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KnitKit: A flexible system for machine knitting of customizable textiles
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computational approach by designing and fabricating a variety of objects with complex geometries, multiple yarns, and multiple stitch patterns.

Fig. 1. The KnitKit system decouples the high-level design aspect of producing knitted textiles from the complexities and low-level specificity of knitting machines by generating machine knitting instructions from an input 3D geometry and a texture. This enables high-level design of knitting properties, i.e., geometry, yarn types and stitch patterns. Here, we CNC knitted a glove and a globe.

In this work, we introduce KnitKit, a flexible and customizable system for the computational design and production of functional, multi-material, and three-dimensional knitted textiles. Our system greatly simplifies the knitting of 3D objects with complex, varying patterns that use multiple yarns and stitch patterns by separating the high-level design specification in terms of geometry, stitch patterns, materials or colors from the low-level, machinespecific knitting instruction generation. Starting from a triangular 3D mesh and a 2D texture that specifies knitting patterns on top of the geometry, our system generates the required machine instructions in three major steps. First, the input is processed and the KnitNet data structure is generated. This graph structure serves as an abstract interface between the high-level geometric and knitting configuration and the low-level, machine-specific knitting instructions. Second, a graph rewriting procedure is applied on the KnitNet that produces a sequence of abstract machine actions. Finally, the low-level machine instructions are generated by adapting those abstract actions to a specific machine context. We showcase the potential of this wide range of shapes, textures, and materials [START_REF] Underwood | The design of 3D shape knitted preforms[END_REF]]. In particular, CNC knitting allows users to combine 3D shape-ability with the flexibility to locally embed yarn materials and vary stitch types, parameters, and patterns, which provides unprecedented design freedom for the development and customization of functional textiles [START_REF] Abel | A two-dimensional analytical model and experimental validation of garter stitch knitted shape memory alloy actuator architecture[END_REF]]. However, it is very challenging and time consuming to realize these high-level knitting designs, since they have to be translated to a low-level interface that operates at the complexity of individual stitches and machine instructions. Thus, users, i.e., textile designers, must develop a detailed understanding of the machine knitting process in order to realize their designs. In addition, the difficulty of programming the machine, i.e., building the low-level machine instructions, tends to increase disproportionately with the complexity of the geometry and the functional specifications. This can make the fabrication process very laborious and thus limits the practical knitting output of these machines to relatively simple objects.

In this work, we aim to make the design and fabrication of functional textiles more practical and accessible even to non-expert users.

To do so we:

• Propose the KnitKit system -a flexible and customizable pipeline for machine knitting. It proceeds by transforming a high-level geometry and knitting configuration into abstract knitting actions that are later translated to low-level instructions. • Define the KnitNet data structure -a row-based directed graph representation that describes the structure of knittable objects. It allows the easy representation of objects made with varying yarns and stitch patterns. This structure serves as an abstract interface between the high-level knit design and the low-level knitting instructions. • Present a novel scheduling algorithm that generates the low-level knitting instructions from the KnitNet by (1) generating a set of abstract actions, then (2) translating the actions into concrete, machine-specific low-level instructions.

BACKGROUND

Knitted fabrics consist of one or more continuous yarns that loop through existing loops to create stitches. These stitches form an inherent row-column structure, where the rows, i.e., the courses, emerge from yarn-wise connections and the columns, i.e., the wales, emerge from loop-wise connections. Various types of stitches can be realized through different looping methodologies and patterns can be created by combining different stitch types over several courses and wales. Furthermore, due to the different geometric dimensions of stitch types and the possibility to merge and split wales, knitted fabrics are not necessarily locally flat. This enables the realisation of complex 3D shapes with a single, continuously knitted piece of fabric [START_REF] Underwood | The design of 3D shape knitted preforms[END_REF]].

V-bed knitting machines

V-bed weft knitting machines are the most versatile type of knitting machines, since they enable the fabrication of seamless garments with multiple yarns and varying patterns [START_REF] Power | Chapter 12 -Yarn to fabric: knitting[END_REF]]. They consist of two main elements: (1) two beds of needles facing each other forming an inverted V-shape, and (2) a system of yarn carriers that move parallel to the needle beds, feeding yarns to the needles. Each needle is capable of holding one or more loops of yarn at a time and can be independently actuated to perform a small set of primitive operations. In general, the knitting process consists of forming new loops by selectively actuating specific needles on the bed to pull new yarn through the existing loops. The existing loops then descend through the gap between the beds. The process is repeated and the aggregating rows of loops form a piece of fabric. The needles can also perform tuck, drop, or transfer operations, and the beds can be racked sideways relative to each other for a variety of results. Thus, creating a knitted object with these machines boils down to executing an extensive series of operations, each of which would either move the yarn across the needle bed or actuate specified needles to perform any of the aforementioned operations. These operations are in practice also coupled by carriage and cam mechanisms. Additionally, there are various secondary factors that can influence the knitting process, such as pull-down and tension control settings. For a more detailed and technical description of machine knitting, we refer the reader to [START_REF] David | Knitting technology: a comprehensive handbook and practical guide[END_REF]].

Commercial CNC V-bed knitting machines such as the ones of Shima Seiki or Stoll [Seiki; Stoll] are usually accompanied by a computer-aided manufacturing software that provides a visual interface for programming the machine at a low-level of abstraction. For Shima Seiki machines, this is the KnitPaint data format. These interfaces allow the user to specify knitting instructions in terms of arrangements of stitch types or patterns. Thus, they require highly trained and skilled experts to painstakingly translate complex highlevel textile designs into machine-readable instructions. This puts a practical limit on the capabilities of these machines, as realizing complex textiles becomes a time-consuming and difficult task.

Related work

A lot of research has been devoted to the modeling and fabrication of cut and sew garments [START_REF] Li | FoldSketch: enriching garments with physically reproducible folds[END_REF][START_REF] Wolff | Wallpaper pattern alignment along garment seams[END_REF]. Most of the work tackling knitted objects has mainly focused on the visualization [START_REF] Aliaga | An appearance model for textile fibers[END_REF][START_REF] Meißner | The art of knitted fabrics, realistic & physically based modelling of knitted patterns[END_REF][START_REF] Wu | Real-time cloth rendering with fiber-level detail[END_REF] and simulation [START_REF] Cirio | Yarn-level cloth simulation with sliding persistent contacts[END_REF][START_REF] Leaf | Interactive design of periodic yarn-level cloth patterns[END_REF][START_REF] Yuksel | Stitch meshes for modeling knitted clothing with yarn-level detail[END_REF] aspects. In general, they are not suited for fabrication, since the generated knit patterns are not guaranteed to be knittable. For instance, the stitch mesh framework [START_REF] Wu | Stitch meshing[END_REF]] provides a powerful interface for modeling knitted fabrics. While it ensures that the structure is topologically valid, i.e., does not unravel, it does not guarantee its machine knittability. This is mainly because the framework neglects inconsistencies in the underlying knitting directions.

