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Abstract

The statistical analysis of counts of living organisms brings information about

the collective behavior of species. This task is often implemented in a non-

parametric setting, but parametric distributions such as the negative binomial

(NB) distributions studied here, are also very useful for modeling populations

abundance. Considering the Riemannian manifold NB(DR) of NB distributions

equipped with the Rao metricsDR, one can compute geodesic distances between

species, which can be considered as absolute. But computing such a distance

requires solving a second-order nonlinear di�erential equation, whose solution

cannot be always found in an acceptable length of time with enough precision.

Manté and Kidé (2016) proposed numerical remedies to this problem, which are

completed here by Poisson Approximation combined with Di�erential Geometry

techniques. The performances of the proposed method are investigated, and it is

illustrated by displaying distributions of counts of marine species through mul-

tidimensional scaling (MDS) of the table of computed Rao's distances between

species.
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Approximation, Multidimensional Scaling
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Notations

Consider a Riemannian manifold M, and a parametric curve

α : [a, b] → M; its �rst derivative will be denoted α̇. A geodesic curve γ

connecting two points p and q of M will be denoted py q, and py s⊕ sy q

will denote the broken geodesic [1] connecting p to q with a �stopover� at s. We

will also consider for any θ ∈ M the local norm ‖V ‖g (θ) associated with the

metrics g on the tangent space TθM :

∀V ∈ TθM, ‖V ‖g (θ) :=
√
V t.g(θ).V . (1)

The length of a curve α traced on M will be denoted Λ (α). In addition, R+∗ :=

]0,+∞[, and ‖M‖F will denote the Frobenius norm of the matrix M ; logical

propositions will be combined by using the classical connectors ∨ (or) and ∧

(and).

A parametric probability distribution Li will be identi�ed with its coordi-

nates with respect to some chosen parametrization; for instance, we will write

Li ≡
(
φi, µi

)
for some negative binomial distribution.

1. Introduction

The statistical analysis of counts of living organisms brings information

about the collective behavior of species (schooling, habitat preference, etc), pos-

sibly associated with their socio-biological characteristics (aggregation, growth

rate, reproductive power, survival rate, etc). In the spirit of Manté et al. [2], we

propose an original exploratory method, consisting in measuring the dissimilar-

ity between species through the probability distribution of some characteristic,

and analyzing the obtained dissimilarity table through MDS. In [2], this char-

acteristic was the dispersion of each species while here it will be its abundance.

There is a wide range of statistical methods to deal with distributional data,

fundamentally depending on the chosen metrics on the probabilities set. Re-

cently, multivariate methods with a geometric dominance appeared in the litera-

ture, based on Riemannian structures equipping spaces of probability densities:
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non-parametric Fisher-Rao metrics [3] or Wasserstein metrics [4]; see also [5, 6].

But all these methods were designed in a non-parametric setting, for absolutely

continuous distributions, while our data are discrete. Furthermore, even if the

parametric approach is quite sound from the ecological point of view (see [7] and

the references therein), it is ill-suited for Exploratory Data Analysis (EDA): the

visual distance between parameters of several distributions is misleading, be-

cause on the one hand it depends on the chosen parametrization and, on the

other hand, these parameters are not commensurable in general (di�erent eco-

logical meaning, di�erent ranges, ...).

In a seminal paper, Rao [8] noticed that, equipped with the Fisher informa-

tion metrics denoted g (•), a family of probabilities depending on p parameters

can be considered as a p-dimensional Riemannian manifold. The associated

Riemannian (Rao's) distance between the distributions θ1 and θ2 is

DR
(
θ1, θ2

)
:=

� 1

0

√
γ̇t (t) .g (γ (t)) .γ̇ (t)dt (2)

where γ is the segment (minimal length curve) connecting θ1 = γ (0) to θ2 =

γ (1). Naturally, Rao [8, 9] proposed to use (2) as a distance between populations

or for Goodness-Of-Fit (GOF) testing, followed by a number of authors [10, 11,

12, 13, 14, 15, 16, 17, 18].

The Rao's distance between members of a common family of distributions

has been calculated in a number of classical cases [19] but it cannot be ob-

tained in a closed form, generally. In such cases, like the NB distributions

(when both parameters are unde�ned), DR must be obtained by numerically

solving a second-order nonlinear di�erential equation, frequently hard to inte-

grate. Manté and Kidé [15] proposed numerical remedies to this issue, which are

completed here by Poisson Approximation combined with Di�erential Geometry

techniques.

2. Few elements of Riemannian geometry

According to the fundamental theorem of Riemannian geometry [1], there

is a unique symmetric connection ∇ compatible with a given metrics g, giving
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in our case the Rao's distance. It is noteworthy that other statistically sound

(but not Riemannian) connections can be fruitfully considered (Amari et al.

[20]). Geodesics with respect to ∇ are solutions of the Euler-Lagrange equation

[21, 1, 19]:

∀ 1 ≤ k ≤ p, γ̈k (t) +

p∑
i,j=1

Γ ki,j γ̇i(t) γ̇j(t) = 0 (3)

where each Christo�el symbol Γ ki,j only depends on g and is de�ned in coordi-

nates by:

Γ ki,j :=

p∑
m=1

gkm

2

(
∂gjm
∂θi

+
∂gim
∂θj

− ∂gij
∂θm

)
(4)

and gim (resp. gmk) is some entry of g−1 (resp. g). The segment connecting L1

to L2 (if it exists) is necessarily a geodesic, but building it is not straightforward:

a geodesic is not necessarily a segment, due to the possible existence of cut

points.

