (k = 60) that are considered as estimates of the diver-
gence rates. The means and variance of the normalized errors are small. This
illustrates that the theoretical results are consistent with the experimental ones.
As expected, the value of o has an influence on the SRD rate. As a approaches
1, the rates of the RD and the SRD respectively converge to the rates of the
KL and the JD. In addition, the larger «, the larger the divergence rate.
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Estimated Jeffreys div. and Symmetric Renyi divergence
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Figure 2: Estimated Jeffreys divergence (blue) and symmetric Rényi divergence (black) and
the resulting increments for Example 1 (20 realizations). For the symmetric Rényi divergence,

« is equal to 0.99, 0.995, 0.999 and 0.9999

Type of divergence True Last estimated increment Normalized error
div. rate Mean Variance Mean Variance
KL(12) 33.691 33.812 0.18172 1.12E-02  4.07E-05
RDU? (a =0.9999) 33.167 33.284 0.16987 1.10E-02  3.95E-05
RD1?) (o =0.999) 29.314 29.403 0.10171 9.57E-03  3.15E-05
RD1?) (o =0.995)  20.543 20.589 2.63E-02 6.99E-03 1.62E-05
RDU? (a =0.99) 15.692 15.723 1.02E-02 5.77E-03  1.07E-05
KLZY 0.79343  0.79444  3.95E-06 2.13E-03  3.20E-06
RD®D (o =0.9999) 0.79341  0.79442  3.95E-06 2.13E-03  3.20E-06
RD®Y (a=0.999) 0.79329  0.79430  3.95E-06 2.13E-03  3.20E-06
RDZY (a=0.995) 0.79272  0.79373  3.95E-06 2.13E-03  3.20E-06
RD®Y (o =0.99) 0.79201  0.79302  3.94E-06 2.14E-03  3.19E-06

Table 2: Statistics on the estimations of divergence rates for different symmetric divergences,

based on 20 realizations of the processes of example 1
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Type of divergence True Estimated div. rate = Normalized error

div. rate Mean Variance Mean Variance
JD 17.24 17.30 4.55E-02 1.10E-02 3.91E-05
SRD (a=0.9999) 16.98 17.03 4.26E-02 1.08E-02 3.79E-05
SRD (o = 0.999) 15.05 15.10 2.55E-02  9.33E-03  3.02E-05
SRD (o = 0.995) 10.66 10.69 6.63E-03 6.78E-03 1.51E-05
SRD (o =0.99) 8.24 8.25 2.60E-03 5.54E-03 9.91E-06

Table 3: Statistics on the estimations of divergence rates for different symmetric divergences,

based on 20 realizations of the processes of example 1

7.1.2. Example 2: comparing ARMA(2,4) processes with rather-similar spectra
Let us now consider the zero-mean ARMA(2,4) processes x;,1, 22 defined

by the following zeros, poles and driving noise variances: z11 = 3exp(j %’r),

% _ 1 - T ok _ - 47 ok
zo1 = 211, 31 = gexp(j§), 211 = 273 and p11 = 0.Texp(j5), p2,1 = P 1,

2 _ _ ) _ _ 1 . _ _
o1 =1 2120 =3exp(§5) , 221 = 211,231 = z5exp(j§), 241 = 273, P11 =

0.7ea:p(j%”), P21 = Pi1, 0oy = 1. Due to their zeros 21,1, 2,1 and 21,2, 22,2,
both processes are clearly non-minimum phase. The periodograms and PSDs

are given in Fig. 3. Unlike example 1, both exhibit resonances at low frequency.

Spectral analysis of the signals to be compared
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Figure 3: Periodogram of one realization of each ARMA process and the corresponding PSDs,

Example 2

The same type of analysis as the one developed in Example 1 has been carried

out. The results are summarized in Fig. 4 and Tables 4 and 5.
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Estimated Jeffreys div. and Symmetric Renyi divergence
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Figure 4: Estimated Jeffreys divergence (blue) and Symmetric Rényi divergence (black) and
the resulting increments for Example 2 (20 realizations). For the symmetric Rényi divergence,

