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EQUIVARIANT TRIANGULATIONS OF TORI OF COMPACT LIE

GROUPS AND HYPERBOLIC EXTENSION TO

NON-CRYSTALLOGRAPHIC COXETER GROUPS

ARTHUR GARNIER

Abstract. Given a simple connected compact Lie group K and a maximal torus T of K,
the Weyl group W = NK(T )/T naturally acts on T .

First, we use the combinatorics of the (extended) affine Weyl group to provide an explicit
W -equivariant triangulation of T . We describe the associated cellular homology chain
complex and give a formula for the cup product on its dual cochain complex, making it a
Z[W ]-dg-algebra.

Next, remarking that the combinatorics of this dg-algebra is still valid for Coxeter
groups, we associate a closed compact manifold T(W ) to any finite irreducible Coxeter
group W , which coincides with a torus if W is a Weyl group and is hyperbolic in other
cases. This relies on the choice of a suitable reflection in W . Of course, we focus our study
on non-crystallographic groups, which are I2(m) with m = 5 or m ≥ 7, H3 and H4.

The manifold T(W ) comes with a W -action and an equivariant triangulation, whose
related Z[W ]-dg-algebra is the one mentioned above. We finish by computing the homology
of T(W ), as a representation of W .
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0. Introduction

Given a simple compact connected Lie group K and a maximal torus T of K, the Weyl
group W := NK(T )/T acts on T by conjugation by a representative element of NK(T ). This
is well-defined since T is abelian. As T is clearly a CW-complex, it is known that there exists
a W -equivariant cellular structure on T . The first aim of this work is to provide an explicit
W -triangulation and to describe the associated cellular homology cochain complex, as a
Z[W ]-dg-algebra. This study is motivated by the research of equivariant cellular structures
in Lie theory, and more precisely for flag manifolds and classifying spaces of tori.

Let t denote the Lie algebra of T . The exponential map exp : t ! T induces a W -
equivariant isomorphism of Lie groups t/Λ ! T , where Λ ⊂ t is a W -lattice. The isomor-
phism type of the pair (K,T ) is determined by the root system Φ ⊂ it∗ and the lattice Λ.
This is equivalent to the root datum of (K,T ) and this gives the suitable vocabulary to work
with.

An important distinction comes from the fundamental group π1(K) of K. In the case
where π1(K) = 1, the combinatorics of the affine Weyl group Wa and alcoves easily give
the desired CW-structure. Indeed, the group Wa is Coxeter with one additional generator,
corresponding to the reflection of the highest root of Φ. Moreover, the fundamental alcove
is a standard simplex and its triangulation provides a W -equivariant triangulation of T . We
also give a formula for the cup product (see Corollary 2.2.3). We obtain the following result:

Theorem. Let K be a simply-connected simple compact Lie group of rank n, T < K be a
maximal torus and W = NK(T )/T be the associated Weyl group. If Q∨ denotes the coroot
lattice of the root system of (K,T ), Wa := Q∨oW the affine Weyl group and π : Wa �W the
natural projection, then the torus T admits a W -equivariant triangulation whose associated
cohomology W -dg-algebra C∗cell(T,W ;Z) has homogeneous components

Ckcell(T,W ;Z) =
⊕
I⊂S0
|I|=n−k

Z[π(IWa)],

where S0 = {0, 1, . . . , n}. For a subset I ⊂ S0, denoting by {j0 < · · · < jk} the complement
of I in S0, the differential dk is given, for all w ∈Wa, by

dk(π(Iw)) =
∑

0≤u≤k+1
ju−1<j<ju

(−1)uπ(ε
I\{j}
I w), εJI =

∑
x∈JIWa

x

and product induced by the formula

π(Ix) ∪ π(Jy) = δmax(I{),min(J{) ×
{
π(I∩J((xy−1)Jy)) if xy−1 ∈ (Wa)I(Wa)J

0 otherwise.

In particular, we have

H•(C∗cell(T,W ;Z)) = H•(T,Z) = Λ•(Q∨).

In the general case, the extended affine Weyl group WΛ := Λ oW is no longer a Coxeter
group and the above combinatorics does not hold anymore. This comes from the non-trivial
symmetries of the fundamental alcove in the group. However, it is enough to consider the
barycentric subdivision of the fundamental alcove (see Theorem 3.2.3). Though heavy in
computations, this has the advantage of giving a general statement for all cases at once.
Moreover, this construction applied to the simply-connected case gives the same complex as
the first one, up to Z[W ]-homotopy equivalence.

In the simply-connected case, the complex is described using minimal length coset repre-
sentatives, but if we rewrite it using transitive sets, then the combinatorics makes sense for
every finite group with a preferred element and set of generators. If moreover a notion of
parabolic subgroups is available, then the cup product, as described in Theorem 2.2.2 makes
sense as well. In particular, we can construct such a complex for every finite (irreducible)
Coxeter group.
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It is a natural question to ask if there still is any geometric information behind the above
complex in the non-crystallographic Coxeter groups. Our main result is the following one,
which gathers Theorem 4.3.3, Corollary 4.5.1 and Proposition 4.5.6:

Theorem. Let (W,S) be a finite irreducible Coxeter system of rank n. Given a reflection

r ∈ W , we consider the Coxeter system (Ŵ , S ∪ {r}) whose diagram is the one of W , with
the additional node corresponding to r and with associated edges given by the orders of sr

for s ∈ S. Then there is a reflection rW ∈W such that the extension Ŵ is affine if W is a
Weyl group and compact hyperbolic otherwise. If moreover n > 2, then the reflection rW is
unique with this property.

If Ŵ is such an extension, if we denote by Σ̂ the Coxeter complex of Ŵ and Q := ker(Ŵ �
W ), then T(W ) := Σ̂/Q is a connected, orientable, compact, W -triangulated Riemannian
W -manifold of dimension n such that,

• if W is a Weyl group, then T(W ) is W -isometric to a maximal torus of the simply-
connected compact Lie group with root system that of W ,
• otherwise, the manifold T(W ) is hyperbolic.

In the dihedral case, the surfaces T(I2(2g+ 1)), T(I2(4g) and T(I2(4g+ 2)) are naturally
Riemann surfaces of genus g, definable over Q and rational elliptic curves if g = 1.

It should be mentioned that the manifolds T(H3) and T(H4) were already constructed
respectively by Zimmermann ([Zim93]) and by Davis ([Dav85]), using a different method.

Our construction relies on the choice of a particular reflection of W , which is the one
associated to the highest root in the root system of W , in all cases except H3. We use this

reflection to build an infinite Coxeter group Ŵ , whose Coxeter diagram has one more node
than the one of W and in which W is a maximal parabolic subgroup. This imitates the

construction of the affine Weyl group. Furthermore, our choice implies that Ŵ is in fact a
compact hyperbolic Coxeter group (see [Hum92, §6.8]).

This extension comes with a torsion-free normal subgroup QE Ŵ such that Ŵ = QoW .
A key fact is that the action of Q (under the dual geometric representation of W ) on the

Coxeter complex Σ(Ŵ ) (seen as a quotient of the Tits cone) is a covering space action and

we naturally define T(W ) := Σ(Ŵ )/Q.
It is clear from the construction that T(W ) is equipped with a W -triangulation (which

yields a dessin d’enfant when W = I2(m)), whose associated W -dg-algebra has the same
combinatorics as in the Weyl group case (see Theorem 5.1.1). We use the Hopf trace formula
(see lemma 5.2.3) to describe the homology of T(W ) as a representation of W . The following
result summarizes 5.2.1, 5.2.2 and 5.2.8:

Theorem. If W is a finite Coxeter group of rank n and T(W ) is the W -manifold from the
previous theorem, then we have

H0(T(W ),Z) = 1 and Hn(T(W ),Z) = ε,

where ε is the signature representation of W .
The homology H∗(T(W ),Z) is torsion-free and, in particular, the Betti numbers of T(W )

are palindromic, meaning bi = bn−i for all i.
Moreover, the geometric representation of W is a direct summand of H1(T(W ),k), where

k is a splitting field for W and H1(T(W ),k) is irreducible if and only if W is crystallographic.

Finally, if W (q) (resp. Ŵ (q)) is the Poincaré series of W (resp. of Ŵ ), then

χ(T(W )) =
W (q)

Ŵ (q)

∣∣∣∣∣
q=1

.

Finally, a GAP4 package1 is provided to compute these complexes, along with the DeConcini-
Salvetti complex of a finite Coxeter group (see [CS00]).

1https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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As an appendix, we use GAP again to determine all the possible hyperbolic extensions
of the finite Weyl groups that correspond to a reflection in the finite group. We notice that
all of them (except for G2 = I2(6)) are non-compact and our construction doesn’t apply; at
least not immediately.

Part 1. Weyl-equivariant triangulations of tori of compact Lie groups and
related W -dg-algebras

1. Prerequisites and notation

Let K be a simple compact Lie group, T a maximal torus of K, we denote by k and t
their respective Lie algebras and by Φ ⊂ it∗ =: V the root system of (k, t). We consider the
character lattice of T given by

X(T ) = {dλ : t! iR ; λ ∈ Hom (T, S1)} ⊂ it∗ = V

and its cocharacter lattice is Y (T ) := X(T )∧ ⊂ V ∗, so that (X(T ),Φ, Y (T ),Φ∨) is a root
datum. Since T is abelian, the elements of the Weyl group W = W (Φ) ' NK(T )/T act
on T by conjugation by a representative element in NK(T ). By [KK05, Lemma 1], the
normalized exponential map defines a W -isomorphism of Lie groups

(†) V ∗/Y (T )
∼
−! T.

Moreover, we have the following isomorphisms

P/X(T ) ' π1(K) and X(T )/Q ' Z(K).

This shows that we may reformulate the initial problem as follows: given an irreducible
root datum (X,Φ, Y,Φ∨) with Weyl group W and ambient space V := ZΦ ⊗Z R, find a
W -equivariant triangulation of the torus V ∗/Y . As mentioned above, this will depend on
the fundamental group P/X of the root datum.

Notation. Throughout the first part of the paper we fix, once and for all, an irreducible root
datum (X,Φ, Y,Φ∨) and rank n, with ambient space V = ZΦ⊗R, simple roots Π ⊂ Φ+, Weyl
group W = 〈sα, α ∈ Π〉, fundamental (co)weights ($α)α∈Π and ($∨α)α∈Π, (co)root lattices Q
and Q∨ and (co)weight lattices P and P∨. We index the set Π of simple roots by {α1, . . . , αn}
and the sets of fundamental (co)weights accordingly. Let also α0 =

∑n
i=1 niαi ∈ Φ+ be the

highest root of Φ.

Consider the affine transformation

s0 := tα∨0 sα0 : λ 7−! sα0(λ) + α∨0 = λ− (〈λ, α0〉 − 1)α∨0 .

Then, the group Wa := 〈s0, s1, . . . , sn〉 ≤ Aff(V ∗) is a Coxeter group, called the affine Weyl
group. It splits as Wa = Q∨ oW . For α ∈ Φ and k ∈ Z, we consider the affine hyperplanes
Hα,k := {λ ∈ V ∗ ; 〈λ, α〉 = k} and we call alcove any connected component of V ∗\

⋃
α,kHα,k.

The fundamental alcove is

A0 := {λ ∈ V ∗ ; ∀α ∈ Φ+, 0 < 〈λ, α〉 < 1} = {λ ∈ V ∗ ; ∀1 ≤ i ≤ n, 〈λ, αi〉 > 0, 〈λ, α0〉 < 1}.
Then, by [Bou02, V, §2.2, Corollaire], its closure is a standard simplex

A0 = conv

(
{0} ∪

{
$∨i
ni

}
1≤i≤n

)
' ∆n

and by [Hum92, §4.5 and 4.8], A0 is a fundamental domain for Wa in V ∗ and moreover, Wa

acts simply transitively on the set of open alcoves.
Before going any further into our study, we shall give some reminders and notation on

equivariant CW-complexes. A detailed treatment of these objects can be found in [tD87,
II, §1].
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Recall that, for a discrete group G, a G-space X is said to be a G-CW-complex if it has
a CW-complex structure such that G acts on the k-cells of X for all k and, for any cell e of
X and any g ∈ G, if ge = e then gx = x for evey x ∈ e.

For a given CW-complexX, we can consider its cellular homology chain complex Ccell
∗ (X,Z),

where each Ccell
n (X,Z) =

⊕
i∈I Zei with ei the n-cells of X. If X is a G-CW-complex, then

its cellular chain complex Ccell
∗ (X,Z) is a chain complex of Z[G]-modules, which we denote

by Ccell
∗ (X,G;Z) if the acting group G is ambiguous. Moreover, if En is the (possibly infi-

nite) set of n-cells of X, with n ∈ N, then G acts on En and the Z-module Ccell
n (X,Z) is free

with basis En, so that Ccell
n (X,G;Z) is a permutation module. Furthermore, decomposing

En =
⊔
iG/Hi into orbits, we get

Ccell
n (X,G;Z) '

⊕
i

Z[G/Hi],

where Hi runs through a representative set of stabilizers of n-cells of X. Since the action
of G on X is cellular, this implies that each Hi is in fact the stabilizer of any point of the
corresponding cell.

We may describe the dual complex C∗cell(X,G;Z) in a similar way, but we have to take
care of the dualisation when the number of cells is infinite. For an arbitrary set S, we denote
by Z[[S]] the set of families x = (xs)s∈S of integers, indexed by S. It will be convenient to
prefer the formal notation x =

∑
s∈S xss. Notice that, for an arbitrary group G and H ≤ G,

we have a canonical isomorphism of right Z[G]-modules

Z[G/H]∨
df
= Hom (Z[G/H],Z) −! Z[[H\G]]

(gH)∗ 7−! Hg−1

and this yields an isomorphism Z[G/H]∨ ! Z[H\G] in case H is of finite index. This allows
to give a general description for the homogeneous components of the dual complex:

Cncell(X,G;Z) =
∏
i

Z[[Hi\G]]

where the Hi’s are as above. This is indeed a right Z[G]-module, but it is a permutation
module only when the number of cells is finite.

Recall that if G acts on a set X and if N EG, then we may consider the deflation of X:
DefGG/N (X) := X/N , with the induced action of G/N . On another hand, if π : G � G/N

is the projection map, then we have a canonical isomorphism of G/N -sets DefGG/N (G/H) '
π(G)/π(H). This gives a functor DefGG/N : G-Set ! G/N -Set and linearizing it gives the

usual linear deflation

DefGG/N : Z[G]-Mod −! Z[G/N ]-Mod

U 7−! UN := U/ 〈nu− u〉
and we may extend this functor to (co)chain complex categories. We have the following
straightforward result:

Lemma 1.0.1. Let G be a discrete group, written as a semi-direct product G = N o H
and X be an G-CW-complex. Denote by p : X � X/N and by π : G � H the natural
projections. If the quotient space X/N is Hausdorff, then it is an H-CW-complex such that,
for all k ∈ N,

Ek(X/N) = {p(e), e ∈ Ek(X)}
and the map π induces a natural isomorphism

Ccell
∗ (X/N,H;Z) ' DefGH

(
Ccell
∗ (X,G;Z)

)
.

5



ARTHUR GARNIER

2. The simply-connected case

2.1. The Wa-triangulation of V ∗ associated to the fundamental alcove.
As observed above, the alcove A0 is a fundamental domain for Wa acting on V ∗, so it

suffices to have a triangulation of A0, which is compatible with the action of Wa in the sense
that if a face is fixed globally by some w ∈Wa, then w induces the identity on this face.

Given a polytope P ⊂ Rn and an integer k ≥ −1, we denote by Fk(P) the set of
k-dimensional faces of P. In particular, we have F−1(P) = {∅}, Fdim(P)(P) = {P},
Fdim(P)−1(P) is the set of facets of P and F0(P) = vert(P) is its set of vertices. More-
over, we let F (P) :=

⋃
k Fk(P) be the face lattice of P. It is indeed a lattice for the

inclusion relation.
Resuming to root data, for each i ∈ S := {1, . . . , n} we consider the hyperplane

Hi := Hαi,0 = {λ ∈ V ∗ ; 〈λ, αi〉 = 0}
and

H0 := Hα0,1 = {λ ∈ V ∗ ; 〈λ, α0〉 = 1}
with α0 =

∑
i niαi the highest root. We also take the following notation for the vertices of

A0, where i ∈ S,

vi :=
$∨i
ni

and v0 := 0 so that vert(A0) = {v0, v1, . . . , vn}.