In the past few years, researchers have recognized the lack of high-level design tools for the fabrication of knitted textiles. Mc-Cann et al. [2016] presented a CAD-like tool where users manipulate simple primitives, such as tubes and sheets, to design knitted objects. Machine compatible instructions are then generated by an algorithm that automatically schedules bed layouts. [START_REF] Kaspar | Knitting skeletons: a computer-aided design tool for shaping and patterning of knitted garments[END_REF] expanded on this CAD-like tool idea. In addition to composing simple primitives, their system includes a domain-specific language for patterning and a novel pattern representation which allows the user to knit garments with various stitch patterns. While these tools are easier to use than commercial software, they still require a designer to manually configure the available primitives. Others have tried to generate knitting instructions directly from a triangular mesh. [START_REF] Igarashi | Knitting a 3D model[END_REF] presented a system for generating hand-knitting instructions, which converts a manually segmented model into separate regions of parallel winding strips which are then sampled at constant intervals. However, this method cannot be applied to machine knitting primarily due to scheduling constraints. [START_REF] Wu | Knittable stitch meshes[END_REF] extended the stitch mesh framework [START_REF] Wu | Stitch meshing[END_REF][START_REF] Yuksel | Stitch meshes for modeling knitted clothing with yarn-level detail[END_REF] to produce knittable structures. They also presented a scheduling algorithm that generates step-by-step knitting instructions for a given model. These techniques, however, rely on hand-knitting capabilities and do not take into consideration the constraints imposed by the machine. [START_REF] Popescu | Automated generation of knit patterns for non-developable surfaces[END_REF] described a system for generating machine-knittable 3D objects from quad meshes. However, their system still requires users to manually segment the model. [START_REF] Narayanan | Automatic machine knitting of 3D meshes[END_REF] introduced a method for automatically generating machine knitting instructions from an input mesh. Their approach relies on a user-defined time function that encodes the desired knitting direction. This time function guides a sequential quad-dominant remeshing algorithm that produces a geometric mesh structure compatible with machine knitting. This mesh is then passed to a tracing algorithm that generates the corresponding machine instructions. [START_REF] Vidya Narayanan | Visual knitting machine programming[END_REF] extended this work by embedding certain classes of primitive knitting instructions into the mesh faces. This allowed them to design a user-friendly system that is capable of visually creating knitting programs in a 3D design interface. More recently, [START_REF] Wu | Wearable 3D machine knitting: automatic generation of shaped knit Sheets to cover real-world objects[END_REF] adopted a different approach to handle the knitting of complex 3D structures. They introduced an automatic cutting algorithm that turns any 3D surface into a knittable topological disc. The resulting knittable surface is then fed to a machine instruction generation module based on the stitch mesh framework [START_REF] Wu | Stitch meshing[END_REF][START_REF] Yuksel | Stitch meshes for modeling knitted clothing with yarn-level detail[END_REF].

While these methods certainly make the use of knitting machines more accessible and allow for very fine-grained control of the output, they do not scale well to larger and more complex input patterns due to the need for manual stitch-level editing. They also do not lend themselves well to parameterization of a high-level specification, as the working domain is limited to primitives on the order of single stitches. For example, to knit an object with a ribbed pattern, one has to manually specify alternating wales of knit and purl stitches, and deal with various conditions caused by geometric irregularities. This means that subsequent scaling or tweaking of the geometry would require the user to re-draw the desired pattern from scratch. Thus, producing complex patterns that involve the interaction of stitches with their neighbors in both wale and course directions is impractical in general.

Despite this progress, handling 3D objects constituted of complex stitch patterns and multiple yarns remains an open issue, since they also require the complex management of multiple yarn carriers. Taking these aspects into consideration is important for the realization of functional knitted objects. More specifically, we present a novel row-based directed graph representation of knittable objects that acts as an abstract interface between the low-level machine instructions and the high-level design. This allows us to develop a highly customizable system and a scheduling algorithm that are capable of handling complex knit structures and multi-yarn objects.

OVERVIEW

The design of our machine knitting system is guided by the following objectives:

(1) Geometric independence: The input geometry should remain independent from various knitting parameters such as number of yarns and stitch patterns.

(2) Machine independence: While the generated instructions are specific to a particular machine, the algorithm used to generate them should be flexible enough to support different hardware.

(3) Customizability: Users should be able to customize the output machine instructions according to their needs. This allows the framework to support an extendable library of knitting styles and stitch patterns.

A general overview of the KnitKit system, which implements these design objectives, is presented in Fig. 2. Our knitting system functions as follows: We start by passing the input design to a geometry analysis framework that builds the KnitNet data structure. This input consists of a triangular 3D mesh along with a vector field that represents the geometry to be knitted and the desired knitting direction, respectively. Furthermore, texture data can be attached to the input geometry in order to customize the knitting operation in terms of yarn materials and stitch patterns.

The geometry analysis framework begins with parameterization followed by a remeshing operation that transforms the input geometry into a quad-dominant mesh. The edges of the resulting mesh are then assigned to an orientation consistent with the input vector field and grouped into two categories: wales and courses. Additionally, the knitting configuration is extracted from the attached textures and stored into the vertices. In the case of a 3D input geometry, we segment the geometry into two parts, each corresponding to one needle bed of the knitting machine. Finally, we perform a clustering operation that groups adjacent vertices of the quad-dominant mesh into rows. With this information, the KnitNet data structure is generated. It encodes the topology and target knitting structure and contains all the necessary information to generate the corresponding machine instructions.