« is equal to 0.7, 0.8, 0.9 and 0.999

Type of divergence  True Last estim. increment Normalized error
div. rate Mean Variance Mean Variance
KL(12) 0.1411 0.1416 1.13E-05  1.96E-02 1.71E-04
RDU?) (o =0.999) 0.1410 0.1414 1.12E-05  1.96E-02 1.71E-04
RDU?) (o« =0.9) 0.1258 0.1261 7.79E-06  1.86E-02 1.35E-04
RD1?) (a =0.8) 0.1115 0.1117 5.44E-04  1.77E-02 1.10E-04
RD(:2) (o =0.7) 0.0979 0.0980 3.80E-06  1.70E-02 9.37E-05
KL 0.1763 0.1760 1.20E-05  1.63E-02 1.07E-04
RD®ZY (o =0.999) 0.1760 0.1757 1.19E-05  1.63E-02 1.07E-04
RD®Y (o =10.9) 0.1491 0.1489 7.80E-06  1.57E-02 9.33E-05
RD® (o =0.8) 0.1262 0.1260 5.30E-06  1.53E-02 8.76E-05
RD®Y (a=0.7) 0.1061 0.1060  3.69E-06  1.53E-02 8.12E-05

Table 4: Statistics on the estimations of divergence rates for different non-symmetric diver-

gences, based on 20 realizations of the processes of example 2

As the processes have a more similar PSD than those in Example 1, the values of

the JD and the SRD reach smaller values. As expected, as a approaches 1, the
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Type of divergence True Last estim. increment Normalized error

div. rate Mean Variance Mean Variance
JD 0.15868  0.15877  1.01E-05 1.70E-02  9.93E-05
SRD (a = 0.999) 0.15845  0.15854  1.01E-05 1.70E-02  9.92E-05
SRD (a=10.9) 0.13746  0.13751 7.14E-06 1.65E-02  9.13E-05
SRD (a=0.8) 0.11885  0.11887  5.11E-06 1.62E-02  8.58E-05
SRD (a=0.7) 0.10204  0.10205  3.66E-06 1.60E-02 8.24E-05

Table 5: Statistics on the estimations of divergence rates for different symmetric divergences,

based on 20 realizations of the processes of example 2

SRD approaches the JD. Once again, the normalized error mean and variance
tends to be smaller when the value of « decreases.

Remark: these results are consistent with other dissimilarity measures. Indeed,
for the processes of Example 1, the LSD [27] is equal to 13.14 whereas it is equal
to is 3.3375 for the processes of Example 2.

7.1.3. Example 3: comparing two ARMA(2,2) processes whose poles and zeros
are randomly drawn

To show that the obtained results above which confirm the theoretical analy-
sis do not depend on the selected ARMA models, we compare ARMA processes
whose poles and zeros are randomly drawn. In particular, modules and argu-
ments of the poles and zeros are randomly selected in the range [0, 1) and [0, 7],
respectively, to generate a pair of complex conjugate poles and a pair of complex
conjugate zeros. Once again, the normalized error between the last divergence
increment and the divergence rate is computed for the different divergences un-
der study. The results are given in Tables 6 and 7 for 20 realizations of these

randomly generated processes. Once again, the simulations confirm the theory.
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Type of divergence Normalized error

Mean Variance
K2 2.23E-02 7.61E-04
RD®2) (o = 0.999) 1.83E-02 5.56E-04
RD12) (o =0.9) 9.54E-03 1.45E-04
RD12) (a=0.8) 8.09E-03 9.54E-05
RDD) (o =0.7) 7.62E-03 6.95E-05
KLED 4.38E-02 1.08E-02
RDD (o = 0.999) 1.69E-02 2.91E-04
RD®ZY (a =0.9) 9.64E-03 5.13E-05
RD®D (o =0.8) 8.67E-03 3.85E-05
RD®D (a=0.7) 8.12E-03 3.54E-05

Table 6: Normalized errors on the divergence rates for non symmetric divergences when

comparing two random ARMA(2,2) processes (20 realizations)

Type of divergence Normalized error

Mean Variance
JD 4.54E-02 9.78E-03
SRD (o = 0.999) 1.64E-02 3.21E-04
SRD (o =0.9) 8.86E-03 6.91E-05
SRD (o =0.8) 8.14E-03 5.35E-05
SRD (o= 0.7) 7.79E-03 4.72E-05

Table 7: Normalized errors on the divergence rates for symmetric divergences when comparing

two random ARMA(2,2) processes (20 realizations)

7.2. How do the divergence rate vary when some poles or zeroes vary?

In this subsection, our goal is to illustrate how the divergence rates may
evolve when the poles or the zeros vary. To this end, the ARMA(2,2) process
described by the following poles and zeroes:: z;; = 0.8 exp (j%”), Zo1 = zil,
p1,1=09exp(j%), p21 = i 1, is taken as a reference model. Then, two different
experimental setups are considered: i) the reference model is compared with
ARMA(2,2) processes having the same zeros but different complex conjugate

poles; ii) the reference model is compared with ARMA(2,2) processes having

29



the same poles but different complex conjugate zeros. The obtained divergence
rates are presented as a function of the modulus and the argument of one of the

varying poles for case i) and of one of the varying zeros for case ii).

