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EQUIVARIANT TRIANGULATIONS OF TORI OF COMPACT LIE
GROUPS AND HYPERBOLIC EXTENSION TO
NON-CRYSTALLOGRAPHIC COXETER GROUPS

ARTHUR GARNIER

ABSTRACT. Given a simple connected compact Lie group K and a maximal torus T of K,
the Weyl group W = Ng (T')/T naturally acts on 7.

First, we use the combinatorics of the (extended) affine Weyl group to provide an explicit
W-equivariant triangulation of 7. We describe the associated cellular homology chain
complex and give a formula for the cup product on its dual cochain complex, making it a
Z|W]-dg-algebra.

Next, remarking that the combinatorics of this dg-algebra is still valid for Coxeter
groups, we associate a closed compact manifold T(W) to any finite irreducible Coxeter
group W, which coincides with a torus if W is a Weyl group and is hyperbolic in other
cases. Of course, we focus our study on non-crystallographic groups, which are I>(m) with
m=5orm >7, H3 and Hy.

The manifold T(WW) comes with a W-action and an equivariant triangulation, whose
related Z[W]-dg-algebra is the one mentioned above. We finish by computing the homology
of T(W), as a representation of W.
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0. INTRODUCTION

Given a simple compact connected Lie group K and a maximal torus 7" of K, the Weyl
group W := Ng(T)/T acts on T by conjugation by a representative element of N (7). This
is well-defined since T is abelian. As T is clearly a CW-complex, it is known that there exists
a W-equivariant cellular structure on 7. The first aim of this work is to provide an explicit
W-triangulation and to describe the associated cellular homology cochain complex, as a
Z|W]-dg-algebra. This study is motivated by the research of equivariant cellular structures
in Lie theory, and more precisely for flag manifolds and classifying spaces of tori.

Let t denote the Lie algebra of T. The exponential map exp : t — T induces a W-
equivariant isomorphism of Lie groups t/A — T, where A C t is a W-lattice. The isomor-
phism type of the pair (K,T) is determined by the root system ® C it* and the lattice A.
This is equivalent to the root datum of (K, T) and this gives the suitable vocabulary to work
with.

An important distinction comes from the fundamental group 71 (K) of K. In the case
where 71 (K) = 1, the combinatorics of the affine Weyl group W, and alcoves easily give
the desired CW-structure. Indeed, the group W, is Coxeter with one additional generator,
corresponding to the reflection of the highest root of ®. Moreover, the fundamental alcove
is a standard simplex and its triangulation provides a W-equivariant triangulation of T'. We
also give a formula for the cup product (see Corollary .

In the general case, the extended affine Weyl group W := A x W is no longer a Coxeter
group and the above combinatorics does not hold anymore. This comes from the non-trivial
symmetries of the fundamental alcove in the group. However, it is enough to consider the
barycentric subdivision of the fundamental alcove (see Theorem . Though heavy in
computations, this has the advantage of giving a general statement for all cases at once.
Moreover, this construction applied to the simply-connected case gives the same complex as
the first one, up to Z[W]-homotopy equivalence.

In the simply-connected case, the complex is described using minimal length coset repre-
sentatives, but if we rewrite it using transitive sets, then the combinatorics makes sense for
every finite group with a preferred element and set of generators. If moreover a notion of
parabolic subgroups is available, then the cup product, as described in Theorem makes
sense as well. In particular, we can construct such a complex for every finite (irreducible)
Coxeter group.

It is a natural question to ask if there still is any geometric information behind the above
complex in the non-crystallographic Coxeter groups. Our main result is the following one,

which gathers Theorem Corollary and Proposition

Theorem. If W is a finite irreducible Coxeter group of rank n, then there exists an ori-
entable closed compact Riemannian W-manifold T(W) of dimension n, which is equivari-
antly diffeomorphic to a mazimal torus of a simply-connected compact Lie group of the same
type as W if W is a Weyl group, and is a hyperbolic manifold otherwise.

Moreover, if W is one of the groups I3(2g + 1), I2(4g) or I2(4g + 2) (with g > 0), then
T(W) is naturally a Riemann surface of genus g, definable over Q and an elliptic curve if
g=1.

It should be mentioned that the manifolds T(H3) and T(Hy) were already constructed
respectively by Zimmermann ([Zim93]) and by Davis ([Dav85]), using a different method.
Our construction relies on the choice of a particular reflection of W, which is the one
associated to the highest root in the root system of W, in all cases except Hs. We use this
2
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reflection to build an infinite Coxeter group W, whose Coxeter diagram has one more node
than the one of W and in which W is a maximal parabolic subgroup. This imitates the
construction of the affine Weyl group. Furthermore, our choice implies that W is in fact a
compact hyperbolic Coxeter group (see [Hum92l §6.8]).

This extension comes with a torsion-free normal subgroup @ < W such that W = QxW.
A key fact is that the action of @ (under the dual geometric representation of W) on the
Cozeter complex E(I//[\/') (seen as a quotient of the Tits cone) is a covering space action and
we naturally define T(W) := E(W)/Q

It is clear from the construction that T(W) is equipped with a W-triangulation (which
yields a dessin d’enfant when W = I3(m)), whose associated W-dg-algebra has the same
combinatorics as in the Weyl group case (see Theorem. We use the Hopf trace formula
(see lemma to describe the homology of T(W) as a representation of W. The following
result summarizes [5.2.1] [5.2.2] and [5.2.9

Theorem. If W is a finite Coxeter group of rank n and T(W) is the W -manifold from the
previous theorem, then we have

Ho(T(W),Z)=1 and H,(T(W),Z)=¢,

where € s the signature representation of W.

The homology H.(T(W),Z) is torsion-free and, in particular, the Betti numbers of T(W)
are palindromic, meaning b; = b,_; for all i.

Moreover, the geometric representation of W is a direct summand of Hi(T(W),k), where
k is a splitting field for W and Hi(T(W), k) is irreducible if and only if W is crystallographic.

Finally, if W(q) (resp. /W(q)) is the Poincaré series of W (resp. of W), then

CUDES

Finally, a GAP4 packag{] is provided to compute these complexes, along with the DeConcini-
Salvetti complex of a finite Coxeter group (see [CS00]).

As an appendix, we use GAP again to determine all the possible hyperbolic extensions
of the finite Weyl groups that correspond to a reflection in the finite group. We notice that
all of them (except for Gy = I5(6)) are non-compact and our construction doesn’t apply; at
least not immediately.

q=1

Part 1. Weyl-equivariant triangulations of tori of compact Lie groups and
related W-dg-algebras

1. PREREQUISITES AND NOTATION

1.1. Root data, affine Weyl group and alcoves.
We start by briefly recalling some basic facts about root data and why this is the suitable
framework for our study. Standard references for what follows are [MT11] and [K.J05].

Definition 1.1.1 ([MTTII, Definition 9.10]). A root datum is a quadruple (X,®,Y,®V)
where

(RD1) the elements X and Y are free abelian groups of finite rank, together with a perfect
pairing (,-): Y x X — Z,

(RD2) the subsets ® C X and ®V CY are (abstract) reduced root systems in Z® @z R and
7DV @7 R, respectively,

(RD3) there is a bijection ® — ®V (denoted by a — a ) such that (o, ) = 2 for every
a€ d,

1ht'cps ://github.com/arthur-garnier/Salvetti-and-tori-complexes
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(RD/) the reflections so of the root system ® and sov of ®V are respectively given by
Vo € X, sq(z) =z — (', z)
and
Yy €Y, sav(y) ==y — () a’.
The Weyl group W of the root system ® (which is isomorphic to the Weyl group of ®" via

the map so —— Sqv ) is called the Weyl group of the root datum. Moreover, we say that the
root datum (X, ®,Y,®V) is irreducible if the root system ® is.

For a root datum (X,®,Y,®"), we denote by V := Z® ®z R the ambient space and
V* = Z®" @7 R. As usual, we denote by ® C ® a set of positive roots and by II C &+
the corresponding set of simple roots. Define the fundamental weights w, € V, indexed by
a €11, by (8Y,@a) = 0a,p. Dually, the fundamental coweights are elements w,, € V* such
that (wy, 3) = da. 3. We also consider respectively

Q:=7d = @Za CV and QY :=7Zd" = @Zav cv*
a€ll a€ell
the root lattice and the coroot lattice of ®. Further, we have the respective weight lattice
and coweight lattice:

P:=(Q)'={zxeV;Vac®d, (a" 1) €2} =P Zwa CV and P¥:= @ Zw] CV*".
a€ll a€ll
Thus, the abelian group X is a W-lattice between Q and P and if we enumerate the simple
roots IT = {a1, ..., an}, (n = dim(V)) and if C := ((o/, @j))1<; j<p 18 the Cartan matrix of
®, then we have
det(C) = [P:Q] = [PY : Q"].

Then, the Chevalley classification theorem (see [MT11, §9.2]) says that, given a connected
reductive (complex) group G and T' a maximal torus of G, if ® denotes the root system of
(G,T),if X(T) := Hom (T, G, (C)) and Y(T') := Hom (G,,,(C), T') are the respective charac-
ter and cocharacter lattice of T', then (X (T'),®,Y (T), ®") is a root datum that characterizes
G (and T) up to isomorphism.

This is also true for Lie groups. Let K be a simple compact Lie group, 7' a maximal
torus of K, we denote by € and t their respective Lie algebras and by ® C it* =: V the root
system of (¢,t). We may take

X(T)={d\:t— iR ; A€ Hom (T,SY)} cit* =V

and Y(T) := X(T)" C V*, so that (X(T),®,Y(T),®") is a root datum. Since T is abelian,
the Weyl group W = W (®) ~ Ng(T)/T acts on T by conjugation by a representative in
the normalizer.

By [KJ05, Lemma 1], the normalized exponential map defines a W-isomorphism of Lie
groups
(1) V*)Y(T) = T.
Moreover, we have the following isomorphisms

P/X(T)~m(K) and X(T)/Q ~ Z(K).

This shows that we may reformulate the initial problem as follows: given an irreducible
root datum (X, ®,Y,®") with Weyl group W and ambient space V := Z® ®z R, find a
W-equivariant triangulation of the torus V*/Y. As mentioned above, this will depend on
the fundamental group P/X of the root datum.

Notation. Throughout the first part of the paper we fix, once and for all, an irreducible root
datum (X, ®,Y,®V), with ambient space V. = Z® @ R, simple roots I C ®*, Weyl group
W = (sa, a € 1I), fundamental (co)weights (wa)aen and (! )acm, (co)root lattices Q and
Q" and (co)weight lattices P and PV .
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Recall that ® has a unique highest root, i.e. a positive root g = Yoy ot € ot such
that o < ap for all @ € @ (see [Hum72, §10.4, Lemma A] or [KanO1) §11.2]). We consider
the affine transformation

S0 ‘= tagsozo P 800 (A) + O‘(\)/ = A= ((Aao) - 1)048/.