Theorem 1. [1, 22] Let p = α (0) be the initial point of a geodesic. Then there
is some 0 < t0 ≤ +∞ such that α is a segment from p to α (t) for every t ≤ t0
and for t > t0 thereafter never again a segment from p to any α (t) for t > t0.
This number t0 is called the cut value of α and α (t0) is called the cut point

of α. There are only two possible reasons (which can occur simultaneously) for
α (t0) to be to be the cut point of α:

� there is a segment from p to α (t0) di�erent from α

� α (t0) is the �rst conjugate point on α to p (i.e. t0 α̇ (0) is a critical point
of the exponential map.

In addition, the distance function DR (p, •) is not di�erentiable at α (t0) [23, 1].

Remark 1. No matter the cause of the phenomenon, the main point for us is
that if t0 is a cut value of the unit-speed geodesic α, ∀ t ≤ t0, DR (p, α (t)) = t
while ∀ t > t0, DR (α (0) , α (t)) < t. This is the basis of the method proposed by
Manté and Kidé [15] for detecting cut points (see the Supplementary Material).

Remark 2. If α := p y q is a segment and V0 := α̇ (0), because of uniqueness
of geodesics, expp (V0) := αB(V0) (1) = q; reciprocally, if V1 := −α̇ (1), we have
also that expq (V1) := αB(V1) (1) = p.
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3. The special case of NB(DR)

There is a large number of parametrizations for the NB distribution, and

the most classical one is probably

P (X = j; (φ, p)) =

 φ+ j − 1

φ− 1

 p
j

(1− p)φ j ≥ 0 (5)

with (φ, p) ∈ R+×]0, 1[. Nevertheless, because of its orthogonality, we chose

instead the parametrization used by Chua and Ong [24]:

P (X = j; (φ, µ)) =

 φ+ j − 1

j

 (
µ

µ+ φ

)j (
1− µ

µ+ φ

)φ
, j ≥ 0 (6)

(φ, µ) ∈ R+ ×R+; here, µ is the mean of the distribution and φ is the so-called

�index parameter". In these coordinates, the information matrix is:

g(φ, µ) =

 Gφφ 0

0 Gµµ


where Gµµ = φ

µ(µ+φ) , while the expression of Gφφ is more complicated:

Gφφ = −
µ+ φ (µ+ φ)

(
(φ/µ+φ)

φ − 1
)
ψ1(φ)

φ (µ+ φ)
(7)

where ψ1 is the Trigamma function [25]. The reader will �nd in Burbea and Rao

[19] the closed-form expression of the Rao's distance for a number of probability

families; the Rao's distance between the Poisson distributions P(λ1) and P(λ2)

is

DP(λ1, λ2) := 2
∣∣∣√λ1 −

√
λ2

∣∣∣ . (8)

We will denote P(DP) the Riemannian manifold of Poisson distributions equipped

with this distance. These authors also reported that if the index parameter

φ of two NB distributions is the same,the Rao's distance is given by

DNB(p)

((
φ, p1

)
,
(
φ, p2

))
:= 2

√
φ cosh−1

(
1−

√
p1 p2√

(1− p1) (1− p2)

)
(9)
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in the parametrization (5). Of course, if L1 = NB
(
φ, p1

)
and L2 = NB

(
φ, p2

)
,

we have necessarily:

DR
(
L1,L2

)
≤ DNB(p)

(
L1,L2

)
. (10)

Due to the complexity of (7), DR
(
L1,L2

)
cannot be obtained in a closed-form.

It must be computed by �nding the numerical solution of (3) completed in the

parametrization (6) by the conditions (boundary value problem)

{
γ (0) =

(
φ1, µ1

)
, γ (1) =

(
φ2, µ2

)}
. (11)

3.1. Numerical approximation of DR
(
L1,L2

)
[15]

From now, Li ≡
(
φi, µi

)
will denote some NB distribution parametrized in

the system (6), but notice that our purpose could be extended to any parametric

family of probabilities.

Firstly, all the Christo�el symbols (4) were calculated from the expression (7)

of Gφφ, with the help of Mathematica [26] . Then, the di�erential equation (3)

was numerically solved under the the boundary conditions (11), for a number of

distributions of counts of marine species whose parameters had been estimated

in [7]. In most cases a solution could be found in an acceptable time (four CPU

minutes), with a good numerical precision (20 digits), but was each one of the

geodesics found a segment? And what about failures met in computation?

We indeed had to face various problems detailed in [15], where numerical

remedies were proposed. The main one consisted in inserting a well-placed

�stopover� S between each pair of problematic distributions A and B, in such

a way that DR (A,S) and DR (S,B) could be computed in a reasonable time,

whileDR (A,B) could not. Furthermore, S was placed in order thatDR (A,S)+

DR (S,B) should by a good approximation of DR (A,B). For sake of brevity, we

moved to the Supplementary Material useful information and illustrations about

this previous work. All references to this supplement will be preceded

by an S.
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3.2. Making computations easier through Di�erential Geometry techniques and
Poisson Approximation

From the numerical side, it is noteworthy that the index parameter φ often

takes large values, causing di�culties in the evaluation of quantities associated

with Γ (φ), like formulas (6) and (7) or Christo�el's symbols (4).

