Andrea Sportiello
email: andrea.sportiiello@liipn.uniiv-paris13.fr

Improved Boltzmann sampling for the Hadamard product of distributions

Keywords: Exact sampling, Analysis of algorithms, Hadamard product, Decomposable probability distributions

For px, qx probability distributions, we consider the problem of efficiently sampling from pxqx/ y pyqy, when y pyqy = Θ(n -2α). The naïve "Boltzmann sampling" approach has complexity n 2α . We propose an algorithm that reaches complexity n α ln n. This leads to a complexity improvement, by a factor n -1/4 , in all applications of the Boltzmann method for the exact sampling of combinatorial structures of size n, when their specification is ameanable to a decomposition into two parts of roughly the same size, a hypothesis including a large fraction of known applications.

The problem

In this paper we address a problem in Probability Theory and Theory of Algorithms which is motivated by an application to the so-called "Boltzmann" Exact Sampling [4], but is most probably not confined to this realm of applications, and in fact, in its most basic incarnation, seems quite fundamental.

Let X be some set, and let p = {p x } and q = {q x } be (normalised) probability measures over X . Let {f x } be the normalised probability measure proportional to the Hadamard product of p and q, f x = p x q x / y p y q y . We have two "black box" algorithms, which can sample from p and from q, respectively, and we want to sample efficiently from f .

As always in Algorithm Complexity, we are interested in the asymptotic complexity, so we will have in fact families of measures p (n) and q (n) , and possibly of sets X (n) , with n-dependent properties, and we are interested in the complexity as a function of n. The trouble comes from the fact that the measures are more and more spread with n growing. 1 We will assume that max x p (n) x

= O(n -2β) and p 2 := x p 2

x = Θ(n -2α), with β > 2 3 α, [START_REF] Bassino | Linear-time generation of inhomogenous random directed walks[END_REF] and similarly for q. We will assume that the two measures do not become orthogonal in the limit, i.e. there exists δ > 0 such that, calling (p, q) = x p x q x , (p, q)/ p 2 q 2 ≥ δ for all n (as the same quantity is bounded above by 1, we have that it is Θ(1)).

There is a naïve algorithm for sampling from f , which consists in sampling pairs (x, y) from p × q, repeatedly up to when x = y, and then return x. This algorithm performs on average Θ(n 2α) queries.

There is a second naïve algorithm, which consists in sampling two k-uples, (x 1 , . . . , x k) from p k and (y 1 , . . . , y k) from q k , and return x i if there is a unique [START_REF] Ahrens | Computer Methods for Sampling from Gamma, Beta, Poisson and Binomial Distributions[END_REF] The dependence from n is understood, and we omit indices from now on. [START_REF] Bassino | Linear-time generation of inhomogenous random directed walks[END_REF] We could relax this constraint, still keeping β > 0, with some further work. 1 pair (i, j) ∈ [k] 2 such that x i = y j . If k ∼ n α this algorithm performs on average Θ(1) runs, each involving Θ(n α) queries, thus dividing by two the complexity exponent. Too bad that this algorithm is incorrect: as we will discuss in detail later on, it samples from a distribution f = f (1 + O(n -α)), it is thus 'asymptotically correct', but needs to be repaired for having exact sampling at finite n. It is not even clear that such a fix may exist, under such mild hypotheses. The goal of this paper is to provide exact algorithms in this spirit, and with this complexity.

We discuss applications in detail in a later section. Nonetheless, let us since now mention sketchy how this problem is related to Boltzmann sampling. In this context, we want to sample a random object of size n. The combinatorial specification of the object [5, chapt. A.I] makes easy to sample objects of variable size, with a distribution centered on (or 'not far from') n, and of width Θ(n 1 2) (in most cases this is roughly a Gaussian, but we do not exploit this fact here). In absence of a better idea, we need to perform the sampling again and again, Θ(n 1 2) times, before the seeked size n is attained. Assume that we can decompose the random object into two independent portions, of random sizes x and y, centered on (or 'not far from') n 1 and n 2 = n -n 1 respectively, and both still with width Θ(n 1 2). (As a corollary, the size z of the full object has a distribution which is decomposable, z d = x + y). Then, the random variables x = n 1 -x and y = y -n 2 are distributed with some p and q, centered not far from zero, which play the role of p and q in the setting above (because x + y = n iff x = y), and α = 1/4.

