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Seeking for shortest paths between negative binomial distributions. Application to the statistical analysis of counts data.

Notations

Consider a Riemannian manifold M, and a parametric curve α : [a, b] → M; its rst derivative will be denoted α. A geodesic curve γ connecting two points p and q of M will be denoted p q, and p s ⊕ s q will denote the broken geodesic [1] connecting p to q with a stopover at s. We will also consider for any θ ∈ M the local norm V g (θ) associated with the metrics g on the tangent space T θ M :

∀ V ∈ T θ M, V g (θ) := V t .g(θ).V .

(

) 1 
The length of a curve α traced on M will be denoted Λ (α). In addition, R + * := ]0, +∞[, and M F will denote the Frobenius norm of the matrix M ; logical propositions will be combined by using the classical connectors ∨ (or) and ∧

(and).

A parametric probability distribution L i will be identied with its coordinates with respect to some chosen parametrization; for instance, we will write L i ≡ φ i , µ i for some negative binomial distribution.

Introduction

The statistical analysis of counts of living organisms brings information about the collective behavior of species (schooling, habitat preference, etc), possibly associated with their socio-biological characteristics (aggregation, growth rate, reproductive power, survival rate, etc). In the spirit of Manté et al. [2], we propose an original exploratory method, consisting in measuring the dissimilarity between species through the probability distribution of some characteristic, and analyzing the obtained dissimilarity table through MDS. In [2], this characteristic was the dispersion of each species while here it will be its abundance.

There is a wide range of statistical methods to deal with distributional data, fundamentally depending on the chosen metrics on the probabilities set. Recently, multivariate methods with a geometric dominance appeared in the literature, based on Riemannian structures equipping spaces of probability densities:

non-parametric Fisher-Rao metrics [START_REF] Srivastava | Riemannian Analysis of Probability Density Functions with Applications in Vision[END_REF] or Wasserstein metrics [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF]; see also [START_REF] Petersen | Functional data analysis for density functions by transformation to a Hilbert space[END_REF][START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF].

But all these methods were designed in a non-parametric setting, for absolutely continuous distributions, while our data are discrete. Furthermore, even if the parametric approach is quite sound from the ecological point of view (see [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF] and the references therein), it is ill-suited for Exploratory Data Analysis (EDA): the visual distance between parameters of several distributions is misleading, because on the one hand it depends on the chosen parametrization and, on the other hand, these parameters are not commensurable in general (dierent ecological meaning, dierent ranges, ...).

In a seminal paper, Rao [START_REF] Rao | Information and the Accuracy Attainable in the Estimation of Statistical Parameters[END_REF] noticed that, equipped with the Fisher information metrics denoted g (•), a family of probabilities depending on p parameters can be considered as a p-dimensional Riemannian manifold. The associated Riemannian (Rao's) distance between the distributions θ 1 and θ 2 is

D R θ 1 , θ 2 := ¢ 1 0 γt (t) .g (γ (t)) . γ (t)dt (2) 
where γ is the segment (minimal length curve) connecting θ 1 = γ (0) to θ 2 = γ (1). Naturally, Rao [START_REF] Rao | Information and the Accuracy Attainable in the Estimation of Statistical Parameters[END_REF][START_REF] Rao | Comment to Kass' paper[END_REF] proposed to use (2) as a distance between populations or for Goodness-Of-Fit (GOF) testing, followed by a number of authors [START_REF] Carter | FINE: Fisher Information Nonparametric Embedding[END_REF][START_REF] Galanis | Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques[END_REF][START_REF] Dodson | Some illustrations of information geometry in biology and physics[END_REF][START_REF] Cubedo | A dissimilarity based on relevant population features[END_REF][START_REF] Ilea | Statistical Hypothesis Test for Maritime Pine Forest Sar Images Classication 20 Based on the Geodesic Distance[END_REF][START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF][START_REF] Kass | The geometry of asymptotic inference[END_REF][START_REF] Menendez | Statistical Tests Based on Geodesic Distances[END_REF][START_REF] Cubedo | Hypothesis testing: a model selection approach[END_REF]. The Rao's distance between members of a common family of distributions has been calculated in a number of classical cases [START_REF] Burbea | Informative geometry of probality spaces[END_REF] but it cannot be obtained in a closed form, generally. In such cases, like the NB distributions (when both parameters are undened), D R must be obtained by numerically solving a second-order nonlinear dierential equation, frequently hard to integrate. Manté and Kidé [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF] proposed numerical remedies to this issue, which are completed here by Poisson Approximation combined with Dierential Geometry techniques.