The hyperplanes Hi for i ∈ S0 := S ∪ {0} give a complete set of bounding hyperplanes
for the n-simplex A0. Furthermore, by definition, for every face f ∈ Fk(A0) there exists a
subset I ⊆ S0 of cardinality |I| = codimA0

(f) = n− k such that

f = fI := A0 ∩
⋂
i∈I

Hi

and we readily have
vert(fI) = {vi ; i ∈ S0 \ I}.

For I ⊆ S0, we may consider the (standard) parabolic subgroup (Wa)I of Wa generated by
the subset {si, i ∈ I}. If 0 /∈ I, then (Wa)I is in fact a parabolic subgroup of W .

Lemma 2.1.1. Let 0 ≤ k ≤ n and I ⊆ S0 with |I| = n− k. Then the stabilizer of the face
fI ∈ Fk(A0) is the parabolic subgroup of Wa associated to I. In other words,

(Wa)fI = (Wa)I .

Proof. As vert(fI) = {vi, i /∈ I} is (Wa)fI -stable, the Theorem from [Hum92, §4.8] ensures
that

(Wa)fI =
⋂

i∈S0\I

(Wa)vi .

Moreover, each group (Wa)vj is generated by the reflections it contains, so that vj ∈ Hi. A
reflection si fixes 0 if and only if it is linear, so (Wa)v0 = 〈si ; i 6= 0〉 = (Wa)S = W . Let
now j ∈ S. Since

{vj} =

{
$∨j
nj

}
=

⋂
j 6=i∈S0

Hi,

we have that si(vj) = vj if and only if i ∈ S0 \ {j} and hence, for every j ∈ S0, we have

(Wa)vj = (Wa)S0\{j}

and thus

(Wa)fI =
⋂

i∈S0\I

(Wa)vi =
⋂

i∈S0\I

(Wa)S0\{i} = (Wa)⋂
i/∈I S0\{i} = (Wa)I .

�
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Therefore, we have a triangulation

V ∗ =
∐

f∈F (A0)
w̃∈Wa/(Wa)f

w̃ · f

which isWa-equivariant and following the notation from the first section, we have Ek(V ∗)/Wa =
Fk(A0) for all k. Therefore, we get isomorphisms of Z[Wa]-modules

Ccell
k (V ∗,Wa;Z) '

⊕
f∈Fk(A0)

Z[Wa/(Wa)f ] =
⊕
I⊂S0
|I|=n−k

Z[Wa/(Wa)I ].

We have to fix an orientation of the cells in V ∗ and determine their boundary. But each
one of them is a simplex, so its orientation is determined by an orientation on its vertices.
We choose to orient them as the index set (S0,≤). For I ⊆ S0 with corresponding k-face
fI = conv({vi ; i ∈ S0 \ I}), we write

fI = [vj1 , . . . , vjk+1
] with {j1 < j2 < . . . < jk+1} = S0 \ I

to make its orientation explicit. The oriented boundary of fI is then simply given by the
formula

∂k(fI) =
k+1∑
u=1

(−1)u [vj1 , . . . , v̂ju , . . . , vjk+1
]︸ ︷︷ ︸

=conv({vj ; ju 6=j∈S0\I})

=
k+1∑
u=1

(−1)ufI∪{ju}

We have thus obtained the following result:

Theorem 2.1.2. The face lattice of the n-simplex A0 induces a Wa-equivariant triangulation
of V ∗, whose cellular complex Ccell

∗ (V ∗,Wa;Z) is given (in homogeneous degrees k and k−1)
by

· · · //
⊕
I⊂S0
|I|=n−k

Z
[
W I

a

] ∂k //
⊕
I⊂S0

|I|=n−k+1

Z
[
W I

a

]
// · · ·

where W I
a ≈ Wa/(Wa)I is the Wa-set of minimal length left coset representatives, modulo

the parabolic subgroup (Wa)I and boundaries are defined as follows: for k ∈ N and I ⊂ S0,
letting {j1 < · · · < jk+1} := S0 \ I,

(∂k)|Z[W I
a ] =

k+1∑
u=1

(−1)upII∪{ju},

where, for I ⊂ J , pIJ denotes the projection

pIJ : W I
a = Wa/(Wa)I −�Wa/(Wa)J = W J

a .

Example 2.1.3. We look at the case of the group SU(3) in type A2. We denote by Φ =
{±α,±β,±(α + β)} a root system of type A2, with simple system Π = {α, β}. The Figure
1 depicts the (dual) root system of type A2 and its fundamental alcove. The chain complex
Ccell
∗ (V ∗,Wa;Z) is readily given by

Z[Wa]
∂2 // Z[Wa/ 〈sβ〉]⊕ Z[Wa/ 〈s0〉]⊕ Z[Wa/ 〈sα〉]

∂1 // Z[Wa/ 〈sα, sβ〉]⊕ Z[Wa/ 〈sβ , s0〉]⊕ Z[Wa/ 〈sα, s0〉] ,

where the boundaries are

∂2 =
(
1 1 −1

)
, ∂1 =

−1 1 0
0 −1 1
−1 0 1

 .
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Applying the deflation functor DefWa
W , we obtain the complex Ccell

∗ (T,W ;Z) where T =
S(U(1)3) ≤ SU(3) as

Z[W ]
(1 1 −1) // Z[W/ 〈sβ〉]⊕ Z[W/ 〈sαsβsα〉]⊕ Z[W/ 〈sα〉]

(
−1 1 0
0 −1 1
−1 0 1

)
// Z3 .

α∨

β∨
α∨0 = α∨ + β∨

$∨α

$∨β

(a) The fundamental alcove
A0 (in blue) in type A2, and
its S3-translates.

(b) The resulting S3-
equivariant triangulation of
S(U(1)3) ' (S1)2.

Figure 1. Triangulation of the torus S(U(1)3) of SU(3) from the funda-
mental alcove.

2.2. The W -dg-algebra structure.
We now make the cup product on Ccell

∗ (V ∗,Wa;Z) more explicit, in terms of parabolic
double cosets. We write

Ckcell(V
∗,Wa;Z) =

∏
I⊂S0
|I|=n−k

Z [Wa/(Wa)I ]
∨ '

⊕
I⊂S0
|I|=n−k

Z
[[
IWa

]]
,

where
IWa

df
= {w ∈Wa ; `(siw) > `(w), ∀i ∈ I} ≈ (Wa)I\Wa

is the set of minimal length right coset representatives. Recall the following general result
about double cosets:

Lemma 2.2.1 ([BKP+16, §3, Proposition 2 and Corollary 3]). Let (W,S) be a Coxeter
system and I, J ⊂ S. Denote as usual

W I := {w ∈W ; `(ws) > `(w), ∀s ∈ I} ≈W/WI ,

IW := {w ∈W ; `(sw) > `(w), ∀s ∈ I} ≈WI\W
and for J ⊂ I,

W J
I := {w ∈WI ; `(ws) > `(w), ∀s ∈ J} ≈WI/WJ .

(1) Each double coset in WI\W/WJ has a unique element of minimal length.
(2) An element w ∈ W is of minimal length in its double coset if and only if w ∈

IW ∩W J . In particular, we have a bijection

WI\W/WJ ≈ IW ∩W J .
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(3) As a consequence, if w ∈ IW ∩ W J and x ∈ WI , then xw ∈ W J if and only if
x ∈W I∩wJ

I . Hence, we have the following property:

∀x ∈WIwWJ , ∃!(u, v) ∈W I∩wJ
I ×WJ ;

{
x = uwv,
`(x) = `(u) + `(w) + `(v).

We can now formulate the main result:

Theorem 2.2.2. The Z[Wa]-cochain complex C∗cell(V
∗,Wa;Z) associated to the Wa-triangulation

of V ∗ is a Z[Wa]-dg-algebra with homogenous components

∀0 ≤ k ≤ n, Ckcell(V
∗,Wa;Z) =

⊕
I⊂S0
|I|=n−k

Z [[(Wa)I\Wa]] '
⊕
I⊂S0
|I|=n−k

Z
[[
IWa

]]
and differentials defined, for any I ⊂ S0 and w ∈Wa, by

dk(Iw) =
∑

0≤u≤k+1
ju−1<j<ju

(−1)uε
I\{j}
I w

where {j0 < · · · < jk} := S0 \ I and, by convention, j−1 = −1, jk+1 = n+ 1 and for J ⊂ I,

J
IWa := {w ∈ (Wa)I ; `(sjw) > `(w), ∀j ∈ J} and εJI :=

∑
x∈JIWa

x ∈ Z
[
JWa

]
.

Moreover, the cup product

Cpcell(V
∗,Wa;Z)⊗ Cqcell(V

∗,Wa;Z)
∪
−! Cp+qcell (V ∗,Wa;Z)

is induced by the unique map

Z
[[
IWa

]]
⊗ Z

[[
JWa

]]
−! Z

[[
I∩JWa

]]
.

satisfying the formula

Ix ∪ Jy = δmax(I{),min(J{) ×
{

I∩J((xy−1)Jy) if xy−1 ∈ (Wa)I(Wa)J ,
0 otherwise,

where { denotes the complementary of a subset in S0 and, given w ∈ Wa, we denote
by I∩Jw ∈ I∩JWa its minimal length right coset representative and if (Wa)Iw(Wa)J =
(Wa)I(Wa)J , we let wJ be the unique element v ∈ (Wa)J such that w = uv, with u ∈ (Wa)I∩JI
and `(w) = `(u) + `(v).

Proof. Take a k-simplex σ = [j0, . . . , jk] ⊂ A0 with ju ∈ S0 and set j−1 := −1 and jk+1 :=
n+ 1. By definition of the cochain differential dk, we have

dk(σ∗)|A0
=

k+1∑
u=0

∑
ju−1<j<ju

(−1)u[j0, . . . , ju−1, j, ju, . . . , jk]
∗.

Letting I := S0 \ {j0, . . . , jk}, we have (Wa)σ∗ = (Wa)I and the above formula reads

dk((Wa)I · 1)|A0
=

k+1∑
u=0

∑
ju−1<j<ju

(−1)u((Wa)I\{j} · 1).

Therefore, as A0 is a fundamental domain for Wa in V ∗, this yields

dk((Wa)I · 1) =
∑

0≤u≤n+1−|I|
ju−1<j<ju

 ∑
w∈I\{j}I Wa

(−1)u((Wa)I\{j} · w)

 ,

which leads to the stated formula.

9
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To compute the cup product, using the bijection IWa ≈ (Wa)I\Wa, the stated formula is

(Wa)Ix ∪ (Wa)Jy = δmax I{,min J{δ(Wa)Ixy−1(Wa)J ,(Wa)I(Wa)J (Wa)I∩J((xy−1)Jy).

Let x, y ∈Wa. As Wa acts simplicially on A0, we have

(Wa)Ix ∪ (Wa)Jy = ((Wa)Ixy
−1 ∪ (Wa)J)y,

hence we may assume that y = 1 and we just have to compute (Wa)Iw ∪ (Wa)J .
First, we compute σ∗ ∪ τ∗ for σ, τ ⊂ A0. As A0 ' ∆r is a simplex, we may write

σ = [i0, . . . , ia] with a = dimσ and I{ := {i0, . . . , ia} ⊂ vert(A0) ' S0. Write similarly
τ = [j0, . . . , jb]. We have (Wa)σ = (Wa)S0\{i0,...,ia} = (Wa)I , (Wa)τ = (Wa)J and

σ∗ ∪ τ∗ = δia,j0 [i0, . . . , ia, j1, . . . , jb]
∗

and the stabilizer in Wa of this last dual cell is (Wa)S0\{i0,...,ia,j1,...,jb} = (Wa)I∩J . Moreover,

if σ∗ ∪ τ∗ 6= 0 then we must have ia = j0, that is, max(I{) = min(J{). We make this
assumption for the rest of this proof and we have indeed

σ∗ ∪ τ∗ = (Wa)I ∪ (Wa)J = (Wa)I∩J .

Claim: For τ ⊂ A0 a simplex and P ∈ Fk(V
∗) a k-cell of V ∗, if τ ⊂ P then P ∈

(Wa)τ · Fk(A0).
Indeed, we may assume that dimP = n = dimA0 so that there is some z ∈Wa such that

P = z(A0) and so τ ⊂ A0 ∩ z(A0), thus z ∈ (Wa)τ (see [Hum92, §4.8]).

We are left to compute σ∗w∪τ∗ for w ∈Wa. If σ∗w∪τ∗ 6= 0, then w−1σ and τ are included
is some common simplex P ∈ Fk(V ∗) and by the claim we may choose wτ ∈ (Wa)τ = (Wa)J
such that w−1σ ⊂ wτ (A0). But then σ ⊂ A0 ∩ wwτ (A0) and so wτσ = w−1σ. This yields

σ∗w ∪ τ∗ = σ∗w−1
τ ∪ τ∗ = σ∗w−1

τ ∪ τ∗w−1
τ = (σ∗ ∪ τ∗)w−1

τ = (Wa)I∩J · w−1
τ .

Furthermore, if σ∗w ∪ τ∗ 6= 0 then we must have wwτ ∈ (Wa)I , so w ∈ (Wa)I(Wa)J . In
this case, the parabolic double coset decomposition from Lemma 2.2.1 applied to the trivial
double coset (Wa)Iw(Wa)J allows one to write uniquely w as w = uwJ with u ∈ (Wa)I∩JI
and wJ ∈ (Wa)J such that `(w) = `(u) + `(wJ). We obtain wJwτ ∈ (Wa)J as well as
wJwτ = u−1wwτ ∈ (Wa)I . Hence wJwτ ∈ (Wa)I ∩ (Wa)J = (Wa)I∩J and

σ∗w ∪ τ∗ = (Wa)I∩J · w−1
τ = (Wa)I∩J · wJ .

The only thing remaining to be proved is that the formula

Ix ∪ Jy = δmax(I{),min(J{) ×
{

I∩J((xy−1)Jy) if xy−1 ∈ (Wa)I(Wa)J ,
0 otherwise,

indeed induces a well-defined map Z
[[
IWa

]]
⊗ Z

[[
JWa

]]
! Z

[[
I∩JWa

]]
. To see this, we

show that for a given z ∈ I∩JWa, there are only finitely many pairs (Ix, Jy) for which
z = Ix ∪ Jy. Indeed, given x, y ∈ Wa, if x′, y′ ∈ Wa are such that Ix ∪ Jy = Ix′ ∪ Jy′, then
(xy−1)Jy and (x′y′−1)Jy

′ are in the same class modulo (Wa)I∩J , hence in the same class
modulo (Wa)J and therefore Jy = Jy′. Since (Wa)J is finite, there are only finitely many
possibilities for y′ and the same goes for x′ ∈ (Wa)I(Wa)Jy

′. Therefore, if a =
∑

x∈IWa
axx

and b =
∑

y∈JWa
byy with ax, by ∈ Z (we use the formal series notation for simplicity), we

can define

a ∪ b :=
∑

z∈I∩JWa

 ∑
(x,y)∈IWa×JWa

x∪y=z

axby

 z.

It is obvious that this is the only way of defining a bilinear map Z
[[
IWa

]]
× Z

[[
JWa

]]
!

Z
[[
I∩JWa

]]
satisfying the stated formula. �
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Corollary 2.2.3. The Z[W ]-cochain complex C∗cell(T,W ;Z) associated to the W -triangulation
of T = V ∗/Q∨ induced by the Wa-triangulation of V ∗ is given by

C∗cell(T,W ;Z) = DefWa
W (C∗cell(V

∗,Wa;Z)) .