Then, the group W, := (sg, s1,...,s,) < Aff(V*) is a Coxeter group, called the affine Weyl
group. It splits as

Wa=Q" x W.
Moreover, for o € ® and k € Z, we consider the affine hyperplanes H, j, := {A € V*; (A, o) =
k} and we call alcove any connected component of V* '\ Umk H, 1. The fundamental alcove
is
Ao={ eV *;VaecdT, 0< (\a)<1}={AeV*; Vacll, (A\,a) >0, (\,a) <1}.
Then, by [Bou02, V, §2.2, Corollaire], its closure is a standard simplex

v
Ay = conv <{O}U{wa} ):A”
Na ) qent

and by [Hum92, §4.5 and 4.8], Ay is a fundamental domain for W, in V* and moreover, W,
acts simply transitively on the set of open alcoves.

1.2. Reminder on equivariant cellular structures and related chain complexes.
Before going any further into our study, we shall give some reminders on equivariant
CW-complexes. This will also set the notation for the sequel. The following treatment can
essentially be found in [tD87, II, §1].
Let X be a CW-complex (see [Hat02, Chapter 0 and Appendix]). For n € N, we denote
by En,(X) the set of n-cells of X. For instance, the n-skeleton of X is given by X,, =

ngn UeEEk (X) €.
Definition 1.2.1. Let G be a discrete group and X be a G-space, that is also a CW-complex
(in particular, Hausdorff). We say that X is a G-CW-complex if the action of G on X

induces an action of G on E,(X) for all n € N and, for every cell e of X and any g € G, if
ge = e, then gx = x for each x € e.

This is not the right definition of a G-CW-complex (see [tD87], in particular we can
remove the assumption that X should be Hausdorff), but the two definitions are equivalent
on a Hausdorff space as soon as the acting group G is discrete, which is our case.

Given a G-CW-complex X, we may consider its integral cellular homology chain complex
CeN(X,G;Z) (see [Hat02, §2.2]). In particular, in homogeneous degree n, we have

CONX,GZ) =Z(EXNE P Ze.
e€&n(X)
and since &,(X) is a G-set, this complex is a complex of permutation Z[G]-modules:
CNX,Giz)~ P ZIG/G),
le]eén(X)/G

where we denote by G, := Stabg(e) the stabilizer of the cell e € £,(X).

By [tD87, II, §1.17, Exercise 2|, if X is a G-CW-complex, then the orbit space X/G (if
it is Hausdorff) naturally inherits the structure of a classical CW-complex with n-skeleton
(X/G)n = Xp/G. We will need a slight generalization of this here.

Recall that if G acts on a set X and if N <G, then we may consider the deflation of X:

Defg v (X) := X/N,
with the induced action of G/N.
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If #: G - G/N is the projection map and if X = G/H is a transitive G-set, then we
have a canonical isomorphism of G/N-sets

Def n(G/H) ~ 7(G)/x(H).
This gives a functor G—Set — G/N—Set, whose linearization is the usual linear deflation
Def@ v : Z[G]-Mod —  Z[G/N]-Mod
U — Un:=U/(nu—u)
and we may extend this functor to (co)chain complex categories.

Lemma 1.2.2. Let G be a discrete group, written as a semi-direct product G = N x H
and X be an G-CW-complex. Denote by p : X — X/N and by m : G — H the natural
projections. If the quotient space X/N is Hausdorff, then it is an H-CW-complex such that,
for allk € N,

E(X/N) = {ple), e € Ex(X)}
and the map m induces a natural isomorphism

C:EH(X/N,HQ Z) ~ Def% (C:ell(X, G;Z)) .

Proof. The fact that X/N is a CW-complex with the given set of k-cells is standard and
comes from the fact that X/N is Hausdorff and that the usual relation z ~ y < dg €
G ; y = gx is cellular (see [LW69, Definition 1.6.1 and Theorems 1.6.2 and 11.5.7]). Moreover,
we immediately verify that the resulting structure is H-cellular.
Now, the map
E(X)/N — E(X/N) — &(X/N)/H
N-e —  ple)
together with the decomposition G = N x H gives a natural bijection

Ex(X)/G = E(X/N)/H
and we have H,y =~ 7(G.), yielding the desired isomorphism. O

Remark 1.2.3. Similar arguments show that we may replace deflations in the previous
statement by inflation, restriction or induction. Inflation and restriction are obvious to
define and, given a discrete group G, a subgroup H < G and an H-space X, we may define
Ind%(X) := G xyg X = (G x X)/H, see [Boul0), §2.3]. If X is a H-CW-complex with cells
e, then this is a G-CW-complex with cells {g} X e for g € G.

2. THE SIMPLY-CONNECTED CASE

2.1. The W,-triangulation of V* associated to the fundamental alcove.

The problem of finding a W-equivariant triangulation of 7' = V*/Y lifts to finding a
(Y x W)-equivariant triangulation of V*. In the 1-connected case, we have ¥ = QY and
QYW =W,.

As the alcove Aj is a fundamental domain for W, acting on V*, it suffices to have an
equivariant triangulation of Ag. The fundamental result is the Theorem (or more precisely,
its proof) from [Hum92l, §4.8], which ensures that the natural polytopal structure on the
r-simplex Ajg is W,-equivariant.

Now we introduce some notation about faces of polytopes.

Given a polytope P C R™ and an integer k& > —1, we denote by Fy(P) the set of
k-dimensional faces of P. In particular, we have F_1(P) = {0}, Famp)(P) = {P},
Faimpy—1(P) is the set of facets of P and Fy(P) = vert(P) is its set of vertices. More-
over, we let F(P) := |J, Fx(P) be the face lattice of P. It is indeed a lattice for the
inclusion relation.

Notice that the above vocabulary also applies to a polytopal complexes, that is, a finite
family of polytopes glued together along common faces.

6
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Resuming to root data, we consider the hyperplanes
VieS:={1,...,n}, H:=Hqyo={AeV"; (\a;) =0}
and
Hy:=Hppp={reV*; (\,ap) =1}
with ag = >, n;; the highest root. We also take the following notation for the vertices of

Ap:

v
Vie S, v := “i and vo := 0 so that vert(Ag) = {vo,v1,...,0n}.
i
The hyperplane H; for i € Sy := SU{0} give a complete set of bounding hyperplanes for the
n-simplex Ay. Furthermore, by definition, for every face f € Fy(Ap) there exists a subset

I C S of cardinality |I| = codim4-(f) = n — k such that
f=fr=A4n()H

il

and we readily have
vert(fr) ={vi; i € So\ I}.

Recall also that for i € Sy, denoting by s; the reflection with respect to the hyperplane
H;, we have s; = so, € W for i > 1 and sgp = ta,5q, and the group W, is Coxeter, with
generating system {sp, s1,...,sp}. For I C Sp, we may consider the (standard) parabolic
subgroup (Wy)r of W, generated by the subset {s;, i € I}. If 0 ¢ I, then (W,);) is in fact
a parabolic subgroup of W.

Lemma 2.1.1. Let 0 < k <n and I C Sy with |I| =n — k. Then the stabilizer of the face
f1 € Fi.(Ap) is the parabolic subgroup of W, associated to I. In other words,

(Wa)fz = (Wa)r-
Proof. As vert(fr) = {v;, i ¢ I} is (W,)y,-stable, the Theorem from [Hum92, §4.8] ensures

that
(Wa)fj = ﬂ (Wa)'Ui'

1€So\1
Moreover, each group (W,),, is generated by the reflections it contains, so that v; € H;. A
reflection s; fixes 0 if and only if it is linear, so (Wa)y, = (si; i #0) = (Wa)s = W. Let
now j € S. Since

=]
{v} = {n} = ﬂ H;,

! j#i€So

we have that s;(v;) = v; if and only if i € Sy \ {j} and hence, for every j € Sy, we have
(Wa)v, = (Wa) s\ 15
and thus
W)= () Wado = (] Wadsogip = Wan,, soviiy = (Wa)r-
i€So\I i€So\I

Hence, we have a triangulation



ARTHUR GARNIER

which is Wa-equivariant and following the notation from the beginning of this section, we
have &, (V*)/W, = Fj(Ap) for all k. Therefore, we get isomorphisms of Z[W,]-modules

C](éell(v*, Wa: Z) ~ @ Z[Wa/(Wa)f] = @ Z[Wa/(Wa)I].

fEFL(Ag) mlgsgk

We have to fix an orientation of the cells in V* and determine their boundary. But each
one of them is a simplex, so its orientation is determined by an orientation on its vertices.
We choose to orient them as the index set (Sp, <). For I C Sy with corresponding k-face
fr=conv({v; ; i € Sp\ I}), we write

fr= [vjl,...,vjk+1] with {jl < g2 < ...<jk+1}:S()\]

to make its orientation explicit. The oriented boundary of f; is then simply given by the
formula

k+1 k+1
8k(fl) = Z(_l)u [Ujlv ce ’EJZ’ s 7Ujk+1] = Z(_l)quU{ju}
u=1 u=1

=conv({v; ; juF#j€So\I})
We have thus obtained the following result:

Theorem 2.1.2. The face lattice of the n-simplex Ag induces a W,-equivariant triangulation
of V*, whose cellular complex CN(V*, W, Z) is given (in homogeneous degrees k and k—1)

by
10)
@ @ 2

ICSo I1CSop

|I|=n—k \I|=n—k+1
where Waf ~ Wo/(Wa)r is the Wy-set of minimal length left coset representatives, modulo
the parabolic subgroup (W) and boundaries are defined as follows:

k+1
VkEeN, VIC So; So\I={j<...<jes1} (O)zwr = Z(—l)“pﬁu{ju}’

u=1
where, for I C J, p{] denotes the projection
Wi =Wa/(Wa)r —> Wa/(Wa)y = W,

2.2. The W-dg-algebra structure.
We now make the cup product on C¢'(V*, W,; Z) more explicit. We first notice that, for
a finite group G and H < G, we have a canonical isomorphism of right Z[G]-modules

v df

7|G/H)Y € Hom (Z[G/H],Z) — Z[H\G]
(9H)" —  Hg™!
Moreover, for a cell e € CSN(V* W,; Z), we denote by e* € C(V*, W,; Z) = CN(V* W, Z)Y

its dual.
Finally recall that the cup product of two (dual) simplices is given by the formula

[UO, s ,Uk;]* U [U07‘ : 'avl]* = 6uk,’uo[u07 sy Uk, U1, .- ,’Ul]*.

We may express this product on C<'(V*, W,; Z) in terms of parabolic double cosets. We
write

Coa(V*\WasZ) = P Z[Wa/Wa)i]" = @ Z['Wa],

ICSy I1CSo
[I|=n—k [I|l=n—k

where

Iw, L tw e W, ; U(siw) > £(w), Vi € I} ~ (W) \Wa
is the set of minimal length right coset representatives. Recall the following general result
about double cosets:

8
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Lemma 2.2.1 ([BKP'16, §3, Proposition 2 and Corollary 3]). Let (W,S) be a Cozeter
system and I, J C S. Denote as usual
Whi={weW; l(ws) > l(w), Vs € I} ~ W/W,
W ={we W ; l(sw) > l(w), Vs € [} = W\W
and
JcI = Wi :={weW;; l(ws)>Ll(w), Vs € J}~W;/Wj.
(1) Each double coset in Wi \W /Wy has a unique element of minimal length.
(2) An element w € W is of minimal length in its double coset if and only if w €
W nw’. In particular, we have a bijection
WI\W/W; =~ Twnw’.
(3) As a consequence, if w € TW N WY and x € Wy, then xw € W7 if and only if
T € WIme. Hence, we have the following property:

T = uwo,

Vo € WrwWy, 3(u,v) € W7 x Wy ; { Ux) = L(u) + L(w) + L(v).