In most applications, the sampling of the random objects has an intrinsic complexity n, and the number of runs for ordinary Boltzmann sampling is ∼ n 1 2 , thus giving an overall complexity n 3 2 , which, for decomposable objects, at the light of our improved algorithm, would be reduced to n 5 [START_REF] Ph | Boltzmann Samplers for the Random Generation of Combinatorial Structures, in Combinatorics[END_REF] . In fact, because of the very structure of the 'combinatorial specification' required in the setting of Boltzmann sampling, essentially all problems are decomposable (although some may have bad average or variance in the decomposed parts) so that our method provides a sensible speed-up of Boltzmann exact sampling in a variety of situations.

The algorithm 2.1 Complexity paradigm

We are obliged to device an algorithm that makes use both of black boxes and of explicit operations. Under our very general setting, we cannot make many hypotheses on the complexity in n of a black-box query. We will only assume that the scaling is non-trivial (i.e., that it costs more than a constant), and then use two different measures for the number of black-box queries and of explicit operations. As well as in most monetary systems a bill is worth many coins, we will use the pictogram for black-box queries and for arithmetic and flow operations, [START_REF] Devroye | Simulating Size-constrained Galton-Watson Trees[END_REF] and use the convention

Θ(f (n) + g(n)) = Θ(f (n)) if lim n→∞ g(n)/f (n) < ∞,
and leave the expression as is otherwise.

We anticipate that, provided that set X has a total ordering such that element comparison can be performed in arithmetic constant time (in most cases, X = {1, . . . , n} and this is trivially true), our algorithm has complexity Θ n α (+ ln n) , to be compared to the naïve Boltzmann sampling, of complexity Θ n 2α .

Rejection algorithms not calculating rejection rates

Instead of presenting a valid algorithm out of the blue, it is instructive to see first why the naïve algorithm sketched in the introduction misses the point, and why it cannot be repaired so easily. We claimed above that the naïve algorithm samples with a measure f = f (1 + O(n -α)). It is well known that, if two measures f and g are not too far from each other (say, if f x < Cg x for all x), then you can use a black-box sampler from g for sampling from f , using rejection: first sample x, then, with probability f x /(Cg x) return x, otherwise restart. The average number of runs is a Poissonian with average bounded by C. By this fact, we are tempted to say that an "asymptotically correct" algorithm can be trivially corrected by a non-expensive rejection. This is not true under our mild hypotheses on p and q: we assumed that we can sample from p, but we did not assume that we can calculate p x at a point x (or at least, calculate it efficiently), so our analog of the ratio f x /(Cg x) is not at our disposal.

The question is, can we make a flow-chart that samples x with probability g x , and returns true with probability f x /(Cg x), even if we cannot calculate g and f ? At a first look, this may seem an impossible task. However, it is instructive to recall the famous "Monte Carlo game": if you sample (x, y) ∈ [0, 1] 2 uniformly, and return true if x 2 + y 2 < 1 and false otherwise, you can sample a Bernoulli π/4 boolean variable without knowing the value of π. What we need here is a more refined analogue of this strategy.