Few elements of Riemannian geometry

According to the fundamental theorem of Riemannian geometry [1], there is a unique symmetric connection ∇ compatible with a given metrics g, giving in our case the Rao's distance. It is noteworthy that other statistically sound (but not Riemannian) connections can be fruitfully considered (Amari et al. [START_REF] S.-I. Amari | Methods of information geometry[END_REF]). Geodesics with respect to ∇ are solutions of the Euler-Lagrange equation [START_REF] Gray | Modern dierential geometry of curves and surfaces with Mathematica[END_REF]1,[START_REF] Burbea | Informative geometry of probality spaces[END_REF]:

∀ 1 ≤ k ≤ p, γk (t) + p i,j=1 Γ k i,j γi (t) γj (t) = 0 (3) 
where each Christoel symbol Γ k i,j only depends on g and is dened in coordinates by:

Γ k i,j := p m=1 g km 2 ∂g jm ∂θ i + ∂g im ∂θ j - ∂g ij ∂θ m (4) 
and g im (resp. g mk ) is some entry of g -1 (resp. g). The segment connecting L 1 to L 2 (if it exists) is necessarily a geodesic, but building it is not straightforward: a geodesic is not necessarily a segment, due to the possible existence of cut points.

Theorem 1. [1,[START_REF] Carmo | Riemannian geometry[END_REF] Let p = α (0) be the initial point of a geodesic. Then there is some 0 < t 0 ≤ +∞ such that α is a segment from p to α (t) for every t ≤ t 0 and for t > t 0 thereafter never again a segment from p to any α (t) for t > t 0 .

This number t 0 is called the cut value of α and α (t 0 ) is called the cut point of α. There are only two possible reasons (which can occur simultaneously) for α (t 0 ) to be to be the cut point of α:

there is a segment from p to α (t 0 ) dierent from α α (t 0 ) is the rst conjugate point on α to p (i.e. t 0 α (0) is a critical point of the exponential map.

In addition, the distance function D R (p, •) is not dierentiable at α (t 0 ) [START_REF] Itoh | Cut loci and distance functions[END_REF]1].

Remark 1. No matter the cause of the phenomenon, the main point for us is

that if t 0 is a cut value of the unit-speed geodesic α, ∀ t ≤ t 0 , D R (p, α (t)) = t while ∀ t > t 0 , D R (α (0) , α (t)) < t.
This is the basis of the method proposed by Manté and Kidé [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF] for detecting cut points (see the Supplementary Material).

Remark 2. If α := p q is a segment and V 0 := α (0), because of uniqueness of geodesics, exp p (V 0

) := α B(V0) (1) = q; reciprocally, if V 1 := -α (1), we have also that exp q (V 1 ) := α B(V1) (1) = p.

The special case of N B(D R )

There is a large number of parametrizations for the NB distribution, and the most classical one is probably

P (X = j; (φ, p)) =   φ + j -1 φ -1   p j (1 -p) φ j ≥ 0 (5) 
with (φ, p) ∈ R + ×]0, 1[. Nevertheless, because of its orthogonality, we chose instead the parametrization used by Chua and Ong [START_REF] Chua | Test of misspecication with application to negative binomial distribution[END_REF]:

P (X = j; (φ, µ)) =   φ + j -1 j   µ µ + φ j 1 - µ µ + φ φ , j ≥ 0 (6)
(φ, µ) ∈ R + × R + ; here, µ is the mean of the distribution and φ is the so-called index parameter". In these coordinates, the information matrix is:

g(φ, µ) =   G φφ 0 0 G µµ  
where G µµ = φ µ(µ+φ) , while the expression of G φφ is more complicated:

G φφ = - µ + φ (µ + φ) ( φ /µ+φ) φ -1 ψ 1 (φ) φ (µ + φ) (7) 
where ψ 1 is the Trigamma function [START_REF] Abramowicz | Handbook of mathematical functions with formulas, graphs and mathematical tables[END_REF]. The reader will nd in Burbea and Rao [START_REF] Burbea | Informative geometry of probality spaces[END_REF] the closed-form expression of the Rao's distance for a number of probability families; the Rao's distance between the Poisson distributions P(λ 1 ) and P(λ 2 )

is D P (λ 1 , λ 2 ) := 2 λ 1 -λ 2 . ( 8 
)
We will denote P(D P ) the Riemannian manifold of Poisson distributions equipped with this distance. These authors also reported that if the index parameter φ of two NB distributions is the same,the Rao's distance is given by

D N B(p) φ, p 1 , φ, p 2 := 2 φ cosh -1 1 -p 1 p 2 (1 -p 1 ) (1 -p 2 ) (9) 
in the parametrization [START_REF] Petersen | Functional data analysis for density functions by transformation to a Hilbert space[END_REF]. Of course, if L 1 = N B φ, p 1 and L 2 = N B φ, p 2 , we have necessarily:

D R L 1 , L 2 ≤ D N B(p) L 1 , L 2 . ( 10 
)
Due to the complexity of ( 7), D R L 1 , L 2 cannot be obtained in a closed-form.