From the statistical side, the convergence in distribution of some L ≡ (φ, µ)

towards a Poisson distribution P when φ → ∞ is well-known. Majsnerowska

[27] proved the following result:

dTV (L,P (λ)) ≤ ∆ (φ, µ) :=
(
1− e−µ

) µ
φ

(12)

where λ = ω (φ, µ) := φ µ
φ+µ and dTV denotes the total variation distance.

Consequently, we can claim that (φ� µ) ∨ (µ small) ⇒ ∆ (φ, µ) small and

conclude that in such cases it may be quite impossible to �nd a di�erence

between L and P (λ), even when the index parameter is small or moderate!

This fact suggests to replace the NB model by the Poisson one when both

distributions are very close to each other. This is also biologically sound, since

the former is well-suited for aggregative species, while the latter is associated to

species with a random behavior (see [7, 2] and the references therein). But since

P(DP) is not a sub-manifold of NB(DR), there is no clear relationship between

the associated Rao's distances: we cannot mix both types of distributions. To

avoid this conceptual di�culty, instead of superseding the original distribution

L ≡ (φ, µ) by P (ω (φ, µ)) when both distributions are very close, we propose to

supersede L by another "equivalent" NB distribution, more easily manageable.

Let's focus now on the applicationω : R+∗ × R+∗ → R+∗

(φ, µ) 7→ λ

associating to any NB distribution (φ, µ) the corresponding P(λ).

Lemma 2. The tangent application T(φ,µ)ω = 1
(φ+µ)2

(
µ2

φ2

)
is surjective.
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Proof. Let us �x some ρ ∈ R+∗; one can easily show that the set of solutions of

the equation T(φ,µ)ω (x, y) = ρ is the line of equation y = −
(
µ
φ

)2

x+ρ
(

1 + µ
φ

)2

As a consequence, ω is a surjective submersion and the �ber Fλ := ω−1 (λ)

associated with any λ ∈ R+∗ is a sub-manifold of NB(DR).

Proposition 3. Fλ is de�ned by either equation:{
µ (λ;φ) = λ

1−λ/φ : φ > λ

φ (λ;µ) = λ
1−λ/µ : µ > λ

. (13)

Proof. Fλ :=
{

(φ, µ) : φ µ
φ+µ = λ

}
; thus, the strictly positive parameters λ, φ and

µ are linked by the relationship φµ = φλ+λµ, which proves that φ = λ+λφµ and

µ = λ+λµφ . Consequently, λ < min (φ, µ) and lim
φ→+∞

µ (λ;φ) = lim
µ→+∞

φ (λ;µ) =

λ

Lemma 4. One can easily verify that :
∀ λ ∈ R+∗, Fλ 6= ∅
∀ (φ, µ) ∈ R+∗ × R+∗, (φ, µ) ∈ Fω(φ,µ)

∀ (λ1, λ2) ∈ R+∗ × R+∗, λ1 6= λ2 ⇒ Fλ1
∩ Fλ2

= ∅.

Theorem 5. Suppose L ≡ (φ, µ) ∈ Fλ and ∆ (φ, µ) ≤ δ, where δ is some �xed
threshold chosen for deciding whether L can be identi�ed with P (λ). Then, if
L′ ≡ (φ′, µ′) ∈ Fλ is another distribution, such that φ′ > φ, ∆ (φ′, µ′) < δ and
L′ cannot be practically distinguished from P (λ) too.

Proof. See Appendix 5

Corollary 6. Consider L ≡ (φ, µ), such that ∆ (φ, µ) ≤ δ. Then L ∈ Fλ,
with λ = ω (φ, µ), and we can determine the �initial� distribution L∗ (δ) :=
(φ∗, µ∗) (δ) of Fλ de�ned by:φ∗ = arg

φ:(φ,µ)∈Fλ
(∆ (φ, µ) = δ) = arg

φ
(∆ (φ, µ (λ;φ)) = δ)

µ∗ = λ
1−λ/φ∗

. (14)

Let us now �x L0 ≡
(
φ0, µ0

)
, such that ∆

(
φ0, µ0

)
≤ δ. L0 can be identi�ed

with P
(
λ0
)
, as well as any distribution of the �ber whose index parameter is

greater than φ0
∗, due to the propositions above. Consider now the following part

of Fλ0 :

P̊
(
λ0, δ

)
:=
{

(φ, µ) ∈ Fλ0 : φ ≥ φ0
∗
}
.
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Figure 1: Four instances of Poisson-like distributions; ∆ is given by Formula (12) and vertical
bars are associated with NB probabilities while continuous curves are associated with Poisson
ones.
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Obviously, L0 ∈ P̊
(
λ0, δ

)
but we have that, when (φ, µ) ∈ P̊

(
λ0, δ

)
, dTV

(
L,P

(
λ0
))
≤

δ and
∣∣ω (φ, µ)− λ0

∣∣ ≈ 0, simultaneously. Thus, in such cases, NB (φ, µ) and

P
(
λ0
)
are practically indiscernible.

De�nition 7. We will say that L ≡ (φ, µ) is Poisson-like if
(φ, µ) ∈ P̊ (ω (φ, µ) , δ).