In other words, if π : Wa �W is the projection, then

Ckcell(T,W ;Z) =
⊕
I⊂S0
|I|=n−k

Z
[
π
(
IWa

)]
'

⊕
I⊂S0
|I|=n−k

Z [π((Wa)I)\W ] ,

with differentials given, for any I ⊂ S0 and w ∈Wa, by

dk(π(Iw)) =
∑

0≤u≤k+1
ju−1<j<ju

(−1)uπ
(
ε
I\{j}
I w

)
, εJI =

∑
x∈JIWa

x

where {j0 < · · · jk} := S0 \ I. Its product induced by the formula

π(Ix) ∪ π(Jy) = δmax(I{),min(J{) ×
{
π
(
I∩J((xy−1)Jy)

)
if xy−1 ∈ (Wa)I(Wa)J

0 otherwise.

In particular, we have

H•(C∗cell(T,W ;Z)) = H•(T,Z) = Λ•(Q∨).

3. The general case

3.1. The fundamental group as symmetries of an alcove. The extended affine Weyl

group Ŵa := P∨ oW acts on alcoves (transitively since Wa E Ŵa does) but not simply-
transitively. We introduce the stabilizer

Ω := {ŵ ∈ Ŵa ; ŵ(A0) = A0}

and we see that we have a decomposition Ŵa 'Wa o Ω and in particular,

Ω ' Ŵa/Wa ' P∨/Q∨ ' P/Q.
Thus, Ω is a finite abelian group. The following table details the fundamental groups of the
irreducible root systems:

Type Ω ' P/Q
An (n ≥ 1) Z/(n+ 1)Z
Bn (n ≥ 2) Z/2Z
Cn (n ≥ 3) Z/2Z
D2n (n ≥ 2) Z/2Z⊕ Z/2Z
D2n+1 (n ≥ 2) Z/4Z

E6 Z/3Z
E7 Z/2Z
E8 1
F4 1
G2 1

Table 1. Fundamental groups of irreducible root systems

The description of Ω given in [Bou02, VI, §2.3] is useful. Recall that a fundamental weight
$i is called minuscule if ni = 1 and that minuscule weights form a set of representatives of
the non-trivial classes in P/Q (see [Bou02, Chapter VI, Exercise 24]). Dually, we have the
same notion and result for minuscule coweights.

Proposition-Definition 3.1.1 ([Bou02, VI, §2.3, Proposition 6]). Define M := {i ∈
S ; ni = 1} and let w0 ∈ W be the longest element. For i ∈ S, denote by Wi ≤ W
the Weyl group of the subsystem of Φ generated by {αj}j 6=i ⊂ Π. For i ∈M , let wi0 ∈Wi be

11
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the longest element of Wi and wi := wi0w0. Then the element t$∨i wi ∈ Ŵa is in Ω and the
map

M −! Ω \ {1}
i 7−! ωi := t$∨i wi

is a bijection.

We now have to see what happens if the W -lattice Y is such that Q∨ ( Y ( P∨. To
simplify notation of this section, we identify a lattice Λ ⊂ V ∗ with its translation group
t(Λ) ⊂ Aff(V ∗) and for such a lattice Λ, we define the intermediate affine Weyl group
WΛ := Λ o W . There is a correspondence between W -lattices Q∨ ⊆ Λ ⊆ P∨ and the
subgroups of Ω. In order to state this correspondence properly, we temporarily drop the
letter Y and we work in the root system Φ only. Though straightforward, the following
result is key:

Proposition 3.1.2. Recall that Ŵa 'Wa o Ω and denote by

π : Ŵa −� Ω

the natural projection. We have a bijective correspondence

{Λ ; Q∨ ⊆ Λ ⊆ P∨ is a W -lattice} 1−1
 ! {H ≤ Ω}

Λ 7−! ΩΛ := π(WΛ)
π−1(H) ∩ P∨ =: Λ(H)  − [ H

3.2. A Ŵa-triangulation of V ∗ from the barycentric subdivision of an alcove. In
order to obtain a WY -triangulation of the torus V ∗/Y , we just have to exhibit an ΩY -
triangulation of the alcove A0. As the group ΩY acts by affine automorphisms of A0, the
construction follows from the next easy result about simplicial subdivisions.

Recall that, given a polytope P, its barycentric subdivision is the simplicial complex Sd(P)
whose k-simplices are increasing chains of non-empty faces of P of length k+1. A k-simplex
(f0, f1, . . . , fk) of Sd(P) may be geometrically realized as conv(bar(f0), . . . ,bar(fk)), where
bar(fi) stands for the barycenter of the face f .

Lemma 3.2.1. If P is a polytope, then Sd(P) is an Aut(P)-triangulation of P.

Proof. It is well-known that Sd(P) triangulates P and it is clear that Γ := Aut(P) permutes
the simplices of Sd(P). We have to prove that, for a simplex σ = (f0, . . . , fk) of Sd(P) and
γ ∈ Γ, if γσ = σ, then γx = x for each x ∈ |σ|.

Take 0 ≤ i ≤ k. The point bar(fi) is taken by γ to some bar(fj) and since the barycenter

of a polytope lies in its relative interior, we have γ(f̊i) ∩ f̊j 6= ∅ (where ·̊ is the relative
interior) and as γ acts as an automorphism of P, this forces γ(fi) = fj and dim(fi) =
dim(γ(fi)) = dim(fj). But the sequence (dim f0, . . . ,dim fk) is increasing, so fi = fj
and bar(fi) = bar(fj) = γ(bar(fi)). The conclusion now follows from the equality |σ| =
conv(bar(f0), . . . ,bar(fk)). �

From this we deduce that Wa · Sd(A0) is a WY -triangulation of V ∗ for all Q∨ ⊂ Y ⊂ P∨
at once. There is a bijection vert(A0) ≈ S0 = {0, . . . , n} and A0 ' ∆n, so that the face
lattice of A0 is F (A0) ' (P(S0),⊂). This gives a description of the face lattice of Sd(A0):
for 0 ≤ d ≤ n, we have

Fd(Sd(A0)) = {Z• = (Z0, Z1, . . . , Zd) ; ∀i, ∅ 6= Zi ⊂ S0, Zi ( Zi+1}
and Z• ⊂ Z ′• if Z• is a subsequence of Z ′•.

Lemma 3.2.2. The group ΩY acts on A0 and this induces an action on S0. The resulting
action on F (Sd(A0)) corresponds to the action of ΩY on |Sd(A0)| = A0. Moreover, for
Z• ∈ Fd(Sd(A0)), the stabilizer of Z• in WY decomposes as

(WY )Z• = (Wa)Z• o (ΩY )Z• = (Wa)S0\Zd o (ΩY )Z• and (ΩY )Z• =
d⋂
i=0

ΩZi .

12
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Proof. The first statement is obvious. Write Z• = (Z0 ( · · · ( Zd) and let ŵ := wωj ∈
(WY )Z• with w ∈Wa and ωj ∈ ΩY . Then, for every x ∈ |Z•|, we have ŵ(x) = w(ωj(x)) = x

and ωj(x) ∈ A0 so x = ωj(x) and ωj ∈ (ΩY )Z• . On another hand we get w(x) = x so
w ∈ (Wa)Z• .

Now, an element w ∈ Wa fixes Z• if and only if it fixes the maximal face of Z•, i.e. Zd.
This is indeed the parabolic subgroup (Wa)S0\Zd . �

Type Extended Dynkin diagram Fundamental group Ω ≤ Aut(Dynkin0)

Ã1 1 0

∞
ω1 = (0, 1)

Ãn (n ≥ 2)

1 2
· · ·

n− 1 n

0
ω1 = (0, 1, 2, · · · , n)

ωi = (ω1)i, 0 ≤ i ≤ n

B̃2 = C̃2 0 1 2 ω1 = (0, 2)

B̃n (n ≥ 3)

1

0

2 3
· · ·

n− 1 n
ω1 = (0, 1)

C̃n (n ≥ 3) 0 1 2
· · ·

n− 1 n ωn = (0, n)

bn−1
2 c∏
i=1

(i, n− i)

D̃2n (n ≥ 2)

1

0

2 3
· · · 2n− 2

2n

2n− 1

ω1 = (0, 1)(2n− 1, 2n)

ω2n−1 = (0, 2n− 1)(1, 2n)
∏n−1
i=2 (i, 2n− i)

ω2n = (0, 2n)(1, 2n− 1)
∏n−1
i=2 (i, 2n− i) = ω1ω2n−1

D̃2n+1 (n ≥ 2)

1

0

2 3
· · · 2n− 1

2n+ 1

2n

ω1 = (0, 1)(2n, 2n+ 1)

ω2n = (0, 2n, 1, 2n+ 1)
∏n
i=2(i, 2n+ 1− i)

ω2n+1 = (0, 2n+ 1, 1, 2n)
∏n
i=2(i, 2n+ 1− i)

Ẽ6

1 3 4 5 6

2

0

ω1 = (0, 1, 6)(2, 3, 5)

ω6 = (1, 0, 6)(3, 2, 5) = ω−1
1

Ẽ7

1 3 4 5 6

2

70

ω7 = (0, 7)(1, 6)(3, 5)

Ẽ8

1 3 4 5 6

2

7 08

∅

F̃4 0 1 2 3 4 ∅

G̃2 1 2 0 ∅

Table 2. Extended Dynkin diagrams and fundamental groups elements,
represented as permutations of the nodes.

To avoid too many choices, we fix a total ordering ≺ on F (Sd(A0)). For instance, the
lexicographical order <lex induced by the order on P(S0) = 2S0 inherited from the natural
order on S0. As the barycentric subdivision ofA0 is simplicial, the boundaries of the complex
and the cup product are easily determined and lead to the following result:

Theorem 3.2.3. For 0 ≤ d ≤ n, decompose the ΩY -set Fd(Sd(A0)) into orbits

Fd(Sd(A0))/ΩY ≈ {Zd,1 ≺ · · · ≺ Zd,kd}, where Zd,i = min
≺

(ΩY · Zd,i).

Denote further, for 0 ≤ p ≤ d and 1 ≤ i ≤ kd,

Z
(p)
d,i := ((Zd,i)0, . . . , (̂Zd,i)p, . . . , (Zd,i)d).
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Then the complex Ccell
∗ (V ∗,WY ;Z) is given by

Ccell
d (V ∗,WY ;Z) =

kd⊕
i=1

Z
[
WY /(WY )Zd,i

]
,

with

(WY )Zd,i = (Wa)(Zd,i)
{
d
o

d⋂
j=0

(ΩY )(Zd,i)j .

The boundaries are given by

∂d(Zd,i) =
d∑
p=0

(−1)pωp,i(Zd−1,ui), where ui ∈ S0 ; Zd−1,ui = min
≺

(ΩY ·Z(p)
d,i ) and ωp,i(Zd−1,ui) = Z

(p)
d,i .

Moreover, the dual complex C∗cell(V
∗, Ŵa;Z) is a Z[WY ]-dg-algebra with product

Z∗d,i ∪ Z∗e,j = δ(Zd,i)d,(Ze,j)0ω(Zd+e,k)
∗,

where

Zd+e,k = min
≺

(ΩY ·((Zd,i)0, . . . , (Zd,i)d, (Ze,j)0, . . . , (Ze,j)e)) and ω(Zd+e,k) = ((Zd,i)0, . . . , (Ze,j)e).

Finally, the complex for the torus V ∗/Y is given by

Ccell
∗ (V ∗/Y,W ;Z) = DefWY

W (Ccell
∗ (V ∗,WY ;Z)).

Example 3.2.4. Continuing the Example 2.1.3, we treat the extended type A2, which is
fairly computable by hand. We have S0 = {0, 1, 2} = J and

Ω = ΩP∨ = {1, t$∨αsαsβ︸ ︷︷ ︸
ωα

, t$∨β sβsα︸ ︷︷ ︸
ωβ

} ' Z/3Z.

In this case, WP∨ = Ŵa is the classical extended affine Weyl group. Geometrically, the ele-
ment ωα acts as the rotation with angle 2π/3 around the barycenter of A0 = conv(0, $∨α , $

∨
β ) =:

[0, 1, 2] ' ∆2. The situation can be visualized in Figure 2.

α∨

β∨
α∨0 = α∨ + β∨

$∨α

$∨β

0

e2
2 e2

1

Figure 2. Barycentric subdivision |Sd(A0)| of the fundamental alcove A0.

There are three Ŵa-orbits of points in |Sd(A0)| and we represent them by the points

e0
1 := ({0}) = 0, e0

2 := ({0, 1}) =
$∨α
2
, e0

3 := ({0, 1, 2}) =
$∨α +$∨β

3
.

Remember that we order P(S0) lexicographically and these are lex-minimal in their orbits.
There are also four orbits of 1-cells represented by

e1
1 := ({0}, {0, 1}), e1

2 := ({0}, {0, 2}), e1
3 := ({0}, {0, 1, 2}), e1

4 := ({0, 1}, {0, 1, 2}).
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Finally, there are two orbits of 2-cells represented by

e2
1 := ({0}, {0, 1}, {0, 1, 2}), e2

2 := ({0}, {0, 2}, {0, 1, 2}).
Now, we have

∀e ∈ {e0
1, e

0
2, e

1
i , e

2
j}, Ωe = 1 and Ωe03

= Ω

and we obtain the non-trivial stabilizers in Ŵa:

(Ŵa)e03 = Ω, (Ŵa)e01 = W, (Ŵa)e02 = (Ŵa)e11 = 〈sβ〉 , (Ŵa)e12 = 〈sα〉 .
The boundaries are readily computed, with for instance

∂2(e2
2) = −e1

2 + e1
3 − ({0, 2}, {0, 1, 2}) = −e1

2 + e1
3 − ωβe1

4.

Therefore, the complex Ccell
∗ (V ∗, Ŵa;Z) is given by

Z[Ŵa]2
∂2 // Z[Ŵa/ 〈sβ〉]⊕ Z[Ŵa/ 〈sα〉]⊕ Z[Ŵa]2

∂1 // Z[Ŵa/W ]⊕ Z[Ŵa/ 〈sβ〉]⊕ Z[Ŵa/Ω] ,

with

∂2 =

(
1 0 −1 1
0 −1 1 −ωβ

)
, ∂1 =


−1 1 0
−1 ωβ 0
−1 0 1
0 −1 1

 .

Moreover, the root datum (P,Φ, P∨,Φ∨) may be realized by the Lie group PSU(3) = SU(3)/µ3

with torus T = T0/µ3 ' V ∗/P∨, where T0 = S(U(1)3) is the standard torus consisting of
diagonal matrices of SU(3). The complex

Ccell
∗ (T,W ;Z) = DefŴa

W (Ccell
∗ (V ∗, Ŵa;Z))

then becomes

Z[W ]2
∂2 // Z[W/ 〈sβ〉]⊕ Z[W/ 〈sα〉]⊕ Z[W ]2

∂1 // Z⊕ Z[W/ 〈sβ〉]⊕ Z[W/ 〈sαsβ〉] ,

with

∂2 =

(
1 0 −1 1
0 −1 1 −sβsα

)
, ∂1 =


−1 1 0
−1 sβsα 0
−1 0 1
0 −1 1

 .

The complexes Ccell
∗ (T0,W ;Z) and Ccell

∗ (T,W ;Z) may be obtained using the commands
ComplexForFiniteCoxeterGroup("A",2)and CellularComplexT("A",2,[0,1,2]) provided
by the package Salvetti-and-tori-complexes2.

Remark 3.2.5. The complex Ccell
∗ (V ∗, Ŵa;Z) in the previous example can be reduced. In-

deed, we can take e2 := e2
1∪e13 e

2
2 as 2-cell. This deletes the 1-cell e1

3 and the complex reduces
to

Z[Ŵa]

t

(
1

−1

1−ωβ

)
// Z[Ŵa/ 〈sβ〉]⊕ Z[Ŵa/ 〈sα〉]⊕ Z[Ŵa]

(
−1 1 0

−1 ωβ 0

0 −1 1

)
// Z[Ŵa/W ]⊕ Z[Ŵa/ 〈sβ〉]⊕ Z[Ŵa/Ω] .