It must be computed by nding the numerical solution of (3) completed in the parametrization (6) by the conditions (boundary value problem)

γ (0) = φ 1 , µ 1 , γ (1) = φ 2 , µ 2 . (11) 3.1. Numerical approximation of D R L 1 , L 2 [15]
From now, L i ≡ φ i , µ i will denote some NB distribution parametrized in the system [START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF], but notice that our purpose could be extended to any parametric family of probabilities.

Firstly, all the Christoel symbols (4) were calculated from the expression [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF] of G φφ , with the help of Mathematica [START_REF] Inc | Mathematica[END_REF] . Then, the dierential equation [START_REF] Srivastava | Riemannian Analysis of Probability Density Functions with Applications in Vision[END_REF] was numerically solved under the the boundary conditions [START_REF] Galanis | Wave height characteristics in the north Atlantic ocean: a new approach based on statistical and geometrical techniques[END_REF], for a number of distributions of counts of marine species whose parameters had been estimated in [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF]. In most cases a solution could be found in an acceptable time (four CPU minutes), with a good numerical precision (20 digits), but was each one of the geodesics found a segment? And what about failures met in computation?

We indeed had to face various problems detailed in [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF], where numerical remedies were proposed. The main one consisted in inserting a well-placed stopover S between each pair of problematic distributions A and B, in such a way that D R (A, S) and D R (S, B) could be computed in a reasonable time, while D R (A, B) could not. Furthermore, S was placed in order that D R (A, S)+ D R (S, B) should by a good approximation of D R (A, B). For sake of brevity, we moved to the Supplementary Material useful information and illustrations about this previous work. All references to this supplement will be preceded by an S.

Making computations easier through Dierential Geometry techniques and Poisson Approximation

From the numerical side, it is noteworthy that the index parameter φ often takes large values, causing diculties in the evaluation of quantities associated with Γ (φ), like formulas ( 6) and ( 7) or Christoel's symbols [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF].

From the statistical side, the convergence in distribution of some L ≡ (φ, µ)

towards a Poisson distribution P when φ → ∞ is well-known. Majsnerowska [START_REF] Majsnerowska | A note on Poisson approximation by w-functions[END_REF] proved the following result:

d T V (L, P (λ)) ≤ ∆ (φ, µ) := 1 -e -µ µ φ (12) 
where λ = ω (φ, µ) := φ µ φ+µ and d T V denotes the total variation distance. Consequently, we can claim that (φ µ) ∨ (µ small) ⇒ ∆ (φ, µ) small and conclude that in such cases it may be quite impossible to nd a dierence between L and P (λ), even when the index parameter is small or moderate! This fact suggests to replace the NB model by the Poisson one when both distributions are very close to each other. This is also biologically sound, since the former is well-suited for aggregative species, while the latter is associated to species with a random behavior (see [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF]2] and the references therein). But since P(D P ) is not a sub-manifold of N B(D R ), there is no clear relationship between the associated Rao's distances: we cannot mix both types of distributions. To avoid this conceptual diculty, instead of superseding the original distribution L ≡ (φ, µ) by P (ω (φ, µ)) when both distributions are very close, we propose to supersede L by another "equivalent" NB distribution, more easily manageable.

Let's focus now on the application

     ω : R + * × R + * → R + * (φ, µ) → λ
associating to any NB distribution (φ, µ) the corresponding P(λ).

Lemma 2. The tangent application

T (φ,µ) ω = 1 (φ+µ) 2 µ 2 φ 2
is surjective.

Proof. Let us x some ρ ∈ R + * ; one can easily show that the set of solutions of the equation

T (φ,µ) ω (x, y) = ρ is the line of equation y = -µ φ 2 x+ρ 1 + µ φ 2
As a consequence, ω is a surjective submersion and the ber F λ := ω -1 (λ)

associated with any λ ∈ R + * is a sub-manifold of N B(D R ).
Proposition 3. F λ is dened by either equation:

µ (λ; φ) = λ 1-λ /φ : φ > λ φ (λ; µ) = λ 1-λ /µ : µ > λ . (13) 
Proof. F λ := (φ, µ) : φ µ φ+µ = λ ; thus, the strictly positive parameters λ, φ and µ are linked by the relationship φµ = φλ+λµ, which proves that φ = λ+λ φ µ and

µ = λ + λ µ φ . Consequently, λ < min (φ, µ) and lim φ→+∞ µ (λ; φ) = lim µ→+∞ φ (λ; µ) = λ Lemma 4.
One can easily verify that :

∀ λ ∈ R + * , F λ = ∅ ∀ (φ, µ) ∈ R + * × R + * , (φ, µ) ∈ F ω(φ,µ) ∀ (λ 1 , λ 2 ) ∈ R + * × R + * , λ 1 = λ 2 ⇒ F λ1 ∩ F λ2 = ∅.
Theorem 5. Suppose L ≡ (φ, µ) ∈ F λ and ∆ (φ, µ) ≤ δ, where δ is some xed threshold chosen for deciding whether L can be identied with P (λ). Then, if L ≡ (φ , µ ) ∈ F λ is another distribution, such that φ > φ, ∆ (φ , µ ) < δ and L cannot be practically distinguished from P (λ) too.