Second, we process the KnitNet structure and generate the lowlevel machine instructions. This step starts by generating a sequence of actions from the KnitNet. These actions conceptually describe the operations required for the machine to knit the input geometry. This is achieved with a graph rewriting approach that builds this sequence in an iterative manner using a set of rules. The resulting sequence of actions is then transformed into a set of lowlevel machine operations using a library of routines. These routines adapt the high-level actions according to the machine physical state and configuration. Finally, these operations are transcribed into the native data format of the specific machine being used. Both the graph transformation rules and the routine library can be modified and extended by the user. This makes our knitting system highly flexible and customizable. However, customizing both the rules and the routine library requires knowledge in machine knitting thus is considered to be a task for machine specialists. It is important to Fig. 2. Overview of the KnitKit system. First, an input design given by a textured 3D mesh is converted into a topological KnitNet data structure. Using a user-customizable library of graph transformation rules and routines, this data structure is processed via an intermediate abstract action stage into machine instructions, which can be loaded into a knitting machine (visualized here in KnitPaint) to fabricate a customized knitted textile (Size: 120 x 180 mm).

note that the graph rules and the routine library are independent from any specific input design. This means that they can be reused to generate machine instructions for any arbitrary input design represented by a KnitNet supported by the given graph rules and routine library. Splitting the KnitKit into two independent stages makes the system more accessible and achieves our objectives of developing a geometry and machine independent, customizable machine knitting system. Non-expert users can focus on the design aspect by configuring the knitting process from a high-level conceptual point of view, i.e., modeling the input geometry using standard 3D modeling software or configuring the knitting design in term of yarns and stitch types using 2D textures. On the other hand, machine specialists can concentrate on building a robust set of graph rewriting rules and the routine library used to generate the knitting instructions to support a large class of objects and patterns.

THE KNITNET DATA STRUCTURE

The KnitNet is a directed acyclic graph that captures the topological structure of a knitted object, see Fig. 3. The nodes of the KnitNet roughly correspond to the courses of the knitted object and the edges describe the wale-wise connections between courses. We define the KnitNet with the following elements:

KN Node. The nodes of the KnitNet each contain a set of ordered vertices that are connected in a course-wise manner. It is described as follows:

• id: a unique identifier.

• template: a user-defined field that represents a certain knitting pattern. It can include an arbitrary number of physical yarns of different colors or materials. For example a Fair Isle colorwork pattern is defined by a template containing two (or more) yarns of different colors. • vertices: an ordered list, where each vertex generally represents a stitch of the knit structure.

Additionally, our framework allows for local configuration of the template. To that end, each vertex is represented by:

• id: a unique identifier.

• type: a user-defined field used to configure the corresponding template. For instance, it can be a single key attribute that maps to a certain stitch pattern (Single Jersey, Rib, Full Cardigan, etc.), or in the case of a Fair Isle template, it can be a flag that designates which yarn is carried. • source/destination: A reference for the id of the incoming and outgoing KN Node. • interval: indicates the starting and ending vertex id of a connection.

BUILDING THE KNITNET

The process of building the KnitNet begins with a parameterization operation that produces orthogonal stripes with equal spacing. This is followed by a remeshing step that produces an adequate quaddominant mesh. The edges of this mesh are consistently oriented in accordance with the input knitting direction and are classified into two groups: course-edges and wale-edges. In case the knitted geometry requires multiple needle beds, e.g., 3D geometry, a segmentation operation is performed that divides the mesh into two and assigns each half to the corresponding bed. Finally, the vertices of the remeshed model are grouped and ordered into consecutive connected nodes to obtain the KnitNet structure. This process is illustrated in Fig. 4 and described in detail below.

Directional quad-dominant remeshing

At its core, a knitted structure can be modeled by a non-conforming quad-dominant mesh M Q = (S, E), where the vertices S and edges E correspond to a set of stitches and their respective connections.

In this case, T-junctions represent short rows and internal increases or decreases, which are essential for shaping, see Fig. 5. In order to model a knitted structure, the resulting quad-dominant mesh must meet the following specifications: To resolve this issue, we apply the grid-preserving operators of [START_REF] Bommes | Global structure optimization of quadrilateral meshes[END_REF] at the end of our remeshing step.

In the case where the input geometry is three-dimensional, each vertex of M Q must be assigned to either the front or back bed of a V-bed knitting machine. Concretely, this means that the vertices in each row of M Q should be evenly divided into two groups, such that the boundary between them is continuous across adjacent rows. This is equivalent to computing a surface that cuts through the input geometry along the knitting direction, dividing it into half. In practice, this can be achieved by computing a series of consistently oriented planes for every row of M Q and then assigning each vertex to the front or back bed based on its position with respect to that plane. The vertices in front and behind the plane are thus assigned to the front and back beds, respectively, see Fig. 4d.

Constructing the KnitNet

Once we have constructed the quad-dominant mesh M Q and assigned the vertices to their needle beds, generating the KnitNet data structure is quite straightforward. First, we cluster the vertices into distinct rows in order to build the KN Nodes, see Algorithm 1. We start from an arbitrary vertex on the mesh. Then, we navigate in the course direction towards the leftmost boundary vertex. At this point, we create a new node and navigate the mesh along the course direction, while adding each vertex we encounter to that node. In cases where multiple templates have been assigned to the vertices of a row, we create a new node every time the current vertex has a different template attributed to it than the previous one. We stop when we reach the rightmost boundary. We repeat this process until all the vertices of M Q have been visited. Second, we compute the KN Edges, i.e., the connection between the nodes, see Algorithm 2. Starting from an arbitrary node, we traverse its assigned stitches in an ordered manner. For each vertex we look up the node corresponding to its adjacent vertex in the course direction. We create a new edge every time a new adjacent node is referenced. We repeat this process for all nodes in the KnitNet.

GENERATING MACHINE INSTRUCTIONS

The major challenge of automating the generation of machine knitting instructions is dealing with the highly interlinked nature of low-level operations. To illustrate this, we consider the task of knitting a single course over a certain span of needles using some stitch pattern. The sequence of low-level machine operations needed to realize this task depends on: Algorithm 3: Generating the sequence of actions input : K, the KnitNet data structure, P, a set of rules output :A, a sequence of actions

G ← build action graph from K while G G do matchFound ← false for p i ∼ (L i , R i ) ∈ P do д ← find a match for subgraph L i in G if д ∅ then substitute д with R i in G matchFound ← true break end end if matchFound = false then
error: unable to collapse graph end A ← get action sequence in G return A set-up operations. Existing loops which are held for an extended period may require operations to release tension.

In order to handle this complexity, we divide the machine instruction generation process into two stages. First, we use the input KnitNet to build a sequence of abstract knitting actions, which are generally needed to realize the object at hand. These actions correspond to conceptual tasks to be carried out by the machine and are not concerned with the dependencies mentioned above. Second, we translate those actions into machine-specific low-level operations that map directly into the machine's native data format.

Generating the sequence of actions

A knit object is fundamentally a series of connected rows of stitches that is fabricated in a sequential manner. We capture this row configuration by our KnitNet data structure. Conceptually, the knitting process can be seen as the act of realizing the KnitNet one KN Node at a time. In each step of the process, a knitting action is invoked in order to create a KN Node, i.e., a row of stitches.