Nature of the bias in the naïve approach

Let us come back to the algorithm outlined in the introduction. We sample two k-uples, X = (x 1 , . . . , x k) from p k and Y = (y 1 , . . . , y k) from q k , and return x i if there is a unique pair (i, j) ∈ [k] 2 such that x i = y j . The probability that we have a pair (x, x) is

k 2 p x (1 -p x) k-1 q x (1 -q x) k-1 . If k max x (p x , q x)
1, as under our hypotheses, this is nearly proportional to the seeked p x q x , with an acceptance rate enhanced by k 2 , but in fact biased by the extra factors. Beside this, we have a further correction factor for the fact that we have no other valid pairs, which is hard to calculate, but of the form 1 + O(k 2 y =x p y q y). In order to make correction factors explicit we need to implement a first simple strategy, consisting in Poissonising k: instead of sampling k-uples of x and y, with k fixed, we make the lengths k x , k y of X and Y two independent Poisson random variables with average k. Now, each value z appears a z times in X and b z in Y with probability4 π kpz (a z)π kqz (b z), independently from the other z s. After Poissonisation, the correction factors are explicit, and the probability of sampling z is exactly

P (z) = k 2 p z q z e -k(pz+qz) w =z (e -kpw + e -kqw -e -k(pw+qw)) (1)
which is the seeked factor p z q z , times something independent from z, times the 'bias factor'

B(z) := e -k(pz+qz) e -kpz + e -kqz -e -k(pz+qz) = 1 e kpz + e kqz -1 . (2)
If we modify the algorithm, accepting z whenever a and b are both strictly positive, we have a bias factor more near to 1, but more complex to deal with and ultimately of the same nature

B (z) = e kpz -1 kp z e kqz -1 kq z B(z) . (3)
These factors have two unfortunate properties:

• They involve factors of the like e kpz , which can be reproduced by the "Monte Carlo" strategy only at the cost of sampling a full further k-uple of values.

• More importantly, they have the 'wrong concavity': in order to correct for B(z) we need a factor (1

+ k(p z + q z) + • • •), which is larger than 1.
In order to make it a reject probability, we shall consider instead

(1 + k(p z + q z) + • • •)/(1 + k max z (p z + q z) + • • •
), but we do not know neither the value of the maximum, nor its position.

As a side remark, several naïve attemps to fix the two issues (that we do not discuss here in deep) fail because of a fundamental fact: the ratios of consecutive Taylor coefficients for exp(x), namely 1 n! / 1 (n-1)! = 1/n, are not bounded away from 0. Trivial as this may seem, this prevents to fix the concavity problem by sampling a finite number of further k-uples of random values.

The first algorithm: static lists

We are now ready to produce an algorithm, Algorithm 1, that solves the bias problem, and has the seeked complexity. This is not our ultimate algorithm, as we can improve on the constant factor in the " " complexity, but it is the simplest one to implement and analyse, and the one more near to the original (incorrect) naïve idea described in the introduction.

This algorithm is unbiased. In fact the probability of returning x is, using the shortcut φ x (a, b) = π kpx (a)π kqx (b),

P (x) = 1 3 φ x (1, 1) + 2 3 (φ x (2, 1) + φ x (1, 2)) + φ x (3, 1) + φ x (1, 3) y =x φ y (0, 0) + φ y (1, 0) + φ y (0, 1) + φ y (2, 0) + φ y (0, 2) ; (4)
which, by the explicit expression of the Poissonian, makes 1 3 k 2 p x q x times a factor independent of x, namely y e -k(py+qy)

= #{z ∈ Y }, extract the sorted list of z such that a z + b z > 1. Call N a,b = #{z | (a z , b z) = (a, b)}; if N 1,1 + N 2,1 + N 1,2 + N 3,1 + N 1,3 = 1 or a≥3 (N 0,a + N a,0 + N 1,a+1 + N a+1,1) + a,b≥2 N a,b = 0 then restart ←-true; else if N 1,1 = 1 then restart ←-true, false with probs. (2/3, 1/3); if N 2,1 + N 1,2 = 1 then restart ←-true, false with probs. (1/3, 2/3);
until restart=false; return the only z such that min(a z , b z) = 1. end Note that the sorting has been essential, for being able to produce the list of z with high values of (a z , b z) with a k ln k complexity, instead of the naïve and unsatisfactory k 2 complexity.

