
HAL Id: hal-03214500
https://hal.science/hal-03214500

Submitted on 1 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Parts-of-file File System
Yoann Padioleau, Olivier Ridoux

To cite this version:
Yoann Padioleau, Olivier Ridoux. A Parts-of-file File System. USENIX 2005 Annual Technical
Conference, General Track, Apr 2005, Anaheim, CA, United States. �hal-03214500�

https://hal.science/hal-03214500
https://hal.archives-ouvertes.fr

A Parts-of-file File System

Yoann Padioleau and Olivier Ridoux
IRISA / University of Rennes 1
Campus universitaire de Beaulieu
35042 RENNES cedex, FRANCE

{padiolea,ridoux}@irisa.fr, http://www.irisa.fr/lande

Abstract
The Parts-of-file File System (PofFS) allows read-write ac-
cesses to different views of a given file or set of files in order
to help the user separate and manipulate different concerns.
The set of files is considered as a mount point from which
views can be selected as read-write files via directories. Paths
are formulas mentioning properties of a desired view. Each
directory contain a file (the view) which contains the parts
of the mounted files that satisfy the properties. This service
is offered generically at the file system level, and a plug-in
interface permits that file formats, or application-specific de-
tails are handled by user-defined operators. Special plug-ins
called transducers can be defined for automatically attaching
properties to parts of files. Performances are encouraging;
files of 100 000 lines are handled efficiently.

1 Introduction

A typical user working on a digital document performs alter-
natively one of the three following operations: searching for a
desired piece of data, understanding a piece of data and pos-
sibly its relationship with other pieces of the document, and
updating coherently related pieces. Examples of this situa-
tion can be found with textual documents, such as source pro-
grams or reports, text databases such as BibTeX files, agenda,
or more recently, Web pages and XML documents. Hope-
fully, those documents have a structure that tools can exploit
in order to help the user.
For searching, tools such as class browsers or hypertext ta-

bles of contents, and grep or the search button of an editor,
provide navigation and querying methods. However, these
tools suffer an important limitation in that they cannot be
combined with each other to make search more efficient. For
instance, a text file can be grep’ed for a searched string or
navigated using a table of contents. However, there is no way
to combine the grep program and the table of contents pro-
gram so that one can get the smallest subset of the table of
contents that covers the result of a grep.

For understanding a document, a commonly accepted prac-
tice is to build incomplete but simpler views of the document.
A popular family of views is obtained by seeing the document
at different depths. For instance, a table of contents offers a
superficial view, but helps in understanding a document by
giving a bird-eye’s view on it. At a given depth, many views
can also be defined. For instance, showing only the specifi-
cations of a program, hiding the debugging code, the com-
ments, or showing only the functions sharing a given variable
are possible views on a program file. Each such view helps in
understanding one aspect of a program, and also helps in fo-
cusing on one task as the user is not visually bothered by irrel-
evant details. However, usual tools, such as a class browser
or tools that support literate programming, provide only a few
of these views, whereas all these views are conceptually sim-
ple to describe. The user’s ability to express what a view
should show and hide is often very limited.
For updating a document, views are also helpful. Indeed,

an appropriate view can bring together related parts of a doc-
ument that are distant in the original. For instance, gathering
all conclusions of a book may help in updating them coher-
ently. However, tools supporting views seldom support view
update because it causes coherence problems between views,
and between views and the original document.
The problem with all those tools is that they lack of shared

general principles that would make it possible to incorporate
new tools, supporting new kinds of navigation, query, views
and updates, and that would make it possible to combine them
fruitfully.
We can draw a parallel between the management of file

contents and the management of file directories. Directories
offer one rigid classification of files, in the same way as files
offer one rigid organization of data. The possibility to asso-
ciate several properties to a file and then to combine naviga-
tion and querying in virtual directories has been proposed in
the past to help in the management of file directories [2, 3].
We propose in this article to associate several properties to
parts of a file, and to consider views as virtual files built of
selected parts to help in the management of file contents.

2005 USENIX Annual Technical Conference USENIX Association 359

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � � � � � �

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

�
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �
� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � �

� � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � � � � � � � � � � � � � �
� � � � � � � � � � � � � � �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �

! !
! !
! !

" " "
" " "
" " "

#
#
#

$ $
$ $
% %
% %

& & & & & & & &
& & & & & & & &
& & & & & & & &
& & & & & & & &

' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '
' ' ' ' ' ' ' '

((((((((
((((((((
((((((((

))))))))
))))))))
))))))))

* * * * * * * *
* * * * * * * *
+ + + + + + + +
+ + + + + + + +

cd

ls

cd

View 1

ls

Original file

View 2

Figure 1: Symbolic representation of a file content

Figure 1 shows an iconic representation of the problem.
The patterns represent the rigid structure of a file, and the
grey levels represent different concerns. For instance, dif-
ferent patterns could correspond to different functions in a C
program, and grey levels could correspond to heading, local
declaration, body, or comments. As usual, concerns are scat-
tered across structural boundaries. Hierarchical navigation
must respect these boundaries. However, property-based nav-
igation can focus on a concern across boundaries. Note that
brick-pattern and dark-grey form an example of two proper-
ties that overlap. So, updating the brick-pattern view may
also concern the dark-grey view.
Views must be first-class citizens, and they must be up-

dated without restriction. We propose this new service at the
file system level so that its impact is maximumwithout rewrit-
ing applications. So, several applications or users, with differ-
ent requirements, can read and write the same file under their
own visions. This new file system is called Parts-of-file File
System (PofFS). Since criteria for defining a view are applica-
tion specific, we propose that the file system operations only
offer the generic background mechanisms, and that plug-ins
could be defined to handle the application-level details.