In order to represent the sequential nature of the knitting process, we construct an action graph G that describes the steps required to knit the input KnitNet. Each node of G corresponds to a KN Edge in the KnitNet. Two nodes of G are connected if the corresponding KN Edges share a nonempty span of stitches in their mutual KN Node. In other words, the edges of G correspond to mutually disjoint partitions of the KN Nodes, see Fig. 6 for illustration. In this context, the transition from one node of G to another via an edge represents an action that would knit the partition of the KN Node embedded in the edge. When the partitions of the KN Nodes are not connected to any other, their corresponding edges in G would be connected to specially tagged start or end nodes. These specially tagged start or end nodes indicate the boundaries of the knit object and their incoming/outgoing edges represent additional cast-on or bind-off actions.

In order to generate the sequence of actions described by G, we proceed with a double pushout algebraic graph rewriting approach [START_REF] Corradini | Algebraic approaches to graph transformation-part I: Basic concepts and double pushout approach[END_REF]. Each rewriting operation corresponds to combining multiple knitting steps according to a suitable rule. In more technical terms, each rule is defined as P i = {L i → R i }, where L i and R i refer to a template subgraph and a replacement subgraph respectively. Rewriting the graph according to a rule P i consists of searching for an occurrence of the subgraph L i in G that satisfies certain constraints and replacing it with an instance of R i . The goal of this approach is to transform G to its canonical form G, consisting only of two nodes connected by a single edge, according to the given set of graph transformation rules. It represents the macro-transition between the start and the end of the knitting process using the sequence of actions embedded in its edge. This rewriting approach is detailed in Algorithm 3.

Figure 7 illustrates this process for the double torus example. In this case, we have the rule library P = {P 1a , P 1b , P 2a , P 2b , P 3 , P 4 }, with rules being ordered according to their priority. Using this particular set of rules, the algorithm is able to handle the class of torus-like topologies without short rows. P 1 and P 2 handle geometric increases and decreases, respectively. P 3 is a simple concatenation rule that removes a node and chains the corresponding actions, and P 4 handles the scheduling of hole topologies. Generating the sequence of actions that would produce the double torus starts by generating the graph G from the respective input KnitNet. At each iteration, the algorithm identifies a subgraph of G that is isomorphic to a template graph L i of a rule P i . If multiple valid subgraphs are found, the one corresponding to the highest priority rule is selected. In our implementation, Ullman's algorithm [START_REF] Ullmann | An algorithm for subgraph isomorphism[END_REF]] is used for identifying matching subgraphs. Using the double-pushout rewriting algorithm, the subgraph L i is substituted with its corresponding template R i . By iterating this procedure, G is gradually reduced in size, while the embedded action sequences in its edges grow larger. Eventually, G consists of only two nodes connected by a single edge, the canonical form G. The final sequence of actions can thus be extracted from the edge of this graph. If the algorithm fails to transform G into G, this indicates that the provided rule library is incapable of handling the object's topology. In this case, an expert user can extend the rule library to allow the system to handle more complex topologies.

Building the set of graph transformation rules is not a trivial task. Defining the functions attached to the edges of the replacement graphs requires some level of expertise in machine knitting and can be used for fine-grained control over the scheduling (see Sect. 7.2). However, once this set is built, it can be reused to generate the sequence of actions for any input graph that conforms to certain geometric shapes and knitting templates. Allowing expert users to define custom rules at this level ensures that the system is highly extensible and can adapt to different requirements.

Generating the low-level instructions

Having generated a sequence of abstract actions A, which are still independent from the machine context but reflect the sequential nature of the knitting process, from the input KnitNet via G and G, the goal now is to compile it into a series of low-level machine operations. The principal challenge here is handling the highly interlinked nature of machine knitting, which we overcome by keeping track of the physical state of the machine while translating the abstract actions into operations. Each action is associated with a set of user-defined routines which correspond to different implementations of the abstract knitting task. These routines depend on the current state of the machine and modify it within each execution step.

In our implementation, the machine's state S is encoded as a set of i islands and a set of j yarn carrier poses: S = {I 0 , . . . , I i }; {yc 0 , . . . , yc j } Additionally, we include relative spatial constraints between the islands, which ensure that they are within a certain distance of each other and do not overlap. An island is a contiguous region of the needle bed occupied by knitted loops. In general, each island corresponds to a separate branch of the geometry, spans a certain number of stitches w, and can occupy either one or both sides of the needle bed. It is represented by an array of slots, each containing information about the loops occupying a physical needle, e.g., the template and type of the last stitch operation performed on the needle. We encode the location of an island by its leftmost reference point with respect to the start of the needle bed. For example, in Fig. 8, in the updated state S ′ , there are two islands I 1 and I 2 positioned at needles 2 and 10, with widths 5 and 3 respectively. Here, the constraint C 0 specifies that I 1 must be located on the right of I 0 , and separated by a maximum distance of 10 needles without overlapping. This ensures that subsequent processing steps do not violate these constraints, rendering the program unknittable. Each yarn carrier, is encoded by its absolute position on the needle bed, along with the direction of movement, i.e., leftwards or rightwards, of the most recent operation involving it. Yarn carriers can be temporarily disabled by sending them out of operation on either side of the needle bed.

In general, realizing a knitting action leads to a change of the machine's state, such as moving of yarn carriers and altering the Figure 8 shows how a split action changes the state of the machine by splitting one island into two, requiring the involvement of a second yarn carrier and changing both yarn carrier poses. Thus, the translation from abstract knitting actions to low-level operations is achieved by a linear fold over the input sequence of actions. Given the initial state S 0 , the algorithm iterates through the sequence of actions A and performs the following: (1) inspect the current state and action components, (2) look up the corresponding routine(s), and (3) append the resulting operations to the list of operations O, and update the state accordingly. Algorithm 4 summarizes this procedure.

For illustration, Fig. 9 shows successive knit, widen, and split actions being executed in the context of the double torus (see Fig. 7), with the corresponding state updates and generated operations visualized in KnitPaint. In the case of the split action, the associated routine splits the island into two and associates a yarn carrier with each new island. The conceptual task of knitting a single course is encapsulated by a knit-course action. This action is implemented by the routines KnitSJ or KnitDJ (among others), for knitting in Single Jersey or Double Jersey stitch patterns respectively. When the operation generation algorithm encounters a knit-course action, it dispatches either of these routines depending on the stitch types encoded in the state at hand. The routines may additionally call other subroutines if the state's island does not conform to specific constraints. For instance, the KnitSJ routine may call one which transfers all stitches from the back bed to the front, converting a double-bed island to a single-bed island in preparation for knitting a Single Jersey course.