Proof. See Appendix 5 Corollary 6. Consider L ≡ (φ, µ), such that ∆ (φ, µ) ≤ δ. Then L ∈ F λ , with λ = ω (φ, µ), and we can determine the initial distribution L * (δ) := (φ * , µ * ) (δ) of F λ dened by:

   φ * = arg φ:(φ,µ)∈F λ (∆ (φ, µ) = δ) = arg φ (∆ (φ, µ (λ; φ)) = δ) µ * = λ 1-λ /φ * . ( 14 
)
Let us now x L 0 ≡ φ 0 , µ 0 , such that ∆ φ 0 , µ 0 ≤ δ. L 0 can be identied with P λ 0 , as well as any distribution of the ber whose index parameter is greater than φ 0 * , due to the propositions above. Consider now the following part of F λ 0 : P λ 0 , δ := (φ, µ) ∈ F λ 0 : φ ≥ φ 0 * . ≡ L 2 and L 3 δ ≡ L 2 ; there exists λ 1,2 : L i ∈ P (λ 1,2 , δ) , i = 1, 2 and λ 2,3 : Proof. We just have to compute, thanks to formulas ( 14) and [START_REF] Cubedo | A dissimilarity based on relevant population features[END_REF] φ := max φ * λ 1 , δ , φ * λ 2 , δ , μ1 := µ λ 1 ; φ and μ2 := µ λ 2 ; φ

L 1 δ ≡ L 2 ⇔ ∃λ : L i ∈ P (λ, δ) , i = 1, 2.
L i ∈ P (λ 2,3 , δ) , i = 2, 3. Consequently, L 2 ∈ F λ1,2 ∩ F λ2,3 which is empty if λ 1,2 = λ 2,
Under the same conditions as in the preceding corollary, the following alternative strategy is always possible too.

Corollary 10. Suppose φ 1 ≤ φ 2 ; thanks to formula [START_REF] Cubedo | A dissimilarity based on relevant population features[END_REF] we can determine μ1 := µ (λ 1 ; φ 2 ), such that Ľ1 := (φ 2 , μ1 ) ∈ F λ1 is Poisson-like too (because of ( 5)) and belongs to the same class as L 1 ; D R L 1 , L 2 can be superseded by D R Ľ1 , L 2 . In addition, we can easily compute D N B(p) Ľ1 , L 2 , which is an upper bound for D R Ľ1 , L 2 .

Since P(D P ) is not a sub-manifold of N B(D R ), there is no clear relationship between the associated Rao's distances, in general (for instance, if

L 1 = L 2 belong to the same ber F λ , D R L 1 , L 2 > D P ω L 1 , ω L 2 = 0). Never-
theless, one can easily prove, with the same notation as in Proposition 10, that

     D N B(p) L1 , L2 = C (μ 1 , μ2 ) D P P(λ 1 ), P(λ 2 ) D N B(p) Ľ1 , L 2 = C (μ 1 , µ 2 ) D P P(λ 1 ), P(λ 2 ) ( 15 
)
where C (μ 1 , µ 2 ) and C (μ 1 , μ2 ) ≥ 1 are given by the function dened hereunder (up to a simple change of parametrization).

Lemma 11. The function C is dened in the parametrization (5) by Proof. In the parametrization (5), the mean µ = K p 1-p and thus p = µ φ+µ , while φ = K. Consequently, λ i = K p i and D P P(λ 1 ),

C p 1 , p 2 = cosh -1 1- √ p 1 p 2 √ (p 1 -1)(p 2 -1) -2 p 1 p 2 + p 1 + p 2 ≥ 1 if p 1 = p 2 ,
P(λ 2 ) = 2 √ K p 1 -p 2 .
Then, because of formula ( 9), we have:

D N B(p) Ľ1 , Ľ2 D P (P(λ 1 ), P(λ 2 )) = C p 1 , p 2

A detailed example

Lets us x δ := 0.01, and consider L 1 = (172.236, 0.974793) and L 2 = (6, 0.05). Both these distributions are

Poisson-like, with L 1 ∈ F 0.0495868 and L 2 ∈ F 0.969307 . We plotted on Figure 2 interesting portions of these bers. On each one of the panels, the big gray point (of coordinates (λ, λ)) corresponds to the lower bound of φ and µ, while 

EDA of eld data: representation of counts distributions of marine species

The Mauritanian coast, situated on the Atlantic side of the northwestern African continent, embeds a wide long continental shelf of about 750 km and 36000km 2 , with an Exclusive Economic Zone (the MEEZ) of 230000km 2 . Manté et al. [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF] considered the abundance of species of sh and invertebrates collected in the MEEZ during annual scientic trawl surveys since 1997 to now. Because the spatial distribution of groundsh species is strongly inuenced by the physical environment, we split this set into an optimal number (four) of subsets (typical habitats) associated with homogeneous physical conditions determined by available environmental variables. The counts associated with each species found in each one of the four habitats were then gathered, and tted by a NB distribution (for further information, see [START_REF] Manté | Fitting the truncated negative binomial distribution to count data. A comparison of estimators, with an application to groundshes from the Mauritanian Exclusive Economic Zone[END_REF]). 