We can now formulate the main result:

Theorem 2.2.2. The Z[W,]-cochain complex Cly,(V*, Wa; Z) associated to the W-triangulation

of V* is a ZL[W,]-dg-algebra with homogenous components

VO<k<n, Coy(V:,\WuZ)= @ Z[(Wa)\Wal~ @ Z['W,]

ce
ICSy 1CSp
[I|l=n—k |[I|=n—k

and differentials

VIC Sy So\I=:{jo<-<j} d('w)= Z (—1)“e§\{j}w

0<u<k+1
ju71<j<ju
where, by convention, j_1 = —1, jy4+1 =n+1 and
VI CI, {Wy:={we Wa)i; lsjw) > L(w), Vj€J} and €] := Z x €L [JWa] .

a:efWa
The product
CP

cell

(V¥ Wa; Z) @ C4

cell

(V¥ Wa; Z) — CEH(V* W,: Z)

cell

1s induced by the cup product
Z[W.] 92 ['W] 2 [MW,]
defined by the formula

I

nJ -1 ; -1
€ (Wa)1(Wa)y,
z U Jy = 5maX(IB)1min(JE) X { (ey™aw) oy (Wa)r(Wa)s

0 otherwise,

where, given w € W,, we denote by 1" w € I"W, its minimal length right coset represen-

tative and if (Wa)rw(Wa)y = (Wa)1(Wa)g, wy is the unique element v € (W,)s such that
w = wv, with u € (W) and (w) = (u) + £(v).
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Proof. Take a k-simplex o = [jo,...,Jk] C Ay with j, € Sp and set j_q := —1 and jp :=
n 4 1. By definition of the cochain differential d¥, we have
k+1

‘AO Z Z ]07"'7ju717j7ju7'"ajk]*'

u=0 ju—1<j<ju
Letting I := So \ {jo,---,Jx}, we have (W,),+ = (Wa,)r and the above formula reads
k+1

(W1 D=2 D, CDUWa)ngy D)

u=0 jy—1<j<ju

Therefore, as A is a fundamental domain for W, in V*, this yields

d"(Wa)r - 1) = Z Z (—D"((Wa)n gy -w) |

0<u<n+1—|I| wEI\{J}W
ju71<j<ju
which leads to the stated formula.

To compute the cup product, using the bijection TW, ~ (W,);\Wa, the stated formula is
(Wa) 12 U (Wa) 1y = S 1€ min JEO(Wa) ray =1 (Wa) . (W) r(Wa) (W) 107 (2™ ) 7).
Let z,y € Wa. As W, acts simplicially on Ay, we have
(Wa) 1z U (Wa) gy = (Wa)rzy ™" U (Wa).)y,
hence we may assume that y = 1 and we just have to compute (W,)w U (Wa),.

First, we compute o* U 7* for 0,7 C Ag. As Ay ~ A" is a simplex, we may write
o = lig, ..., iq) with @ = dimo and IC := {ig,...,is} C vert(Ay) ~ So. Write similarly
T = [jﬂa oo vjb]‘ We have (Wa)a = (Wa)SO\{io,.‘.,ia} = (Wa)h (Wa)T = (Wa)J and

ocfuUT = (5ia7]‘0[i0, ey lay Il - - ,jb]*
and the stabilizer in W), of this last dual cell is (Wa)so\ fio,....ia.j1,...js}
if 0* UT* # 0 then we must have i, = jo, that is max(I®) = min(JC). We make this
assumption for the rest of this proof and we have indeed

ocfuUTH = (Wa)[ U (Wa)J = (Wa)[ﬁj.

Claim: For 7 C Ap is a simplex and P € Fj(V*) a k-cell of V* if 7 C P then P €
(Wa)r - Fi(Ap).

Indeed, we may assume that dim P = n = dim Ap so that there is some z € W, such that
P = z(Ap) and so 7 C AgN 2z(Ap), thus z € (W,)r (see [Hum92, §4.8]).

We are left to compute o*wUT* for w € W,. If o*wUr* # 0, then w0 and 7 are included

is some common simplex P € F(V*) and by the claim we may choose w, € (W), = (Wa) s
such that w™lo C w,(Ap). But then o C Ay Nww,(Ag) and so w,o = wto. This yields

= (Wa)1ns. Moreover,

cfwUT = o*w Ut =t urtwst = (0 U wot = (W) 1y - wy !

Furthermore, if o*w U 7* # 0 then we must have ww, € (Wa)r, so w € (Wy)1(Wa)s. In
this case, the parabolic double coset decomposition from Lemma applied to the trivial
double coset (W,) w(W,) allows one to write uniquely w as w = uwy with u € (W,)I"/
and wy € (Wy)s such that f(w) = f(u) + L(wy). We obtain wyw, € (W,)s as well as
wyw, = u tww, € (W,)r. Hence wyw, € (Wa); N (Wa)s = (Wa)ns and

cFwU T = (Wa)ins - wot = (Wa)ing - wy.

10
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Corollary 2.2.3. The Z[W]-cochain complex C? (T, W;Z) associated to the W -triangulation

cell
of T =V*/QV induced by the W,-triangulation of V* is given by
(T W3 Z) = Defp (Coay(VF, Wai Z)) .

cell

In other words, if m: Wy — W is the projection, then

ChaTW:Z)= D Z[x(Wa)] =~ D Zlr(Wa))\W],
ICSy I1CSo
[I|=n—k [I|l=n—k
with differentials
VIC So; So\I=i{jo < <jih dr(w) = > (0t (g Tw), = 3w
O<uh+l e€fWa
Ju—1<J<Ju
and product induced by the formula
InJ -1 : -1
I J T ((xy=)ay) ifzy— € (Wa)1(Wa)s
m(fz)Un(Ty) = 5maX(IC)7min(JC) x { ( 0 ) otherwise.

In particular, the associated graded cohomology algebra is an integral form of the exterior

algebra on V*:
H*(C:y(T,W;R)) = H*(T,R) = A*(V™).

cell

3. THE GENERAL CASE

3.1. The fundamental group as symmetries of an alcove.
The group W, acts on alcoves (transitively since W, <IW, does) but not simply-transitively.
We introduce the stabilizer

Q= {@ € W, ; ©(Ay) = Ao}
and we see that we have a decomposition I/I/Zer ~ W, x Q and in particular,
0~ I/IZ/W ~ PY/QV ~ P/Q.

Thus, € is a finite abelian group. The following table details the fundamental groups of the
irreducible root systems:

’ Type \ Q~P/Q ‘
A, (n>1) Z/(n+1)Z
B, (n>2) 7]27
Co (n>3) Z]2Z
Doy, (n>2) |Z/22 ®7/27

D2n+1 (n Z 2) Z/4Z
Eg 7./37
Er 7)27
Ey 1
Fy 1
Go 1

TABLE 1. Fundamental groups of irreducible root systems

The description of  given in [Bou02, VI, §2.3] is useful. Given the highest root ap =
Z?:l n;a; of @, recall that a weight w; is called minuscule if n; = 1 and that minuscule
weights form a set of representatives of the classes in P/Q (see [Bou02, Chapter VI, Exercise
24]). Dually, we have the same notion and result for minuscule coweights. Let

M:={ie8; nj=1}.

11
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Proposition-Definition 3.1.1. ([Bou02, VI, §2.3, Proposition 6])

Let og = ZiGS n;a; be the highest root of ® and wy € W be the longest element. Fori € S,
denote by W; < W the Weyl group of the subsystem of ® generated by {c; ; j # i} C IL
Forie M, let wé € W; be the longest element of W; and w; := wéwo.

Then the element toywi € 1/1/7a is in ) and the map

Mo—  0\{1}

T W= tvw;
3
s a bijection.

We now have to see what happens if the W-lattice Y is such that Q¥ C'Y € PV. To
simplify notation of this section, we identify a lattice A C V* with its translation group
t(A) C Aff(V*). We define the intermediate affine Weyl group Wy :=t(Y) x W.

First, we shall identify Y with a subgroup of 2. In fact, there is a correspondence between
W-lattices Q¥ C A C PV and the subgroups of Q. In order to state this correspondence
properly, we temporarily drop the letter Y and we work in the root system ® only. Though
straightforward, the following result is key:

Proposition 3.1.2. Recall that T/I/ZL ~ W, x Q and denote by

T V[//\a —» ()
the natural projection. Given a W-lattice Q¥ C A C PV, we define a subgroup Wy :=
Ax W < W,. Then we have a bijective correspondence

{A: QVCACPY isaW-latticey <5  {H <Q}
A — Qp i=7m(Wy)
7L (H)NPY = A(H) — H

Moreover, for a W-lattice Q¥ C A C PV, we have
[Q: Q] =[PV : A, equivalently, |Qx] = [A:Q"].
Finally, we have a decomposition

WA’:WaNQA.

3.2. A MZ—triangulation of V* from the barycentric subdivision an alcove.

In order to obtain a Wy-triangulation of the torus V*/Y, we just have to exhibit an
Qy-triangulation of the alcove Agy. As the group Qy acts by affine automorphisms of Ay,
the construction follows from the next easy result about simplicial subdivisions.

Recall that, given a polytope P, its barycentric subdivision is the simplicial complex Sd(P)
whose k-simplices are increasing chains of non-empty faces of P of length k+1. A k-simplex
(fo, fi,---, fr) of SA(P) may be geometrically realized as conv(bar(fy),...,bar(fx)), where
bar(f;) stands for the barycenter of the face f.

Lemma 3.2.1. If P is a polytope, then SA(P) is an Aut(P)-triangulation of P.

Proof. 1t is well-known that Sd(P) triangulates P and it is clear that I" := Aut(P) permutes
the simplices of SA(P). We have to prove that, for a simplex o = (fo,..., fr) of Sd(P) and
v €T, if yo = o, then yo = x for each z € |o|.

Take 0 <4 < k. The point bar(f;) is taken by 7 to some bar(f;) and since the barycenter
of a polytope lies in its relative interior, we have ~( fl) N fj # () (where * is the relative
interior) and as vy acts as an automorphism of P, this forces v(f;) = f; and dim(f;) =
dim(y(f;)) = dim(f;). But the sequence (dim fo,...,dim fj) is increasing, so f; = f;
and bar(f;) = bar(f;) = v(bar(f;)). The conclusion now follows from the equality |o| =
conv(bar(fo), ..., bar(fx)). O

12
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Type Extended Dynkin diagram Fundamental group Q < Aut(Dynking)
Iy o wi=(0,1)

0
wp =(0,1,2,-+- ,n)

Z;(n>2) .
. o o} wi=(w1), 0<i<n
B =G 3 wi =(0,2)
1
B\;L('ILES) >3i ;?:% w = (0,1)
0
=)
a(7L23) 0; 1 9 n,1§n wy = (0,n) H(i:WL_i>

i=1

1 m wir = (0,1)(2n — 1,2n)
Dan (n22) ::>3§‘“ <§i} wan-1 = (0,20~ 1)(1,2n) [T/=; (i, 2 — 4)
0 2n —1 wan = (0,2n)(1,2n — 1) [0S (7, 2n — i) = wiwan—1

1 2n+1 wi =(0,1)(2n,2n + 1)
Dot (n22) >3j <1 wan = (0,2n,1,2n + 1) T}y (i, 20+ 1 —4)
0 2n wans1 = (0,20 +1,1,2n) [y (i, 2n + 1 —4)
0

wi = (0,1,6)(2,3,5)

we = (1,0,6)(3,2,5) =w;i!