We recognize the closure e2 = conv(e0
1, e

0
2, ωβe

0
2, e

0
3) as the fundamental polytope FP∨ for Ŵa

acting on V ∗.
More generally, Komrakov and Premet have proved in [KP84] that a fundamental polytope

for the action of the extended affine Weyl group Ŵa is given by

FP∨ : = {λ ∈ A0 ; 〈λ, α+ α0〉 ≤ 1, ∀α ∈ Π ; nα = 1}
= {λ ∈ V ∗ ; 〈λ, α0〉 ≤ 1 ∀α ∈ Π, 〈λ, α〉 ≥ 0 and nα = 1 =⇒ 〈λ, α+ α0〉 ≤ 1}.

2https://github.com/arthur-garnier/Salvetti-and-tori-complexes
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where we have written the highest root α0 as α0 =
∑

α∈Π nαα. It would be nice to obtain
a cell decomposition from this polytope. However, this approach fails in general. Take the
example of type C3, whose positive coroots are depicted in Figure 3; denote by Π = {α, β, γ}
a simple system and by $∨α = α∨ + β∨ + γ∨, $∨β = α∨ + 2β∨ + 2γ∨, $∨γ = 1

2α
∨ + β∨ + 3

2γ
∨

the corresponding coweights. The highest root is α0 = 2α + 2β + γ and from the Table 2,
the fundamental group is

Ω = {1, t$∨γ (sγsα)sβsγ︸ ︷︷ ︸
ωγ

} ' Z/2Z.

Moreover, the fundamental alcove is A0 = conv(0, $∨α/2, $
∨
β /2, $

∨
γ ) and from this we see

that the non trivial element ωγ ∈ Ω acts on the vertices of A0 by exchanging $∨α/2 and $∨β /2,

as well as 0 and $∨γ . Therefore, the affine facet of FP∨ = conv(0, $∨α/2, $
∨
β /2, $

∨
γ /2) given

by

FP∨ ∩ {λ ∈ V ∗ ; 1 = 〈λ, α0 + γ〉 = 2 〈λ, α+ β + γ〉} =
1

2
conv($∨α , $

∨
β , $

∨
γ )

is taken to itself by ωγ but is not fixed pointwise since two of its three vertices are ex-
changed. Therefore, the triangulation of V ∗ induced by translating the simplex FP∨ is not

Ŵa-equivariant.
From the Table 2, we see that the same issue occurs for Cn≥3, Dn≥4, E6 and E7. We

have tried to find a pattern for the non-pointwise fixed by some element of the fundamental
group. However, after computations, we haven’t found a general description for this. In some
examples, no facet presents a problem, but some faces with higher codimension do. Hence,
even though the barycentric subdivision yields many simplices, it works for any lattice and
is rather simple to implement.

α∨

β∨

γ∨

α∨ + β∨

α∨ + β∨ + 2γ∨

β∨ + 2γ∨

α∨ + β∨ + γ∨ = $∨α

β∨ + γ∨
α∨ + 2β∨ + 2γ∨ = $∨β

$∨γ

Figure 3. The Komrakov-Premet polytope FP∨ (in green) inside the fun-
damental alcove A0 (in blue) in type C3.

Part 2. Hyperbolic tori for non-crystallographic Coxeter groups

The goal of this part is to construct a smooth manifold affording a dg-algebra with
a similar combinatorics as the one in Theorem 2.2.2 and playing the role of a torus for
non-crystallographic Coxeter groups. First, we will define compact hyperbolic extensions of
non-crystallographic finite Coxeter groups and the desired manifold will then be constructed
as an orbit space of the Coxeter complex of the hyperbolic extension.
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4. Construction of the hyperbolic extensions and the hyperbolic torus

The non-crystallographic finite irreducible Coxeter groups are listed in the following table:

Type Coxeter diagram

I2(m) (5 ≤ m 6= 6)
1 2

m

H3
1 2 3

5

H4
1 2 3 4

5

Table 3. Coxeter diagrams of finite non-crystallographic Coxeter systems.

Although we shall focus on the non-crystallographic case, what follows applies to all finite
irreducible Coxeter groups. In particular, in the I2(m) case, we only assume that m ≥ 3.

4.1. Compact hyperbolic extensions of I2(m), H3 and H4.
Let us first recall some basic terminology concerning Coxeter groups. For more detailed

discussions, the reader is referred to [Bou02] and [Hum92].
Let (W,S) be an irreducible Coxeter system of rank n. We write

W = 〈s1, . . . , sn | (sisj)
mi,j = 1〉 ,

with M = (mi,j)1≤i,j≤n the Coxeter matrix of (W,S). Recall ([Bou02, V, §4] or [Hum92,
Chap. 5]) that on the formal vector space V := spanR(αi, 1 ≤ i ≤ n) we may define a
symmetric bilinear form by

B(αi, αj) := − cos

(
π

mi,j

)
as well as the linear mappings

∀1 ≤ i ≤ n, σi := (v 7! v − 2B(αi, v)αi).

Then the assignment si 7! σi extends uniquely to a faithful irreducible representation

σ : W −! GL(V ),

known as the geometric representation of W .
Moreover, W is finite (resp. affine) if and only if the form B is positive definite (resp.

positive semidefinite) (see [Bou02, V, §4.8 and 4.9]).

Proposition-Definition 4.1.1 ([Hum92, §6.8]). The followings are equivalent

(i) The form B has signature (n− 1, 1) and B(λ, λ) < 0 for λ ∈ C,
(ii) The form B is non-degenerate but not positive and the graph obtained by removing

any vertex from the graph of W is of non-negative type (i.e. its group is finite or
affine).

If these conditions occur, then W is said to be hyperbolic. If the second condition is
enhanced by requiring that any such sub-graph is of positive definite type (i.e. its group is
finite), then W is said to be compact hyperbolic.

Remark 4.1.2. As mentioned in [Hum92], the terminology comes from the fact that the
homogeneous space O(V,B)/W , equipped with the induced measure coming from the Haar
measure on O(V,B), is of finite volume if and only if W is finite or hyperbolic and, in the
hyperbolic case, a component of {λ ∈ V ; B(λ, λ) = −1} gives a model for the hyperbolic
(n− 1)-space Hn. Moreover, the space O(V,B)/W is compact if and only if W is compact
hyperbolic. Moreover, W is compact hyperbolic if and only if B is non-degenerate non-
positive and every proper parabolic subgroup of W is finite.
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We are ready to define the compact hyperbolic extensions of non-crystallographic groups.
From now on, we let (W,S) be a finite irreducible Coxeter system of rank n with Coxeter
matrix M . The notation in the following result is the same as in Table 4.

Proposition-Definition 4.1.3. Let W be non-crystallographic and choose rW ∈ W to be
the following reflection in W :

rW :=


(s1s2)b

m−1
2 cs1 if W = I2(m), m ≥ 3,

s
(s2s1)2

3 if W = H3,

s
(ss2s31 (s1s2)2s3s4)

2

4 if W = H4.

Define

Ŵ :=
〈
ŝ0, ŝ1, . . . , ŝr

∣∣∣ ∀i, j ≥ 1, (ŝiŝj)
mi,j = (ŝ0ŝi)

o(rW si) = ŝ2
0 = 1

〉
,

where o(x) is the order of the element x and Ŝ := {ŝ0, . . . , ŝn}. Then the pair (Ŵ , Ŝ) is a
compact hyperbolic Coxeter system, whose Coxeter graph is as in the following table:

Extension Coxeter graph

Î2(m) (m ≡ 1[2])

1 2

0

m

mm

Î2(m) (m ≡ 0[4])
1 20

m m

Î2(m) (m ≡ 2[4])
1 20

m
2 m

Ĥ3

1 2

30

5

5

Ĥ4
1 2 3 4 0

5 5

Table 4. Compact hyperbolic extensions of I2(m), H3 and H4.

Moreover, in type H, the reflection rW is the only one for which the resulting group Ŵ
is compact hyperbolic.

Proof. The expression we give for rW indicates that rW indeed is a reflection of W . As rW
has order 2, the matrix M̂ := (m̂i,j)0≤i,j≤n defined by

∀i, j ≥ 1, m̂i,j = mi,j , m̂0,i = m̂i,0 := o(rW si), m̂0,0 := 1

is indeed a Coxeter matrix and Ŵ is the associated Coxeter group. Moreover, we may
compute the integers o(rW si) directly and find the above Coxeter graphs and these are
indeed graphs of compact hyperbolic groups, as all those graphs are well-known, see [Che69,
Appendice].

The second statement comes from a tedious, but elementary verification on the 15 (resp.
60) reflections of H3 (resp. H4): only the reflection rW from the statement gives a graph
which appears in the table of [Che69]. �
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Remark 4.1.4. A (non-crystallographic) root system Φ may be associated to W . More
precisely, Φ is the orbit under W of the vectors αi spanning V . Then Φ forms a (non-
Euclidean) root system in V , which is non-crystallographic in the sense that the condition
〈α∨, β〉 ∈ Z does no longer hold. We still may choose a highest root in Φ. If W 6= H3, then
the reflection associated to this highest root is indeed rW .

The extension of H3 with rW the highest reflection has been considered in [PT02]. It has
the following Coxeter graph

5
5

However, the sub-graph 5 5 is of negative type, hence this extension is neither affine
or hyperbolic and the sequel does not apply.

Using the very definitions ofW and Ŵ as finitely presented groups, we obtain the following
result:

Corollary 4.1.5. The assignment {
ŝ0 7−! rW
ŝi 7−! si

extends (uniquely) to a surjective reflection-preserving group homomorphism

Ŵ
π
−�W.

Moreover, if rW = si1 · · · sik is a reduced expression of rW , then the element r̂W =

ŝi1 · · · ŝik ∈ Ŵ is well-defined and we have

kerπ =
〈

(ŝ0r̂W )Ŵ
〉
,

that is, ker(π) is the normal closure of ŝ0r̂W in Ŵ .

Proof. In every reduced expression as in the statement, we have ij ≥ 1 so that the element

r̂W = ŝi1 · · · ŝik is in the parabolic subgroup Ŵ{1,...,n} 'W and thus r̂W doesn’t depend on

the chosen reduced expression for rW . We have π(ŝ0r̂W ) = r2
W = 1 so that the subgroup

N :=
〈

(ŝ0r̂W )Ŵ
〉

is certainly contained in ker(π). Furthermore, we easily find a presentation

of Ŵ/N by adding the relation ŝ0 = ŝi1 · · · ŝik for rW = si1 · · · sik as above to the already

known relations for Ŵ . The composite

〈s0, s1, . . . , sn | ∀i, j ≥ 1, (sisj)
mi,j = 1, s0 = si1 · · · sik〉 ' Ŵ/N −� Ŵ/ kerπ = W

maps si to si and is an isomorphism. In particular, this yields an isomorphism of Ŵ -sets

Ŵ/N ' Ŵ/kerπ,

forcing ker(π) and N to be conjugate in Ŵ , hence equal. �

Definition 4.1.6. We denote the kernel of the projection from the previous Corollary by

Q := kerπ =
〈

(ŝ0r̂W )Ŵ
〉
.

Corollary 4.1.7. With the notation of the above theorem, we have

Ŵ = QoW.

Remark 4.1.8. Let Φ denote the (non-crystallographic) root system of W and α̃ ∈ Φ+ be
the (positive) root associated to the reflection rW , i.e. such that rW = sα̃∨. If W 6= H3,
then α̃ = α0 is the highest root of Φ. Denote by tα̃∨ the translation by α̃∨ and by σ∗ : W !
GL(V ∗) the dual of the geometric representation of W . We can define a homomorphism

Ŵ
a
−! Aff(V ∗)
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by sending ŝi to σ∗(si) for i ≥ 1 and a(ŝ0) := tα̃∨σ
∗(rW ). If W is a Weyl group, then a is

injective and identifies Ŵ with Wa ≤ Aff(V ∗). Moreover, in this case we have

Q ' a(Q) = a
(〈

(ŝ0ŝα∨0 )Ŵ
〉)

=
〈

(a(ŝ0)a(ŝα∨0 ))a(Ŵ )
〉

=
〈

(tα∨0 )Wa

〉
= 〈tα∨ , α ∈ Φ〉 ' ZΦ∨

df
= Q∨ ' Zn.

This is the coroot lattice of Φ and in particular, the group Q is abelian.
However, a relatively recent result ([Qi07, Corollary 1.6]) states that an irreducible, infinite

Coxeter group is affine if and only if it contains an abelian subgroup of finite index and, as

[Ŵ : Q] = |W | <∞, the group Q cannot be abelian in the hyperbolic case.
Moreover, in the non-crystallographic case, the image of a is no longer discrete because

ZΦ∨ ⊂ V ∗ is dense in V ∗ and also, the morphism a has no reason to be injective, because

we cannot relate the length function on Ŵ with separating reflection hyperplanes in V any
longer.

4.2. A key property of the subgroup Q.
The following result will be crucial in the sequel.

Lemma 4.2.1. The normal subgroup Q trivially intersects every proper parabolic subgroup

of Ŵ , i.e.

∀I ( Ŝ, Q ∩ ŴI = 1.

Proof. Recall the projection π : Ŵ �W . The statement may be rephrased as follows:

∀s ∈ Ŝ, ker
(
Ŵ
Ŝ\{s}

π
−!W

)
= 1.

For s = ŝ0, this is obvious since Ŵ
Ŝ\{ŝ0}

π
−!W is an isomorphism.

Let s ∈ Ŝ \{ŝ0}. Since Ŵ is compact hyperbolic, the parabolic subgroup Ŵ
Ŝ\{s} is finite.

Hence, to prove that the morphism

Ŵ
Ŝ\{s}

π
−� π

(
Ŵ
Ŝ\{s}

)
is injective, it suffices to prove that

(?s)
∣∣∣π (ŴŜ\{s}

)∣∣∣ =
∣∣∣ŴŜ\{s}

∣∣∣ .
The right-hand side is easily computed using the Coxeter diagram of Ŵ (see Table 4). To
compute the left-hand side, we proceed by a case-by-case analysis. For H4, we will need the
following trick:

Denote by

R :=
⋃
w∈W

wSw−1 =
⋃
w∈W

Sw

the set of reflections of W and

∀w ∈W, N(w) := {r ∈ R ; `(rw) < `(w)}.
If H ≤W is a reflection subgroup of W (i.e. if H = 〈H ∩R〉), then the set

D(H) := {r ∈ R ; N(r) ∩H = {r}}
is a set of Coxeter generators of H (see [Dye90, Theorem 3.3]). In our situation, we find the

Coxeter generators D(π(Ŵ
Ŝ\{s})) and determine the resulting Coxeter diagram, giving the

order of π(Ŵ
Ŝ\{s}).

• W = I2(m) with m = 2k + 1. We have defined rW = (s1s2)ks1 and we readily

compute s2 = s1
rW and s1 = s2

rW so that π(Ŵŝ0,ŝ1) = π(Ŵŝ0,ŝ2) = W . On the

other hand, we get from the diagram |Ŵŝ0,ŝ1 | = |Ŵŝ0,ŝ1 | = 2m = |W |. This proves
(?s) for s = ŝ1, ŝ2.
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• W = I2(m) with m = 4k. In this case we have rW = (s1s2)2k−1s1 and since
s2 = (s1rW )2k−1s1, we also have 〈rW , s1〉 = W and (?s) is thus true for s = ŝ2 as

Ŵŝ0,ŝ1 ' W . Because s2rW = rW s2, we have 〈s2, rW 〉 = A1 × A1 and Ŵŝ0,ŝ2 '
A1 ×A1 so (?s) also holds for s = ŝ2.
• W = I2(m) with m = 4k + 2. Here, rW = (s1s2)2ks1 and we compute rW s1rW =

(s1s2)4ks1 = s2s1s2 = ss21 . In the same way, we get (s1(ss21 ))ks1 = (s1s2)2ks1 =

rW . This implies 〈s1, rW 〉 = 〈s1, s
s2
1 〉 ' I2(2k + 1) ' Ŵŝ0,ŝ1 . In fact, we have

D(〈s1, rW 〉) = {s1, s
s2
1 }. Now, as above we have s2rW = rW s2 and Ŵŝ0,ŝ2 ' A1 ×

A1 ' 〈s2, rW 〉.
• W = H3. Special relations among reflections occur in this case. Namely

rW = s
(s2s1)2

3 , s3 = r
(s1s2)2

W , s2 = s3(rW s3s1)2rW s3, s1 = (rW s3s2)2rW s3rW .