Also, this library of action types and routines is entirely extensible, allowing one to define new actions or routines that adapt an existing action to new contexts or purposes. Since action types are determined largely by the graph transformation rules, there is a certain degree of interdependence between the two rule sets. For example, a split graph transformation rule would require the definition of a corresponding split action and its routines in the routine library. However, it is important to note that these libraries are completely decoupled from the input geometry and can be reused across many situations.

Fig. 9. The sequence of actions A is threaded through successive states to produce low-level instructions (represented here as fragments in KnitPaint format). Some actions may produce no output and only modify the state representation. For instance, the split action here splits the island of the incoming state into two.

Building the transformation rules and routine library

In this section we give some insights into building both the set of graph transformation rules and the routine library. As mentioned previously, this is expected to be carried out by specialists who are familiar with the inner workings of the target knitting machine.

We start by analyzing the shape at hand and identifying high-level tasks, i.e., actions, that must be carried out by the knitting machine. Considering the double torus of Fig. 2, its production can be broken down into the following tasks: knit-course adds a series of stitches on top of existing ones, knit-hole creates a hole by splitting and then merging, and widen and narrow increases and decreases the width of the course, respectively.

For generating the sequence of actions (see Algorithm 3) each transformation rule P i is comprised of two graphs L i and R i . L i is a topological representation of a particular knitting task and R i its topologically simplified version. To build the set of transformation rules, we start by expressing each knitting task by its topological representation. We then define the replacement graph R i and the derivation of its edges in terms of transformations of the edges in L i . Each knitting task may have multiple topological representations. For instance, widening on the left side of the fabric is different from a widening on the right. Therefore, in order to handle the double torus example, we define a left and right variant for each widening and narrowing rule, see Fig. 7.

Each then maps to multiple low-level implementations, or routines, Fig. 7. A routine is a self-contained function that takes as input a machine state and outputs the instructions along with the updated state. To create the various routines of a particular action, we first list its parameters and enumerate the various initial states and scenarios in which it can be expressed. We then write a routine for each of those scenarios. For example, executing a knit-course action depends on the width of the course, the relative pose of the yarn carrier, and the stitch pattern (Single Jersey, Full Cardigan, ...). In our implementation, each of the knit-course routines handles a specific stitch pattern and generates the instructions according to the relative pose of the yarn carriers, as well as inserting kickback moves. When a knit-course action is invoked, the system looks up and executes the corresponding routine, see Algorithm 4.

In the supplementary material, we have included examples of several graph transformation rules and routines along with a detailed commentary.

RESULTS

In this section, we demonstrate the capability of the KnitKit machine knitting system. All of the presented examples were knitted using a 15-gauge Shima Seiki MACH2XS knitting machine [2XS].

Geometric calibration

As stated in Sect. 5.1, it is possible to control the spacing between two consecutive stripes. By setting the spacing parameters to the physical stitch height and width for the course and wale stripes, respectively, we can calibrate our knitting framework to knit objects of desired dimensions. However, the distance between two consecutive courses and wales varies for different stitch patterns (and for different stitch value parameters that control loop length). For instance, the dimensions of a Single Jersey stitch pattern are different from the dimensions of a Rib stitch pattern. Moreover, those dimensions change when another material is used, e.g., glass fiber yarn would yield different stitch dimensions compared to cotton-acrylic yarn. To account for the varying spacing between two consecutive stripes, we locally modify the size parameters of the node template and stitch type according to a lookup table that contains the relative dimensions.

Here, we present a systematic method to easily obtain these dimensions, see Fig. 10. First, we knit a small rectangular sample (∼ 180 mm wide) with a certain stitch pattern. Then, we fix this sample inside a jig and take a photograph showing the details of the stitch pattern. In order to measure the height and width of a single stitch, we first enhance the contrast of courses and wales by applying horizontal and vertical blur filters respectively. Then, we build two 1D profiles of the image by computing the median pixel value for each row and column. Finally, we run a fast Fourier transform on the profiles and calculate the width and height of the stitch pattern from the frequency of each profile with the highest amplitude. Table 1 presents the measured dimensions of various stitch patterns for fabrics knitted with a 30/2 cotton-acrylic yarn.

Figure 11a shows the knitted output of a 75 × 300 mm rectangle where we attribute a different stitch pattern to each section of the rectangle. Despite the different dimensions of the input stitch patterns, the length of our knitted output is approximately 300 mm and its width remains close to 75 mm, even when the stitch pattern changes. This is due to the parameterization operation that locally adjusts the stripe frequency to account for the changing stitch dimensions. Moreover, using these measured stitch dimensions, our system can closely reproduce the geometric features of the input geometries. For instance, in Fig. 11b the angles formed by the knitted outputs are close to those specified in the input geometries.

Customizability and flexibility of the KnitKit system

The separation of our machine knitting system into two independent stages allows non-expert users to design textiles without requiring in-depth knowledge about the inner workings of machine knitting. In this section, we demonstrate the flexibility and customizability of the KnitKit in various scenarios.

Customizing global knitting directions. Here, we demonstrate the potential of tweaking the input vector field. This allows the user to influence the global scheduling of the knitting process, independently of the overall shape of the knitted textile. For instance, Fig. 12 shows a rectangular textile comprising three differently colored regions, i.e., different yarns. When processed with a uniform, horizontally oriented vector field, the resulting boundaries between different yarns occur in the middle of knitted courses. On the other hand, when the input knitting direction is adapted to be orthogonal to the color boundaries, the resulting transitions between different yarns occur only between successive courses. In both cases, the resulting knitted textiles have the same overall shape and color pattern, since they are generated from the same input geometry and texture, only differing in terms of their vector fields. However, Fig. 12. The same rectangular shape with a 3-color texture was knitted with our system using an horizontally aligned (top) and an adaptive (bottom) vector field. In the latter, the color change only happens across courses and not within a course (Size: 200 x 50 mm).

the generated operations for knitting both textiles differ greatly.

The top version requires the use of intarsia techniques that may involve extra carriage movements and kickbacks in order to deal with mid-course yarn changes. The bottom version involves short rows and shaping operations in order for yarn changes to occur between successive courses.

Customizing yarns and stitch patterns. Within the KnitKit system, the generation of machine instructions is not bound to any particular yarn type or stitch pattern.

