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ABSTRACT
This document provides details about the implementation of the KnitKit system.

S.1 IMPLEMENTATION DETAILS
Our implementation of the KnitKit system consists of two independent modules: The KnitNet
generator and the machine instruction generator.

The first module handles the geometry processing part of the KnitKit. It takes as input a triangular
mesh (.obj or .ply), two texture images (.png), one for the stitch pattern and one for the yarn material,
and an input vector field for the knitting direction (in .csv format). The input triangular mesh
should contain the texture coordinates in order to allow the system to map the stitch pattern and
yarn material to the geometry. In case an input vector field is not provided, the system can compute
one by evaluating the gradient of low order eigenvectors of the mesh Laplacian (as stated in the
paper). Once the input is specified, this module will generate the KnitNet according to Section 5
of the main manuscript. The output KnitNet is serialized in the EDN format 1 (Extensible Data
Notation) and written to disk. This module is implemented in C++ and includes a GUI in order to
visualize and inspect each stage of the KnitNet generation (Fig 1).

The second module that generates the machine instructions is implemented in the Clojure pro-
gramming language. In our current implementation, users interact with it through a REPL process,
executing functions which transform the data through the different intermediate stages. This inter-
active process allows for a tight feedback loop when selecting various library configurations and
inspecting intermediate outcomes. Users may also choose to compose a fixed pipeline of functions
and parameters into a static command line tool, which can be simply executed on the input file
that contains the KnitNet. The module begins by parsing the EDN file into a native graph data
1https://github.com/edn-format/edn
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Fig. 1. The KnitNet generation module.

structure, converting it into the action graph format, and then translates the action graph into
machine instructions according to a set of graph transformation rules and routines. This process
is independent from the initial input and design stage, i.e., any other program that generates a
suitable EDN file can interface with it equally well. In the next section, we will showcase some of
the rules and routines that were used to produce the examples in the main paper. The entire set of
rules and routines are included in the GitHub repository.

S.2 THE EDN FILE FORMAT

Fig. 2. Snippet of an EDN file containing a KnitNet (truncated).

Figure 2 is an excerpt from the EDN serialisation of a demo KnitNet. Its content reflects the KnitNet
description presented in section 4 of the main paper. The file contains a sequence of courses under
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the key knitnet/courses. Each course is assigned a unique id and contains a list of connections
to other courses, as well as a sequence of stitches.

Lines 3 to 10 describes the course with id=0. It is connected to two other courses as specified in
the cnx key at line 5. Stitches in the inclusive span 12 to 35 are connected to the course with id=3
and the stitch at loc=36 is connected to the special tag id OUT, indicating that it is a bind-off stitch.
Line 6 to 10 contains the sequence of stitches of the course. Each stitch is assigned a unique id and
a stitch type. The st/next key specifies the id of the wale-adjacent stitch in the connected course.
Additional optional keys can also by included. For instance, here we include the st/pos key for
visualisation purposes.

The combination of course material and stitch type defines its template. Here, the DJ value of
the c/material key specifies a Double Jersey Jacquard stitch pattern, with the st/type key being
interpreted as either of the two yarn colors in the jacquard pattern.

S.3 GRAPH TRANSFORMATION RULES

Fig. 3. Linear transformation rule.

As a first example, Figure 3 shows the linear transformation rule. The definition of a rule uses the
macro defrule and requires three arguments representing a template graph, a replacement graph,
and a context graph.

The template graph is defined between line 11 and 14. Line 11 denotes that node A is connected
to another node B, with no special restrictions placed on their nodes or edges. Similarly, lines 12 to
14 indicate that node B is connected to node C, and that node C is connected to a final node D. The
replacement graph is described between lines 22 and 24. Lines 22 and 24 indicate that node a of the
replacement graph is connected to node x and that node x is connected to node d, respectively.
In the replacement graph definition, the syntax ∼[A B] denotes a run-time substitution of the
corresponding edge A->B in the template graph. The form cmb/chain-edges ∼[A B] ∼[B C]
at line 22-23 denotes that upon matching a subgraph in some action graph G, the edges in G
corresponding to A->B and B->C in the template are passed as arguments to the chain-edges
function. This function chains their actions together and returns a new edge containing the chained
actions. This newly created edge then connects the nodes of the transformed graph corresponding
to a and x in the replacement graph.
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The graph transformation algorithm that we use in our implementation requires an additional
context graph to be specified. It describes the relationship between the template and replacement
graphs. For instance, lines 17, 18 and 19 indicate that node A is transformed into node a, node C
into node x, and node D into node d, respectively.

To summarize, the rule defined in Fig. 3 would substitute a subgraph of 4 nodes A, B, C, D with
another of 3 nodes a, x, d. The information in nodes A and D will be copied to a and d respectively
and the actions in the incoming edges of B and C will be chained together and stored in the
incoming edge of x. Connections to other nodes outside the subgraph are handled by the algorithm
according to the context graph.

Fig. 4. Left: narrowing rule, right: widening rule.

Figure 4 shows the definitions of a widening and a narrowing graph transformation rule. In
the narrowing rule (left), lines 42 to 46 describe a template graph where a node A is connected to
nodes B and X. The edge/matcher condition on the edges constrains the match to subgraphs such
that the connection from A to X is a bind-off type edge (corresponding to OUT connections in
the input KnitNet EDN.) Unless otherwise specified, all template edges created by defrule have a
reg-edge? matcher. This rule aims at removing the node X and transforming the nodes A, B and
C into a, bx and c, respectively. As indicated by the call to splice-bindoff in line 52, a bindoff
action is added to the list of actions in the incoming edge of bx. The widening rule (right) works in
a similar fashion. In this case, the rule aims to remove a START node X, and add caston actions to
the list of actions in the incoming edge of bx.