Hence, for s ∈ Ŝ, we have π
(
Ŵ
Ŝ\{s}

)
= W ' Ŵ

Ŝ\{s}, this last isomorphism being

given by the diagram of Ĥ3. Therefore, all the relations (?s) hold in this case.
• W = H4. The additional reflection is

rW = s
(s3s2s1s2s3(s1s2)2s3s4)2

4 .

We notice the following relation

s1 = s2s3(s4rW )2(s3s4rW s2(s3s4rW )2s2)3s3s4rW s4s3s2.

This proves that s1 ∈ 〈rW , s2, s3, s4〉 so π(Ŵŝ0,ŝ2,ŝ3,ŝ4) = W ' Ŵŝ0,ŝ2,ŝ3,ŝ4 . We
treat the remaining cases by determining the Dyer generators of the reflection sub-
groups. Calculations can be done on the sixty reflections of H4 (though easier using
[GAP21]). We obtain

π
(
Ŵŝ0,ŝ1,ŝ3,ŝ4

)
= 〈rW , s1, s3, s4〉 =

〈
s
s2s3(s1s2)2

1 , s1, s3, s4

〉
' A1 ×H3 ' Ŵŝ0,ŝ1,ŝ3,ŝ4

and

π
(
Ŵŝ0,ŝ1,ŝ2,ŝ4

)
= 〈rW , s1, s2, s4〉 =

〈
s
s4s2s1s2s3(s1s2)2s3
3 , s1, s2, s4

〉
' I2(5)2 ' Ŵŝ0,ŝ1,ŝ2,ŝ4

and finally,

π
(
Ŵŝ0,ŝ1,ŝ2,ŝ3

)
= 〈rW , s1, s2, s3〉 ' H3 ×A1 ' Ŵŝ0,ŝ1,ŝ2,ŝ3 .

This establishes the relations (?s) for W = H4, finishing the proof.

�

Corollary 4.2.2. The group Q is torsion-free.

Proof. Let q ∈ Q be of finite order. By a theorem of Tits (see [Qi07, Theorem 3.10]), there

are w ∈ Ŵ and J ⊂ Ŝ such that q ∈ wŴJw
−1 and ŴJ is finite. This last condition implies

J 6= Ŝ and since Q is normal in Ŵ , we get qw ∈ Q ∩ ŴJ = 1, so q = 1. �

4.3. The hyperbolic torus T(W ) of W and its first properties.

Before defining the manifold T(W ), we have to study the action of the subgroup QE Ŵ
on the Tits cone of Ŵ . Recall some notation: define V̂ := spanR(αs, s ∈ Ŝ) and the bilinear

form B̂ given by

B̂(αs, αt) = − cos

(
π

m̂s,t

)
,

with (m̂s,t)s,t∈Ŝ the Coxeter matrix of (Ŵ , Ŝ). As Ŵ is hyperbolic, the form B̂ has signature

(n − 1, 1). We also have the geometric representation σ̂ : Ŵ ↪−! O(V̂ , B̂) and consider its
contragredient representation

(~) σ̂∗ : Ŵ ↪−! GL(V̂ ∗)
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and define (α∨s )
s∈Ŝ to be the dual basis of V̂ ∗ associated to (αs)s∈Ŝ . We have σ̂∗(w) =

tσ̂(w−1), that is

∀s, t ∈ Ŝ, σ̂∗(s)(α∨t ) = α∨t − 2δs,tB̂(−, αs).
The duality pairing of V̂ is denoted 〈·, ·〉 as usual. For s ∈ Ŝ, let moreover

Hs := {λ ∈ V̂ ∗ ; 〈λ, αs〉 = 0} and As := {λ ∈ V̂ ∗ ; 〈λ, αs〉 > 0}
and consider the respective fundamental chamber and Tits cone

C := {λ ∈ V̂ ∗ ; 〈λ, αs〉 > 0, ∀s ∈ Ŝ} =
⋂
s∈Ŝ

As and X :=
⋃
w∈Ŵ

w(C).

This is indeed a convex cone and C is a fundamental domain for the action of Ŵ on X.
Finally, for I ⊆ Ŝ we let

CI :=

(⋂
s∈I

Hs

)
∩

(⋂
s/∈I

As

)
⊂ C,

in particular C∅ = C, C
Ŝ

= {0} and we have C =
⊔
I⊆Ŝ CI .

In this context, we have the Coxeter complex

Σ̂ := Σ(Ŵ , Ŝ) = (X \ {0})/R∗+.

This is a Ŵ -pseudomanifold and we have a decomposition

Σ̂ =
⋃
w∈Ŵ
I(Ŝ

R∗+w(CI)

which is in fact a Ŵ -triangulation since R∗+w(CI) may be identified with the standard

(n − |I|)-simplex: R∗+w(CI) ' ∆n−|I|. Moreover, since Ŵ is infinite, Σ̂ is contractible and

by [Bro89, III, §2, Corollary 3], as every proper parabolic subgroup of Ŵ is finite, the

pseudomanifold Σ̂ is in fact a smooth n-manifold.

Remark 4.3.1. The construction of the Coxeter complex makes sense for any Coxeter
group. If the group is finite, then its Coxeter complex is homeomorphic to a sphere.

We can give a natural simplicial structure to the Coxeter complex (see [BR04, Corollary

2.6]). Consider the set of parabolic cosets of Ŵ

P (Ŵ , Ŝ) := {wŴI ; w ∈ Ŵ , I ( Ŝ}.
We partially order this set as follows:

wŴI � w′ŴJ
df⇐⇒ wŴI ⊇ w′ŴJ .

Notice that wŴI � w′ŴJ implies wŴI = w′ŴI and J ⊂ I. We define the simplicial complex

∆(Ŵ , Ŝ) as the nerve of this poset:

∆(Ŵ , Ŝ) := N (P (Ŵ , Ŝ),�).

If we denote by P(Σ̂) the poset of faces of Σ̂ with respect to the triangulation described
above. Then we have an isomorphism of posets

(P (Ŵ , Ŝ),�)
∼
−! (P(Σ̂),⊆)

wŴI 7−! R∗+w(CI)

and this yields a Ŵ -equivariant homeomorphism

|∆(Ŵ , Ŝ)| ∼−! Σ̂.

Now, recall that an action of a group G on a space Z is said to be properly discontinuous
(or a covering space action, see [Hat02, §1.3]) if every point z ∈ Z has an open neighbourhood
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z ∈ U ⊂ Z such that if g ∈ G is such that gU ∩ U 6= ∅, then g = 1. In other words, such
that

OG(U) := {g ∈ G ; g(U) ∩ U 6= ∅} = {1}.

Lemma 4.3.2. Recall from (~) the representation σ̂∗. The action of the discrete subgroup

σ̂∗(Q) ≤ GL(V̂ ∗) on the Coxeter complex Σ̂ is free and properly discontinuous.

Proof. Of course, we identify the group Ŵ with σ̂∗(Ŵ ). Let x ∈ Σ̂ (with x ∈ X \ {0}).
First, we prove that q(x) 6= x for q ∈ Q \ {1}. To say that q(x) = x amounts to say that

q(x) = ax for some a ∈ R∗+ and we may assume that x ∈ C \ {0} since Q E Ŵ . There is

some I ( Ŝ such that x ∈ CI . Because CI is a cone, we have ax ∈ CI ∩ q(CI) 6= ∅ and by

[Bou02, V, §4, Proposition 5], we obtain q(CI) = CI so q ∈ ŴI ∩Q = 1 by Lemma 4.2.1.
To prove that the action is properly discontinuous at x, we have to find an open neigh-

bourhood U of x in Σ̂ such that, for 1 6= q ∈ Q, we have U ∩ q(U) = ∅, i.e. OQ(U) = {1}.
By definition of the topology on the Coxeter complex, it suffices to prove the statement for
X \ {0}.

First, we show that the action of Ŵ is wandering at x, that is, we can find an open
neighbourhood A of x such that O

Ŵ
(A) is finite. We may assume that x ∈ C \ {0}, say

x ∈ CI with I ( Ŝ. Define A to be the interior in X \ {0} of the subset
⋃
v∈ŴI

v(C). We

prove that there are only finitely many w ∈ Ŵ such that A ∩ w(A) 6= ∅. Suppose that
w ∈ O

Ŵ
(A) and choose a ∈ A with w(a) ∈ A. Notice that we have

A ⊆
⋃
u∈ŴI

u(C) ∪
⋃
v∈ŴI
s∈I

v(Hs ∩ ∂C).

Thus, we distinguish four cases:

• As Ŵ acts on X\
⋃
s∈Ŝ Hs, we cannot have a ∈

⋃
v,s v(Hs∩∂C) and w(a) ∈

⋃
u u(C).

• Similarly, we cannot have a ∈
⋃
u u(C) and w(a) ∈

⋃
v,s v(Hs ∩ ∂C).

• Suppose that a ∈
⋃
v v(C) and w(a) ∈

⋃
v v(C), say a ∈ u(C) and w(a) ∈ v(C). This

implies u−1(a) ∈ C and v−1w(a) = v−1wu(u−1(a)) ∈ C, thus uv−1w(C) ∩ C 6= ∅
and so w = vu−1 ∈ ŴI by Tits’ lemma.
• Suppose now that we have a ∈

⋃
v,s v(Hs∩∂C) and w(a) ∈

⋃
v,s v(Hs∩∂C), say a ∈

u(Hs ∩ ∂C) and w(a) ∈ v(Ht ∩ ∂C). This implies u−1(a) ∈ C and v−1wu(u−1(a)) =
v−1w(a) ∈ C and by [Bou02, V, §4, Proposition 6] we get v−1w(a) = u−1(a) and

thus uv−1w ∈ (Ŵ )a = uŴJu
−1 for some J ( Ŝ (in fact, J is defined by the condition

ŴJ = (Ŵ )u−1(a)). Therefore, we have w ∈ vŴJu
−1.

In any case, we have

O
Ŵ

(A)
df
= {w ∈ Ŵ ; w(A) ∩A 6= ∅} ⊂

⋃
u,v∈ŴI

J(Ŝ

uŴJv.

However, as Ŵ is compact, any proper parabolic subgroup is finite and so this last subset
is finite and O

Ŵ
(A) is then finite as well.

The rest of the proof is very standard. For each w ∈ O
Ŵ

(A) \ ŴI we have w(x) 6= x and
we may choose an open subset Aw such that x ∈ Aw ⊂ A and w(Aw) ∩Aw = ∅ and define

B :=
⋂

w∈O
Ŵ

(A)\ŴI

Aw ⊂ A.

Because O
Ŵ

(A) is finite, B is open and let w′ ∈ O
Ŵ

(B) ⊂ O
Ŵ

(A). We must have w′ ∈ ŴI

because otherwise, ∅ 6= B ∩ w′(B) ⊂ Aw′ ∩ w′(Aw′) = ∅ and thus O
Ŵ

(B) ⊂ ŴI .
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Consider the open subset

U :=
⋂

w∈ŴI

w(B) ⊂ B.

We have O
Ŵ

(U) ⊂ O
Ŵ

(B) ⊂ ŴI and U is ŴI -stable (i.e. U is a Ŵ -slice at x). In particular,

if q ∈ Q \ {1}, then q /∈ ŴI by Lemma 4.2.1 and thus q /∈ O
Ŵ

(U). �

We arrive then to the main result of this section. Remark that the Tits form B̂ induces
a Riemannian metric on the Coxeter complex Σ̂.

Theorem 4.3.3. Let (W,S) be a finite irreducible Coxeter group of rank n and (Ŵ , Ŝ)
be either the affine Weyl group associated to W if W is crystallographic, or the extension

constructed above otherwise, with Q := ker(Ŵ � W ). If σ̂∗ denotes the contragredient
geometric representation (as in (~)), then the orbit space

T(W ) := Σ̂/σ̂∗(Q)

is a closed, connected, orientable, compact smooth W -manifold of dimension n.

If W is a Weyl group, then we have a diffeomorphism Σ̂ ' Rn and the manifold T(W )
is W -diffeomorphic to a maximal torus of the simply-connected compact Lie group with root

system that of W . Otherwise, the Riemannian manifold Σ̂ is isometric to the hyperbolic
n-space Hn and T(W ) ' Hn/Q is a hyperbolic W -manifold.

Furthermore, the canonical projection yields a covering space

Q ↪−! Σ̂ −� T(W )

and the quotient simplicial complex ∆(Ŵ , Ŝ)/Q is a regular W -triangulation of T(W ).

Proof. Since Σ̂ is a closed smooth manifold and the action σ̂∗(Q)

�

Σ̂ is properly discontinous
by Lemma 4.3.2, the quotient manifold theorem ensures that T(W ) is indeed a closed smooth

manifold and by [Hat02, Proposition 1.40], the projection Σ̂ � T(W ) is a covering map.
Moreover, T(W ) is connected since the Coxeter complex is and, as (C \ {0})/R∗+ ' C ∩ Sn

is a Ŵ -fundamental domain on the Coxeter complex, its projection onto T(W ) is a W -
fundamental domain, hence T(W ) is compact (W is finite). Since Q is normally generated
by ŝ0r̂W and because `(r̂W ) is odd, we have ε(ŝ0r̂W ) = 1 and so Q ≤ ker(ε). This proves

that the action of Q on Σ̂ preserves the orientation, ensuring the orientability of T(W ). The
comparison with a torus of a Lie group follows directly from the Remark 4.1.8.

In the non-crystallographic case, let v∗ ∈ V ∗ be a normalized eigenvector for the negative

eigenvalue of B̂. Then the subset H := {λ ∈ V̂ ∗ ; B̂(λ, λ) = −1, B̂(v∗, λ) < 0}, together

with the metric induced by the restriction of B̂ is a Riemannian manifold isometric to the

hyperbolic space Hn. We have T(W ) = Σ̂/Q ' H/Q ' Hn/Q and since Q preserves the

form B̂, the manifold T(W ) naturally inherits a hyperbolic Riemannian metric. �

Remark 4.3.4. After we did this work, we realized that the manifolds T(H3) and T(H4)
have already been discovered in [Zim93] and [Dav85]. Zimmermann and Davis construct
them by taking the orbit under the action of Q (which is defined slightly differently) of
hyperbolic polyhedra. However, our approach has the advantages of being more systematic
and to work with any finite Coxeter group. The Zimmermann manifold T(H3) has the
particularity of being maximally symmetric among hyperbolic 3-manifolds with Heegaard
genus 11, in the sense of [Zim92]. On the other hand, the Davis manifold T(H4) has a spin
structure (equivalently, its second Stiefel-Whitney class w2 vanishes) and seems to be the
only closed 4-manifold for which the intersection form has been explicitly determined, see
[RT01] and [Mar15].

Recall that, as Ŵ is infinite, the Coxeter complex is contractible.
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Corollary 4.3.5. The covering space

Q ↪−! Σ̂ −� T(W )

is a universal principal Q-bundle. In particular, T(W ) is a classifying space for Q and an
Eilenberg-MacLane space

T(W ) ' BQ ' K(Q, 1).

4.4. Presentation on the fundamental group of T(W ).
In this section, we use Poincaré’s fundamental polyhedron theorem (see [Rat06, Theorem

11.2.2]) to derive a presentation of the group π1(T(W )) ' QEŴ in the non-crystallographic
case.

The tessellation ∆(Ŵ , Ŝ) of Σ̂ ' Hn is indeed exact and yields a fundamental polyhedron

for Q acting on Σ̂. Choose v∗ ∈ V ∗ a normalized eigenvector of the Tits form B̂ for its
unique negative eigenvalue and consider the subset

H := {λ ∈ V ∗ ; B̂(λ, λ) = −1, B̂(v∗, λ) < 0} ⊂ V ∗.