2 Principles

We present PofFS as a shell-level demo because this is the
simplest textual interface to a file system. However, more
modern graphical interfaces like file browsers can also be
used. We will say more on this subject at the end of the demo.
Consider a C program file, foo.c.

[1] % cat -n foo.c
1 int f(int x) {
2 int y;
3 assert(x > 1);
4 y = x;
5 fprintf(stderr, "x = %d", x);

numbers

propertiesline

1
2
3
4
5
6
7
8
9

10

fu
nc
ti
on
:f

fu
nc
ti
on
:f
2

va
r:
x

va
r:
y

va
r:
z

de
bu
gg
in
g

sp
ec
if
ic
at
io
n

Figure 2: A file context

6 return y * 2
7 }
8 int f2(int z) {
9 return z * 4

10 }
[2] % poffsmount foo.c /poffs

Command 1 displays the content of foo.c, and com-
mand 2 mounts foo.c on /poffs, using transducers for
attaching properties to parts of file foo.c. The transduc-
ers are selected automatically using a mechanism similar
to MIME types. This makes it easier to manage combina-
tions of transducers without forgetting one. Properties are
“this line belongs to the definition of f” (function:f),
“this line mentions variable x” (var:x), “this line con-
tains a trace instruction” (debugging), and “this line is
an assertion” (specification). The attachment of prop-
erties to lines can be represented as a lines × properties
matrix which forms the file context (see Figure 2). In
real-life, the lines × properties matrix can be very large,
e.g., 100 000×10 000, but it is also very sparse, e.g., an av-
erage of 10 properties per line. Note that indexing is not lo-
cal to parts. For instance, line 7 has property function:f
because a declaration of function f has been found 6 lines
above. A change at line 1 may affect properties of lines 2
to 7.
[3] % cd /poffs
[4] % ls
foo.c debugging/ specification/
function:f/ function:f2/ var:x/ var:y/ var:z/

Command 4 has two effects. First, it creates a view that
contains all the parts of the file that correspond to this direc-
tory. As this directory is the mount point, the view has the
same content as the original file. Second, it computes possi-
ble refinements to the current directory, and presents them to
the user as sub-directories (function:f/, debugging/,
. . .).
[5] % cd function:f

2005 USENIX Annual Technical Conference USENIX Association360

> ls
var:x/ var:y/> cd function:f

specification/
debugging/

propertyobject fu
nc
ti
on
:f
2

va
r:
x

va
r:
y

va
r:
z

de
bu
gg
in
g

sp
ec
if
ic
at
io
n

1
2
3
4
5
6
7
8
9

10

fu
nc
ti
on
:f

Figure 3: Navigation in a file context

[6] % ls
foo.c debugging/ specification/ var:x/ var:y/
Command 5 refines the current view by selecting parts of

file that have property function:f. Command 6 shows
how refinements are related to the current query. In directory
poffs/function:f, property var:z/ is no longer a re-
finement. This can be checked in the current view which con-
tains only the code of function f, and contains no line related
to variable z (see Figure 3). Moreover, function:f/ is no
longer a refinement, since it yields exactly the same view as
the current one.
[7] % cd !(debugging|specification)
Command7 illustrates the possibilities of the querying lan-

guage. Negation is written !, and disjunction is written |.
Character slash can be read as a conjunction. More so-
phisticated logics than propositional logic can be used by
plugging logic solvers in the file system. For instance, pro-
gram functions can be indexed by their types, and the types
be compared using a type logic implemented as a pluggable
module. So, valued attributes can be compared and fil-
tered: e.g., cd "type:?bool" selects all functions with
a boolean parameter. Similarly, cd "function:ˆf.*"
selects all functions whose name starts with an ‘f’. In this
case a logic of strings (regexp) is used. PofFS also offers
mechanisms for grouping resembling refinements; this re-
duces the size of answers to ls. For instance, sub-directories
function:f/ and function:f2/ can be grouped in a
directory function:/. Properties can also be grouped by
the user in taxonomies, thus permitting to focus on a subset
of the properties and making navigation easier.
[8] % ls
foo.c var:x/ var:y/
[9] % cat foo.c

� �
� �
� �
� �

� �
� �
� �
� �

cd function:f/!(debugging|specification)

no
tnot

....:3

....:1

....:2

propertyobject
line 1
line 2

line 4

line 6
line 7

fu
nc
ti
on
:f

fu
nc
ti
on
:f
2

va
r:
x

va
r:
y

va
r:
z

de
bu
gg
in
g

sp
ec
if
ic
at
io
n

10
9
8
7
6
5
4
3
2
1

Figure 4: Creation of a view

here?