2
Er wr = (0,7)(1,6)(3,5)

= —e e o
Ey 0 1 273 4 <
Gs = o

TABLE 2. Extended Dynkin diagrams and fundamental groups elements.
The white dots stand for the roots corresponding to minuscule weights and
the crossed dots represent the lowest root a := —ay.

From this we deduce that W,-Sd(Ayp) is a Wy-triangulation of V* for all Q¥ C Y C P at
once. We can describe the associated Z[Wy |-complex C¥  (V*, Wy; Z) using the face lattice
of Sd(Ap), but the description is rather tedious and not as nice as for the simply-connected
case, as the combinatorics of parabolic subgroups doesn’t make sense anymore.

There is a bijection vert(Ag) ~ Sp = {0,...,n} and Ay ~ A™, so that the face lattice of
Ay is F(Ag) = (2(So), C). This gives a description of the face lattice of Sd(Ap) as

V0 < d <n, Fy(Sd(Ao)) ={Ze = (Z0, Z1,...,Zq) ; Vi, 0# Z; C So, Zi C Zi1}
and Z, C 7, if Z, is a subsequence of Z.

Lemma 3.2.2. The group Qy acts on Ay and this induces an_action on So. The resulting
action on F'(Sd(Ao)) corresponds to the action of Qy on [Sd(Ao)| = Ao.
Moreover, for Zs € Fi(Sd(Ap)), the stabilizer of Ze in Wy decomposes as

Wy)z,e = Wa)z, ¥ (Qy)z, = Wa)so\z, ¥ (2v)z.,

13
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and .
=9z
i=0

Proof. The first statement is obvious. Write Zg = (Zg C -+ € Z4) and let @ = ww; €
(Wy)z, with w € W, and w; € Qy. Then, for every x € |Z,|, we have 0(z) = w(w;(z)) =z
and wj(z) € Ag so z = wj(z) and wj € (Qy)z,. On another hand we get w(xz) = = so
w e (Wa)z..

Now, an element w € W, fixes Z, if and only if it fixes the maximal face of Z,, i.e. Zg.
This is indeed the parabolic subgroup (Wa)g,\z,- The last equality holds in general and is
straightforward. O

To avoid too many choices, we fix a total ordering < on F(Sd(Ap)). For instance, the
lexicographical order <., induced by the order on Z(Sp) = 250 inherited from the natural
order on Sjy.

As the barycentric subdivision of Ay is simplicial, the boundaries of the complex and the
cup product are easily determined and lead to the following result:

Theorem 3.2.3. For 0 < d < n, decompose the Qy -set Fy(Sd(Ap)) into orbits
Fd(Sd(Ao))/Qy {Zd 1< < Zd,kd}7 where Zd,i = m{in(Qy . Zd,i)«

Denote further

A N

YO0 < p < d, V1 <1< k‘d, di - ((Zd l) o) (Zd,i)p7 ) (Zd,i)d)~
Then the complex C<N(V* Wy Z) is given by
kq
CEMN(V* Wy Z) = @Z Wy /(Wy)z,.]
i=1
with
d
(Wy)z4: = (Wa) (2, )t ﬂ Qy)(Za4,);-
The boundaries are given by
d
8d(Zd,i) = Z(—l)pwm(Zd,Lui), where u; € Sp ; del,ui = HLIH(QyZC(fZ)) and wp,z'(del,ui) = Zg;)
p=0

Moreover, the dual complex C,(V*, I/I//\a; Z) is a ZL|Wy]-dg-algebra with product
23V 285 = (2.0 Ze o (Zare )"

where
Zivek = m{in(Qy-((Zdyi)o, s (Zai)as (Zej)os -y (Zej)e)) and w(Zayer) = ((Zai)o,-- - (Zej)e)-
Finally, the complex for the torus V*/Y is given by
CeMNV* /Y, W3 Z) = Defyy (CN(V*, Wy Z)).
Example 3.2.4. The case of Ag is fairly computable by hand. We denote by ® = {ta, £5, £(a+
B)} a root system of type Ag, with simple system Il = {«, B}, so Sp = {0,1,2} = J and
Q=Qpv = {1,twgsa35,tw5353a} ~ 7,/37.

——

We wg

In this case, Wpv = WZ is the classical extended affine Weyl group.
Geometrically, the element Qg acts as the rotation with angle 27 /3 around the barycenter
of Ag = conv(0, @y, wy) =: [0,1,2] ~ ~ A2. The situation can be visualized in Figure .
14
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ay =a¥ +pY

BV

FIGURE 1. The subdivision |Sd(Ap)| of the fundamental alcove Ay (in blue).

There are three I/I//;—orbits of points in |SA(Ag)| and we represent them by the points
Y @) + wg

6(1) = ({O}) =0, 68 = ({07 1}) = T eg = ({0’ 172}) = 3

Remember that we order Z(Sp) lexicographically and these are lex-minimal in their orbits.
There are also four orbits of 1-cells represented by

6% = ({0}, {0,1}), e% = ({0}, {0,2}), eé = ({0},{0,1,2}), eéll = ({0,1},{0,1,2}).
Finally, there are two orbits of 2-cells represented by
6% = ({0},{0,1},{0,1,2}), 6% = ({0}, {0,2},{0,1,2}).
Now, we have
Ve € {e?,eg,e%,eg}, Qe =1 and Qy =0
and we obtain the non-trivial stabilizers in WZ:
(Wa)eg =4, (Wa)e‘f =W, (Wa)eg = (W&>e% = (sg) (Wa)eé = (Sa) -
The boundaries are readily computed, with for instance

D(e3) = e3 —e3 + ({0,2},{0,1,2}) = es — e + wgey.
Therefore, the complex CSN(V*, W//\a;Z) is given by

LWL~ ZIW ) (55)) @ ZIWa/ (50)] © ZIWa)2 —2m ZIWa /W] @ ZIWa/ (55)] & ZIWa/S |
with
-1 1 0
1 0 -1 1 -1 w 0
‘92:<0 1 -1 wg)’ h=1_17 1
0 -1 1

Moreover, the root datum (P, ®, PV, ®") may be realized by the Lie group PSU(3) = SU(3)/us3
with torus T = Ty/usz ~ V*/ PV, where Ty is the standard torus consisting of diagonal ma-
trices of SU(3). The complex

then becomes

ZIWP —2o ZIW/ (55)] © ZIW/ (50)] @ ZIW ]2 —2m & ZIW/ (56)] @ ZIW/ (5055)]

15
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with
—1 1

= (1 0 -1 1 = | =1 sgsa
82—<0 1 -1 Sgsa)’ =11 T
0 -1
Recall that the complex CSN(Ty, W; Z) is the simpler one
—1 1 0
C (5 o)
ZIW/ (sp)] & Z[W/ (saspsa)] & Z[W/ (sa)]

The complexes CN(Ty, W;Z) and CN(T, W ;Z) may be obtained using the commands
ComplexForFiniteCoxeterGroup("A",2) and CellularComplexT("A",2,[0,1,2]) provided
by the package Salvetti-and-tori-complexes, mentioned in the Introduction.

—= =0 O

Z[W]

Remark 3.2.5. The complex C’je“(V*, M//\a;Z) i the previous example can be reduced. In-
deed, we can take e* := €3 Uel e3 as 1-cell. This deletes the 1-cell e} and the complex reduces
to

1
t —1
lfwB

ZIW] S LW,/ (s5)] © ZIWa/ (sa)] ® Z[W,]

(4
= LW /W] @ ZWa/ (s6)] @ Z[Wa/ .

We recognize the closure €2 = conv(e(l),eg,wgeg,eg) as the fundamental polytope for I/T//\a
discovered by Komrakov and Premet in [KP84]. It would be nice to obtain a triangulation
from this polytope. However, this approach violently fails in general. For instance, even in
type C3 (and in fact in every non simply-connected root system of rank at least 3, except
B,,), there is a face of this polytope whose vertices are non-trivially permuted by the action
of Q0 and thus the resulting triangulation is not Q-equivariant.

Part 2. Hyperbolic tori for non-crystallographic Coxeter groups

4. CONSTRUCTION OF THE HYPERBOLIC EXTENSIONS AND THE HYPERBOLIC TORUS

The goal of this part is to construct a smooth manifold affording the above dg-algebra
and playing the role of a torus for non-crystallographic groups. All such groups are listed
in the following table:

] Type \ Coxeter diagram ‘
m
I)(m) (5 < m # 6) 3
Hj —o o
1 2 3
H o—— 9o o o
! 1 2 3 4

TABLE 3. Coxeter diagrams of finite non-crystallographic Coxeter systems.

Although we shall focus on the non-crystallographic case, what follows applies to all finite
irreducible Coxeter groups. In particular, in the I3(m) case, we only assume that m > 3.

A key ingredient in the construction of the W-equivariant triangulation of the torus of a
Weyl group (in fact of the simply-connected compact Lie group of type W) is the reflection s
associated to the highest root ay in the root system ® of W. Thus, we first have to find such
a reflection in the non-crystallographic cases. Moreover, this should come with an infinite
extension of the finite group, which should again be a Coxeter group. A last important point
is that, in the infinite Coxeter group, every maximal proper parabolic subgroup should be

16
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finite. The good class of Coxeter groups we shall consider for this matter is no longer the
affine groups, but the compact hyperbolic groups.

4.1. Compact hyperbolic extensions of I(m), H3 and Hy.

Let us first recall some basic terminology concerning Coxeter groups. For more detailed
discussions, the reader is referred to [Bou02] and [Hum92].

Let (W, S) be an irreducible Coxeter system of rank n. We write

W = (s1,...,5 | (si5;)" =1),

with M = (m;;)i<ij<n the Coxeter matrix of (W, S). Recall ([Bou02, V, §4] or [Hum92l
Chap. 5]) that on the formal vector space V' := spang(a;, 1 < i < n) we may define a

symmetric bilinear form by
7-(— )
mz?]
as well as the linear mappings

V1<i<n, g, :=(v—v—2B(aj,v)).

B(oi, aj) := — cos (

Then the assignment s; — o; extends uniquely to a faithful irreducible representation
o: W — GL(V),

known as the geometric representation of W.
Moreover, W is finite (resp. affine) if and only if the form B is positive definite (resp.
positive semidefinite) (see [Bou02l, V, §4.8 and 4.9]).

Proposition-Definition 4.1.1 ([Hum92) §6.8]). The followings are equivalent

(i) The form B has signature (n — 1,1) and B(A\,\) <0 for A € C,

(i) The form B is non-degenerate but not positive and the graph obtained by removing
any vertex from the graph of W is of non-negative type (i.e. its group is finite or
affine).

If these conditions occur, then W is said to be hyperbolic. If the second condition is
enhanced by requiring that any such sub-graph is of positive definite type (i.e. its group is
finite), then W is said to be compact hyperbolic.