As already noted in the proof of Theorem 4.3.3, the form B̂ induces a Riemannian metric
on H and we have an isometry H ' Hn, where Hn is the standard hyperbolic n-space. By

Remark 4.1.2, the fundamental chamber C is included in the subset {λ ; B̂(λ, λ) < 0},
hence we can project the punctured Tits cone X \ {0} on the sheet H of the hyperbola

{λ ; B̂(λ, λ) = −1} and we get Σ̂ ' X ∩H. Consider the n-simplex

∆0 := (C \ {0})/R∗+ ' C ∩H ⊂ Σ̂.

Recall that we have denoted Hs := {λ ; 〈λ, αs〉 = 0} for s ∈ Ŝ. As the subset L0 :=

C ∩
⋂
s 6=ŝ0 Hs is a line, its intersection with H is a vertex of the tessellation ∆(Ŵ , Ŝ) and

we may consider its star

∆ := St (L0 ∩H)
df
=

⋃
σ∈Fn(∆(Ŵ ,Ŝ))

L0∩H⊂σ

σ =
⋃
w∈W

w(∆0).

We will describe the generators and relations for π1(T(W )) in terms of side-pairing and
cycle relations, as in [Rat06, §6.8]. It is easy to see that the facets of ∆ are the W -translates
of the facet

σ0 := Hŝ0 ∩∆ ∈ Fn−1(∆),

in other words, ∂∆ =
⋃
w w(σ0). By [Rat06, Theorem 6.8.3], the group Q = π1(T(W )) is

generated by the set
Ψ := {q ∈ Q ; ∆ ∩ q∆ ∈ Fn−1(∆)}.

Lemma 4.4.1. The set Ψ of generators of Q is given by the W -conjugates of the normal

generator of Q. In other words, if rW ∈ W is the chosen reflection and if q0 := ŝ0rW ∈ Ŵ
then we have

Ψ = {wq0, w ∈W} = {wq0w
−1, w ∈W/CW (q0)}.

Proof. Let 1 6= q ∈ Q be such that ∆ ∩ q∆ is a facet of ∆, say w(σ0) for some w ∈ W . We
have

w(σ0) = ∆ ∩ q∆ =
⋃

u,v∈W
u(∆0) ∩ qv(∆0) =

⋃
u,v∈W

u(∆0 ∩ u−1qv(∆0)).

Since any term of the last union is (empty or) a closed simplex, this means that one of them
has to be the whole of w(σ0), so we can find u, v ∈W such that

u−1w(σ0) = ∆0 ∩ u−1qv(∆0).
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In particular, we have u−1w(σ0) ⊂ ∆0 and since any Ŵ -orbit meets ∆0 in only one point,

this implies that u−1w(σ0) = σ0 and so u−1w ∈ Ŵσ0 = 〈ŝ0〉 but as u−1w ∈ W , this is
possible only when u = w. Hence we get

σ0 = ∆0 ∩ u−1qv(∆0).

This implies in turn that u−1qv ∈ 〈ŝ0〉 and since q 6= 1, we must have u−1qv = ŝ0, i.e.

q = uŝ0v
−1. Finally, because q ∈ Q, applying the projection π : Ŵ � W to this equality

yields 1 = urW v
−1, so v = urW and q = uŝ0v

−1 = uq0u
−1. �

We can formulate the side-pairing and cycle relations using the combinatorics of W . To
do this, we need a technical lemma on the centralizer of q0.

Lemma 4.4.2. The centralizer of q0 = ŝ0rW in W is given by

CW (q0) = CW (ŝ0) = 〈s ∈ S ; sŝ0 = ŝ0s〉 .
In particular, this is (standard) parabolic.

Proof. First, we borrow an argument due to Sebastian Schoennenbeck3 to prove the second
equality above. Let w = si1 · · · sir be a reduced expression of an element w ∈ CW (ŝ0). To
show that w is in the parabolic subgroup of the statement, since the elements of CW (ŝ0)
of length 1 are the simple reflections of W commuting with ŝ0, by induction it is enough
to show that ŝ0sir = sir ŝ0. We have `(wŝ0) = `(w) + 1 and `(wŝ0w

−1) = `(ŝ0) = 1, so
`(wŝ0sir) = `(wŝ0w

−1wsir) ≤ 1 + `(wsir) = `(w) and thus `(wŝ0sir) = `(w). Thus, by
the exchange condition, there is a reduced expression wŝ0 = sj1 · · · sjrsir for wŝ0 and since
si1 · · · sir ŝ0 is already a reduced expression, by Matsumoto’s lemma, there is a finite series of
braid-moves from the second to the first. The expression si1 · · · sir ŝ0 satisfies the property

(∗) The expression contains only one occurrence of ŝ0 and there is no simple reflection
appearing on the right of ŝ0 that does not commute with it.

Consider a braid relation sts · · · = tst · · · connecting the two expressions of wŝ0, with m
factors on each side and suppose that we apply it to a reduced expression of wŝ0 verifying
(∗). If s, t 6= ŝ0, then the resulting expression still satisfies (∗). Now, if s = ŝ0 say, then t has
to commute with ŝ0. Indeed, if not, then the left-hand side of the braid relation contains
at least two occurrences of ŝ0 (one on each side of t) and, in the right-hand side there is
at least one occurrence of t on the right of ŝ0, but none of these occur in the considered
reduced expression. Therefore, the reduced expression resulting from the application of the
braid move still verifies (∗). In particular, the expression sj1 · · · sjrsir satisfies (∗) and thus,
every simple reflection appearing on the right of ŝ0 must commute with it. In particular,
this is the case of sir , as required.

We now prove that CW (q0) = CW (ŝ0). Let w = si1 · · · sir be a reduced expression of
an element w ∈ CW (q0). Since wq0 = q0w, we get ŝ0wŝ0 = rWwrW ∈ W . Let ŝ0wŝ0 =
sj1 · · · sjk be a reduced expression in W . Since `(wŝ0) = `(w) + 1 = `(ŝ0w), we have
`(ŝ0wŝ0) ∈ {`(w), `(w) + 2}. But taking length in the equality ŝ0si1 · · · sir = sj1 · · · sjk ŝ0

gives k = r, that is `(ŝ0wŝ0) = `(w). In particular, `(ŝ0wŝ0) < `(wŝ0) and by the exchange
condition, there is a reduced expression ŝ0wŝ0 = si1 · · · ŝil · · · sir ŝ0 (the reflection sil is
omitted) and since this last expression is in W , we must have sil = ŝ0, thus ŝ0wŝ0 =
si1 · · · sir = w and w ∈ CW (ŝ0). The reverse inclusion can be directly checked case by case
using the parabolic description of CW (ŝ0). �

Remark 4.4.3. From the diagrams of the hyperbolic extensions we get therefore

CI2(2g+1)(q0) = 1, CI2(4g+2)(q0) = 〈s2〉 , CI2(4g)(q0) = 〈s2〉 ,
CH3(q0) = 〈s2〉 , CH4(q0) = 〈s1, s2, s3〉 ' H3.

3
https://mathoverflow.net/questions/200433/centralizers-of-reflections-in-special-subgroups-of-coxeter-groups
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Theorem 4.4.4. Let W be non-crystallographic and U := {w ∈ W ; `(ws) > `(w), ∀s ∈
S ; sŝ0 = ŝ0s} ≈ W/CW (q0) be the set of minimal length coset representatives modulo
the parabolic subgroup CW (q0) of W . The transitive action of W on W/CW (q0) induces
an action of W on U . Then the fundamental group π1(T(W )) ' Q admits the following
presentation

π1(T(W )) = 〈qu, u ∈ U | Rside ∪Rcycle〉 ,
where

Rside = {quqv, u, v ∈ U ; u−1vrW ∈ CW (ŝ0)}
and

Rcycle =

{
qw(u1)qw(u2) · · · qw(ur), w ∈W, u0, u1, . . . , ur, ur+1 ∈ U such that u0 = ur+1 = 1

and, for i > 0,

〈
ŝ0, ŝ

u−1
i+1uirW

0

〉
and

〈
ŝ0, ŝ

rWu−1
i−1ui

0

〉
are conjugate under CW (ŝ0)

}
.

Proof. Drop the presentation notation and, for u ∈ U , denote qu := uq0 = uq0u
−1, σu :=

u(σ0) = ∆ ∩ qu(∆) and σv := q−1
u (σu) = uq−1

0 (σ0). To say that for some u, v ∈ U we have

quqv = 1 amounts to say that uq0 = vq−1
0 = vrW q0, i.e. u−1vrW ∈ CW (q0).

For the cycle relations, we follow the method detailed in [Rat06, §6.8]. First notice that
each facet of σ0 is of the form σu for some u ∈ U (see [Rat06, Theorem 6.7.5]). Choose
σ ∈ Fn−1(∆) and τ ∈ Fn−2(σ) ⊂ Fn−2(∆). Recursively define a sequence of facets {σuj}j∈N∗
as follows

• let σu1 := σ,
• let σu2 be the facet of σ adjacent to σ′u1 := q−1

u1 (σ) such that qu1(σ′u1 ∩ σu2) = τ ,

• for i > 1, let σui+1 ∈ Fn−2(σ) be the facet adjacent to σ′ui := q−1
ui (σui) such that

qui(σ
′
ui ∩ σui+1) = σ′ui−1

∩ σui .
By [Rat06, Theorem 6.8.7], there exists a least integer k ∈ N∗ such that σui+k = σui for
all i and we have qu1 · · · quk = 1. Moreover, by the Poincaré theorem [Rat06, Theorem
11.2.2], the set of all such relations (for σ ∈ Fn−1(∆) and τ ∈ Fn−2(σ)), together with the
side-pairing relations described above, form a complete set of relations for Q.

Choose σ ∈ Fn−1(∆) ⊂ W · σ0 and τ ∈ Fn−2(σ) ⊂ Fn−2(∆) and let {σuj}j∈N∗ denote
the associated cycle of sides, with period `, say. We have the relation qu1 · · · qu` = 1. Up to
conjugation by an element of W , we may assume that σ = σ0 and so qu1 = q0. Let i > 1 be
such that we have some relation

qui(σ
′
ui ∩ σui+1) = σ′ui−1

∩ σui 6= ∅.
We write

qui(σ
′
ui ∩ σui+1) = σui ∩ σ′ui−1

⇐⇒ σui ∩ qui(σui+1) = σui ∩ q−1
ui−1

(σui−1)

⇐⇒ ui(σ0) ∩ quiui+1(σ0) = ui(σ0) ∩ q−1
ui−1

ui−1(σ0)

⇐⇒ ui(σ0 ∩ u−1
i quiui+1(σ0)) = ui(σ0 ∩ u−1

i ui−1q
−1
0 (σ0))

⇐⇒ σ0 ∩ q0u
−1
i ui+1(σ0) = σ0 ∩ u−1

i ui−1rW (σ0),

and the two sides of the last equality are simplices of the tessellation ∆(Ŵ , Ŝ), whose face

lattice is the lattice of standard parabolic subgroups of Ŵ . Hence these two coincides if and

only if their stabilizers in Ŵ are equal. Though this condition depends on the choice of the
elements of U , it is straightforward to check that different choices give conjugate stabilizers
in CW (q0). �

Corollary 4.4.5. The group π1(T(H3)) (resp. T(H4)) admits a presentation with 11 (resp.
24) generators , all of whose relations are products of commutators. In particular, we have

H1(T(H3),Z) = π1(T(H3))ab ' Z11 and H1(T(H4),Z) = π1(T(H4))ab ' Z24.
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Proof. We apply the above result. For H3, beside the side-pairing relations (which we can
immediately simplify by removing half of the [H3 : CH3(q0)] = [H3 : 〈s2〉] = 60 generators),
we find only one primitive cycle relation (primitive meaning starting by q0) of length 3 and
one of length 5. Taking the H3-conjugates of these gives 120 relations of length 3 and 120
relations of length 5. But the inverse of each of these relations appears so we can simplify
them. We can also remove any cyclic permutation of these relations, which finally yields a
presentation for π1(T(H3)) with 30 generators, 20 relations of length 3 and 12 relations of
length 5.

We do the same for H4, where there is only one primitive cycle relation of length 5, which
gives a presentation for π1(T(H4)) with 1

2 [H4 : CH3(q0)] = 60 generators and 144 relations
of length 5.

Using the relations, we can check that some of the generators are superfluous and that
the simplified presentation has the stated number of generators (all among the original
generators) and that the relations become trivial, once abelianized. �

Remark 4.4.6. The intermediate presentations of π1(T(H3)) and π1(T(H4)) (with 30 gen-
erators and 32 relations for H3 and 60 generators and 144 relations for H4) are precisely
(up to relabelling) the presentations given in [Zim93] and [RT01].

4.5. The manifolds T(I2(m)) as Riemann surfaces.
A little bit more can be said about the case of the surfaces T(I2(m)). Recall that by

a theorem of Gauss (see [Jos02, Theorem 3.11.1]), any Riemannian metric on an oriented
2-manifold M induces a complex structure on M (making M a Riemann surface), called the
conformal structure induced by the metric.

Corollary 4.5.1. For any g ∈ N∗ the surfaces T(I2(2g + 1)), T(I2(4g)) or T(I2(4g + 2))
are closed compact Riemann surfaces of genus g. In particular, we have homeomorphisms

T(I2(2g + 1)) ' T(I2(4g)) ' T(I2(4g + 2)).

Proof. Since the surfaces are orientable, the Riemannian metric induced by the one on the
Coxeter complex induces a conformal structure on them. To obtain the genus, we only have
to compute the Euler characteristic.

Let m be either 2g + 1, 4g or 4g + 2 and

W := I2(m) =
〈
s, t | s2 = t2 = (st)m = 1

〉
.

We will detail the combinatorics of the W -triangulation ∆(Ŵ , Ŝ)/Q in the next section,
however we only have to compute the Euler characteristic χ and very little information is

needed. The rational chain complex associated to the simplicial complex ∆(Ŵ , Ŝ) has the
following shape:

Q[Ŵ ] // Q[Ŵ/ 〈s〉]⊕Q[Ŵ/ 〈t〉]⊕Q[Ŵ/ 〈ŝ0〉] // Q[Ŵ/ 〈s, t〉]⊕Q[Ŵ/ 〈s, ŝ0〉]⊕Q[Ŵ/ 〈t, ŝ0〉]

Now, by Lemma 1.0.1, the complex for the surface T(I2(m)) is the image of the previous

one by the deflation functor DefŴW . Thus, it is of the form

Q[W ] // Q[W/ 〈s〉]⊕Q[W/ 〈t〉]⊕Q[W/ 〈r〉] // Q⊕Q[W/ 〈s, r〉]⊕Q[W/ 〈t, r〉] ,

where r = rW := (st)b(m−1)/2cs ∈W . Therefore the Euler characteristic is given by

χ(Tg) = 1 + [W : 〈s, r〉] + [W : 〈t, r〉]− [W : 〈s〉]− [W : 〈t〉]− [W : 〈r〉] + |W |
= 1 + [W : 〈s, r〉] + [W : 〈t, r〉]− 3[W : 〈s〉] + 2m = 1−m+ [W : 〈s, r〉] + [W : 〈t, r〉].

It is routine to compute that

[I2(m) : 〈s, r〉] =

{
2 if m = 4g + 2,
1 otherwise

and [I2(m) : 〈t, r〉] =

{
1 if m is odd,

m/2 otherwise
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thus, the Euler characteristic is given by

χ(T(I2(m))) =

 3−m if m = 2g + 1,
3−m/2 if m = 4g + 2,
2−m/2 if m = 4g,

in other words,
χ(T(I2(m))) = 2− 2g

and the genus of T(I2(m)) is indeed g for m ∈ {2g + 1, 4g + 2, 4g}. �

As the fundamental group of a Riemann surface of genus g ≥ 1 is well-known (see [Hat02,
§1.2]), we obtain a presentation for the group Q in the dihedral case.

Corollary 4.5.2. Let g ∈ N∗ and m be either 2g + 1, 4g or 4g + 2. Let also Q be the

subgroup of Î2(m) constructed in the previous section (see Definition 4.1.6). Then we have

Q ' π1(T(I2(m))) ' 〈x1, . . . , xg, y1, . . . , yg | [x1, y1] · · · [xg, yg] = 1〉
and in particular, Qab ' Z2g.