7.2.1. SRD rate when the poles vary
In Fig. 5, we present the SRD divergence rate for @« = 0.95 and 0.999 as a

function of the modulus and the argument of the second-process pole.
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Figure 5: SRD divergence rate in function of the modulus and argument of the second-process

pole with a = 0.95 (left) and o = 0.999 (right)

The minimum value occurs when the poles of the second process coincide with
the poles of the first process (for instance, for modulus 0.9 and argument 7/3).
When the modulus of the pole is close to 0, the PSD of the second process
-and consequently its correlation function- does not change much whatever the
argument. This explains why the SRD rate is the same whatever the argument.
The divergence rate increases much when the modulus is far from the origin and
the argument is far from 7/3. In these conditions the PSDs of the two ARMA
processes PSD are very different.

For the SRD, the increment behavior depends on the value of . For instance,
when a = 0.95, the SRD rate presents a rather linear behavior, while for a =
0.999, the rate increases exponentially in function of the distance of the poles
with respect to the first process. This shows that the value of o could be selected

according to the sensitivity required by the specific application.
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For comparison purposes, Fig. 6 shows the LSD. Even though the minimum
value still occurs for modulus and argument close to 0.9 and 7/3, the LSD
presents a different behaviour than the SRD rate. For the LSD, the value
increases linearly in the region near the minimum, and increases slowly when

the poles are more separated.

Log-Spectral Distance

M
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1 0.8 0.6 0.4
angle (x )

Figure 6: LSD as a function of the modulus and argument of the second-process pole

7.2.2. SRD rate when the zeros vary

Fig. 7 shows the SRD divergence rate for « = 0.95 and o = 0.999, as a
function of the modulus and the argument of the second-process zero. The
minimum value occurs when the zeros of the second process coincides with the
poles of the first process (for instance, for modulus 0.8 and argument 27/3).
The same type of comments as those made in the previous subsection can be
given. When the modulus of the zero is equal to 0, the PSD of the second
process is the same whatever the argument, leading to the same divergence
rate. Then, the divergence rate increases much when the modulus is far from
the origin and the argument is far from 27 /3 (in these conditions the PSDs of
the two ARMA processes PSD are very different). Fig. 8 presents the LSD,
whose minimum value still occurs with modulus 0.8 and argument 27/3. We

observe that the evolutions of the SRD rate and the LSD in the regions near
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and far from the minimum exhibit a behavior similar to those described in the

varying poles example.

SRD asymptotic increment
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Figure 7: SRD divergence rate in function of the modulus and argument of the second-process

zero with a = 0.95 (left) and o = 0.999 (right)
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Figure 8: LSD as a function of the modulus and argument of the second-process zero
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7.3. Divergence-rate based change detection when dealing with a non-stationary

ARMA process

In this part, a time-varying ARMA process (TV-ARMA) is considered. In
terms of modeling, it means that its poles and zeros vary over time. One example
is presented in this paper for illustration. Its time representation and spectro-
gram are given in Figure 9. The first 2000 samples of the TV-ARMA process are
considered as the frame of reference. Then, a sliding window is used. Detecting
and evaluating a statistical change in the ARMA process consists in estimating
the divergence rate. To this end, for the frame of reference and the sliding one,
the model parameters are estimated by using the PEM method [32]. Given the
estimates of the model parameters of the two frames related to Hy(z) and Ha(z)
and the variances of the driving processes, the model parameters related to the
transfer function H,(z) and Hi_,(z) as well as the associated driving-process
variance can be deduced by using the method presented in Appendix B.
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Figure 9: Time-domain representation and spectrogram of the time-varying ARMA process
(left) and evolution of the KL (blue and red) and Rényi divergences increment (black and
green) for a TV-ARMA process (a equal to 0.999, 0.9995, 0.9999 and 0.99999) (right)

Some results are presented in Fig. 9 when « is set to the values 0.999, 0.9995,
0.9999 and 0.99999. One can notice that the ranges of the divergence rates
significantly decreases when « decreases. The divergence rate is sensitive to the

selection of «, especially when « is close to 1.
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7.4. Comparing the divergence rates to characterize experiment-induced stress

Various studies based on RR intervals, which correspond to the time between
two consecutive R-waves of the QRS signal on electrocardiograms, have been
recently conducted in order to analyze the interconnections between cardiac
regulations and the central nervous system. The reader may refer to [11] and [49]
for instance. As an illustration of our work, we study if the divergence rates can
be relevant to detect when people who enforce cognitive tasks are under stress.
To this end, this last subsection is organized as follows. Some information about

the experimental protocol are first given. Then, data analysis is provided.