Benets of the proposed method: speeding up computations

Processing these data, Manté and Kidé [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF] found an overwhelming proportion of simple congurations (more than 70%), while numerical cut points were quite rare. In the intricate cases, the rough solution was generally accepted (more than 90% of occurrences). We display on Figure 3 statistics about the computational cost of the 26 × 26 distance matrix corresponding to C4. Among the 325 distances computed, 287 were simple cases, with a median computation cost of 25"; the remaining 38 cases were intricate, with a median cost of 826". Superseding each Poisson-like distribution L by either L * (which always exists), or L, or Ľ (depending on the situation -see Section 3.2) , we found that the proportion of simple congurations was greater than 90%, excepted for the 1). Furthermore, in the intricate cases, the rough solution was always accepted. In our previous study, numerical cut points were rare (less than a pair per class), but now we detect a single numerical cut point (see Table 1)! Poisson-like distributions were quite rare, but they were generally so pathological that their replacement by equivalent better-suited NB distributions changed a lot the results. This is shown by the statistics displayed on Figure 4. Among the 325 distances computed, 305 were simple cases, with a median computation cost of 20"; the remaining 20 cases were intricate, with a median cost of 404".

                   

Parametric representation of species from the habitat C4

We display on Figure 5 the estimated parameters of the counts distribution of species sampled in the zone 4 of the MEEZ. This region is of paramount importance: it is a high plankton productivity area, supporting a large variety of sh communities, with many commercial species that sustain shing activities.

We distinguished two categories of species on Figure 5, according to the index parameter: φ > 1 or φ ≤ 1. Species belonging to the second category being very MDS of the table of distances. We also plotted on Figure 5 theoretical condence ellipses centered on the spatial medians [START_REF] Sering | Nonparametric multivariate descriptive measures based on spatial quantiles[END_REF] of both species categories.

                                305 

Representation of the Rao's distance table

Only one of the 26 species retained in C4 was Poisson-like: HISP00 (Hippocampus sp). Consequently, the distance table was dened this way: ∆ i,j = D R L i , L j , excepted when one of these species was HISP00 (index h, say).

In these cases, we used Poisson Approximation, as in Section 3.2.1; MDS of the 26 species is thus represented on Figure 6. Clearly, the counts of the species HISP00 and PHHU76 (Physiculus huloti, a type of cod) are distributed in a very special manner, which was not so obvious on Figure 5. In the inset region we represented the other 24 species separately analyzed by MDS of the restricted table ∆ AC (no point from the rst MDS is hidden).

Results and discussion

Motivated by the analysis of a large data set of marine species counts collected in the MEEZ, we developed a parameter-free method to compare species counts distributions in the setting of the Riemannian manifold N B(D R ) of negative binomial distributions, equipped with D R .

We focused rst [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF] on numerical problems met in computing D R L 1 , L 2 : lengthy computations could result from the presence of a cut point on the geodesic L 1 L 2 , requiring to determine a stopover S somewhere between

these distributions. D R L 1 , L 2 was then bounded by D R L 1 , S +D R S, L 2 .
In this work, we have essentially shown that Poisson Approximation, combined with Dierential Geometry techniques, can be used to evaluate more eciently D R L 1 , L 2 when one (at least) of the distributions involved is "Poisson- like". Superseding original NB distributions by equivalent ones (in the sense of Denition 7), we could obtain lower upper bounds of the distances than with the former strategy, with a lower computational cost. More precisely, this renement enabled us to get around computation issues: the number of intricate congurations has been approximately divided by two, the computational cost of the corresponding distances has been approximately divided by two, and numerical cut points were nearly eliminated.

Appendix

Proof of Theorem 5

Notice rst that on the ber F λ , because of ( 13), the expression of ∆ dened in [START_REF] Dodson | Some illustrations of information geometry in biology and physics[END_REF] is

λ e λφ λ-φ -1 λ-φ , giving: ∂∆ ∂φ (φ) = λ e λφ λ-φ (λ 2 +λ-φ)-λ+φ (λ-φ) 3
. Since φ > λ, the denominator of this expression is always negative while the numerator is clearly positive, excepted

potentially if λ 2 + λ -φ < 0. Substituting λ 2 + λ + ζ to φ (with ζ > 0) in
the equation, we get a simpler expression for ∂∆ ∂φ :

- ≥ 0. Consequently, ∂∆ ∂φ (φ) is negative and ∆ (φ, µ) is a decreasing function of φ on a ber.