If k ∼ n α , the acceptance rate of a single run is a quantity of order 1. Namely, the probability that N a,b = 0 is Θ(n -α(a+b-2)) for a + b ≥ 3, and, for the acceptance rate estimate at leading order, we have only two relevant conditions:

• N 1,1 = 1, occurring with probability π k 2 (p,q) (1)

• A Bernoulli-1/3 boolean variable returning true so the acceptance rate is k 2 3 (p, q) exp -k 2 (p, q) and the average complexity, concentrating on the part for optimising k, is 2k divided by the acceptance rate. The optimal value of k is given by k = 1/ 2(p, q), and the resulting complexity is 6 √ 2e (p, q) + Θ(ln n) .

(5)

Doing better

The algorithm presented in the previous section has three minor drawbacks. The first one is that exactly sampling from a Poissonian with large average is notoriously annoyingly hard [1]. This occurs just twice per run, but requires either an external library or a lot of code. The second one is that we have to tune a value of k, while it would have been more elegant and more powerful to use no hypotheses on p and q in the design of the algorithm, but only in the complexity analysis. The third one is that sometimes we need to restart the algorithm because we have been "too lucky", e.g. because N 1,1 = 2. In such a case, we are left with the impression that, if we could have interrupted the algorithm at a smaller value of k, we would have used less resources, and we would have succeeded.

A better naïve idea, solving all of these issues, seems to consist in iteratively sample values of x and y, until any pair x i = y j is attained. Although we will, of course, sample these values in a "discrete-time" iterator, similarly to the Poissonisation strategy above, it is convenient to imagine this process as embedded in continuous time, with x i 's and y j 's forming a Poisson Point Process (PPP).

So, let us consider the PPP of density 2 on the real positive axis, such that x is sampled at the time interval [t, t + dt] with probability p x dt, and y with probability q y dt. We have a number of marginals associated to this process, e.g. the lists X and Y , the pairs (a z , b z), and the values N a,b as defined in the previous section, all evolving monotonically as functions of t.

In order not to mess with the details of the problem at hand, we start by describing a more general context, and discuss the specialisation appropriate to our problem at a later stage. We assume that at every coordinate (a, b) ∈ N 2 we have three real non-negative parameters, c ab , c ab , s ab and r ab (for 'continue', 'continue sub judice', 'stop' and 'restart'), with c + c + s + r = 1. Set c 00 = 1.

As time increases, points are added to the process one by one, and some 'Continue sub judice' is just like 'continue' (we will see that they differ in behaviour only at the end of the run). 'Restart' means that we have to restart a fresh run of our algorithm, and it is in a sense 'bad news' for complexity. 'Stop' means that we have a candidate value of z, so it is 'good news'.

(a z , b z) is raised to (a z , b z) = (a z + 1, b z) or (a z , b z + 1). If
The run stops when a 'stop' point is produced, and returns a value z. If any z other than z had hit a 'continue sub judice' flag, we need to restart all over. Otherwise we return z.

Because of the independence properties of the PPP, the time trajectories (a z , b z) are independent for different values of z. So the probability of returning z is the integral over t real positive, of the probability of having a stopping trajectory for z with last point in [t, t + dt], times a product over z = z of the probability that all trajectories for z up to time t only hit 'continue'.

Let W ab be the set of directed walks from (0, 0) to (a, b), i.e. binary strings in {0, 1} a+b with exactly a zeroes. Let W ∈ W ab . Its occurrence probability for value z at time t, as a 'continue' walk, is

P c (W, z, t) = t a+b p a z q b z (a + b)! e -t(pz+qz) (a ,b)∈W c a b (6)
Analogously, its occurrence probability for value z at time t, as a 'stop' walk is

P s (W, z, t) = t a+b-1 p a z q b z (a + b -1)! e -t(pz+qz) (a ,b)∈W (a,b) (c a b + c a b) s ab (7)
The probability that a run of the algorithm returns z is

P (z) = ∞ 0 dt W P s (W, z, t) z =z W P c (W , z , t) (8)
and the bias factor at time t is

B(z, t) = W P s (W, z, t) p z q z W P c (W, z, t) . (9)
A sufficient condition for the algorithm to be unbiased is that, for all t, B(z, t) does not depend on z. In other words, because of the generality of our p and q, the only way this may occur is that s a0 = s 0b = 0, and that the quantity

B ab = W ∈W a+1 b+1 P s (W, z, t) t p z q z W ∈W ab P c (W, z, t) , (10)
which is at sight independent of t, where defined, is also independent of (a, b).