Remark 4.1.2. As mentioned in [Hum92], the terminology comes from the fact that the
homogeneous space O(V, B)/W, equipped with the induced measure coming from the Haar
measure on O(V, B), is of finite volume if and only if W is finite or hyperbolic and, in the
hyperbolic case, a component of {\ € V. ; B(A\,A) = —1} gives a model for the hyperbolic
(n — 1)-space H™. Moreover, the space O(V, B)/W is compact if and only if W is compact
hyperbolic.

Another point is that W is compact hyperbolic if and only if B is non-degenerate non-
positive and every proper parabolic subgroup of W is finite.

We are ready to define the compact hyperbolic extensions of non-crystallographic groups.
From now on, we let (W, S) be a finite irreducible Coxeter system of rank n with Coxeter
matrix M. As mentioned in the beginning of this part, if W is crystallographic, then we
consider the reflection ry := s,, associated to the highest root ag of ®(W) and, if W is
non-crystallographic, we have to choose a suitable reflection ryy € W yielding a compact
hyperbolic extension of W. This is done in the following result, where the notation are as
in the Table [
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Proposition-Definition 4.1.3. Let W be non-crystallographic and choose rywy € W to be
the following reflection in W:

m—1

(slsg)L 2 Jsl if W =1Is(m), m>3,

rw = séSQSI)Q if W = Hj,

2
(5?53 (5152)25354)

Define

o~

W= <§0,§1, G| Y > 1, i)™ = (Gos)orwe) = 8 = 1>,

where o(z) is the order of the element  and S = {3y,...,3,}. Then the pair (W,g) is a
compact hyperbolic Cozeter system, whose Coxeter graph is as in the following table:

‘ Extension ‘ Cozeter graph ‘
0
Lo(m) (m=1[2)) m/ \m
1 m 2
—— m _m
Lo(m) (m = 0[] ———
Ir(m) (m = 2[4)) o o o
0 1 2
. 0 > 3
Hj
1 5 2
H\4 QLO—Q—QLQB
1 2 3 4 0

TABLE 4. Compact hyperbolic extensions of I3(m), Hs and Hy.

Moreover, in type H, the reflection ry is the only one for which the resulting group 1%
18 compact hyperbolic.

Proof. The expression we give for ry indicates that ryy indeed is a reflection of W. As ry
has order 2, the matrix M := (m; ;)o<i j<n defined by

Vi,j 2 1, ‘fflm‘ = mi,j, T/flo,i = ’ffl@o = o(rwsi), T/flo’o =1

is indeed a Coxeter matrix and W is the associated Coxeter group. Moreover, we may
compute the integers o(ry s;) directly and find the above Coxeter graphs and these are
indeed graphs of compact hyperbolic groups, as all those graphs are well-known, see [Che69,
Appendice].

The second statement comes from a tedious, but elementary verification on the 15 (resp.
60) reflections of Hjz (resp. Hy): only the reflection ry from the statement gives a graph
which appears in the table of [Che69)]. O

Remark 4.1.4. A (non-crystallographic) root system ® may be associated to W. More
precisely, ® is the orbit under W of the vectors «; spanning V.. Then ® forms a (non-
Euclidean) root system in V', which is non-crystallographic in the sense that the condition
(aV,B) € Z does no longer hold. We still may choose a highest root in ®. If W # Hs, then
the reflection associated to this highest root is indeed ryy.

The extension of Hs with ry the highest reflection has been considered in [PT02]. It has

the following Cozeter graph
18
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B

However, the sub-graph i.i. 1s of negative type, hence this extension is neither affine
or hyperbolic and the sequel does not apply.

Using the very definitions of W and W as finitely presented groups, we obtain the following
result:

Corollary 4.1.5. For any W, the assignment

50 — Tw
5 8

extends (uniquely) to a surjective reflection-preserving group homomorphism
W —s W.

Moreover, if ryy = ;i ---8;, is a reduced expression of rw, then the element Ty =

Siy - Siy € W s well-defined and we have
ker = <(§0@)W> :
that is, ker(m) is the normal closure of Sorw in w.

Proof. In every reduced expression as in the statement, we have i; > 1 so that the element
Tw = Si, -+ 8, is in the parabolic subgroup W{l,...,n} ~ W and thus 7 doesn’t depend on
the chosen reduced expression for ryy.

Because 7 sends a simple reflection of W to a reflection of W, it is clear that is sends any
reflection to a reflection. .

We have (37w ) = r¥, = 1 so that the subgroup N := <(§07"/W\/)W> is certainly contained

in ker(m). Furthermore, we easily find a presentation of W /N by adding the relation sy =

Siy -+ 85, for ryy = s, -+ - 55, as above to the already known relations for W. The composite
(50,51, -5 | Vi, j =1, (5i5;,)™ =1, S0 =i, -+ 55, ) ~ W/N —» W /kerm = W
maps 5; to s; and is an isomorphism. In particular, this yields an isomorphism of W-sets
W/N ~ W /ker ,
forcing ker(7) and N to be conjugate in W, hence equal. U

Definition 4.1.6. We denote the kernel of the projection from the previous Corollary by
Q :=kerm = <(§0Fﬁ/)w> .
Corollary 4.1.7. With the notation of the above theorem, we have
W= Q< W.
Proof. The map s; — 5; (i > 1) extends to a splitting W — W of . O

Remark 4.1.8. Let ® denote the (non-crystallographic) root system of W and & € ®* be
the (positive) root associated to the reflection ryy, i.e. such that rw = sgv. If W # Hs,
then & = ayq is the highest root of ®. Denote by tzv the translation by & and by o* : W —
GL(V*) the dual of the geometric representation of W. We can define a homomorphism

W -2 AfF(V)
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by sending s; to o*(s;) fori > 1 and a(sp) := tgvo*(rw). If W is a Weyl group, then a is
injective and identifies W with W, < Aff(V*). Moreover, in this case we have

@ ~a(Q) =a ((@m)™)) = ((aEa(z)™)

= ()" = ltavs @ e 0) =207 £ Q" = 2"
This is the coroot lattice of ® and in particular, the group Q is abelian.
However, a relatively recent result ([Qi07, Corollary 1.6]) states that an irreducible, infinite
Cozeter group is affine if and only if it contains an abelian subgroup of finite index and, as

[W 1 Q] = |W| < o0, the group Q cannot be abelian in the hyperbolic case.

Moreover, in the non-crystallographic case, the image of a is no longer discrete because
Z®V C V* is dense in V* and also, the morphism a has no reason to be injective, because
we cannot relate the length function on W with separating reflection hyperplanes in 'V any
longer. -

The morality is that we should take the geometry of W into account, which is not affine
but hyperbolic in the non-crystallographic case.

4.2. A key property of the subgroup Q.
The following result will be crucial in the sequel.

Lemma 4.2.1. The normal subgroup Q) trivially intersects every proper parabolic subgroup
of W, i.e.
VICS, QNnWr=1.

Proof. This is clear in the crystallographic case because Q ~ Z®V ~ Z".
Recall the morphism 7 : W — W. The statement may be rephrased as follows:

Vs € §, ker </M7§\{s} SN W) =1.
For s = 5y, this is obvious since Wg\ 5o} — W is an isomorphism.
Let s€ S \ {So}. Since Wis compact hyperbolic, the parabolic subgroup /I/I7§\ (s} is finite.
Hence, to prove that the morphism

Voo = (%\{s})
is injective, it suffices to prove that
(*s) ‘W </W\§\{s})‘ = ‘W§\{s}

The right-hand side is easily computed using the Coxeter diagram of W (see Table . To
compute the left-hand side, we proceed by a case-by-case analysis. For Hy, we will need the
following trick:

Denote by

R:= U wSw™! = U S
weW weW
the set of reflections of W and
Vw e W, N(w) :={reR; {(rw) < l(w)}.
If H < W is a reflection subgroup of W (i.e. if H = (H N R)), then the set
DH):={reR; N(rynH = {r}}
is a set of Coxeter generators of H (see [Dye90, Theorem 3.3]). In our situation, we find the

Coxeter generators D(?T(W§\ {S})) and determine the resulting Coxeter diagram, giving the

—~

order of W(Wé\\{s}).
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e W = Iy(m) with m = 2k 4+ 1. We have defined iy = (s152)"s1; and we readily
compute sy = 51" and s; = s2"" so that 7r(I/VSO 5) = W(W%,g?) = W. On the
other hand, we get from the diagram \WS |W5
. ) for s = 57, S9.

o W = Iy(m) with m = 4k. In this case we have ry = (s1s2 s1 and since
s9 = (s17w ) 1s1, we also have (ry,s1) = W and (k) is thus true for s = 59 as

nggl ~ W. Because soryy = rys2, we have (so, ) = A; x Ap and VVSO 5
A; x Aq so also holds for s = 5.

o W = Ir(m) with m = 4k + 2. Here, riy = (s152)%*s; and we compute 7y s1ry =

(5189)%s) = 595180 = s1?. In the same way, we get (sl(s‘?))ksl = (s189)%s; =

oml = 51| = 2m = |W/|. This proves

)Qkfl

rw. This implies (s1,rw) = (s1,57?) ~ L2k + 1) ~ /Wgoygl. In fact, we have
D((s1,rw)) = {s1,5;*}. Now, as above we have sory = ryyso and Wy, 5, ~ A1 x

Ay > (s2,Tw).
e W = Hj. Special relations among reflections occur in this case. Namely

2
5981 s152)2 2 2
Tw = Sg ) s3 = TI(/V , 82 = s3(rwsss1) rwss, s1 = (rwsss2) rwssrw.

Hence, for s € S , we have m (/V[?g\ {S}) W ~ WS\ (s}’ this last isomorphism being

given by the diagram of JEI\g Therefore, all the relations hold in this case.
e W = H,. The additional reflection is

2 2
5382515283(S1S 838
r _84(132123(12)34)'

We notice the following relation
2 2 3
s1 = s253(s4rw )" (s3547mW S2(83547W ) “52)° 53547 5453 52.

This proves that s1 € (ry, s2, s3, $4) S0 F(Wgo’g%gmgzl) W ~ WSO 52.55,5,- We treat
the remaining cases by determining the Dyer generators of the reflection subgroups.
Calculations can be done on the sixty reflections of Hy (though easier using [GAP4]).

‘We obtain
T (Wgo,gl,gg,@) = (rw,s1,53,54) = <Si283(8132) 81783,84> ~ Ay x H3 ~ W§0,§1,§3,§4
and
m (Wgogl,gz,a) = (rw, $1, 82, $4) = <8§482518283(8152) o 31,32,34> ~ Iy(5)% =~ Wa, 5,554
and finally,

™ (Wgo,gl,gg,gg) = (rw,s1,52,83) =~ H3 x A1 =~ Wg 5 35,3,
This establishes the relations for W = Hy, finishing the proof.

Corollary 4.2.2. The group @ is torsion-free.