7.4.1. Population and experimental protocol

With some psychologists and physiologists'?, one of the authors developed a
psychological protocol the purpose of which was to induce levels of stress during
a cognitive task. 33 healthy volunteers (age: 35.6 + 13.9 years, 19 women)
recruited among students and employees followed this protocol lasting more
than 1 hour. They gave their written informed consent to participate in the
study. In addition, they all filled out a series of questionnaires such as the
Spielberger state anxiety questionnaire’! (STAI) [44] and the NASA-TLX!2
[18] before and after each test session. Both questionnaires made it possible to
measure the impact of stress on anxiety and workload after each situation.

In the current experiment, three consecutive situations are considered:

e 1! period called reference period and denoted as Ref: the subjects
were first seated in front of a computer in a room at 20°C between 10 am

and noon in order to limit the effects of chronobiology. They watched an

10The authors would like to thank Prof. V. Deschodt-Arsac, Prof. L. Arsac, Dr. V.
Lespinet-Najib and Dr. E. Blons. One of the authors has different publications with them for

instance in [4].
1Tt consists of 20 questions that evaluate the current state of anxiety by using items that

measure subjective feelings of apprehension, tension, nervousness and worry.
12 A self-assessed measure of workload based on six components: mental demand, physical

demand, temporal demand, performance, effort, and frustration level.
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emotionally-neutral documentary film.

e 2"? period called situation of cognitive tasks and denoted as T.:
Still seated, the subjects had to answer questions of logic, memorization

and mental calculation, proposed on the screen of the computer.

e 3" period called situation of cognitive tasks and stress, denoted
as T, 4+ S: Still seated, the subjects had to answer questions proposed on
the screen of the computer, but different types of disturbances could be
considered: people behaving as an attentive and evaluative audience were

near the subject, auditory and visual distractions were generated.

During the experiments, the RR intervals were recorded with the Polar H10 belt
product connected to an Ipod using Bluetooth. An application was installed on
the ipod, making it possible to store the RR intervals. When dealing with 8-
minute periods, this corresponds to approximately 500 successive RR intervals,

depending on the average individual heart rate.

7.4.2. Data analysts

Usually, various criteria are considered by physiologists to analyze the RR
intervals. This can be the power in the frequency bands 0.04-0.15 Hz and 0.15-
0.5 Hz respectively in order to evaluate the contributions of the sympathetic
and parasympathetic systems of the autonomic nervous system. They are often
called low-frequency power (LF') and high frequency power (HF'). One can also
look at the ratio of powers in low and high frequency (LF/HF). The regularity
of the process can be also considered. The reader may refer to [4].
Let us study how the divergence rate varies from the 2" and the 3" period with
respect to the reference period. In other words, let us compare the distributions,
which are a priori Gaussian, of the RR processes in the i** period (with i =
2,3) with the first one. It should be noted that we checked if the time-series
were globally wide-sense stationary on the periods of analysis. The divergence

rates are estimated using the data obtained in each period: in each case, the
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covariance matrices and the means are estimated by using a maximum-likelihood
estimator for different sizes k in an interval k., and k.. defined by the
practitioner. Then, the increments are computed. Once these differences are
smaller than a pre-defined threshold, the divergence increments are averaged to
get an estimation of the divergence rate. In the table below, the rates of the
Kullback-Leibler divergence, the Jeffreys divergence, the Rényi divergence and

its symmetric version are presented.