(At (a, b) such that both numerator and denominator are zero we have no condition).

The second algorithm: incremental lists

In our first algorithm the factors associated to non-returned values corresponded to the sum of the entries {(0, 0), (1, 0), (2, 0), (0, 1), (0, 2)} of the Poissonian on N 2 . Let us tentatively reproduce this strategy by setting

c ab = 1 if ab = 0, a + b ≤ 2.
There is no reason to choose the rates {c, c , s, r} non-symmetric under a ↔ b, so we make this assumption from now on, and describe rates for b ≤ a.

We want to maximize the stopping probability at (3, 1), as we know that this is the most critical entry, due to large factorials at denominator. At this aim we are induced to choose c 30 = 1, and s 31 = 1. At any position with a ≥ 4 or b ≥ 2 (and symmetric) we can just set r ab = 1, as we know that these entries are not relevant in the estimate of the acceptance rate. Consistently, we set c ab = 0 for b ≥ 1. Only two entries have rates {c, c , s, r} which are different from a deterministic choice on one of the four rules. Namely, (a, b) ∈ {(1, 1), (2, 1)}. In both cases we only have non-zero s and c . We have to verify the properties of quantity (10) only at three pairs, (a, b) ∈ {(0, 0), (1, 0), (2, 0)}, with two independent free parameters, s 11 and s 21 , with c 11 and c 21 intended as synonim of 1 -s 11 and 1 -s 21 , respectively.

The quantities (10) read

(B 00 , B 10 , B 20) = 2s 11 , (2c 11 + 1)s 21 2 , (2c 11 + 1)c 21 + 1 3 , (11)
which are all proportional if we set s 11 = 1 3 and s 21 = 4 7 . As a result, this process has a leading-order acceptance rate 1/3 unconditionally to the details of p and q, provided x p 3 x , x q 3

x x p x q x (this explains our hypothesis β > 2 3 α), and the probability that a run halts at time [t, t+dt] is, again at leading order, [START_REF] Bassino | Linear-time generation of inhomogenous random directed walks[END_REF] 3 (p, q)e -t 2 (p,q)/3 tdt, so that the square of the running time is an exponential random variable with average 3/(p, q), while the time itself is a 'half-Gaussian' random variable with average 3π 4(p,q) . At time t we have sampled roughly 2t points, t x i 's and t y j 's. So, if we use a tree data structure for the insertion of points along the time of the process, the average complexity is

3 √ 3π (p, q) + Θ(ln n) . (12)
W.r.t. Algorithm 1, the new algorithm gains a factor 3π 8e = 0.658 . . . A precise description of the algorithm is given in Algorithm 2. Let us comment a bit longer on what we find the most adapted data structure. We suggest to use a binary search tree (BST) for storing all the points of the process. At each node there is a triple (z, a z , b z), and the nodes are ordered according to a total ordering on z. This tree will be almost surely of Θ(n α) size. We use also a second BST, where we insert only triples (z, a z , b z) with a + b larger than 1. This tree will be almost surely of Θ(1) size. In these nodes we will also store a boolean variable telling if the 'continue sub judice' flag has been reached at some point. We insert each new point in the first BST, and, only if required, we also insert it in the second BST. When a 'stop' flag is reached, it is then sufficient to explore the second, small BST to check whether we have 'continue sub judice' flags still standing.