Proof. Let g € @ be of finite order. By a theorem of Tits (see [Qi07, Theorem 3.10]), there
are w € W and J C S such that q€ wW Jw™ and W] is finite. This last condition implies
J#SandsmctesnormalmW we get ¢% eQﬂWj—l so q=1. O

4.3. The hyperbolic torus T(W) of W and its first properties.
Before defining the manifold T'(W), we have to Study the action of the subgroup QI 1%
on the Tits cone of . Recall some notation: define V := spang (ag, s € S ) and the bilinear

Bl(og, ay) = — cos <A7r ) ,

Mmst

form B given by
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with (s), g the Coxeter matrix of (/W, S). As W is hyperbolic, the form B has signature

(n —1,1). We also have the geometric representation
5: W — 0(V,B).
Consider the contragredient representation * : W < GL(V*) and define (ay),eg to be the

w5 We have 6*(w) = 'a(w™"), that is

VS,t € §7 8*(8)(042/) = Oé;/ - 2587t§(_7a8)'

dual basis of V* associated to (o)

The duality pairing of V is denoted (-,-) as usual. Let moreover
Vse S, Ho:={AeV*; (\as) =0} and A, :={reV*; (\a,) >0}
and consider the respective fundamental chamber and Tits cone
C={AeV"; Na)>0,¥seS}= ()4, and X := ] w(D).
seS weW

This is indeed a convex cone and C is a fundamental domain for the action of /V[7 on X.

Finally, denote
VICS, Cp:= (ﬂ H) N (ﬂ As> cC,

sel s¢l
in particular Cy = C, Cg = {0} and we have C = | J,.5CT.
In this context, we have the Cozeter complex B
5= S(,8) = (X \ {0})/RY.
This is a W—pseudomanifold and we have a decomposition
= | Riw(@)
wE/VAl7
IcS
which is in fact a W—triangulation since Riw(a) may be identified with the standard
(n — |I])-simplex: R* w(C) =~ A" 1|, Moreover, since W is infinite, S is contractible and
by [Bro89, III, §2, Corollary 3|, since every proper parabolic subgroup of W is finite, S s

in fact a smooth n-manifold.

Remark 4.3.1. All the above construction makes sense for any Coxeter group. If the group
W is finite, then (W) is homeomorphic to the (rk(W) — 1)-sphere.

We can give a natural simplicial structure to the Coxeter complex (see [BR04, Corollary
2.6]). Consider the set of parabolic cosets of W
P(W,S) = {wW;; we W, I C S}
We partially order this set as follows:
w/WI < ’lU//WJ PLIN w/WI D ’[U,WJ.

Notice that wWI <w W 7 implies wWI = I//I\/I and J C I. We define the simplicial complex
A(W,S) as the nerve of this poset:

A(W,S) = N(P(W, ), =).

If we denote by P(i) the poset of faces of ¥ with respect to the triangulation described
above. Then we have an isomorphism of posets

~ ~

(P(W,5),%) = (P(%),9)
wWp — Riw(C[)
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and this yields a W—equivariant homeomorphism
AW, 8)| = 5.

Now, recall that an action of a group G on a space Z is said to be properly discontinuous
(or a covering space action, see [Hat02), §1.3]) if every point z € Z has an open neighbourhood
z € U C Z such that if g € G is such that gU NU # (0, then g = 1. In other words, such
that

Oc(U):={9€G; g(U)NU # 0} = {1}.

Lemma 4.3.2. The action of the discrete subgroup 0*(Q) < GL(‘7*) on the Cozeter complex
> is free and properly discontinuous.

Proof. Of course, we identify the group W with 5*(W). Let z € & (with z € X \ {0}).
First, we prove that ¢(%) # T for ¢ € Q \ {1}. To say that ¢(Z) = T amounts to say that
q(z) = ax for some a € R* and we may assume that z € C \ {0} since Q < W. There is
some I C S such that z € C7. Because C7 is a cone, we have axz € C; N q(Cr) # 0 and by
[Bou02, V, §4, Proposition 5], we obtain ¢(C7) = C so q € WI NQ =1 by Lemma

To prove that the action is properly discontinuous at T, we have to find an open neigh-
bourhood U of T in 3 such that, for 1 ¢ € Q, we have U N q(U) = 0, i.c. Oq(U) ={1}.

By definition of the topology on the Coxeter complex, it suffices to prove the statement
for X \ {0}.

First, we show that the action of W is wandering at x, that is we can find an open
neighbourhood A of x such that Og;(A) is finite.

We may assume that 2 € C \ {0}, say 2 € C; with I C S. Define A to be the interior in
X\ {0} of the subset |J, o v(C). We prove that there are only finitely many w € W such
that A Nw(A) # 0. Suppose that w € Op;(A) and choose a € A with w(a) € A. Notice
that we have

Ac |Ju@u | v(H.nd0).

UEWI UGWI
sel

Thus, we distinguish four cases:

o As W acts on X\U,cg Hs, we cannot have a € |, , v(H;N9C) and w(a) € U, u(O).

e Similarly, we cannot have a € |J, u(C) and w(a) € U, , v(Hs N OC).

e Suppose that a € |J, v(C) and w(a) € |J,v(C), say a € u(C) and w(a) € v(C). This
implies u~!(a) € C and v™lw(a) = v wu(u(a)) € C, thus wv=tw(C) N C # 0
and so w =vu~! € /WI by Tits’ lemma.

e Suppose now that we have a € |, , v(HsN0C) and w(a) € U, ;v(HsNIC), say a €
u(HsNOC) and w(a) € v(H;NAC). This implies u~!(a) € C and v~ lwu(u='(a)) =
v~lw(a) € C and by [Boul2, V, §4, Proposition 6] we get v"tw(a) = u~'(a) and
thus uv 1w € (W)a = uWu~! for some J cs (in fact, J is defined by the condition
W, = (/W)u—l(a)). Therefore, we have w € vWu~L.

In any case, we have
O (4) A {weW; w(A)NA£P}C U uW .
u,UEIﬁ/]
JCS
However, as W is compact, any proper parabolic subgroup is finite and so this last subset
is finite and Og;(A) is then finite as well.
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The rest of the proof is very standard. For each w € Op(A) \ W; we have w(z) # = and
we may choose an open subset A,, such that x € A,, C A and w(A4,) N A, = () and define
B = ﬂ A, C A

weOw (A\W;

Because Og;(A) is finite, B is open and let w’ € Og;(B) C Op(A). We must have w' € Wi

because otherwise, } # BN w'(B) C Ay Nw'(Ay) =0 and thus Og(B) C W
Consider the open subset

U:= () w(B)CB.

wEW[
We have Oy (U) C O(B) C W, and U is W-stable (ie. Uisa W-slice at x). In particular,
ifge @\ {1}, then ¢ ¢ W; by Lemma and thus ¢ ¢ Og(U). O

We arrive then to the main result of this section. Remark that the Tits form B induces
a Riemannian metric on the Coxeter complex ..

Theorem 4.3.3. Let (W,S) be a finite irreducible Cozeter group of rank n and (W,g)
be either the affine Weyl group associated to W if W is crystallographic, or the extension
constructed above otherwise. Then, the orbit space

T(W):=%/5"(Q)
s a closed, connected, orientable, compact smooth W -manifold of dimension n.

If W is a Weyl group, then we have an isometry S ~R", Q ~7Z" and T(W) ~R"/Z" is
an n-torus. Moreover, T(W) is W -diffeomorphic to a maximal torus of the simply-connected
compact Lie group with root system that of W.

Otherwise, the Riemannian manifold S is isometric to the hyperbolic n-space H™ and
T(W) ~H"/Q is a hyperbolic W -manifold.

Furthermore, the canonical projection yields a covering space
Finally, the quotient simplicial complex A(/W, §)/Q is a reqular W -triangulation of T(W).

Proof. Since ¥ is a closed smooth manifold and the action &* Q) C Sis properly discontinous
by Lemma[4.3.2] the quotient manifold theorem ensures that T (W) is indeed a closed smooth
manifold and by [Hat02, Proposition 1.40], the projection I, T(W) is a covering map.
Moreover, T(W) is connected since the Coxeter complex is and, as C/R% ~ CNS" is a w-
fundamental domain on the Coxeter complex, its projection onto T(W) is a W-fundamental
domain, hence T(W) is compact (W is finite). Since @ is normally generated by Syry and
because ¢(ry) is odd, we have £(Sprw) = 1 and so @ < ker(e). This proves that the action
of Q) on 5 preserves the orientation, ensuring the orientability of T(W).

The comparison with a torus of a Lie group follows directly from the Remark [4.1.8]

In the non—crystallographlc case, let v* € V* be a normahzed eigenvector for the negative
eigenvalue of B. Then the subset H := {\ € V* . B(\,\) = —1, B(v*,\) < 0}, together
with the metric induced by the restriction of B is a Riemannian manifold isometric to the
hyperbolic space H". We have T(W) = E/Q ~ H/Q ~ H"/Q and since @ preserves the
form B, the manifold T(W) naturally inherits a hyperbolic Riemannian metric. O

Remark 4.3.4. The manifolds T(Hs) and T(Hy) have already been discovered in [Zim93]
and [Dav85|]. Zimmermann and Davis construct them by taking the orbit under the action
of Q (which is defined slightly differently) of hyperbolic polyhedra. However, our approach
has the advantage of being more systematic and to work with any finite Cozeter group. For
a more detailed study of the Davis manifold and its invariants, see [RT01].
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Recall that, as W is infinite, the Coxeter complex is contractible.

Corollary 4.3.5. The covering space
Q¥ — T(W)

is a universal principal Q-bundle. In particular, T(W) is a classifying space for Q and an
Eilenberg-MacLane space

T(W) ~ Bg ~ K(Q,1).
4.4. Presentation on the fundamental group of T(W).

In this section, we use Poincaré’s fundamental polyhedron theorem (see [Rat06, Theorem
11.2.2]) to derive a presentation of the group w1 (T(W)) ~ Qﬁw in the non-crystallographic
case. The tessellation A(W, §) of & ~ H" easily yields a fundamental polyhedron for @
acting on S

Choose v* € V* a normalized eigenvector of the Tits form B for its unique negative
eigenvalue and consider the subset

H = {/\G | B\()‘v)‘) = —1, E(U*a)‘) <0} cVve

As already noted in the proof of Theorem the form B induces a Riemannian metric
on H and we have an isometry H ~ H", Where H" is the standard hyperbohc n-space. By
Remark 4 the fundamental chamber C is included in the subset {\ ; B(\,A) < 0},
hence we can prOJect the punctured Tits cone X \ {0} on the sheet H of the hyperbola

{X: B(\,A) = —1} and we get & ~ X NH. The n-simplex
Ag 2:€/R* ~CNHC i

Recall that we have denoted H, := {\ ; (A, a,) = 0} for s € S. As the subset Lo 1=

C NN, 45, Hs 1s a line, its intersection with H is a vertex of the tessellation A(W, S) and
we may consider its star

A=st(LonH)E | o= | wo).

oc€F, (A(W,S)) weW
LoNHCo

We will describe the generators and relations for 1 (T(W)) in terms of side-pairing and
cycle relations, as in [Rat06, §6.8]. It is easy to see that the facets of A are the W-translates
of the facet

oo = Hg, N A€ F, 1(A),
in other words, 0A = J,, w(op). By [Rat06, Theorem 6.8.3], the group @ = m(T(W)) is
generated by the set
UV:={qgeQ; ANgA e F,_1(A)}.