In Figure 13, we map regions of an input rectangular geometry to Pique Lacoste and 2x2 Rib stitch patterns with different yarn colors. These two stitch patterns vary greatly in their dimensions and stiffness. Having calibrated these stitch pattern dimensions in Sect. 7.1, our system is able to maintain the desired proportions of the input geometry by assigning suitable numbers of wales and courses during the parameterization stage, and by dealing with internal shaping and short rows at the region boundaries during the instruction generation stage. By simply changing the input texture, we can alternate between vertical and diagonal boundaries without modifying the underlying rules, even though the low-level instructions required at the boundary are quite different.

In Figure 14, we have used our system to generate textured knitted textiles from an input image, in two different styles. The first one consists of a simple 2-yarn template that we configure with a single flag to produce a Fair Isle colorwork. To reproduce the input image in grayscale, we set the type field of vertices in the KN Node to the dithered luminance of the image. For the second style, we have defined a complex template comprised of 5 yarns of different colors with the goal of reproducing the input color image using inlay stitch patterns. A white yarn is knitted in a Double Jersey stitch type and cyan (C), magenta (M), yellow (Y), and black (K) yarns are inlaid between the stitches of the white yarn. In order to configure this complex template, we define the type field of each vertex as a 4-flag array. In this configuration, each flag corresponds to the C, M, Y, and K yarns respectively, and setting the flag to true indicates that the corresponding colored yarn should be displayed on the fabric surface. In both of these cases, the expert user defines corresponding routines for the knit-course action, which are dispatched when the template is encountered. In this context, the designer only needs to provide an input image, and the low-level complexity of dealing with multiple colored yarns is hidden from the user.

Customizing action scheduling. Every topological branch in the geometry along the knitting direction requires the execution of a split action, which divides a contiguous island into two. Due to the inherent nature of knitting, a single yarn carrier cannot simultaneously knit across two or more islands without bridging them by floating strands of yarn. If the branches are sufficiently short, this can be resolved by a serial scheduling strategy. This entails entirely knitting one branch before proceeding with the other, which results in a single floating-yarn connection that is easily post-processed, i.e., cut. However, this strategy poses a problem when dealing with larger textiles or more delicate materials, as the loops of yarn on both islands are subject to inconsistent amounts of tension, which might cause defects or knitting failures.

To address these potential problems, several scheduling strategies can be considered. A more conventional strategy is to introduce additional yarn carriers threaded with the same yarn type so that the islands can be knitted in parallel. However, due to the limited number of yarn carriers that are physically present on a given machine, this strategy limits the possible topologies of a knittable object. With this strategy, a machine with 4 available yarn carriers can only knit geometries with a maximum of 4 branches at any given point in the knitting process. Alternatively, we can handle splits in a more sophisticated manner by alternating between the split islands with a tuck-and-bridge action. Like the serial strategy, this requires only one set of carriers but with the advantage of a more uniform tension. Implementing this more complex scheduling strategy in the conventional Shima Seiki KnitPaint macro language is a highly impractical task. However, with our system this amounts to only modifying the corresponding split rule.

Figure 15 shows a Y-shaped object knitted with two different splitting strategies along with their respective generated instructions visualized in the KnitPaint format. The top version is achieved with the serial strategy of knitting the left branch entirely before switching to the right branch. In contrast, the bottom version was produced with the more complex tuck-and-bridge strategy where a single carrier knits both branches by alternating between them at intervals to minimize tension differences. This produces floating bridges of yarns linking the branches at each interval, which are simply cut after knitting. It is important to note here that while the two sets of instructions are quite different, they were generated from the same input KnitNet. The only difference is the graph transformation rules, where we substituted the serial split rule with the alternating split rule. This causes the graph collapse stage of our system to generate two different sequences of actions, each corresponding to the respective split strategy. The graph transformation is also independent of the instruction generation stage, as seen in Fig. 16 where the same split rule was reused with a more complex geometry and stitch template.

Knit design and functional applications

Our KnitKit system aims to make the design process independent of the low-level operations. This means that given a certain set of graph transformation rules and a routine library for instruction generation, a non-technical user can design knitted objects using typical 3D modeling and image editing tools.

To generate the examples here, we have defined a collection of 12 rules that can handle objects containing branching paths, internal shaping, and certain configurations of short rows. These rules generate about 6 classes of actions, each of which is implemented by several routines. Altogether, 30 different routines were implemented, supporting various complex stitch patterns, variations on cast-on and bind-off operations, and state manipulation operations. input design Fig. 16. A 3D hand model with a 2-colored texture is knitted using the same alternating split rule as Fig. 15b, requiring only 2 yarn carriers for branching the textured fingers and minor post processing (Size: 150 x 320 mm). input design Fig. 17. An earth replica obtained by guiding the yarn template with a dithered globe texture attached to a sphere. The resulting knitted object is stuffed with polyester fiberfill to attain the 3D globe (Size: diam 180 mm).

For example, to produce the double torus of Fig. 2, the user first loads the geometry into the system. Then, a knitting direction is computed based on the Fiedler vector of the mesh Laplacian [START_REF] Lévy | Spectral mesh processing[END_REF]. The user then loads a texture, here the SIGGRAPH logo, that configures the stitch type and selects a 2-colored cotton yarn template. In this situation, the user selects the corresponding set of rules from the routine library from our collection. Now, the KnitNet is generated from the design inputs and subsequently processed to generate the low-level instructions. Finally, the output instructions are loaded into the machine and the SIGGRAPH-style double torus is knitted. A similar fabrication procedure was followed when producing each of the other objects such as the glove (Fig. 16, capitalizing also on the tuck-and-bridge split scheduling strategy for branches) or the globe (Fig. 17). Another example that showcases multiple high-level capabilities of the KnitKit system is displayed in Fig. 18. A complex 5-color stitch template configured to an input image texture is used for the main body of the fabric, which is shaped according to a 3D-curved elliptical input geometry. Using customized action specifications, an integrated drawstring channel is knitted along the outer boundary to tighten the fabric around a rigid cardboard frame, making it a functional textile decoration element.

These examples demonstrate that our proposed KnitKit system makes machine knitting more accessible. The prototyping of knitted textiles can be greatly simplified, since altering the designs only requires a change in the corresponding textures. This is particularly important for emerging applications of technical textiles with added functionality, where readily available, commercial templates do not exist. Table 2 shows the detailed time required in our examples to generate the machine instructions from the input designs. In its current implementation, our system can generate instructions for complex objects within minutes.