λ -ζ e ζ ζ+λ 2 -λ-1 + ζ + λ 2 (ζ + λ 2 )

Numerical cut points and broken geodesics

Consider a Riemannian manifold M; we have the following plain proposition. Proposition 1. Let γ : I → M be a geodesic with respect to the metric connection ∇. Then γ has constant speed in the local norm M1

γ g := γ (•) g (γ (•)) = γt (•) .g (γ (•)) . γ (•)
and, for any Suppose that a satisfactory solution γ = L 1 ≡ φ 1 , µ 1 φ 2 , µ 2 ≡ L 2 of problem (M3) under the boundary condition (M11) has been found; according to Proposition 1 above, D R L 1 , L 2 is naturally approximated by γ g . But notice that γ g is an upper bound which is attained only when there is no cut point in γ ([0, 1]) (Theorem M1). That is why we needed some test to detect a possible cut point on some geodesic curve. Suppose a cut point φ c (1,2) , µ c (1,2) has been detected on γ. Then, it is natural [1] to supersede γ by the broken geodesic

φ 1 , µ 1 φ c(1,2) , µ c(1,2) ⊕ φ c(1,2) , µ c(1,2) φ 2 , µ 2
whose length is shorter than Λ (γ), provided that φ c (1,2) , µ c(1,2) φ 2 , µ 2 is also a segment. Since in our case geodesics are obtained by numerically solving a dierential equation, we are only able to locate numerical cut points. Such points were called (J, ε)-cut points, since their detection depends on two parameters: the chosen number J of sub-intervals of [0, 1] determining the accuracy of computations, and some xed threshold ε ∈ ]0, 1[.

Locating some (J, )-cut point on a geodesic γ

For that purpose, the unit interval is rst divided into J intervals: [0, 1] = J i=1 δ i , with δ i := [ i-1 J , i J [. Suppose there exists a cut point γ (t c ) on γ, such that t c ∈ δ ic . Consider the set 1

C J (γ) := γ 1 := γ 1 J , • • • , γ k := γ k J , • • • , γ J-1 := γ J -1 J ⊂ M
and, for each 1 ≤ i ≤ J the geodesic α i := γ i-1 γ i obtained by solving (M3)

under the constraints

{α i (0) = γ i-1 , α i (1) = γ i } .
Because of the uniqueness of segments (Proposition 1 and Remark M1), ∀ i < i c , γ g J = Λ (α i ) = αi g . On the contrary, when i ≥ i c , the distance between γ i-1 and γ i along γ is γ g J yet, while αi g should be smaller. More precisely, if the resolution 1 J is small enough (for instance, smaller than the injectivity radius of M [1]), γ i-1 γ i is a segment and we may write:

           ∀ i < i c , γ g J -αi g = 0 γ g J -αic g > 0 ∀ i > i c , γ g J -αi g ≥ 0.
Thus, after xing some (small) , we can locate possible cut points, with a precision depending on (J, ) and lay a denition for numerical cut points.

Denition 2. We will say that γ ic ∈ C J (γ) is a (J, )cut point on γ if i c = arg min 1≤i≤J-1 γ g J -αi g > .

Possible numerical issues

Various numerical problems were met in computing φ 1 , µ 1 φ 2 , µ 2 :

(P1) no solution was found (due to time limit) (P2) an unsuitable solution was found: for some t ∈ [0, 1], (φ (t) , µ (t)) / ∈ R + × R + (P3) the boundary condition (M11) was not fullled with a satisfactory precision.

Thus, two kinds of conguration were distinguished: simple, when none of the above issues is met, or intricate in the alternative. For further information, see [2].

Simple congurations

When none of the above issues is met, we rst check that there is no (J, ε)-

cut point on γ = φ 1 , µ 1 φ 2 , µ 2 .
Then, the solution found is accepted, and we can write:

D R L 1 , L 2 = Λ (γ) = γ g . (1) 
If a (J, ε)-cut point φ c (1,2) , µ c(1,2) is detected on γ, and if φ c(1,2) , µ c(1,2) φ 2 , µ 2 is free of (J, ε)-cut point, we adopt as an upper bound for

D R L 1 , L 2 Λ φ 1 , µ 1 φ c(1,2) , µ c(1,2) + Λ φ c(1,2) , µ c(1,2) φ 2 , µ 2 .

Intricate congurations

When (P1) or (P2) is met, we consider that the best achievable solution consists in breaking γ = φ 1 , µ 1 φ 2 , µ 2 by inserting a well-placed stopover.