We displayed on Figure 1 four examples of such NB distributions (setting

δ = 0.01, say). Let us now denote
δ≡ the following relation (δ has been �xed)

between Poisson-like distributions:

L1 δ≡ L2 ⇔ ∃λ : Li ∈ P̊ (λ, δ) , i = 1, 2.

Corollary 8. The relation
δ≡ is an equivalence relation between Poisson-like

distributions.

Proof. Re�exive and symmetric properties are straightforward. Suppose now

L1 δ≡ L2 and L3 δ≡ L2; there exists λ1,2 : Li ∈ P̊ (λ1,2, δ) , i = 1, 2 and λ2,3 :

Li ∈ P̊ (λ2,3, δ) , i = 2, 3. Consequently, L2 ∈ Fλ1,2
∩ Fλ2,3

which is empty if
λ1,2 6= λ2,3 (see Lemma 4), and these three Poisson-like distributions belong to

the same �ber. Thus, L1 δ≡ L3 and
δ≡ is transitive
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Suppose L1 δ≡ L2 belong to a common �ber, Fλ1,2 . Being indiscernible,

these distributions should be necessarily close to each other, and it would be

sound to merely supersede DR
(
L1,L2

)
by δ. The following corollaries about

distributions belonging to di�erent �bers also stem from Theorem 5.

Corollary 9. Consider two Poisson-like distributions L1 and L2 belonging to
di�erent �bers, Fλ1 and Fλ2 . One can always determine a pair of Poisson-

like distributions L̃1 :=
(
φ̃, µ̃1

)
∈ Fλ1 and L̃2 :=

(
φ̃, µ̃2

)
∈ Fλ2 such that

DR
(
L1,L2

)
can be superseded by DR

(
L̃1, L̃2

)
. In addition, thanks to for-

mula (9), we can straightforwardly compute DNB(p)

(
L̃1, L̃2

)
, which is an upper

bound for DR

(
L̃1, L̃2

)
.

Proof. We just have to compute, thanks to formulas (14) and (13)

φ̃ := max
(
φ∗
(
λ1, δ

)
, φ∗

(
λ2, δ

))
, µ̃1 := µ

(
λ1; φ̃

)
and µ̃2 := µ

(
λ2; φ̃

)
Under the same conditions as in the preceding corollary, the following alter-

native strategy is always possible too.

Corollary 10. Suppose φ1 ≤ φ2; thanks to formula (13) we can determine
µ̌1 := µ (λ1;φ2), such that Ľ1 := (φ2, µ̌1) ∈ Fλ1

is Poisson-like too (because
of (5)) and belongs to the same class as L1; DR

(
L1,L2

)
can be superseded by

DR
(
Ľ1,L2

)
. In addition, we can easily compute DNB(p)

(
Ľ1,L2

)
, which is an

upper bound for DR
(
Ľ1,L2

)
.

Since P(DP) is not a sub-manifold of NB(DR), there is no clear relation-

ship between the associated Rao's distances, in general (for instance, if L1 6= L2

belong to the same �ber Fλ, DR
(
L1,L2

)
> DP

(
ω
(
L1
)
, ω
(
L2
))

= 0). Never-

theless, one can easily prove, with the same notation as in Proposition 10, that

DNB(p)

(
L̃1, L̃2

)
= C (µ̃1, µ̃2) DP

(
P(λ1),P(λ2)

)
DNB(p)

(
Ľ1,L2

)
= C (µ̌1, µ2) DP

(
P(λ1),P(λ2)

) (15)

where C (µ̌1, µ2) and C (µ̃1, µ̃2) ≥ 1 are given by the function de�ned hereunder

(up to a simple change of parametrization).

Lemma 11. The function C is de�ned in the parametrization (5) by

10



C
(
p1, p2

)
=

cosh−1

(
1−
√
p1p2√

(p1−1)(p2−1)

)
√
−2
√
p1p2 + p1 + p2

≥ 1

if p1 6= p2, and C (p, p) := 1.

Proof. In the parametrization (5), the mean µ = K p
1−p and thus p = µ

φ+µ , while

φ = K. Consequently, λi = Kpi and DP
(
P(λ1),P(λ2)

)
= 2
√
K
∣∣∣√p1 −

√
p2
∣∣∣.

Then, because of formula (9), we have:

DNB(p)

(
Ľ1, Ľ2

)
DP (P(λ1),P(λ2))

= C
(
p1, p2

)

A detailed example

Lets us �x δ := 0.01, and consider

L1 = (172.236, 0.974793) and L2 = (6, 0.05). Both these distributions are

Poisson-like, with L1 ∈ F0.0495868 and L2 ∈ F0.969307. We plotted on Figure 2

interesting portions of these �bers. On each one of the panels, the big gray

point (of coordinates (λ, λ)) corresponds to the lower bound of φ and µ, while

L∗ := (φ∗, µ∗) (λ, δ) is the "initial" distribution given by (14). All the distribu-

tions situated on the right of L∗ are Poisson-like. It is the case of L1 and L2,

represented on Figure 2 by small gray points.

We found that φ1
∗ = 63.2096 < φ1 and φ2

∗ = 0.412537; thus, φ̃ = φ1
∗ and

L̃1 = L1
∗, while L̃2 6= L2

∗. Next, in accordance with Corollary 9, we com-

puted DNB(p)

(
L̃1, L̃2

)
≈ 1.53375, which is rather close to DP (P(λ1),P(λ2)) ≈

1.52371.