LIMITATIONS AND FUTURE WORK

Input knitting direction. The proposed KnitKit system requires a vector field to be given as an input that represents the intended knitting direction. In our implementation, we have computed it by evaluating either the gradient of a linear function defined on input geometry, e.g., the time function from [START_REF] Narayanan | Automatic machine knitting of 3D meshes[END_REF], or the gradient of low order eigenvectors of the mesh Laplacian [START_REF] Lévy | Spectral mesh processing[END_REF], or by computing a globally optimal vector field [START_REF] Knöppel | Stripe patterns on surfaces[END_REF]]. This vector field has direct influence on the remeshing output and thus directly affects the KnitNet structure. In particular, its curl and divergence influence the occurrence of T-junctions that translate into short rows and internal shaping of the knit structure. Furthermore, the physical properties of the yarn, as well as the stitch pattern, place restrictions on the mechanical stress that the yarn can withstand during the knitting procedure. These restrictions limit the machine's capacity to knit a large number of successive short rows or perform an arbitrary number of transfers onto the same needle, since these operations might cause the fabric to tear or have loop formation errors. Thus, an input vector field with a large change in curl or divergence, which would cause successive short rows or many transfers, should be avoided. Here, we have smoothed the input vector field in order to avoid these issues. However, in future work, it would be interesting to explore the relationship between the input vector field and the generated knit structure in more detail and develop tools to generate input vector fields that take the yarns' physical constraints into consideration. This would enable the user to have even more control over the knitting process and allow the system to perform knitting-aware optimization of the input vector field in order to ensure a stable knitting process.

Impossible geometries. In case the geometry contains multiple concurrent non-planar splits, it is impossible to compute a valid segmentation of the vertices in each row of the quad mesh. Thus, a proper allocation of the vertices to either the front or back bed cannot be found and consequently the system will fail to generate a valid KnitNet.

Knittability of the KnitNet. The instruction generation part of our system assumes that the KnitNet is a directed acyclic graph. In case the input design is a 3D geometry, the vertices of the corresponding KnitNet's KN Nodes should form two contiguous groups, each corresponding to either the front or back bed. These constraints on the structure of the KnitNet are weaker than the knittablity conditions laid out in [START_REF] Narayanan | Automatic machine knitting of 3D meshes[END_REF], which require the input 3D geometry to have a global planar embedding, such as branches with braided crossings. Our system can successfully build a KnitNet for such geometries and is able to generate their corresponding knitting instructions if the set of graph transformation rules includes the ones that match to non-planar graphs. Therefore, the knittability of the KnitNet is not only determined by constraints on its topology, but also by the set of user defined graph transformation rules. In the future, we aim to further investigate and formalize the knittability properties of the KnitNet.

Graph transformation rules and routine library. Building or extending the set of rules and routines is expected to be carried out by technical users. It requires a detailed knowledge of the knitting process and some experience with our system in order to be able to identify the abstract actions that can be performed by the machines, determine their various parameters and translate that information to rules and routines. Readers can refer to the supplementary material for examples of graph transformation rules and routines. In the future, formalizing the notion of KnitNet knittablity would allow us to propose a more systematic approach for the development of graph transformation rules and routine libraries for our system.

Refinement of state model. The current representation of the machine state could be further enhanced, for instance, by taking into account the front-to-back positioning of the yarn carriers. If two carriers share the same rail, it is physically impossible for them to cross each other or come closer than a specified distance. However, the current state model treats them as being able to move completely independently of each other, and thus illegal instructions that result in collisions of carriers on the same rail could be generated. Rail allocations can also interact with the spatial layout of islands on the needle bed to produce undesired phenomena known as "yarn tagging". In the future, it should be possible to extend the action processing stage by taking the yarn-to-rail allocation as input and augmenting the logic to handle these cases. This would enable the detection of carrier collisions or yarn tags, and the system could potentially suggest an optimal rail allocation or insert additional operations to resolve such issues.

CONCLUSION

We have presented the KnitKit as a flexible system for the computational design and manufacturing of customizable textiles using CNC knitting machines. The aim of this system is to provide a geometry-and machine-independent workflow for the machine knitting of textiles. It manages to decouple the high-level design aspect of producing knitted textiles from the complexities and lowlevel specificities of knitting machines. This offers non-expert users the possibility to design knitted textiles with customized, complex, 3-dimensional geometries and intricate design patterns. At the same time, it provides knitting experts with the flexibility to implement additional stitch patterns and output machine knitting instructions independently from the input design. For example, Figure 1 shows a textured hand grabbing a globe model, which were both produced with our knitting system from 3D meshes with attached 2D textures.

This has been realized using the KnitNet, a row-based directed graph data structure, as a central component. It provides an abstract interface between the high-level specification of geometry, design pattern, and knitting direction and the low-level knitting instructions. At the high-level design stage, an algorithm has been developed that generates the KnitNet representation from an input mesh geometry and texture-defined specifications.

Furthermore, a two-stage algorithm for the low-level instruction generation has also been developed, which translates the KnitNet graph to machine-specific knitting instructions using a set of graph transformation rules and a routine library that can be customized by knitting experts.

The capabilities and potential of the KnitKit system have been demonstrated by applying the complete workflow from high-level knitting design, to low-level knitting instructions, and to fabrication for several examples with varying complexities in terms of geometries and patterns. We show that it is possible to design and fabricate textiles with precise geometric dimensions, optimize results by varying the knitting direction at the high-level stage or instruction generation rules at the low-level stage, and define complex stitch configurations that enable users to easily create textiles with highly-customized designs using multiple yarns and customized stitch patterns.

Fig. 3 .

 3 Fig. 3. The row-wise topological structure of a knitted object is captured by the KnitNet graph. Each course of a knitted object is represented by a node that contains a list of stitches, the KN Node. The course-wise connections are represented as directed edges connecting one node to another, the KN Edges.

Fig. 4 .

 4 Fig. 4. Illustration of the various steps of building the KnitNet from an input 3D mesh and vector field, here for a double torus: (a) 2D stripe parameterization computed from the input geometry and vector field. (b) Quad dominant mesh M Q with its edges classified as wale (blue) and course (red). (c) Vertex clusters obtained by tracing the vertices of M Q along the course edges. (d) In the case of a 3D geometry, a segmentation step is performed that attributes each vertex of the quad-dominant mesh M Q to a needle bed.

Fig. 5 .

 5 Fig. 5. The structure of a knitted object is represented by a quad-dominant mesh (nodes shown in yellow, course-wise edges in red and wale-wise edges in blue). (a) Regular quad mesh, representing a uniform Single Jersey knit. (b) Horizontal T-junction, representing internal shaping. (c) Vertical T-junction, representing a short row.

( 1 )Fig. 6 .