In the cases where g = 1 that is, if I2(m) is one of the Weyl groups I2(3) = A2, I2(4) = B2

or I2(6) = G2, then T(I2(m)) is naturally an elliptic curve. More precisely, recalling the
notation of the previous section, we have a preferred point

v0 := C ∩H ∩
⋂
s6=ŝ0

Hs ∈ Σ̂,

and the pair (T(I2(m)), [v0]) is a Riemann surface of genus 1 with a marked point, hence
an elliptic curve. Notice that, under the diffeomorphism T(I2(m)) ' R2/Z2 induced by

quotienting the 3-space V̂ by the radical of the Tits form B̂m of Î2(m) = I2(m)a, the point
[v0] corresponds to the origin.

We can easily identify the elliptic curves T(I2(m)) (for m = 3, 4, 6) in the moduli space
M1,1 ' H2/PSL2(Z) of complex elliptic curves, where H2 = {z ∈ C ; =(z) > 0} is the
Poincaré half plane (see [Hai14, §2]). Recall that to τ ∈ H2 we can associated a j(τ) ∈ C
and we have isomorphisms

C ∼
 − H2/PSL2(Z)

∼
−! M1,1

j(τ)  − [ τ 7−! C/(Z + τZ)

Recall also from [Ser70, Chapitre VII, §1.2] that D := {z ∈ H2 ; |<(z)| ≤ 1/2, |z| ≥ 1} is a
fundamental domain for PSL2(Z) acting on H2. We just have to determine a corresponding
element τ ∈ D for each case. We have the following proposition:

Proposition 4.5.3. Let m ∈ {3, 4, 6} and let {α∨, β∨} be the simple coroots of the root
system of type I2(m) and V ∗ := R 〈α∨, β∨〉. We normalize the roots in such a way that the
short simple roots have norm 2. We denote by φ : V ∗ ! C the unique isometry sending α∨

to 1 and β∨ to an element of the upper-half plane H2. Then we have

φ(β∨) =


exp

(
2iπ
3

)
if m = 3,

√
2 exp

(
3iπ
4

)
if m = 4,

√
3 exp

(
5iπ
6

)
if m = 6.

In particular, for A2 and G2, the corresponding lattice is in the PSL2(Z)-orbit of Z ⊕ τZ
where τ = e

2iπ
3 ∈ D, so j(τ) = 0 and for B2, we find τ = i and j(τ) = 1728. Hence, the

curves T(A2), T(B2) and T(G2) are defined over Q and correspond to the orbifold points
of D, that is, the points in D having a non-trivial stabilizer in PSL2(R).
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Proof. For I2(3) = A2, we have |β| = |α| = 2 and 〈α∨, β〉 = 〈β∨, α〉 = −1. Therefore, since
φ is an isometry we should have

−1

2
=

1

2

〈
α∨, β

〉
=
〈
α∨, β∨

〉
=
〈
φ(α∨), φ(β∨)

〉
=
〈
1, φ(β∨)

〉 df
= <(φ(β∨)) = <(φ(β∨)).

On the other hand, we have 1 = 〈β∨, β∨〉 = |φ(β∨)|2 and this implies φ(β∨) ∈ {−1/2 ±
i
√

3/2} and if we impose that φ(β∨) ∈ H2, then it should have a positive imaginary part and
the only possibility is φ(β∨) = −1/2 + i

√
3/2 = exp

(
2iπ
3

)
. The other cases are similar. �

Remark 4.5.4. In Weierstrass forms, an equation for T(A2) and T(G2) is y2 = x3−1 and
for T(B2), we can take y2 = x3−x. This is an unusual point of view on 2-dimensional tori.
Indeed, they are first defined as Lie groups, hence as differentiable manifolds diffeomorphic
to S2 and it turns out that they carry a natural rational elliptic curve structure. Moreover,
they can be distinguished among complex elliptic curves by the fact that they correspond to
the orbifold points of the Dirichlet domain.

We now focus on the hyperbolic case where g > 1. We first notice the following coincidence
between the Riemann surface T(I2(m)).

Proposition 4.5.5. If g > 1, then we have an isometry (in particular, an isomorphism of
Riemann surfaces)

T(I2(4g + 2)) ' T(I2(2g + 1))

and these two are not isometric to the surface T(I2(4g)).

Proof. Using [Rat06, Theorem 8.1.5], it suffices to show that the groups Q2g+1 and Q4g+2

are conjugate in the positive Lorentz group PO(1, 2) ' Isom(H2) ' PSL2(R) and are not
conjugate to Q4g.

Let m := 2g + 1. We first prove that Qm and Q2m are conjugate in PO(1, 2). Denote

I2(2m) =
〈
s, t | s2 = t2 = (st)2m = 1

〉
and Î2(2m) = 〈s, t, ŝ0〉 its hyperbolic extension. Let

s′ := s, t′ := tst = st and ŝ′0 := ŝ0. Then 〈s′, t′, ŝ′0〉 = Î2(m) and 〈s′, t′〉 = I2(m). Recall
moreover that we have the reflection r2m = (st)2gs = ((st)2)gs = (s′t′)gs′ = rm. Let α, β and

γ denote the simple roots of Î2(2m) and V2m := spanR(α, β, γ). We have the representation

Î2(2m)
σ2m
↪−! O(V2m, B2m),

where

B2m =

(
1 − cos(π/2m) − cos(π/m)

− cos(π/2m) 1 0
− cos(π/m) 0 1

)
.

In the same way, denote Vm := spanR(α′, β′, γ′) and σm : Î2(m) ↪−! O(Vm, Bm), where

Bm =

(
1 − cos(π/m) − cos(π/m)

− cos(π/m) 1 − cos(π/m)
− cos(π/m) cos(π/m) 1

)
.

Consider the linear map P : V2m ! Vm with matrix

P =
( 1 1 0

0 2 cos(π/2m) 0
0 0 1

)
.

Then we have Bm = tPB2mP , so P induces an isomorphism O(V2m, B2m) ! O(Vm, Bm)
fitting in a commutative diagram

Î2(m)� _

��

� � σm // O(Vm, Bm)
∼ // PO(1, 2)

Î2(2m) �
�

σ2m
// O(V2m, B2m)

∼

OO

∼ // PO(1, 2)

∼

OO

and thus the group σm(Î2(m)) is conjugate in PO(1, 2) to a subgroup of σ2m(Î2(2m)).

Therefore, identifying Î2(m) with its image in Î2(2m), it suffices to prove that Q2m = Qm.
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Recall that q2m
df
= ŝ0r2m = ŝ0rm = qm, so q

Î2(m)
m ⊂ q

̂I2(2m)
2m and thus Qm ≤ Q2m. Since we

have

2m[Î2(2m) : Î2(m)] = [Î2(2m) : Î2(m)][Î2(m) : Qm] = [Î2(2m) : Qm]

= [Î2(2m) : Q2m][Q2m : Qm] = 4m[Q2m : Qm],

we are left to show that [Î2(2m) : Î2(m)] = 2. Let w ∈ Î2(2m). By induction on `(w) and

because t and ŝ0 commute, we immediately see that w ∈ Î2(m) if and only if the number of

occurrences of t in any reduced expression of w is even. Hence we have [Î2(2m) : Î2(m)] ≤ 2

and since st and ŝ0t have even order, the map Î2(2m)! Z/2Z sending s and ŝ0 to 0 and t

to 1 is a homomorphism whose kernel contains Î2(m), hence the result.
We now prove thatQ2g+1 andQ4g are not conjugate in PO(1, 2). It is enough to prove that

the elements σ2g+1(q2g+1) ∈ PO(1, 2) and σ4g(q4g) have different traces. Write ̂I2(2g + 1) =

〈s, t, ŝ0〉 and Î2(4g) = 〈s′, t′, ŝ′0〉. We have q2g+1 = ŝ0(st)gs and q4g = ŝ′0(st)2gs′ and we can
write explicitly the matrices of the simple reflections in the geometric representation. We
diagonalize st = PdP−1 and compute tr (q2g+1) = tr (dgP−1sŝ0). After calculations, we find

tr (q2g+1) = 8

(
1 + cos

(
π

2g + 1

))
cot2

(
π

2g + 1

)
− 1.

Doing the same for g4g, we find

tr (q4g) = 4 cot2

(
π

4g

)
− 1.

And indeed, we get tr (q2g+1) 6= tr (q4g) for g > 1. �

Recall that a Belyi function on a Riemann surface X is a holomorphic map β : X ! Ĉ
which is ramified only over three points of Ĉ. Since Î2(m) is a compact triangle group

and Qm E Î2(m) is torsion-free and of finite index. Thus, by [JW16, Theorem 3.10], the
projection

β : T(I2(m)) = H2/Qm −� H2/Î2(m) ' Ĉ
is a Belyi function on T(I2(m)) of degree [Î2(m) : Qm] = 2m. Using [JW16, Theorem 1.3],
this implies the following result:

Proposition 4.5.6. For any m ≥ 3, the Riemann surface T(I2(m)) may be defined over a
number field (or equivalently, may be defined over Q). Moreover, if m = 5 or m ≥ 7, then

the 1-skeleton of the tessellation ∆(Î2(m))/Qm defines a dessin d’enfant on T(I2(m)).

Remark 4.5.7. It is a reasonable to expect that T(I2(m)) is definable over Q(cos(2π/m)).
This is coherent with the isomorphism T(2g + 1) ' T(4g + 2) and with the vertices of the
tessellation of H2, whose coordinates may be chosen in this field. However, we haven’t found
a proof of this yet.

Example 4.5.8. The triangulation ∆(Î2(5)) is the classical tessellation {3, 10} of the Poincaré

disk. More precisely, the Tits form B̂ is given by

B̂ =
( 1 −c −c
−c 1 −c
−c −c 1

)
with c = cos(π/5)

and, if v∗ ∈ V ∗ is a normalized eigenvector for the unique negative eigenvalue of B̂, then
we have an identification with the hyperbolic plane

H := {λ ∈ V ∗ ; B̂(λ, λ) = −1, B̂(v∗, λ) < 0} ' H2

and the stereographic projection on the hyperplane B̂(v∗,−) = 0 with pole λ0 gives the

Poincaré disk model for H2. Under this representation we represent the tessellation ∆(Î2(5)) =
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{3, 10} of H as in Figure 4a, where the black triangles are the images of the fundamental
triangle C/R∗+ ' C ∩ H under elements of odd length. In this tessellation, we can identify

the triangles that are in the Q-orbit of C ∩ H. These are displayed in green in Figure 5.
Collapsing these triangles in one gives the surface T(I2(5)).

We remark that we can extract a fundamental domain for Q on T(I2(5)) as the projection
of the domain displayed in Figure 6a. Rearranging the figure we obtain the triangulation
displayed in the Figure 6b, where the points with the same name (resp. the edges with the
same color) are identified. We notice that the resulting space is indeed a closed surface of
genus 2.

The case of I2(m) for m odd is pretty similar and we obtain the {3, 2m}-tessellation of
the Poincaré disk. For instance, the Figure 4b shows the case of I2(7).

(a) The {3, 10}-tessellation of

Σ(Î2(5)) ' H2.

(b) The {3, 14}-tessellation of

Σ(Î2(7)) ' H2.

Figure 4. Two regular tessellations of the Poincaré disk.

Figure 5. The green triangles form the Q-orbit of the fundamental triangle
C ∩H inside the Poincaré disk.

(a) Fundamental domain for
Q in the Poincaré disk.

a

b

cba

c

b

c

a
b

a

c

(b) Fundamental domain for
I2(5) in T(I2(5)) = T2.

Figure 6. Fundamental domain for Q and its image in T(I2(5)).
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5. Equivariant chain complex of T(W ) and computation of homology

5.1. The W -dg-algebra of T(W ).
The combinatorics of the complex C∗cell(T(W ),W ;Z) is fairly similar to the one of the

complex C∗cell(T,W ;Z) we constructed in the first part and the proofs given above can be
applied verbatim to this new situation. We obtain the following results:

Theorem 5.1.1. The Z[W ]-dg-algebra C∗cell(T(W ),W ;Z) associated to the W -triangulation

∆(Ŵ , Ŝ)/Q of T(W ) has homogeneous components

Ckcell(T(W ),W ;Z) =
⊕
I⊂Ŝ
|I|=n−k

Z[π(IŴ )] '
⊕
I⊂Ŝ
|I|=n−k

Z[π(ŴI)\Ŵ ],

differentials given, for any I ⊂ Ŝ and w ∈ Ŵ , by

dk(π(Iw)) =
∑

0≤u≤k+1
ju−1<j<ju

(−1)uπ
(
ε
I\{j}
I w

)
, εJI =

∑
x∈JI Ŵ

x,

where {j0 < · · · < jk} := Ŝ \ I. Its product

Cpcell(T(W ),W ;Z)⊗Z C
q
cell(T(W ),W ;Z)

∪
−! Cp+qcell (T(W ),W ;Z)

is induced by the deflation from Ŵ to W of the unique map

Z[[IŴ ]]⊗Z Z[[JŴ ]] −! Z[[I∩JŴ ]]

satisfying the formula

∀x, y ∈ Ŵ , Ix ∪ Jy = δmax(I{),min(J{) ×
{

I∩J((xy−1)Jy) if xy−1 ∈ ŴIŴJ

0 otherwise.

Remark 5.1.2. As explained in [BR04, §2.3], a quotient simplicial complex of the form

∆(Ŵ , Ŝ)/H (with H ≤ Ŵ ) has a an interpretation in terms of double cosets. In our case,
we have an isomorphism of posets(

P(∆(Ŵ , Ŝ)/Q),⊆
)

∼
−!

(
{(I,QwŴI)}I(Ŝ, w∈Ŵ ,�

)
π(Ŵ I) 3 π(wI) 7−! (I,QwŴI)

where the order � on the second factor is defined by

(I,QwŴI) � (J,Qw′ŴJ)
df⇐⇒

{
I ⊇ J

QwŴI ⊇ Qw′ŴJ

and we may rephrase the above results using this poset.

5.2. The homology W -representation of T(W ).
We can now determine the action of W on H∗(T(W ),Z). Recall from [GP00, Theorem

5.3.8] that a splitting field for W is given by

Q(W ) = Q(cos(2π/ms,t), s, t ∈ S) = Q(χσ(w), w ∈W ) ⊂ R,
where χσ = tr(σ) is the character of the geometric representation σ : W ! GL(V ) of W . If
W is a Weyl group, then Q(W ) = Q and we have

Q(I2(m)) = Q(cos(2π/m)) and Q(H3) = Q(H4) = Q(
√

5).

We suppose from now on that W is one of the groups H3, H4 or I2(m), with m ≥ 3 and
we keep the notation of the previous section. The first groups to be determined are the top
and bottom homology of T(W ). Recall that we have n = rk(W ) = dim T(W ).
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Proposition 5.2.1. Let 1 and ε be the trivial and signature modules over Z[W ], respectively.
We have isomorphisms of Z[W ]-modules{

H0(T(W ),Z) ' 1,
Hn(T(W ),Z) ' ε.

Proof. Since Σ̂ is path-connected, its quotient T(W ) is path-connected too and is orientable
by Theorem 4.3.3. Thus, we have an isomorphism of abelian groups

H0(T(W ),Z) ' Z ' Hn(T(W ),Z).

It is clear thatH0(T(W ),Z) is the trivial module and, as Z[W ]-modules we haveHn(T(W ),Z) =
ker(∂n) with

∂n : Z[W ] −!
⊕n

i=0 Z[W/ 〈si〉]
w 7−!