Since φ2 < φ1 , it is also possible to determine the distribution Ľ2 :=

(φ1, µ̌2)
δ≡ L2 (black point on the lower panel) and, thanks to Corollary 10,

to compute DNB(p)

(
Ľ2,L1

)
≈ 1.52737 (very close to DP (P(λ1),P(λ2)) too).

3.2.1. Application to EDA

Let L1 and L2 ∈ NB(DR); three cases may be met: both of them are

Poisson-like, only one of them is Poisson-like, or none of them is so.
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Figure 2: Portions of �bers associated with two Poisson-like distributions (δ = 0.01):
F0.0495868 (lower panel) and F0.969307 (upper panel).

Out[ ]=

ℒ
*

0 50 100 150 200

0.970

0.975

0.980

0.985

ϕ

μ

ℒ={172.236, 0.974793}

ℒ*

ℒ2
˜

ℒ
∨ 2

0 50 100 150

0.050

0.051

0.052

0.053

0.054

0.055

0.056

ϕ

μ

ℒ={6, 0.05}

12



Suppose �rst L1 and L2 belong to distinct �bers Fλ1 and Fλ2 and each

Li ∈ P̊
(
λi, δ

)
. Then µi ≈ λi and we can use each one of the Corollaries 6, 9 or 10

to determine a pair of equivalent distributions, whose distance would be easier to

compute. So, one will successively (try to) compute DR
(
L1,L2

)
, DR

(
L1
∗,L

2
∗
)
,

either DNB(p)

(
Ľ1,L2

)
or DNB(p)

(
Ľ2,L1

)
, or �nally DNB(p)

(
L̃1, L̃2

)
, stopping

as soon as possible in order to alter the data as little as possible.

Suppose now L1 is Poisson-like while L2 is not; if φ1 ≤ φ2 (or even if φ1
∗ ≤

φ2), we can again consider Ľ1 :=
(
φ2, µ̌1

)
. One will successively (try to) compute

three distances: DR
(
L1,L2

)
, DR

(
L1
∗,L

2
)
and DNB(p)

(
Ľ1,L2

)
, stopping as

soon as possible.

Three instances

Look at Figures S1, S3 and S4 of the Supplementary Material. In all these

plots, only one of the two distributions is Poisson-like. In the �rst case, L1 =

(0.00487399, 0.262591), and L2 = (592.392, 2.57454)
δ≡ (3.5634, 9.13442) = L2

∗.

Since φ2
∗ = 3.5634 � 0.00487399 we cannot consider Ľ2 :=

(
φ1, µ̌2

)
and com-

pute DNB(p)

(
Ľ2,L1

)
, but DR

(
L2
∗,L

1
)

= 3.53253 could be computed (simple

con�guration, no cut point), while the original approximation of DR
(
L1,L2

)
(intricate con�guration with a cut point) was 45.1321 (de�nitions of simple

and intricate con�gurations are reminded in the supplementary material -

for further details, see [15]).

In the next case (Figure S3) L1 = (0.00996246, 0.121282), while the second

distribution is the same as in the previous case. The original distance corre-

sponded to an intricate con�guration with a cut point, and to the upper bound

43.1519. We found instead DR
(
L2
∗,L

1
)

= 3.48809.

In the last case (Figure S4), L1 = (0.938781, 9.86571), and

L2 = (172.236, 0.974793)
δ≡ (63.2096, 0.984403) = L2

∗. Since φ
2
∗ = 63.2096 �

0.938781, we cannot considerDNB(p)

(
Ľ2,L1

)
, but we found thatDR

(
L2
∗,L

1
)

=

12.5294 (intricate con�guration with an acceptable rough solution and a stopover),

while the original DR
(
L1,L2

)
(intricate con�guration with linear interpolation)

gave rise to the upper distance 21.351.
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3.3. EDA of �eld data: representation of counts distributions of marine species

The Mauritanian coast, situated on the Atlantic side of the northwestern

African continent, embeds a wide long continental shelf of about 750 km and

36000km2, with an Exclusive Economic Zone (the MEEZ) of 230000km2. Manté

et al. [7] considered the abundance of species of �sh and invertebrates collected

in the MEEZ during annual scienti�c trawl surveys since 1997 to now. Be-

cause the spatial distribution of ground�sh species is strongly in�uenced by the

physical environment, we split this set into an optimal number (four) of subsets

(typical habitats) associated with homogeneous physical conditions determined

by available environmental variables. The counts associated with each species

found in each one of the four habitats were then gathered, and �tted by a NB

distribution (for further information, see [7]).

Table 1: Global results obtained in the four habitats of the MEEZ (δ = 0.01).