 16 Fig.6. The action graph G (shown in C) is generated from an input KnitNet (shown in B). Each node of G corresponds to an edge in the KnitNet and two nodes of G are connected if the corresponding edges in the KnitNet share a nonempty span of stitches in their mutual node. Note that there is no edge between nodes C and E in G, even though edges C and E in the KnitNet share a common node N 3, because they do not share an adjunct partition of stitches in N 3.

Fig. 7 .

 7 Fig.7. The input KnitNet is converted into an action graph G, and iteratively transformed using a double pushout graph transformation approach, according to a user-defined library of rules P . At the end of the transformation, we obtain the canonical action graph G, and extract the sequence of actions A needed to produce the knit structure from the single edge of G.

Fig

  Fig. 8. A state S encodes the layout of carriers and loops on the needle bed at a certain point in the knitting process. An action executed in the context of the state S changes the layout of the yarn on the needle bed. For example, a split action would split one island into two and attribute a new yarn carrier to the newly created island.

Algorithm 4 :

 4 Transforming actions into operations input :S 0 , the initial state, A, the sequence of actions output :O, a list of operations initialize O ← ∅ S ← S 0 for a i ∈ A do p ← get parameters of action a i R ← get the corresponding routine a i o i ← get operations by executing R with parameters p and state S. update the state S according the operations o i append o i to the list of operations O end return O composition and layout of loops on the slots of the needle bed.

Fig. 10 .

 10 Fig. 10. To geometrically calibrate our knitting system, stitch pattern dimensions are determined from image analysis of knitted samples.

Fig. 11 .

 11 Fig. 11. The geometric calibration allows us to locally configure the parameterization process such that the resulting shape and size of the knitted output is in accordance with the geometric dimensions of the input design.

  Fig. 13. A rectangular patch is knitted with two different configurations of yarn colors and stitch patterns (blue Pique Lacoste and white 2x2 Rib), which are simply controlled by regions on the input texture that map to the corresponding template.

  Fig. 14. Knitting a picture as a textured textile with two different templates.On the left, the dithered luminance of the input image is mapped onto a rectangular geometry to guide a 2-color Fair Isle colorwork. On the right, the CMYK channels of the same image are used to configure a complex 5-yarn custom template (Size: 375 x 380 mm).

  Fig. 15. Just by changing the split action rule, it is possible to generate instructions that use different scheduling strategies for dealing with split branches from the same KnitNet. The bottom strategy achieves more uniform tension by means of a single yarn carrier knitting both branches in an alternating manner with floating yarns as bridges.

Fig. 18 .

 18 Fig. 18. A complex knitted object showcasing high-level capabilities of the KnitKit system. Custom 5-color stitch templates, action definitions for an integrated drawstring channel and shaping techniques are used to generate the object from a geometric and image texture input. Inset photos show the close-up details of the complex stitch pattern and drawstring channel.

  Algorithm 2: Building the KN Edges input : M Q = (S, E), N , the list of KN Node extracted from M Q output :C, list of connections between nodes of the KnitNet for all nodes n i in N do s 0 ← first stitch of node n i

	s w 0 ← adjacent stitch of s 0 in the wale direction n s w 0 ← node of s w 0
	for all stitches s k in node n i do s w k ← adjacent stitch of s k in the wale direction n s w k ← node of s w k
	if n s w 0 and n s w k add connection from n i to n s w are different then 0 in the list C n s w 0 ← n s w k
	end
	end
	end
	return C

Table 1 .

 1 Stitch pattern Width (mm) Height (mm) Dimensions for various stitch patterns knitted from a 30/2 cottonacrylic yarn.

	Single Jersey	1.471	1.256
	Double Jersey	1.376	1.437
	2x2 Rib	0.992	1.445
	Full Cardigan	1.679	1.825
	Linen	1.544	1.572
	Pique Lacoste	2.019	0.874

  Gen. KnitNet Gen. instr. Knitting time

		(Sect. 5)	(Sect. 6)	
	Double torus	11.1s	24s	12min 30s
	Color picture	8.2s	<1s	21min
	Hand	7.8s	17s	13min 30s
	Globe	6.5s	9s	9min 25s

Table 2 .

 2 Execution times required to generate the KnitNet and machine instructions for the presented applications with our implementation of the KnitKit system, as well as knitting times. Computation time was measured on a system with an Intel Core i7 CPU and 16 GB DDR4 RAM.
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• It should be possible to classify the mesh edges E into two groups:course edges and wale edges. • The edges of the mesh must be attributed a consistent orientation.• The distance between two adjacent vertices must reflect the uniformity and geometric proportions of the knit structure. The first requirement ensures that the stitches can be grouped into rows, while the second guarantees that the connections between the rows will result in a directed acyclic graph, and the third preserves the desired physical dimensions of the knitted object.Given a unit tangent vector field ì v w defined at each vertex of the input triangular mesh, we start by computing ì v c as the rotation of ì v w by π /2 in the respective local tangent plane. From this cross-field (ì v w ; ì v c ) we compute an orthogonal, equally spaced stripe pattern using Knoppel et al.'s [2015] method. This orthogonal stripe pattern describes the knitted object's wales and courses. The spacing d between two consecutive stripes is controlled by setting the stripe frequency to ω = 2π /d. We set the spacing between course stripes, generated from ì v c , and wale stripes, generated from ì v w , to the horizontal and vertical physical stitch dimensions, respectively. It is also possible to locally modify the spacing between consecutive stripes, which allows us to account for variable stitch sizes when dealing with an input containing multiple stitch patterns.Having computed the stripe pattern, we now generate the vertices S of M Q by computing the intersection between two orthogonal stripes. This is efficiently performed by evaluating those intersections within each triangle of the input mesh. At this stage, we can easily augment the vertices with any additional information given by the input texture maps, such as yarn information or stitch patterns. In practice, the texture resolution is rarely equivalent to the resolution of M Q . In order to deal with this mismatch, in our current implementation we compute the Voronoi cell for each vertex of M Q and project it onto the input triangular mesh. We then assign to each vertex the information corresponding to the most common pixel value within the projected Voronoi cell.Finally, similar to[START_REF] Dong | Harmonic functions for quadrilateral remeshing of arbitrary manifolds[END_REF], we build an ordered list of the intersection points by tracing along each stripe on the input mesh, in the direction of its corresponding vector field. This connects the vertices and creates the edges of M Q . Each edge is therefore classified as a wale or course by verifying whether it connects twoACM Trans. Graph., Vol. 40, No. 4, Article 64. Publication date: August 2021. 
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