But since γ is undetermined, how should this stopover φ S(1,2) , µ S(1,2) be placed? We proposed two heuristics for that purpose:

1. compute a rough solution γ R to the original problem M3, contenting ourselves with low-precision (5 digits), and substitute γ R for γ to search for φ S(1,2) , µ S(1,2)

2. when γ R cannot be obtained, merely use instead

γ L (t) := t φ 1 , µ 1 + (1 -t) φ 2 , µ 2 .
In the second case, the stopover S naturally corresponds to the shortest broken geodesic determined by:

     φ S(1,2) , µ S(1,2) = γ L k L J with k L := arg min 1≤k≤J-1 Λ φ 1 , µ 1 γ L k J + Λ γ L k J φ 2 , µ 2 .
(

) 2 
In the rst case, two eventualities must be considered: 2) , and the length of the broken geodesic is computed in full precision 2. if no (J, ε)-cut point is detected, proceed like in (2)

1. a (J, ε)-cut point φ c(1,2) , µ c(1,2) is detected on γ R ([0, 1]): then φ S(1,2) , µ S(1,2) = φ c(1,2) , µ c(1,
     φ S(1,2) , µ S(1,2) = γ R k R J with k R := arg min 1≤k≤J-1 Λ φ 1 , µ 1 γ R k J + Λ γ R k J φ 2 , µ 2 .
(3)

Boundary issues

(P3) is easy to solve: we just have to complete (1) by the corrective boundary error term:

BE (γ) := γ(0) -L 1 g L 1 + γ(1) -L 2 g L 2 . (4) 
Finally, whatever the selected geodesic (broken, or not) may be, we obtain the upper bound:

D R L 1 , L 2 ≤ Λ (γ) + BE (γ) . (5) 

A bestiary of computational problems

Before processing data, it was necessary to tune the accuracy parameters;

we xed: (J, ) = (10, 0.05).

We will display in this section typical cases of intricate congurations encountered in computing D R between marine species count distributions. Each illustration will be composed of three panels. On the left one we superimposed to the rough solution of (3), γ R (suits), the nal solution: a broken geodesic (black curve). On both the right panels, we featured the structure of each component of the broken geodesic in the neighborhood of the stopover S, with the help of the exponential map: remember that geodesics can be computed by solving (M3) under the alternative constraints (initial value problem) Here V is the initial velocity of the geodesic, and this solution is associated with the exponential map at φ 1 , µ 1 . We rst determined this way γ 1 = A S 

γ (0) = φ 1 , µ 1 , γ (0) = V ∈ R 2 . (6) 
where the angle of the rotation ρ acting on the initial direction B ( γi (0)) is θ k ∈ {0, ±0.1, ±0.2, ±0.3} (in degrees). Equation (M3) was then solved under the constraints (6) with V = V i (θ k ), giving rise to two bundles of seven geodesics.

In all these plots, the red (color gure online) point will be A and the black one will be B, while the stopover is represented by the big gray point; exponential maps corresponding to θ = 0 (unrotated) are plotted in red (color gure online).

On Figures S1 and S2 

Figure 1 :

 1 Figure 1: Four instances of Poisson-like distributions; ∆ is given by Formula (12) and vertical bars are associated with NB probabilities while continuous curves are associated with Poisson ones.

Corollary 8 .

 8 The relation δ ≡ is an equivalence relation between Poisson-like distributions. Proof. Reexive and symmetric properties are straightforward. Suppose now L 1 δ

  3 (see Lemma 4), and these three Poisson-like distributions belong to the same ber. Thus, L 1 δ ≡ L 3 and δ ≡ is transitive Suppose L 1 δ ≡ L 2 belong to a common ber, F λ1,2 . Being indiscernible, these distributions should be necessarily close to each other, and it would be sound to merely supersede D R L 1 , L 2 by δ. The following corollaries about distributions belonging to dierent bers also stem from Theorem 5. Corollary 9. Consider two Poisson-like distributions L 1 and L 2 belonging to dierent bers, F λ1 and F λ2 . One can always determine a pair of Poissonlike distributions L1 := φ, μ1 ∈ F λ1 and L2 := φ, μ2 ∈ F λ2 such that D R L 1 , L 2 can be superseded by D R L1 , L2 . In addition, thanks to for- mula (9), we can straightforwardly compute D N B(p) L1 , L2 , which is an upper bound for D R L1 , L2 .

  and C (p, p) := 1.

L≡ L 2 (

 2 * := (φ * , µ * ) (λ, δ) is the "initial" distribution given by[START_REF] Ilea | Statistical Hypothesis Test for Maritime Pine Forest Sar Images Classication 20 Based on the Geodesic Distance[END_REF].All the distributions situated on the right of L * are Poisson-like. It is the case of L 1 and L 2 , represented on Figure 2 by small gray points. We found that φ 1 * = 63.2096 < φ 1 and φ 2 * = 0.412537; thus, φ = φ 1 * and L1 = L 1 * , while L2 = L 2 * . Next, in accordance with Corollary 9, we com- puted D N B(p) L1 , L2 ≈ 1.53375, which is rather close to D P (P(λ 1 ), P(λ 2 )) ≈ 1.52371. Since φ 2 < φ 1 , it is also possible to determine the distribution Ľ2 := (φ 1 , μ2 ) δ black point on the lower panel) and, thanks to Corollary 10, to compute D N B(p) Ľ2 , L 1 ≈ 1.52737 (very close to D P (P(λ 1 ), P(λ 2 )) too).3.2.1. Application to EDALet L 1 and L 2 ∈ N B(D R ); three cases may be met: both of them are Poisson-like, only one of them is Poisson-like, or none of them is so.