Habitat Number of species Simple Intricate Cut points Poisson-like
(well-�tted) con�gurations (Rough, Linear) distributions

C1 30 400 (35,0) 1 3
C2 19 147 (24,0) 0 3
C3 26 309 (16,0) 0 5
C4 26 304 (21,0) 0 1

3.3.1. Bene�ts of the proposed method: speeding up computations

Processing these data, Manté and Kidé [15] found an overwhelming propor-

tion of simple con�gurations (more than 70%), while numerical cut points were

quite rare. In the intricate cases, the rough solution was generally accepted

(more than 90% of occurrences). We display on Figure 3 statistics about the

computational cost of the 26×26 distance matrix corresponding to C4. Among

the 325 distances computed, 287 were simple cases, with a median computa-

tion cost of 25”; the remaining 38 cases were intricate, with a median cost of

826”. Superseding each Poisson-like distribution L by either L∗ (which always

exists), or L̃, or Ľ (depending on the situation - see Section 3.2) , we found that

the proportion of simple con�gurations was greater than 90%, excepted for the
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Figure 3: Statistics of the computational burden for processing (without Poisson approxima-
tion) species collected in zone 4 of the MEEZ: number of distances of each type, box-plots of
computation length.
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second type of habitat, C2 (85%) (see Table 1). Furthermore, in the intricate

cases, the rough solution was always accepted. In our previous study, numerical

cut points were rare (less than a pair per class), but now we detect a single

numerical cut point (see Table 1)! Poisson-like distributions were quite rare,

but they were generally so �pathological� that their replacement by equivalent

better-suited NB distributions changed a lot the results. This is shown by the

statistics displayed on Figure 4. Among the 325 distances computed, 305 were

simple cases, with a median computation cost of 20”; the remaining 20 cases

were intricate, with a median cost of 404”.

3.3.2. Parametric representation of species from the habitat C4

We display on Figure 5 the estimated parameters of the counts distribution

of species sampled in the zone 4 of the MEEZ. This region is of paramount

importance: it is a high plankton productivity area, supporting a large variety of

�sh communities, with many commercial species that sustain �shing activities.

We distinguished two categories of species on Figure 5, according to the index

parameter: φ > 1 or φ ≤ 1. Species belonging to the second category being very
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Figure 4: Statistics of the computational cost for processing the same species as in Figure 3,
with Poisson approximation.
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Figure 5: Species collected in zone 4 of the MEEZ; the green dotted (resp. orange dashed)
closed curve corresponds to the con�dence region of 0.99 level associated with the spatial
median of the �rst (resp. second) category species .
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Figure 6: MDS of the Rao's distance between the 26 selected species (big points); the inset
graph corresponds to the same analysis, performed after removing both the species �HISP00�
and �PHHU76�. .
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numerous, we only kept for MDS those which are situated on the convex envelope

on the associated cloud. Twenty-six species were selected this way (while 138

species are represented) for computation of the Rao's distances and subsequent

MDS of the table of distances. We also plotted on Figure 5 theoretical con�dence

ellipses centered on the spatial medians [28] of both species categories.

3.3.3. Representation of the Rao's distance table

Only one of the 26 species retained in C4 was Poisson-like: �HISP00� (Hip-

pocampus sp). Consequently, the distance table was de�ned this way: ∆i,j =

DR
(
Li,Lj

)
, excepted when one of these species was �HISP00� (index h, say).

In these cases, we used Poisson Approximation, as in Section 3.2.1; MDS of the

26 species is thus represented on Figure 6. Clearly, the counts of the species

�HISP00� and �PHHU76� (Physiculus huloti, a type of cod) are distributed in

a very special manner, which was not so obvious on Figure 5. In the inset

region we represented the other 24 species separately analyzed by MDS of the

restricted table ∆AC (no point from the �rst MDS is hidden).

4. Results and discussion

Motivated by the analysis of a large data set of marine species counts col-

lected in the MEEZ, we developed a parameter-free method to compare species
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counts distributions in the setting of the Riemannian manifold NB(DR) of neg-

ative binomial distributions, equipped with DR.

We focused �rst [15] on numerical problems met in computing DR
(
L1,L2

)
:

lengthy computations could result from the presence of a cut point on the

geodesic L1 y L2, requiring to determine a stopover S somewhere between

these distributions. DR
(
L1,L2

)
was then bounded by DR

(
L1, S

)
+DR

(
S,L2

)
.

In this work, we have essentially shown that Poisson Approximation, com-

bined with Di�erential Geometry techniques, can be used to evaluate more e�-

ciently DR
(
L1,L2

)
when one (at least) of the distributions involved is "Poisson-

like". Superseding original NB distributions by equivalent ones (in the sense of

De�nition 7), we could obtain lower upper bounds of the distances than with

the former strategy, with a lower computational cost. More precisely, this re-

�nement enabled us to get around computation issues: the number of intricate

con�gurations has been approximately divided by two, the computational cost

of the corresponding distances has been approximately divided by two, and

numerical cut points were nearly eliminated.

5. Appendix

Proof of Theorem 5

Notice �rst that on the �ber Fλ, because of (13), the expression of ∆ de�ned

in (12) is
λ

(
e
λφ
λ−φ−1

)
λ−φ , giving:

∂∆
∂φ (φ) =

λ

(
e
λφ
λ−φ (λ2+λ−φ)−λ+φ

)
(λ−φ)3 . Since φ > λ, the denominator of this

expression is always negative while the numerator is clearly positive, excepted

potentially if
(
λ2 + λ− φ

)
< 0. Substituting λ2 + λ + ζ to φ (with ζ > 0) in

the equation, we get a simpler expression for ∂∆
∂φ :

−
λ
(
−ζ e

ζ

ζ+λ2
−λ−1

+ ζ + λ2
)

(ζ + λ2)
3

whose sign depends on the sign of
(

1− e
ζ

ζ+λ2
−λ−1

)
. Since the only solutions of

ζ
ζ+λ2 − λ− 1 = 0 are λ = 0∧ ζ 6= 0 and ζ = −

(
λ+ λ2

)
∧ λ 6= 0, this expression

18



is negative, and
(

1− e
ζ

ζ+λ2
−λ−1

)
≥ 0. Consequently, ∂∆

∂φ (φ) is negative and

∆ (φ, µ) is a decreasing function of φ on a �ber.
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1. Numerical cut points and broken geodesics

Consider a Riemannian manifoldM; we have the following plain proposition.