Lemma 4.4.1. The set ¥ of generators of Q is given by the W-conjugates of the normal
generator of Q. In other words, if ryw € W is the chosen reflection and if qy := Sorw € W
then we have

U= {Y, weW}={wquw™!, we W/Cylq)}

Proof. Let 1 # g € Q be such that A NgA is a facet of A, say w(og) for some w € W. We
have

w(oo) =ANgA = | u(Ag)ngu(do) = | J ulAonuqu(A)).
u,veW u,veW
Since any term of the last union is (empty or) a closed simplex, this means that one of them

has to be the whole of w(oy), so we can find u,v € W such that
u_lw(ao) = AgNutqu(A).

25



ARTHUR GARNIER

Lw(og) € Ag and since any W-orbit meets Ag in only one point,

In particular, we have u~
this implies that u=lw(og) = 0¢ and so u~lw € W,, = (5) but as v tw € W, this is

possible only when © = w. Hence we get
oo = Ay N Uiqu(AQ).
This implies in turn that u~'quv € (5p) and since ¢ # 1, we must have u~lqv = 3, i.e.

g = uSov~'. Finally, because ¢ € Q, applying the projection = : W — W to this equality
yields 1 = uryv™t, so v = wry and g = uSov " = ugou~". O

We can formulate the side-pairing and cycle relations using the combinatorics of W. To
to this, we need a technical lemma on the centralizer of ¢q.

Lemma 4.4.2. The centralizer of qo = Sorw in W is given by
Cw(qo) = Cw(50) = (s € 5 ; s50 =5S0s) .
In particular, this is (standard) parabolic.

Proof. First, we borrow an argument due to Sebastian Schoennenbeckﬂ to prove the second
equality above. Let w = s;, ---s;, be a reduced expression of an element w € Cy (50). To
show that w is in the parabolic subgroup of the statement, since the elements of Cyy(Sp)
of length 1 are the simple reflections of W commuting with 5y, by induction it is enough
to show that Sps;. = s;,80. We have £(wsp) = f(w) + 1 and ¢(wSyw ™) = £(59) = 1, so
(w3psi,) = L(wsow tws;,) < 1+ (ws;,) = (w) and thus (wsps;,) = ¢(w). Thus, by
the exchange condition, there is a reduced expression wsy = s;, - - - sj,.5;, for wsp and since
Siy - -+ 8;,.50 is already a reduced expression, by Matsumoto’s lemma, there is a finite series of
braid-moves from the second to the first. The expression s;, - - - s, 50 satisfies the property

(%)

Consider a braid relation sts--- = tst--- connecting the two expressions of wsy, with m
factors on each side and suppose that we apply it to a reduced expression of wsy verifying
. If s,t # 5y, then the resulting expression still satisfies . Now, if s = 5( say, then ¢ has
to commute with 5p. Indeed, if not, then the left-hand side of the braid relation contains
at least two occurrences of 5y (one on each side of ¢t) and, in the right-hand side there is
at least one occurrence of ¢ on the right of sy, but none of these occur in the considered
reduced expression. Therefore, the reduced expression resulting of the application of the
braid move still verifies . In particular, the expression s;, - - - sj,5;, satisfies and thus,
every simple reflection appearing on the right of 55 must commute with it. In particular,
this is the case of s;,., as required.

We now prove that Cy(qo) = Cw(S0). Let w = s;, ---s;, be a reduced expression of
an element w € Cy(qp). Since wqy = qow, we get Spwsy = rwwry € W. Let Sowsy =
Sj, -+ Jj be a reduced expression in W. Since ¢(wsy) = £(w) + 1, we have £(50wsp) €
{€(w), f(w) + 2}. But taking length in the equality 5ps;, - - 85, = sj, - -+ 5,50 gives k =7,
that is £(Spws) = ¢(w). In particular, ¢(Spwsy) < ¢(wSp) and by the exchange condition,
there is a reduced expression SowSy = ;, -+ - §;, - - - $i, S0 and since this last expression is in
W, we must have s;, = 5y (the reflection s;, is omitted), thus sowsy = s;, -+ - 55, = w and
w € Cw(Sp). The reverse inclusion can be directly checked case by case using the parabolic
description of Cyy (50). O

The expression contains only one occurrence of 5y and there is no simple reflection
appearing on the right of 5y that does not commute with it.

Remark 4.4.3. From the diagrams of the hyperbolic extensions we get therefore
012(29+1) (QO) =1, 012(4g+2)(QO) = <52> s C12(4g) (qo) = <52>7
Ch;(q0) = (s2), Cr,(q0) = (51,52, 53) ~ H3.
2

https://mathoverflow.net/questions/200433/centralizers-of-reflections-in-special-subgroups-of-coxeter-groups
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Theorem 4.4.4. Let W be non-crystallographic and U := {w € W ; l(ws) > l(w), Vs €
S 5 ss0 = sost = W/Cw(qo) be the set of minimal length coset representatives modulo
the parabolic subgroup Cw (qo) of W. The transitive action of W on W/Cw(qo) induces
an action of W on U. Then the fundamental group w1 (T(W)) ~ @Q admits the following
presentation

WI(T(W)) = <qua uelU ’ Rside U Rcycle> ;
where

Ride = {ququ, w,v € U ; u”lorw € Cw (30)}
and
Rcycle = {QM(l)qw(ug) o Qy(un)y WE W, g, uz, ..., ur,ury1 € U such that ug = up41 =1

1 -1

and, fori >0, <§0,§gi+1uirw> and <§07§gwui_1ui> are conjugate under CW(§0)} )
Proof. Drop the presentation notation and, for v € U, denote ¢, := “qo = uqou™ "', oy =
u(og) = AN qu(A) and o/, == q; ' (00) = ugo(cp). To say that for some u,u’ € U we have
Qudw = 1 amounts to say that “qy = “,qal = “/’”qu, ie. ulu'ry € Cw(qo).

For the cycle relations, we follow the method detailed in [Rat06l §6.8]. First notice that
each facet of o is of the form o, for some u € U (see [Rat06, Theorem 6.7.5]). Choose
o€ Fp1(A)and 1 € Fj,_2(0) C Fj,_2(A). Recursively define a sequence of facets {0 }jen-
as follows

o let 0y, =0,

e let oy, be the facet of o adjacent to o}, := ¢, ' (c) such that gy, (o), Now,) =T,

e for i > 1, let oy,,, € Fu_a(0) be the facet adjacent to o), := ¢, (0y,) such that

qui(a’:l,i N Uui+1) = Uv:i,l Moy,

By [Rat06, Theorem 6.8.7], there exists a least integer k¥ € N* such that oy, , = oy, for
all i and we have ¢, ---qu, = 1. Moreover, by the Poincaré theorem [Rat06, Theorem
11.2.2], the set of all such relations (for o € F,,_1(A) and 7 € F,,_2(0)), together with the
side-pairing relations described above, form a complete set of relations for Q).

Let 0 € F,,_1(A) C W - 0p. Up to conjugation by an element of W, we may assume that
o = o0p and so g, = qo. Let u;,u;,up € U be such that we have some relation

quj(a;lj Now,) = ou; Noy, # 0.
We write
Qu; (O';L]_ Now,) =0u;, N0y, <= 0u; Ny (0y,) = 0y N quil(aui)

<= wu;(00) N qu,uk(00) = uj(ao) N q;ilui(ao)

<> uj(og N uj_lqujuk(ao)) = u;(op N uj_luiqo_l(ao))

<~ oggN qouj_luk(ao) =ogN uj_luirw(ao),
and the two hand sides of the last equality are simplices of th/e\ tessellation A(/W, S ), whose
face lattice if the lattice of standgzd parabolic subgroups of W. Hence these two coincides
if and only if their stabilizers in W are equal. But this condition depends on the choice of

the elements of U, but it is straightforward to check that different choices give conjugate
stabilizers in Cyy (qo). O

Corollary 4.4.5. The group 71 (T(Hz3)) (resp. T(Hy4)) admits a presentation with 11 (resp.
24) generators , all of whose relations are products of commutators. In particular, we have

H(T(Hs),Z) = m (T(H3))** ~ Z'' and H(T(Hy),Z) = n1(T(Hy))* ~ 7%,
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Proof. We apply the above result. For Hs, beside the side-pairing relations (which we can
immediately simplify by removing half of the [H3 : C,(qo)] = [H3 : (s2)] = 60 generators),
we find only one primitive cycle relation (primitive meaning starting by qo) of length 3 and
one of length 5. Taking the Hs-conjugates of these gives 120 relations of length 3 and 120
relations of length 5. But the inverse of each of these relations appears so we can simplify
them. We can also remove any cyclic permutation of these relations, which finally yields a
presentation for m (T (H3)) with 30 generators, 20 relations of length 3 and 12 relations of
length 5.

We do the same for Hy, where there is only one primitive cycle relation of length 5, which
gives a presentation for 71 (T (Hys)) with $[Hy : Cp,(go)] = 60 generators and 144 relations
of length 5.

Using the relations, we can check that some of the generators are superfluous and that
the simplified presentation has the stated number of generators (all among the original
generators) and that the relations become trivial, once abelianized. All the formulas are
given in Appendix [A] O

Remark 4.4.6. The intermediate presentations of w1 (T(Hs)) and 71 (T(Hy)) (with 30 gen-
erators and 32 relations for Hs and 60 generators and 144 relations for Hy) are precisely
(up to relabelling) the presentations given in [Zim93] and [RT01].

4.5. The manifolds T(I2(m)) as Riemann surfaces.

A little bit more can be said about the case of the surfaces T(I2(m)). Recall that by
[Jos02, Theorem 3.11.1], any Riemannian metric on an oriented 2-manifold M induces a
complex structure on M (making M a Riemann surface), called the conformal structure
induced by the metric.

Corollary 4.5.1. Let g € N* and T, be either T(I2(2g + 1)), T(I2(4g)) or T(I2(4g + 2)).

Then T is a closed compact Riemann surface of genus g. In particular, T, is a torus if

and only if the corresponding group Iy is crystallographic and we have homeomorphisms
T(I2(29 +1)) =~ T(I2(4g)) =~ T(I2(4g + 2)).

Furthermore, if g > 1, then Ty is a hyperbolic surface of finite area 47(g —1).

Proof. Since the surface T is orientable, the Riemannian metric induced by the one on the
Coxeter complex induces a conformal structure on T, and the fact that T, is hyperbolic if
g > 1 comes from Theorem [4.3.3]

Now, if the Euler characteristic x(T,) is known, since x(T4) = 2 — 2g we find the genus
of T4. Because the genus of a closed surface is a compete topological invariant, we obtain
the stated homotopy equivalences and the hyperbolic Gauss-Bonnet formula (see [Rat06),
Theorem 9.3.1]) gives Area(T,) = —2mx(T,). Therefore, we only have to compute x(T,).