Applications

Our setting can be used fruitfully within Boltzmann Sampling [4], when the seeked random object, of size n, admits a 'decomposition'. A precise description could be given, but let us content ourselves with an informal sufficient condition. The generating function F (z) for our random objects, all sizes together, is given by a combinatorial specification, as described in [5, def. I.7, pg. 33]. We say that such a specification is decomposable if there exists

{(p k , G k (z), H k (z))} such that • p k are real positive, k p k = 1;
• the p k 's are calculable;

• the G k 's and H k 's are associated to combinatorial specifications;

• F (z) = k p k G k (z)H k (z).
Directed random walks performing an excursion, and their bijective counterpart of random planar trees, are typical examples in which such a construction is even visualisable: we can decompose a walk at its leftmost minimum (different from the endpoints), and a tree on its topmost non-unary node, and obtain two objects of the same nature.

These objects, however, already admit better algorithm that the basic Boltzmann sampling, both in the case of homogeneous weights [3], and of inhomogeneous ones [2] (our interest on the topic at hand originated from reflections associated to our work on [2]).

Nonetheless, even in the more general context, although the decomposition may not appear natural, it is obtained from the specification in a straightforward and automatised way. Recall that the constructors considered by Flajolet and Sedgewick are disjoint union (∪), cartesian product (×), sequence (Seq), powerset (PSet), multiset (MSet) and cycle (Cyc).

Let us triple our set of objects entering the specification, from a set of A i , to sets of A g i , A b i and A r i (for gray, blue and red). We start by copying the equations verbatim, each colour separately. Thus the different colours have identical generating functions. Then, we try to make 'gray' as a composition of a 'red' and of a 'blue' object, so we try to modify the equations with a gray object on the LHS in this direction.

Note that, even when the original system is recursive, the new system will not, as once gray is turned into red and blue, it will never more encounter gray objects in the recursive construction: red will only encounter red, and blue will only encounter blue. Our recipe is as follows:

disjoint union, A(z) = B(z) + C(z): leave gray, A g (z) = B g (z) + C g (z); cartesian product, A(z) = B(z)C(z): split colours, A g (z) = B r (z) + C b (z);
Seq, PSet, MSet, Cyc: in all these cases we have an expression of the form

A(z) = f ({B(z k)}). Let f ({x k }) = f (0) + k f (1)
k x k + k,h f (2)
kh ({x j })x k x h (there may be several ways of writing f in this form). Then write as

A g (z) = f (0) + k f (1) k B g (z k)+ k,h B r (z k)B b (z h)f (2) kh ({ 1 2 B r (z k)+ 1 2 B b (z k)}) .
The idea is that a gray object is either empty, or composed of a single gray object (and possibly some atoms), or composed of two or more objects (and possibly some atoms), which we split into two classes, red and blue, probabilistically, while guaranteeing that there are at least one red and one blue object.

Then, it depends from the nature of the specification if, at the first time gray splits into red and blue, almost surely the two parts carry a fraction Θ(1) of the total size, or on the contrary almost surely one of the two parts has sub-extensive size. The first case is adapted to the application of our method. The second case may occur when (say, with the Seq constructor) the objects are distributed with a fat-tail distribution, and the expected number of components is of order 1.

Perspectives

There are two natural 'higher-dimensional' generalisations of the problem discussed here. On one side, we can consider further Hadamard products: if we want to sample from f x = p x q x r x / y p y q y r y , we shall produce a 3-dimensional grid for (a z , b z , c z) ∈ N 3 , and consistenly solve the problem of finding rates c abc , c abc , s abc and r abc which make the analogue B abc of (10) independent from (a, b, c). We see no theoretical obstacle in doing this (see Appendix A).

Unfortunately, at higher dimensionality the correspondence between Hadamard product and decomposition of a measure is lost. The second version of the problem, sampling triples (x, y, z) from p × q × r constrained to x + y + z = 0, is the one pertinent to Boltzmann sampling, and that would lead, if successful, to a complexity reduction from n 3/2 to n 7/6 (instead that n 5/4 as here). If the dimensionality d could be increased arbitrarily, the associated complexity n 1+ 1 2d would even asymptotically reach the optimal linear complexity.