Figure 5 shows the transformation rule that we use to create holes in the knitted object. The rule
handles the transformation in three sections. First, it replaces the L1, X, R1 nodes with a single
lr1 node (line 41-42), combining the actions in the incoming edges of L1 and R1 with a bind-off
action specified by X, and storing the result in the incoming edge of lr1. The way those actions are
combined is defined in the function hole-edge-bottom from lines 5 to 18. Secondly, it replaces
the L2, R2 with the node lr2 and sequences the respective actions in the incoming edges from
L1 and R1. (lines 41-42). Finally, it replaces the node B and incoming edges from L1, Y, R1 and
B nodes with a node b, with a single incoming edge from lr2 that contains the necessary actions
(lines 45-46). Ultimately, this rule transforms a graph representing a topological hole to a linear
chain of nodes.
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Fig. 5. A hole rule.

S.4 ROUTINE LIBRARY
When the input action graph G is transformed to the canonical 2-node form G, we extract the
sequence of actions contained in its edge. The routine library is then used to generate the machine
instructions from each action. In our current implementation, we make an abstraction over these
operations, by having the routines generate a list of moves that the machine can execute and then
converting those moves into the actual machine language. This allows us to extend support to
other machines in the future, as it only requires implementing new conversions from the moves
without having to redefine the routines.
We have implemented the following moves for the Shima Seiki MACH2XS machine:
(1) KNIT : perform knitting operations on needle bed
(2) MISS : move the yarn carrier without knitting
(3) TRANSFER : transfer stitches between needle beds
(4) YARN-OUT : Bring a yarn carrier out of operation
(5) YARN-IN : Bring a yarn carrier into a specified bed location
We then transform those moves to the Shima Seiki KnitPaint format using the functions in Figure 6.
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Fig. 6. Implementations of moves in the KnitPaint format.

Below are examples of some routines that implement the KNIT-COURSE action.

Figure 7 shows the routine that generates the moves necessary to knit a course with a Knit-miss
Jacquard stitch pattern. We used this action to knit the examples shown in Fig. 16 and 17 of the
main paper. From line 14 to 16, the routine accesses information from the input machine state and
action. First, it gets the existing islands (line 14), then calculates their span (line 15), i.e., their needle
locations on the bed, and finally an array of boolean values that indicates which yarn to display on
the outside of the fabric (line 16). In this case, the contents of this array are the values of the type
key from the input EDN of Fig. 2. Then, it defines a series of moves (lines 17-25) by generating KNIT
type moves for each yarn on the front and back beds. For each move, it generates the sequence of
bed stitches by mapping the true and false values in the pattern array to either front knit, back knit,
or miss (float) stitches. On line 19, the function derive-kb is threaded through the list of moves. It
inserts any necessary kickback moves (of move type MISS) by looking at the state’s yarn carrier
poses, derives the knitting direction for each of the moves and associates a crg/dir key to them.
The resulting modified pose is used to compute a new machine state (line 27). Finally, the function
returns the new state and the modified moves.
Figure 8 shows the implementation of the routine for the CMYK Inlay stitch pattern, which

is used to knit Fig. 14 in the main paper. This routine takes in a channels parameter, which is a
map from yarn color (Cyan, Magenta, Yellow, Black) to a boolean pattern array. It takes the most
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Fig. 7. Routine that implements the KNIT-COURSE action for the Knit-miss Jacquard stitch pattern.

prominent of the channels and uses it as the base double-layer jacquard pattern along with the
White yarn. The rest of the channels are used to knit inlays on top of the base jacquard stitches (lines
37-44). Lines 47 to 80 are the definition of the moves, which are split into the jacquard and the inlay
stages. The complexity of this routine shows how users can make experimentally-obtained tweaks
to improve the stability of the resulting fabric. For example, the jacquard pattern is overwritten
with a fixed sequence on the left and right edges (lines 50-51) to reduce stitch defects. To minimize
the presence of long float yarns, we also insert tuck stitches at random locations in the inlay courses
(lines 71-74). This routine also demonstrates the use of the key :shima/ops in the moves (lines 52
and 65), as well as directly specifying KnitPaint bytecode 117 in line 73 instead of a generic stitch
alias. The ability to cross the abstraction boundary and specify these fall-through values makes
it easier for the expert user to iterate on a routine definition, and can always be refactored to be
machine-independent at later stages.

S.5 INSTRUCTION GENERATION EXAMPLE
Figure 9 shows a complete example for generating the machine instructions from an input KnitNet.
First, the input KnitNet is loaded and converted into an action graph (line 14 and 17, respectively).
On lines 21-24, we then apply the graph transformation rules to generate the sequence of actions.
We then check whether the transformation algorithm has led to the canonical graphG (line 26).
On line 28, we extract the sequence of actions from the edge of G and then generate the necessary
low-level machine moves to produce those actions (lines 36-40). For that purpose, the initial state
of the machine is set on line 31. Finally, the into-structure function on line 44 transforms the
moves into the KnitPaint format supported by the Shima Seiki machine.
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Fig. 8. Routine that implements the KNIT-COURSE action for the CMYK Inlay stitch pattern.
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Fig. 9. Instruction generation example.
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