Figure 2 :

 2 Figure 2: Portions of bers associated with two Poisson-like distributions (δ = 0.01): F 0.0495868 (lower panel) and F 0.969307 (upper panel).

Figure 3 :

 3 Figure 3: Statistics of the computational burden for processing (without Poisson approximation) species collected in zone 4 of the MEEZ: number of distances of each type, box-plots of computation length.

Figure 4 :

 4 Figure 4: Statistics of the computational cost for processing the same species as in Figure 3, with Poisson approximation.

Figure 5 :

 5 Figure 5: Species collected in zone 4 of the MEEZ; the green dotted (resp. orange dashed) closed curve corresponds to the condence region of 0.99 level associated with the spatial median of the rst (resp. second) category species .

Figure 6 :

 6 Figure6: MDS of the Rao's distance between the 26 selected species (big points); the inset graph corresponds to the same analysis, performed after removing both the species HISP00 and PHHU76. .

3 whose sign depends on the sign of 1 -e ζ ζ+λ 2 -λ- 1 .

 321 Since the only solutions of ζ ζ+λ 2 -λ -1 = 0 are λ = 0 ∧ ζ = 0 and ζ = -λ + λ 2 ∧ λ = 0, this expression is negative, and 1 -e ζ ζ+λ 2 -λ-1

  [a, b] ⊆ I, we have: ¢ b a γt (t) .g (γ (t)) . γ (t)dt = (b -a) γ g .

Figure S1 :

 S1 Figure S1: Numerical cut point ( γ R satisfactory). Left panel: rst guess (suits) and nal solution (black curve). Right panels: plot of the two bundles of geodesics issued from A or B. Red curve (color gure online): θ = 0 in equation (7); dashed curves: θ = 0. The header corresponds to the parameters of the distributions in the system M6.

(resp. γ 2

 2 = B S) by solving equation (M3) under the constraints (M11). We afterward considered {V i (θ k ) := ρ (θ k ) B ( γi (0)) : i = 1, 2} ,

  are represented typical cases of intricate situations where γ R was a satisfactory rst guess for the geodesic. The nal solution A S ⊕ S B is similar to γ R . The structure of A S and B S is investigated on both right panels of each sub-gure. Notice they look like genuine cut points (arriving at the cut locus means some kind of catastrophe [1, p. 279]; cf. also the last statement of Theorem M1).On Figures S3 and S4 are represented worse cases, where the rst guess γ R

Figure S2 :

 S2 Figure S2: Numerical cut point ( γ R satisfactory). Same structure as in S1.

Figure

  Figure S3: A numerical cut point with an unsatisfactory γ R . Same structure as S1.

Figure S4 :

 S4 Figure S4: Linear rst guess. Same structure as S1.

Table 1 :

 1 Global results obtained in the four habitats of the MEEZ (δ = 0.01).

	Habitat	Number of species	Simple	Intricate	Cut points	Poisson-like
		(well-tted)	congurations	(Rough, Linear)		distributions
	C1	30	400	(35,0)	1	3
	C2	19	147	(24,0)	0	3
	C3	26	309	(16,0)	0	5
	C4	26	304	(21,0)	0	1
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Suppose rst L 1 and L 2 belong to distinct bers F λ 1 and F λ 2 and each L i ∈ P λ i , δ . Then µ i ≈ λ i and we can use each one of the Corollaries 6, 9 or 10 to determine a pair of equivalent distributions, whose distance would be easier to compute. So, one will successively (try to

as soon as possible in order to alter the data as little as possible.

Suppose now L 1 is Poisson-like while L 2 is not; if φ 1 ≤ φ 2 (or even if φ 1 * ≤ φ 2 ), we can again consider Ľ1 := φ 2 , μ1 . One will successively (try to) compute (intricate conguration with a cut point) was 45.1321 (denitions of simple and intricate congurations are reminded in the supplementary materialfor further details, see [START_REF] Manté | Approximating the Rao's distance between negative binomial distributions. Application to counts of marine organisms[END_REF]).

In the next case (Figure S3) L 1 = (0.00996246, 0.121282), while the second distribution is the same as in the previous case. The original distance corresponded to an intricate conguration with a cut point, and to the upper bound 43.1519. We found instead D R L 2 * , L 1 = 3.48809.

In the last case (Figure S4), L Ľ2 , L 1 , but we found that D R L 2 * , L 1 = 12.5294 (intricate conguration with an acceptable rough solution and a stopover), while the original D R L 1 , L 2 (intricate conguration with linear interpolation) gave rise to the upper distance 21.351.