This generalisation of the problem, however, seems to raise a number of further bias issues, of a different nature w.r.t. those discussed here, and is subject for future work.

A Hadamard product of D distributions

Let us consider the natural generalisation to arbitrary dimension D of the algorithm in Section 2.6. We follow the same general pattern of weighted directed paths described in Section 2.5, in its obvious generalisation to higher dimension.

Yet again the leading contribution to the acceptance rate must come from the (1, 1, . . . , 1) entry. For this reason, we need c a1,...,a D = 1 whenever min(a i) = 0 and i a i ≤ D. In order to maximise acceptance rate, we will also set, analogously to the D = 2 case, c a1,...,a D = 1 whenever min(a i) = 0 and i a i = D + 1. We will set, with no loss on the acceptance rate at leading order, r a1,...,a D = 1 whenever min(a i) ≤ 1 and i a i ≥ D + 2, or min(a i) ≥ 2.

Yet again assuming S D permutational symmetry of the rates, we need to check the bias factors B a1,...,a D at all coordinates a 1 ≥ • • • ≥ a D , and i a i ≤ D, and we have an identical number of free s parameters (those with index (a 1 + 1, . . . , a D + 1)). The solutions to setting all B's proportional form a 1-dimensional algebraic variety, which passes through the origin with a slope vector having all positive entries (the linearisation of the conditions on B has simple coefficients, given by ratios of factorials, and of definite sign). As a consequence, there must be one (or more) point maximising the acceptance rate, within the constraint that all s are in [0, 1].

The process has a leading-order acceptance rate related to s 11•••1 , unconditionally to the details of the p (i) 's, provided that x p (i) x D+1

x p

x • • • p

x • • • p (D)
x , DRse -t D Rs t D-1 dt, so that the D-th power of the running time is an exponential random variable with average 1/(Rs).

The average running time is easily calculated, recalling that For example, in dimension D = 3 we have 6 triples for B, namely {(0, 0, 0), (1, 0, 0), (2, 0, 0), (3, 0, 0), (1, 1, 0), (2, 1, 0)} .

We get the variety In particular s 111 = 1 6 is to be used in the equation above for the complexity.

s

 c a ,b = 1, nothing else happens, and we continue by seeking a new point. Otherwise, with rates c a ,b , c a ,b , s a ,b and r a ,b we perform one of the four forementioned actions.

Algorithm 2 :

 2 Increasing X and Y one value at a time begin repeat Initialise BST 1 and BST 2 ; restart ←-false; stop ←-false; while restart = false and stop = false do 1 With prob. 1/2, sample z = x i with p, or z = y j with q; ln n α Insert z in BST 1 ; if new (a, b) has a + b > 1 then Check for {c ab , c ab , s ab , r ab }, and operate accordingly, in case update restart or stop and break the loop; Insert z in BST 2 ; if restart = true then full-restart ←-true if stop = true then full-restart ←-false; Explore BST 2 for c flags, in case full-restart ←-true; until full-restart=false; return z. end

 β > D D+1 α), and the probability that a run halts at time [t, t+dt] is, at leading order, calling s = s 11•••1 and R = x p (1)

∞ 0 dt nt n e -t n = 1 /n 2 Γ 1 D

 0121 11•••1 in front of the naïve scaling of the complexity.

 1 + kp y + kq y + (kp y) 2 + (kq y) 2 2 Algorithm 1: Using static lists X and Y . begin repeat Sample k x and k y with π k ; Sort the lists {x i } and {y i }; Call a z = #{z ∈ X} and b z

2k

Sample X = {x i } i=1,..,kx i.i.d. with p, and Y = {y i } i=1,..,ky i.i.d. with q; k ln k

These two icons are made by Freepik from www.flaticon.com

We denote πρ(n) = e -ρ ρ n /n!.