Proposition 1. Let γ : I → M be a geodesic with respect to the metric

connection ∇. Then γ has constant speed in the local norm M1

‖γ̇‖g := ‖γ̇ (•)‖g (γ (•)) =
√
γ̇t (•) .g (γ (•)) .γ̇ (•)

and, for any [a, b] ⊆ I, we have:

� b

a

√
γ̇t (t) .g (γ (t)) .γ̇ (t)dt = (b− a) ‖γ̇‖g .

Suppose that a satisfactory solution γ = L1 ≡
(
φ1, µ1

)
y
(
φ2, µ2

)
≡ L2 of

problem (M3) under the boundary condition (M11) has been found; according

to Proposition 1 above, DR
(
L1,L2

)
is naturally approximated by ‖γ̇‖g. But

notice that ‖γ̇‖g is an upper bound which is attained only when there is no cut

point in γ ([0, 1]) (Theorem M1). That is why we needed some test to detect a

possible cut point on some geodesic curve. Suppose a cut point
(
φc(1,2), µc(1,2)

)
has been detected on γ. Then, it is natural [1] to supersede γ by the broken

geodesic

(
φ1, µ1

)
y
(
φc(1,2), µc(1,2)

)
⊕
(
φc(1,2), µc(1,2)

)
y
(
φ2, µ2

)
whose length is shorter than Λ (γ), provided that

(
φc(1,2), µc(1,2)

)
y
(
φ2, µ2

)
is

also a segment. Since in our case geodesics are obtained by numerically solving

a di�erential equation, we are only able to locate numerical cut points. Such

points were called (J, ε)-cut points, since their detection depends on two param-

eters: the chosen number J of sub-intervals of [0, 1] determining the accuracy

of computations, and some �xed threshold ε ∈ ]0, 1[.

1.1. Locating some (J, ε)- cut point on a geodesic γ

For that purpose, the unit interval is �rst divided into J intervals: [0, 1] =⋃J
i=1 δi , with δi := [ i−1J , iJ [. Suppose there exists a cut point γ (tc) on γ, such

that tc ∈ δic . Consider the set

1



CJ (γ) :=

{
γ1 := γ

(
1

J

)
, · · · , γk := γ

(
k

J

)
, · · · , γJ−1 := γ

(
J − 1

J

)}
⊂M

and, for each 1 ≤ i ≤ J the geodesic αi := γi−1 y γi obtained by solving (M3)

under the constraints

{αi (0) = γi−1, αi (1) = γi} .

Because of the uniqueness of segments (Proposition 1 and Remark M1),

∀ i < ic,
‖γ̇‖g
J = Λ (αi) = ‖α̇i‖g. On the contrary, when i ≥ ic, the distance

between γi−1 and γi along γ is
‖γ̇‖g
J yet, while ‖α̇i‖g should be smaller. More

precisely, if the resolution 1
J is small enough (for instance, smaller than the

injectivity radius of M [1]), γi−1 y γi is a segment and we may write:


∀ i < ic,

‖γ̇‖g
J − ‖α̇i‖g = 0

‖γ̇‖g
J − ‖α̇ic‖g > 0

∀ i > ic,
‖γ̇‖g
J − ‖α̇i‖g ≥ 0.

Thus, after �xing some (small) ε, we can locate possible cut points, with a

precision depending on (J, ε) and lay a de�nition for numerical cut points.

De�nition 2. We will say that γic ∈ CJ (γ) is a (J, ε)- cut point on γ if

ic = arg min
1≤i≤J−1

(∣∣∣∣‖γ̇‖gJ − ‖α̇i‖g

∣∣∣∣ > ε

)
.

2. Possible numerical issues

Various numerical problems were met in computing
(
φ1, µ1

)
y
(
φ2, µ2

)
:

(P1) no solution was found (due to time limit)

(P2) an unsuitable solution was found: for some t ∈ [0, 1], (φ (t) , µ (t)) /∈ R+ ×

R+

(P3) the boundary condition (M11) was not ful�lled with a satisfactory preci-

sion.
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Thus, two kinds of con�guration were distinguished: simple, when none of

the above issues is met, or intricate in the alternative. For further information,

see [2].

2.1. Simple con�gurations

When none of the above issues is met, we �rst check that there is no (J, ε)-

cut point on γ =
(
φ1, µ1

)
y
(
φ2, µ2

)
. Then, the solution found is accepted,

and we can write:

DR
(
L1,L2

)
= Λ (γ) = ‖γ̇‖g . (1)

If a (J, ε)-cut point
(
φc(1,2), µc(1,2)

)
is detected on γ, and if

(
φc(1,2), µc(1,2)

)
y(

φ2, µ2
)
is free of (J, ε)-cut point, we adopt as an upper bound for DR

(
L1,L2

)
Λ
((
φ1, µ1

)
y
(
φc(1,2), µc(1,2)

))
+ Λ

((
φc(1,2), µc(1,2)

)
y
(
φ2, µ2

))
.