Estimates of the T, vs. Ref T.+S vs. Ref

divergence rates

AKL(1?) 0.230 0.263
ARD™:2)(0,99) 0.229 0.259
ARD(:2)(0,95) 0.219 0.245
ARD™2)(0,9) 0.208 0.231
ARD12)(0,8) 0.188 0.205
ARD®2)(0,7) 0.169 0.184
AJDO?) 0.366 0.421
ASRD™:2)(0,99) 0.351 0.405
ASRD®:2)(0,95) 0.312 0.356
ASRD™2)(0,9) 0.277 0.314
ASRD®:2)(0,8) 0.228 0.254
ASRD®2)(0,7) 0.190 0.210

Table 8: Estimates of divergence rates for the different period

Given Table 8, one can first notice that the larger «, the larger the divergence
rate whatever the divergence and the period (T, or T, + S). When «a tends
to 1, the estimation of the rate of the Rényi divergence and the symmetric
Rényi divergence tends to the estimations of the Kullback-Leibler and Jeffreys
divergence rates respectively. When computing Anova test, one noticed that the
larger «, the smaller the p-value is, guaranteeing a better distinction between
the cognitive-task period and the stress one. In conjunction with other features
as the ones cited above and whose results are presented in [4], an automatic

detection of the stress could probably developed in the future.
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8. Conclusions and perspectives

This paper aims at analyzing the divergence rate of different divergences
(Kullback-Leibler, Jeffreys and Rényi) when considering Gaussian ARMA pro-
cesses. Our work, based on the notions such as inverse filtering and the Yule-
Walker equation, is complementary to Gil’s work dealing with Gaussian pro-
cesses and taking advantages of results related to the asymptotic distribution
of the eigenvalues of Toeplitz form. We show that the expressions we obtained
are consistent with the ones he obtained. Illustrations are provided and confirm
the theoretical analysis. It highlights that the ranges of values of the divergence
rates significantly increases when « increases, especially when the latter is close
to 1.

There are numerous perspectives: we would like to analyze how the ARMA
parameters influence how quickly the divergence increment converges to the
divergence rate. In addition, the analysis for non Gaussian ARMA processes
and multivariate ARMA processes could be other topics of interest. Finally, we
plan to study other divergence increments for Gaussian ARMA processes such

as the one of the Sharma-Mittal divergence.
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AppendixA. Derivation of the RD in the Gaussian case

By combining (2) and (6), the RD can be written as follows:

1 1
In e
a—1 / (V21) Q1 |2/ 2| Q2| (1= )/2

where, after some mathematical developments, A can be expressed as:

wp(— La) (A1)

RD{"? (o) = 5

A= afrr — pra] Qi ilmk — pra] + (1 — o) [k — pk 2] Qi sl — pi 2] (A.2)
=y, (aQr1 + (1 — )Qp3)mk — 224 (2Qp 1 pk1 + (1 — ) Qp 3ptk 2)

+ Ofll{,lQI:,lll‘k,l + (1 - 0‘)#?,2@1;12/“@,2
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Let us now introduce the following two quantities:
Quequ = Qi1 + (1 - Qe (A.3)
and
Qrquitkequ = 0Qp 1 pk1 + (1 — 0)Qp hhk 2 (A4)
Using (A.3) and (A.4), it can be shown that (A.2) becomes:

A= (Xk - ,U/k,equ)TQ];iqu(Xk - Mk,equ) (AS)

T —1 T —1 T —1
- ,u/k,eunk,equuk,equ + a,u/k,le,l:uk,l + (1 - a)ﬂ'kﬂQkﬂuk,?

Let us now rewrite the expression (A.1) of the Rényi divergence using (A.5):

_ 1 |Qk,equ|1/2
RDiz,0(k) = — 1ln( T AEeAs (A.6)

1 _ _ _
exp ( - 5(“#5,1@&11#16,1 +(1- a)lﬁganéNkﬂ - M;ﬁunk,iquy‘kaeQU)))

because f m exp (_ %(Xk: - Mk,equ)TQI;quu(Xk - Mk,equ))ka =1
At this stage, let us express the logarithm of the first part of the equation (A.6),

i.e. 2(a171)1n(IQk,l\‘aQ\)Ziq,Z\l(l—m)' By introducing:

Qko = aQr2+ (1 — @)Qk,1 (A.7)
one has:
Quequ 5 @@n + (1= a)Qi = Qii (el + (1 - )QuaQrz)  (AB)
= Qi1 (aQr2 + (1= )Qk1)Qks = Qi1 QkaQi s
Their determinants hence satisfy:

_ 1Qu1lQual N
|Qk,equ| ‘Qk,a| ( . )

Therefore, one has:

1 |Qk,equ _ 1 |Qk,al
@0 (@) = 21" (gurviguar) A1

Now, let us express the logarithm of the second part in (A.6) given by:

1 _ _ _
B = —m (aﬂg,le,lluk,l +(1- a)uf,sz,éuk,z - Mf,eunk,leunk,equ)) (A.11)
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To this end, let us rewrite Ng,euniziunk,equ by using (A.3) and by considering
-1 T 1
that that (Qk)equ) = lequ:

T -1 T -1 -1
/’l’k,eunk,equlu‘kvﬂqu = Nk,equQk,equQk,eunk,equﬂk,equ (A.12)

= (ot aQid (1= )l aQi} ) Qucon (aQik e + (1~ )@ b 2)
= 0?11 Q1 QrequQp 1151 + (1 — ) 1k 2Q 5@k equ@i 14k 2

+2a(1 - O‘)Mz,lQl;lle,eunl;lzﬂk,Q

By combining (A.11) and (A.12) and rearranging the terms, one has:

1 _ _ _
B=- m (CWZJ(ij - an,lle,eunk,ll)uk,1+ (A.13)
(1= )l a(@ich = (1= Qi sQncan@ibinz ) = it 1 Qi i Qeau @ bn.

Given (A.3), @, can be expressed using the matrix inversion lemma. Two

expressions can be considered:
- 1 1 1 -1 1 .11
Qe = an,z - an,z(QO + an,z) an,z (A.14)

which can rewritten after some simplifications as follows:

Qi = Qi + (@ = 1)Qk 3@k equQi > (A.15)
Similarly, one has:
_ 1 _ 1 1,1 1 .- 1 _
Qi = ka,ll - m@kj(a@ké + m@k,ll) 1EQ’“’11 (A.16)

which can rewritten as follows:

(1-)Qpo=Qr1— 0Qr1QkequQs (A17)

Let us now combine (A.13), (A.15) and (A.17):

B = %(M&Q;}xuk,l + M?zQELMM) — i1 Qo bk 2 (A.18)
(e _
= 5 (e = pi,2)" Qpoo (i1 — p2)
Finally, by using (A.10) and (A.18), the expression of the RD is given by:

1

|Qk,a|
2o — 1)111(|Q,€,1

lfoe‘ng'a

RDU (a) = — ) n %Tr(Q,;;AMAuf) (A.19)
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AppendixB. Appendix B

Let us assume that the ARMA parameters of order (p;,¢;) with i = 1,2 are
known. As mentioned in the description of the ARMA processes, the parameter
bo for any ARMA process is equal to 1. The purpose of this appendix is to
explain how to retrieve the ARMA parameters related to H,. The same rea-
soning can be done for the ARMA parameters related to H;_,. The complex
spectrum associated with H, can be expressed in two different ways. On the

one hand, one has by definition:

| Ba(e’)[?

« =o. Ha 792 =0’ S EAETING) B.1
Sa(0) = 0y [Ha(e)]" = 000 RO (B.1)
On the other hand, given the way the process is built, one has:

Sa(0) = aor 5 |Ha(e’*)> + (1 — @)os 4 |Hi(e?)]? (B.2)

_ aoua|Ba ()| A1 ()] + (1 — a)oiy [Bi(e!”)[*|Az(e”)?
- |[A2(e7%)[2[Ax(e7?)]?

Therefore, the poles of the H, are the poles of H; and Hs. Let us now search
for the zeros of H, and the variance o7 ,. Given the above two expressions of
Sa(0), one has:

ol Ba(e)]? = a0’ B2 (") P[ A1) + (1 = @)or 1 [Bi(e”) [ A2(e)] (B.3)
By replacing e/? by z, this leads to:

02 oBa(2)Ba(27") = aos 2 B2(2) Ba(2 7 ) A1 (2) A1 (271) (B.4)

+(1- ()C)O'i,lBl(Z)B1(Z_1)A2(Z)A2(Z_1)

When the AR and MA parameters of the two processes under study are avail-
able, the polynomials {A4;(z)A;(271)}iz1,2 and {B;(2)B;(27")}i=1,2 can be eas-
ily derived as well as the right hand side of (B.4). They correspond to a
weighted sum of 2! with [ = —p;,...,0,...,p; for {A;(2)A;(271)}i=12 and with
Il = —qiy...,0,...,q; for {B;(2)Bi(z7')}iz12. Ba(2)Ba(z7') correspond to a
weighted sum of z! where [ varies between —max(p1 + q2,p2 +q1), ..., maz(p1 +
q2,p2+q1). It should be noted that if z is a root of the right hand side of (B.4),
z*, L and % are also roots. As the roots of the right hand side of (B.4) are the

'z
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roots of B, (2)Ba(z71), the zeros of H, can be easily defined!®. Consequently

the coefficients of the polynomial of B, (z) can be deduced. Finally, the variance

0.2

u,o

can be obtained by identification by comparing the weights of 2% in both

sides of (B.4).
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