here or there?

insert

(view)

(viewed file)

cd dark grey

(viewed file)

Figure 5: Why do we need marks of absence ?

int f(int x) {
int y;
................:1
y = x;
................:2
return y * 2
}
................:3

Command 8 shows a list of sub-directories reduced to
var:x/ and var:y/ (check on Figure 4). Command 9 dis-
plays the content of the current view. Groups of lines that
do not satisfy the current query are replaced by marks of ab-
sence, e.g.,:1. These marks will make it
possible to back-propagate updates to the original file. Fig-
ure 5 illustrates the ambiguity of inserting a new piece in a
file where missing parts are not marked.
[10] % cat foo.c | sed -e s/y/z > foo.c

Command 10 demonstrates that views can be updated, and
can be so by any kind of tool. The effect of this command is
to replace all occurrences of y by z only in parts that belong
to the current view.
[11] % ls
foo.c var:x/ var:z/

Command 11 shows that updating a view affects property
refinements (compare with results of command 8).

2005 USENIX Annual Technical Conference USENIX Association 361

sy
nc

hr
on

iza
tio

n
po

in
ts

updated content

update

original content

(a)

(b)

transducing
and

re indexing

Figure 6: Re-indexing between synchronization points

[12] % pwd
/poffs/function:f/!(debugging|specification)/
[13] % cd /poffs
[14] % cat foo.c
int f(int x) {
int z;
assert(x > 1);
z = x;
fprintf(stderr, "x = %d", x);
return z * 2
}
inf f2(int z) {
return z * 4
}

Finally, command 14 shows that updating a view affects
the other views. PofFS maintains the coherence of all views
by back-propagating view updates to the original file, and
then to the other views. In the worst case, this could cause
a complete re-indexing of the original file. However, it is of-
ten the case that a file can be split in several parts that do not
depend on each other from the point of view of the proper-
ties attached by a transducer. We call synchronization points
the boundaries of these independent parts. A sophisticated
algorithm makes it possible to limit re-indexing to as few in-
dependent parts as possible (see Figure 6).

The shell interface must not be taken for the file system.
What PofFS actually offers is an implementation of opera-
tions open, readdir, read, write, etc. This makes it
possible to adapt any existing interface that use these opera-
tions. For instance, PofFS on-line demo uses an unmodified
web file-browser. However, it is sometime better to devise
a specialized interface. This is what we have done for an
HTML agenda in which properties allow one to select dif-
ferent kinds of events. The web server always displays the
current view of selected events simply because a URL con-
tains a PofFS path, and sub-directories are sorted according
to their type (date, type of event, ...) and listed in menus.

3 Discussion and conclusion

The service of manipulating file contents is already offered
by several kinds of application: e.g., text editors like Emacs,
CIA [1], and IDEs (Integrated Development Environments)
like Eclipse. These applications offer means for querying and
navigation, and they also allow to hide parts of file. The nov-
elty of PofFS is to combine fruitfully query, navigation and
view update at system level. We have used it in applications
like text edition and programming, and also in trace and log
analysis. In all cases, performances are encouraging.
The management of file contents at the system level has not

evolved much since the first systems with stream files; files
are units, querying and navigating work at the file level. Only
read and write go inside files. Considering files as flat streams
have been a fruitful abstraction to permit the combination of
tools via pipes, redirection, etc. We have proposed to consider
files as possible mount-points, to navigate in them, to extract
views, and to update them. This raises the consistent view
update problem between the views and the mounted file. We
have proposed a mechanism of updatable views that solves
this problem efficiently. The Parts-of-file File System (PofFS)
makes the structure of files virtual, and less tightly related to
the physical model of a stream of characters. What PofFS
does is to recover structure in files and still permit the fruitful
combination of tools.
Our current PofFS prototype handles parts as sets of lines;

further works will be to handle parts as sets of character po-
sitions. We have only used PofFS with text files. However,
nothing in principle prevents from using PofFS with binary
files (executable or multimedia) as long as a transducer ex-
ists. More experiments are required to assess the feasibility
of using PofFS with binary files, in particular with respect to
real-time constraints of multimedia usage.
A prototype PofFS and more information on this project

can be down-loaded at the following URL:
http://www.irisa.fr/LIS/PofFS/

This page makes also accessible a companion paper com-
pleting this article by describing the algorithms, benchmarks,
and extensions to PofFS. It presents also more precisly the
principles and semantic of PofFS, and gives a more complete
account on the related works.

References

[1] Y.-F. Chen, M. Nishimoto, and C. V. Ramamoorthy. The
C InformationAbstraction system. IEEE Transactions on
Software Engineering, 1990.

[2] D.K. Gifford, P. Jouvelot, M.A. Sheldon, and
J.W. O’Toole Jr. Semantic file systems. In ACM
Symp. Operating Systems Principles, 1991.

[3] Y. Padioleau and O. Ridoux. A Logic File System. In
USENIX Annual Technical Conference, 2003.

2005 USENIX Annual Technical Conference USENIX Association362