2.2. Intricate con�gurations

When (P1) or (P2) is met, we consider that the best achievable solution con-

sists in breaking γ =
(
φ1, µ1

)
y
(
φ2, µ2

)
by inserting a well-placed �stopover�.

But since γ is undetermined, how should this stopover
(
φS(1,2), µS(1,2)

)
be

placed? We proposed two heuristics for that purpose:

1. compute a �rough solution� γ̃R to the original problem M3, contenting

ourselves with low-precision (5 digits), and substitute γ̃R for γ to search

for
(
φS(1,2), µS(1,2)

)
2. when γ̃R cannot be obtained, merely use instead

γ̃L (t) := t
(
φ1, µ1

)
+ (1− t)

(
φ2, µ2

)
.

In the second case, the stopover S naturally corresponds to the shortest broken

geodesic determined by:
(
φS(1,2), µS(1,2)

)
= γ̃L

(
kL
J

)
with kL := arg min

1≤k≤J−1

(
Λ
((
φ1, µ1

)
y γ̃L

(
k
J

))
+ Λ

(
γ̃L
(
k
J

)
y
(
φ2, µ2

)))
.

(2)

In the �rst case, two eventualities must be considered:

3



1. a (J, ε)-cut point
(
φc(1,2), µc(1,2)

)
is detected on γ̃R ([0, 1]): then(

φS(1,2), µS(1,2)
)

=
(
φc(1,2), µc(1,2)

)
, and the length of the broken geodesic

is computed in full precision

2. if no (J, ε)-cut point is detected, proceed like in (2)
(
φS(1,2), µS(1,2)

)
= γ̃R

(
kR
J

)
with kR := arg min

1≤k≤J−1

(
Λ
((
φ1, µ1

)
y γ̃R

(
k
J

))
+ Λ

(
γ̃R
(
k
J

)
y
(
φ2, µ2

)))
.

(3)

2.3. Boundary issues

(P3) is easy to solve: we just have to complete (1) by the corrective boundary

error term:

BE (γ) :=
∥∥γ(0)− L1

∥∥
g

(
L1
)

+
∥∥γ(1)− L2

∥∥
g

(
L2
)
. (4)

Finally, whatever the selected geodesic (broken, or not) may be, we obtain the

upper bound:

DR
(
L1,L2

)
≤ Λ (γ) +BE (γ) . (5)

3. A bestiary of computational problems

Before processing data, it was necessary to tune the accuracy parameters;

we �xed: (J, ε) = (10, 0.05).

We will display in this section typical cases of intricate con�gurations en-

countered in computing DR between marine species count distributions. Each

illustration will be composed of three panels. On the left one we superimposed

to the rough solution of (3), γ̃R (suits), the �nal solution: a broken geodesic

(black curve). On both the right panels, we featured the structure of each com-

ponent of the broken geodesic in the neighborhood of the stopover S, with the

help of the exponential map: remember that geodesics can be computed by

solving (M3) under the alternative constraints (initial value problem)

{
γ (0) =

(
φ1, µ1

)
, γ̇ (0) = V ∈ R2

}
. (6)
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Figure S1: Numerical cut point (γ̃R satisfactory). Left panel: �rst guess (suits) and �nal

solution (black curve). Right panels: plot of the two bundles of geodesics issued from A or

B. Red curve (color �gure online): θ = 0 in equation (7); dashed curves: θ 6= 0. The header

corresponds to the parameters of the distributions in the system M6.
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0.00487399, 0.262591 ⟷ 592.392, 2.57454 ; Dℛ= 45.1321

Here V is the initial velocity of the geodesic, and this solution is associated with

the exponential map at
(
φ1, µ1

)
. We �rst determined this way γ1 = A y S

(resp. γ2 = B y S) by solving equation (M3) under the constraints (M11). We

afterward considered

{Vi (θk) := ρ (θk) � B (γ̇i(0)) : i = 1, 2} , (7)

where the angle of the rotation ρ acting on the initial direction B (γ̇i(0)) is θk ∈

{0,±0.1,±0.2,±0.3} (in degrees). Equation (M3) was then solved under the

constraints (6) with V = Vi (θk), giving rise to two bundles of seven geodesics.

In all these plots, the red (color �gure online) point will be �A� and the black one

will be �B�, while the stopover is represented by the big gray point; exponential

maps corresponding to θ = 0 (unrotated) are plotted in red (color �gure online).

On Figures S1 and S2 are represented typical cases of intricate situations

where γ̃R was a satisfactory �rst guess for the geodesic. The �nal solution

A y S ⊕ S y B is similar to γ̃R. The structure of A y S and B y S

is investigated on both right panels of each sub-�gure. Notice they look like

genuine cut points (�arriving at the cut locus means some kind of catastrophe�

[1, p. 279]; cf. also the last statement of Theorem M1).

On Figures S3 and S4 are represented worse cases, where the �rst guess γ̃R
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Figure S2: Numerical cut point (γ̃R satisfactory). Same structure as in S1.
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Figure S3: A numerical cut point with an unsatisfactory γ̃R. Same structure as S1.
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was either unsatisfactory, or could not even be computed.
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Figure S4: Linear �rst guess. Same structure as S1.
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