∑n
i=0(−1)iw 〈si〉

where si = π(ŝi) is a simple reflection of W for i ≥ 1 and s0 := rW = π(ŝ0). Define

e :=
∑

w ε(w)w ∈ Z[W ] with ε(w) = (−1)`(w) and notice that we = ε(w)e for w ∈ W and
∂n(e) = 0. Let x =

∑
w xww ∈ Z[W ] such that ∂n(x) = 0. Then, for all 0 ≤ i ≤ n, we have∑

w xww 〈si〉 = 0. Fixing 1 ≤ i ≤ n, we can choose a set {w1, . . . , wk} of representatives of
the left coset W/ 〈si〉 (the minimal length representatives for instance). We have

0 =
∑
w∈W

xww 〈si〉 =

k∑
j=1

xwjwj 〈si〉+

k∑
j=1

xwjsiwjsi 〈si〉 =
∑
j

(xwj + xwjsi)wj 〈si〉 ,

hence xwj + xwjsi = 0 for all 1 ≤ j ≤ k. This implies xw + xwsi = 0 for all w ∈ W and
doing this for every i ≥ 1 gives xw + xws = 0 for all w ∈ W and s ∈ S, in other words,
xw = ε(w)x1 for w ∈W and x = x1e ∈ Ze. �

Proposition 5.2.2. The homology H∗(T(W ),Z) is torsion-free and the Poincaré duality
on T(W ) induces isomorphisms of Z[W ]-modules

Hn−i(T(W ),Z)∨ ' Hi(T(W ),Z)∨ ⊗Z ε.

Proof. It suffices to prove thatH∗(T(W ),Z) is torsion-free, the Poincaré pairingH i(T(W ),Z)⊗
Hn−i(T(W ),Z)! Hn(T(W ),Z) = ε and the universal coefficient theorem implying the sec-
ond one. But since the dimension is at most 4, we only have to prove that H1(T(W ),Z) is
torsion-free and this holds by Corollaries 4.4.5 and 4.5.2. �

The above Lemma, combined with the Hopf trace formula (see [Spa81, Chap. 4, §7,
Theorem 6] or [Lin, Lemma 2.4]) provides enough information to determine the homology
representation of T(W ). More precisely, letting G be a (discrete) group, H ≤ G is a
subgroup and if M is an H-module, we denote by M"GH the induced module of M ; it is
a G-module. Similarly, the restricted module of a G-module N is denoted N#GH . Observe
that we have a canonical isomorphism of Q[G]-modules Q[G/H] ' 1"GH . Recall also that if

N EG and if M is a G-module, then its deflation DefGG/N (M) is a G/N -module.

In our context, we have isomorphisms of Q[Ŵ ]-modules

Ccell
k (Σ̂, Ŵ ;Q) =

⊕
I⊂Ŝ ; |I|=n−k

1"Ŵ
ŴI
.

Thus
Ccell
k (T(W ),W ;Q) = DefŴW (Ccell

k (Σ̂, Ŵ ;Q)) =
⊕

I⊂Ŝ ; |I|=n−k

1"W
π(ŴI)

,

and applying Hopf’s formula yields the following result:

Lemma 5.2.3. We have the following equality of virtual rational characters of W∑
I(Ŝ

(−1)|I|DefŴW

(
1"Ŵ

ŴI

)
=
∑
I(Ŝ

(−1)|I|1"W
π(ŴI)

= (−1)n
n∑
i=0

(−1)iHi(T(W ),Q).
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For notation simplicity, we shall use the conventions of [GP00] to denote the irreducible
characters of W . We start with I2(m).

Theorem 5.2.4. Let m ≥ 3. Following [GP00, §5.3.4], for 1 ≤ j ≤ b(m−1)/2c, we consider
the following representation of I2(m) =

〈
s, t | s2 = t2 = (st)m = 1

〉
ρ̃j : I2(m)! GL2(R) defined by ρ̃j(s) :=

(
0 1
1 0

)
and ρ̃j(st) :=

(
cos(jθm) − sin(jθm)
sin(jθm) cos(jθm)

)
,

where θm := 2π/m and we let ρj be a realization of ρ̃j on the splitting field Q(θm) of
I2(m).

Then, the first homology representation of T(I2(m)) is given by

H1(T(I2(m)),Q(θm)) =



⊕
1≤j≤(m−1)/2

ρj if m is odd,⊕
1≤j≤m/2−1

j odd

ρj if m is even.

Recall also that H0(T(I2(m)),Q) = 1 and H2(T(I2(m)),Q) = ε.

Proof. We already have obtained the last statement above in Proposition 5.2.1. For the
first homology, we let χj := tr(ρj) be the character of ρj and, denoting by RegQ(θm) =

Q(θm)[I2(m)] the regular module, lemma 5.2.3 yields the following equality of virtual char-
acters of I2(m)

H1(T(I2(m)),Q(θm)) = 1 + ε− RegQ(θm) −
∑

∅6=I({ŝ0,s,t}

(−1)|I|1"
I2(m)

π(Î2(m)I)
.

We deal with each case separately. Recall the computations of the images in I2(m) of the

parabolic subgroups of Î2(m) from the proof of the Corollary 4.5.1.

• m = 2k + 1 is odd. We have r := rW = (st)ks. Hence sr = t and tr = s so I2(m) =
〈s, r〉 = 〈t, r〉. Furthermore, in this case we have (cf [GP00, §5.3.4]) RegQ(θm) =

1+ ε+
∑

j 2χj and the above formula reduces to

H1(T(I2(m)),Q(θm)) = 3 · 1"I2(m)
〈s〉 − 3 · 1−

∑
j

2χj .

Now, by [GP00, §6.3.5] we have 1"
I2(m)
〈s〉 = 1 +

∑
j χj and thus

H1(T(I2(m)),Q(θm)) =
∑
j

χj .

• m = 4k. In this case we have r = (st)2k−1s and let a := st. The conjugacy classes
of I2(m) are given as follows

Representative 1 a a2 · · · a2k a2k+1 s t
Cardinality 1 2 2 · · · 2 1 2k + 1 2k + 1

First, we determine the characters 1"
I2(m)
〈x,r〉 for x = s, t. In the proof of 4.5.1 we

have seen that t = (sr)2k−1s, so 〈s, r〉 = I2(m). Next, as detailed in [GP00, §5.3.4],
the character χj is given by

χj(a
i) = 2 cos

(
2πij

m

)
and χj(sa

i) = 0.

We have 〈t, r〉 = {1, t, r, a2k} ' C2 × C2 and by Frobenius reciprocity

∀j,
(
1"

I2(m)
〈t,r〉 , χj

)
W

=
(
1, χj#

I2(m)
〈t,r〉

)
〈t,r〉

=
χj(1) + χj(t) + χj(r) + χj(a

2k)

4
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=
χj(1) + 2χj(t) + χj(a

2k)

4
=

1 + cos(πj)

2
=

{
1 if j is even
0 otherwise.

The 1-dimensional irreducible representations of I2(m) other that 1 and ε are given
by εs(s) = εt(t) = 1 and εs(t) = εt(s) = −1. Therefore, RegQ(θm) = 1+ ε+ εs + εt +∑

j 2χj . We directly compute using Frobenius reciprocity(
1"

I2(m)
〈t,r〉 , εs

)
I2(m)

=
(
1"

I2(m)
〈t,r〉 , ε

)
I2(m)

= 0

and (
1"

I2(m)
〈t,r〉 , εt

)
I2(m)

=
(
1"

I2(m)
〈t,r〉 ,1

)
I2(m)

= 1

and hence
1"

I2(m)
〈t,r〉 = 1 + εt +

∑
j even

χj .

On the other hand, by [GP00, §6.3.5], we have 1"
I2(m)
〈s〉 = 1 + εs +

∑
j χj and

1"
I2(m)
〈t〉 = 1+ εt +

∑
j χj . Putting everything together and remembering that t and

r are conjugate yields

H1(T(I2(m)),Q(θm)) = 1 + ε− RegQ(θm) −
∑

∅6=I({ŝ0,s,t}

(−1)|I|1"
I2(m)

π(Î2(m)I)

= 1 + ε− RegQ(θm) + 1"
I2(m)
〈s〉 + 2 · 1"I2(m)

〈t〉 − 1"I2(m)
〈t,r〉 − 2 · 1 =

∑
j odd

χj .

• m = 4k + 2. We proceed in the same way, noticing that r = (st)2ks = a2ks. The

characters 1"
I2(m)
〈s〉 and 1"

I2(m)
〈t〉 are determined as above. We compute(

1"
I2(m)
〈s,r〉 , εs

)
I2(m)

=
(
1, εs#

I2(m)
〈s,r〉

)
〈s,r〉

= 1 =
(
1"

I2(m)
〈s,r〉 ,1

)
I2(m)

but since deg(1"
I2(m)
〈s,r〉 ) = [I2(m) : 〈s, r〉] = [I2(m) :

〈
s, a2k

〉
] = 2 this implies

1"
I2(m)
〈s,r〉 = 1 + εs. Now, we have 〈t, r〉 = {1, t, r, a2k+1} ' C2 × C2 and using

again the Frobenius reciprocity we obtain(
1"

I2(m)
〈t,r〉 , χj

)
I2(m)

=
(
1, χj#

I2(m)
〈t,r〉

)
〈t,r〉

=
χj(1) + χj(t) + χj(r) + χj(a

2k+1)

4

=
χj(1) + χj(a

2k+1)

4
=

1 + cos(πj)

2
.

Since 1#
I2(m)
〈t,r〉 6= 1 6= 1#

I2(m)
〈t,r〉 we also get(

1"
I2(m)
〈t,r〉 , εs

)
I2(m)

=
(
1"

I2(m)
〈t,r〉 , εt

)
I2(m)

=
(
1"

I2(m)
〈t,r〉 , ε

)
I2(m)

= 0

and (
1"

I2(m)
〈t,r〉 ,1

)
I2(m)

= 1.

Finally,

1"
I2(m)
〈t,r〉 = 1+

∑
j even

χj .

As above, we conclude that

H1(T(I2(m)),Q(θm)) = ε−RegQ(θm) + 2 · 1"I2(m)
〈s〉 + 1"

I2(m)
〈t〉 − 1"I2(m)

〈s,r〉 − 1"
I2(m)
〈t,r〉 =

∑
j odd

χj ,

as claimed.

�
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Theorem 5.2.5. With the notation of [GP00, Appendix C, Table C.1], we have

∀0 ≤ i ≤ 3, Hi(T(H3),Q(
√

5)) =


1 if i = 0,

3′s ⊕ 3′s ⊕ 5r if i = 1,

3s ⊕ 3s ⊕ 5′r if i = 2,

ε if i = 3.

Proof. Consider the virtual character χH :=
∑

I(Ŝ(−1)|I|+11"H3

π(Ĥ3I)
. For χ ∈ Irr(H3), we

may compute

(χ, χ)H3
=
∑
I(Ŝ

(−1)|I|+1
(
1"H3

π(Ĥ3I)
, χH

)
H3

=
∑
I(Ŝ

(−1)|I|+1
(
1, χ#H3

π(Ĥ3I)

)
π(Ĥ3I)

=
∑
I(Ŝ

w∈π(Ĥ3I)

(−1)|I|+1χ(w).

We obtain
χH = ε− 1− 3s − 3s + 3′s + 3′s + 5r − 5′r

and therefore, using lemma 5.2.3

H2(T(H3))−H1(T(H3)) = −3s − 3s + 3′s + 3′s + 5r − 5′r.

But from Lemma 4.4.5, we have dim(H1(T(H3))) = dim(H2(T(H3))) = 11 = dim(3s + 3s +
5′r), so

H1(T(H3),Q(
√

5)) = 3′s+3′s+5r and H2(T(H3),Q(
√

5)) = 3s+3s+5′r = H1(T(H3),Q(
√

5))⊗ε.
�

Finally we treat the case of H4.

Theorem 5.2.6. With the notation of [GP00, Appendix C, Table C.2], we have

∀0 ≤ i ≤ 4, Hi(T(H4),Q(
√

5)) =



1 if i = 0,

4t ⊕ 4t ⊕ 16′r if i = 1,

6s ⊕ 6s ⊕ 30s ⊕ 30s if i = 2,

4′t ⊕ 4′t ⊕ 16r if i = 3,

ε if i = 4.

Proof. As for the previous proof, we let χH :=
∑

I(Ŝ(−1)|I|1"H4

π(Ĥ4I)
and

∀χ ∈ Irr(H4), (χ, χH)H4
=

∑
I(Ŝ, w∈π(Ĥ4I)

(−1)|I|χ(w).

This leads to

χH = 1+ ε− 4t − 4t − 4′t − 4′t + 6s + 6s − 16r − 16′r + 30s + 30s.

Since dim(H1(T(H4))) = dim(H3(T(H4))) = 24 we obtain

H2(T(H4),Q(
√

5)) = 30s + 30s + 6s + 6s

and
H1(T(H4)) +H3(T(H4)) = 4t + 4′t + 4t + 4′t + 16r + 16′r.

But since the representations H1(T(H4)) and H3(T(H4)) must be realizable over Q and
because of the Poincaré duality pairing between the two, we are left with the following four
possibilities:
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H1(T(H4)) 4t + 4t + 16r 4′t + 4′t + 16r 4t + 4t + 16′r 4′t + 4′t + 16′r
H3(T(H4)) 4′t + 4′t + 16′r 4t + 4t + 16′r 4′t + 4′t + 16r 4t + 4t + 16r

However, the Q[H4]-module H1(T(H4),Q) is a sub-quotient of the module

Ccell
1 (T(H4), H4;Q) =

∑
I(Ŝ
|I|=3

1"H4

π(Ĥ4I)

and we compute (
Ccell

1 (T(H4)), 16r

)
H4

= 0 =⇒ (H1(T(H4)), 16r)H4
= 0.

Hence, only 16′r can be a direct factor of H1(T(H4),Q(
√

5)). In the same fashion we compute(
Ccell

1 (T(H4)), 4′t

)
H4

= 0 =⇒
(
H1(T(H4)), 4′t

)
H4

= 0

and thus only the third column of the table above is possible. �

Remark 5.2.7. In [RT01, §3] and [Mar15, §2.2], the homology of T(H4) is also described,
but only as a Z-module.

Finally, we exhibit another algebraic meaning of the Euler characteristic of T(W ). The

Poincaré series of Î2(m), Ĥ3 and Ĥ4 can be found in [CLS10, §3.1, Table 7.4 and Table 7.5].
Using these expressions, we immediately obtain the following corollary:

Corollary 5.2.8. Let W be a finite irreducible Coxeter group. If W (q) (resp. Ŵ (q)) denotes

the Poincaré series of W (resp. of its extension Ŵ ), then the Euler characteristic of T(W )
is given by

χ(T(W )) =
W (q)

Ŵ (q)

∣∣∣∣∣
q=1

Moreover, the geometric representation σ of W is always a direct summand of H1(T(W ),Q(W ))
for every W and the two are equal if and only if W is crystallographic. In particular⊕

α∈Gal(Q(W )/Q)

σα is a direct summand of H1(T(W ),Q).

Remark 5.2.9. With [CLS10] it can be seen that the quotient W (q)/Ŵ (q) is a polynomial
in q, but we cannot hope for a generalization of the Bott factorization theorem as in the
affine case, i.e. a formula of the form

W (q)

Wa(q)
=

n∏
i=1

1− qdi−1,

with {di} the degrees of W . Indeed, the polynomial H4(q)/Ĥ4(q) is irreducible of degree 60.

Appendix A. Hyperbolic extensions of finite irreducible Weyl groups

As the irreducible hyperbolic Coxeter groups have rank ≤ 10 and are all classified (see
[Che69]), we can check each reflection of each irreducible finite Weyl group to see which one
of them give hyperbolic extensions. There may are other possible reflections and extensions,
but the resulting Coxeter diagram must appear in the following table. The computations
were made using [GAP21]. Of course, for the case of G2 = I2(6), we find in particular the

diagram corresponding to Î2(6) defined above.
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Type Dynkin diagram Hyperbolic diagram Reflection Compact?

G2
1 2

6
6

6

and
6

ss21

and

ss2s11

both

A3 2 31 ss23 no

C3
2 31

4
4

4
ss12 no

C4
2 31 4

4
4

s
s
s2
1

3 = ss2s1s23 no

D4
1 2

4

3

3

21

ss2s34 no

F4
1 2 3 4

4
4

4

ss2s13 no

E8

1 3 4 5 6

2

7 8

s
(s3s2)s4s5s6 (s5s2)s4s3s1
7 no

Table 5. Hyperbolic extensions of finite irreducible Weyl groups.
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