Let m be 2g + 1, 4g or 4g + 2 according to what T, is and

Wi=IL(m)=(s,t|s*=1t"=(st)" =1).
We will detail the combinatorics of the W-triangulation A(W, §) /@ in the next section,

however we only have to compute x and very few information is needed. The rational chain
complex associated to the simplicial complex A(W,S) has the following shape:

QW] — QIW/ (s)] ® QIW/ (#)] ® QW / (80)] — QIW/ (s,1)] & QW / (5, 30)] & QIW/ (,50)]
Now, by Legma the complex for T is the image of the previous one by the deflation
functor Def}},. Thus, it is of the form

QW] —=QW/ {s)] @ QIW/ (1)l & QW/ (r)] —= Q& Q[W/ (s,r)] & QIW/ (t,7)] ,

m=1)/2] s ¢ W. Therefore the Euler characteristic is given by

where 7 = ry := (st)L(
X(Tg) =1+ W (s, )]+ [W = ({t,r)] = W (s)] = [W 2 ()] = [W: (r)] + [W]
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=14+ [W:(s,m)]+[W:({r)]-=3W:(s)]+2m=1—m+ [W: (s,r)]+ [W : (t,r)].
Now, we distinguish the three possible cases for m to determine the last two indices.

If m = 2g+1 is odd, then we have r = (st)9s, s0 s" =t and t" = s so (s,r) = (t,r) = W.

If m = 4g is divisible by 4, then r = (st)29~!s. From the Coxeter diagram of W= I5(4g),
we see that the map intic@nging S0 and ¢ and leaving s invariant extends to a non-trivial
outer automorphism of I3(4¢g) and descends to an outer automorphism of I5(4g). Taking the
image of the relation r = (st)29~!s under this automorphism yields ¢ = (s7)?9~!s and thus
(s,r) = W. Now, since the element rt = (st)%9 has order 2, we have (¢t,7) = {1,t,7,tr} ~
CQ X CQ.

Now, if m = 4g + 2, then r = (st)¥s and (s,r) = (s, (st)29) = (s, (st)?) = (s, tst) ~
I5(2g+1) and because (1t)? = (st)29st(st)?9st = (st)*912 = 1, we also have (t,r) ~ Co x Cs.

Gathering everything we get

[I2(m) : (s,7)] = { 1 otherwise

thus

1 if mis odd,
and [Ia(m) : (t,r)] = { m/2  otherwise

3—m if m=2g+1,
X(Tg) =< 3—m/2 if m=4g+2,
2—m/2 if m=dg,
in other words,
X(Ty) =2 —2g.
O

As the fundamental group of a Riemann surface of genus g > 1 is well-known (see [Hat02),
§1.2]), we obtain a presentation for the group @ in the dihedral case.
Corollary 4.5.2. Let g € N* and m be either 2g+1, 4g or 4g+2. Let also T4 := T(Iz(m))

and @ be the subgroup of Iy(m) constructed in the previous section (see Definition .
Then we have

Q:'Trl(Tg) = <x17"'7$97y15"'7yg | [:’Ul?yl]'”[mg’yg] = ]'>

and in particular, Q* ~ 729,

In the cases where g = 1 that is, if I5(m) is one of the Weyl groups [2(3) = As, I2(4) = Bs
or I3(6) = G, then T(I3(m)) is naturally an elliptic curve. More precisely, recalling the
notation of the previous section, we have a preferred point

v=CnHN () H €y,
$#£380
and the pair (T(I2(m)), [vo]) is a Riemann surface of genus 1 with a marked point, hence an
elliptic curve. Notice that, under the isometry T'(I3(m)) ~ R?/Z? induced by quotienting the

3-space V by the radical of the Tits form B, of Io(m) = I(m)a, the point [vg] corresponds
to the origin.

We can easily identify the elliptic curves T(I2(m)) (for m = 2,4,6) in the moduli space
M1 ~ H2/PSLy(Z) of complex elliptic curves, where H? = {z € C ; S(z) > 0} is the
Poincaré half plane. Recall that to 7 € H? we can associated a j(7) € C and we have
isomorphisms

C & W?/PSLy(Z) — M
Jg(r) «— T — C/(Z+ 17Z)
Recall also that D := {z € H? ; |R(2)| < 1/2, |2| > 1} is a fundamental domain for P.SLy(Z)
acting on H?. We just have to determine a corresponding element 7 € D for each case.
For I5(3) = Ay, we have T(As) ~ R (oY, 8Y) /(Za" & Z3Y) and since we have (o, 3) =

2

(BY,a) = —1 and |a| = |B], the lattice Za" & Za" is in the PSLy(Z)-orbit as Z & Ze™s .
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Doing the same for I5(4) = By, we have (a¥, 8) = —1, (8¥,a) = =2 and |3]* = 2|a|?, so the
lattice is Z @ Zv/2e T ~ Z.& Zi. Finally, for I5(6) = G we find (", 8) = —1, (8¥,a) = =3

27

and |3|? = 3|a|?, and we obtain the lattice Z @ ZV3e’ ~ T Zes .

Hence, for Ay and G, we find 7 = e%, so j(t) = 0 and, for By, we have 7 = i and
J(7) = 1728. In particular, the corresponding curves are defined over Q. We can also take

T=e3 = (1) 5 for Ay and the surfaces T(Iy(m)) for m = 2,4,6 correspond to the

three orbifold points of D, that is, the only three points in D having a non-trivial stabilizer
in PSLy(Z). In Weierstrass forms, an equation for T(As) and T(Gs) is y? = 2® — 1 and for
T(B3), we can take y?> = 2% — z.

We now focus on the hyperbolic case where g > 1. We first notice the following coincidence

between the Riemann surface T'(I2(m)).

Proposition 4.5.3. If g > 1, then we have an isometry (in particular, an isomorphism of
Riemann surfaces)

T(Ix(49 +2)) = T(I2(29 + 1))
and these two are not isometric to the surface T(I2(4g)).

Proof. Using |[Rat06, Theorem 8.1.5], it suffices to show that the groups Q24+1 and Qug+2
are conjugate in the positive Lorentz group PO(1,2) ~ Isom(H?) ~ PSLy(R) and are not
conjugate to Qug.

Let m := 2g + 1. We first prove that @, and Q2,, are conjugate in PO(1,2). Denote
L(2m) = (s,t | s* = t* = (st)*™ = 1) and I3(2m) = (s,t,5) its hyperbolic extension. Let
s == s, t' :=tst = s" and &), := 5p. Then (s',t',3))) = I(m) and (s',) = Is(m). Recall
moreover that we have the reflection 79, = (s5t)%9s = ((st)?)9s = (s't')9s' = rp,. Let a, 3 and

~ denote the simple roots of I5(2m) and Va, := spang(«, 5,7). We have the representation
L(2m) &% O(Vam, Bom),

( 1 — cos(m/2m) — cos(w/m) >
By, = | —cos(n/2m) 1 0 .
— cos(m/m) 0 1

where

o —

In the same way, denote V;,, := spang(a/, 8',v') and oy, : Ia(m) — O(Vp,, By,), where
1 —cos(w/m) — cos(mw/m)
By, = <Cos(7r/m) 1 cos(w/m)) .
—cos(w/m) cos(mw/m) 1
Consider the linear map P : Vo, — V,;, with matrix
P = ((1) 2(:05(71r/2m) 8) .
0 0 1

Then we have By, = 'PBy;, P, so P induces an isomorphism O(Vay,, Bam) — O(Vin, Bm)
fitting in a commutative diagram

L(m)<2" = O(Vy, Bim) —— PO(1,2)

I T

—

L(2m) 5> O(Vam, Bam) —> PO(1,2)

—

and thus the group o,,(I2(m)) is conjugate in PO(1,2) to a subgroup of agm(I@)).

—

Therefore, identifying Io(m) with its image in I3(2m), it suffices to prove that Qo = Qm.

Recall that g9, A S0T2m = S0Tm = Gm, SO q%(m) C qgffm) and thus Q,, < Q2. Since we
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have

2m[5(2m) : To(m)] = [l(2m) : To(m)][T2(m) : Q] = [12(2m) : Q]
= [2m) : Qo] [Q2m : Q] = 4m[Qam : Q]

we are left to show that [12/(2%) : Ir(m)] = 2. Let w € I3(2m). By induction on ¢(w) and
because t and 5p commute, we immediately see that w € m if and only if the number of
occurrences of ¢t in any reduced expression of w is even. Hence we have [I@) : m] <2
and since st and Syt have even order, the map IQ/(QE) — Z/2Z sending s and 5o to 0 and ¢

to 1 is a homomorphism whose kernel contains Iz(m), hence the result.
We now prove that Q2441 and Q44 are not conjugate in PO(1, 2). It is enough to prove that

the elements o2441(¢2g+1) € PO(1,2) and 044(qag) have different traces. Write 12(2/9?1) =

(s,t,30) and I(4g) = (s',',3}). We have gag1 = So(st)9s and quy = 3p(st)?9s’ and we can
write explicitly the matrices of the simple reflections in the geometric representation. We
diagonalize st = PdP~! and compute tr (g2g+1) = tr (d9P~1s5p). After calculations, we find

™ 9 ™
tr (gag+1) =8 (1 + cos (29+ 1)) cot (29+ 1) -1

Doing the same for g44, we find

tr (q4y) = 4 cot? <Zg> -1

And indeed, we get tr (g2g+1) # tr(qag) for g > 1. O

Recall that a Belyi function on a Riemann surface X is a holomorphic map 8 : X — C
which is ramified only over three points of C. Since Iz(m) is a compact triangle group

—

and @, < Iz(m) is torsion-free and of finite index. Thus, by |[JW16, Theorem 3.10], the
projection
B+ T(Ip(m)) = H/Qm — H?/I5(m) ~ C

—

is a Belyi function on T(I2(m)) of degree [I2(m) : Q] = 2m. Using [JW16, Theorem 1.3],
this implies the following result:

Proposition 4.5.4. For any m > 3, the Riemann surface T (I2(m)) may be defined over a
number field (or equivalently, may be defined over Q). Moreover, if m =5 or m > 7, then

the 1-skeleton of the tessellation A(I2(m))/Qy defines a dessin d’enfant on T(Iz(m)).

Remark 4.5.5. It is a reasonable to expect that T(I2(m)) is definable over Q(cos(2w/m)).
This is coherent with the isomorphism T(2g + 1) ~ T(4g + 2) and with the vertices of the
tessellation of H?, whose coordinates may be chosen in this field. However, we haven’t found
a proof of this yet.

On another hand, if this could be generalized to the cases of Hs and Hy, for instance by
exhibiting a complex structure on the associated hyperbolic manifolds, we could expect this
structure to be defined in fact over Q(v/5), giving potentially a complex geometric interpre-
tation of the splitting field of the Cozeter group.

—

Example 4.5.6. The triangulation A(I3(5)) is the classical tessellation {3, 10} of the Poincaré
disk. More precisely, the Tits form B is given by

R 1 —c —c
B=|—-c 1 —c| with c=cos(m/5)
—c —c 1
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and, if v* € V* is a normalized eigenvector for the unique negative eigenvalue of E, then
we have an identification with the hyperbolic plane

H:={\eV*; B(\A)=-1, Bw* \) <0} ~H?
and the stereographic projection on the hyperplane E(v*,—) = 0 with pole Ay gives the

Poincaré disk model for H2. Under this representation we represent the tessellation A(I2(5)) =
{3,10} of H as in Figure where the black triangles are the images of the fundamental
triangle C /R ~ C N'H under elements of odd length.

(A) The {3, 10}-tessellation of (B) The {3, 14}-tessellation of
Y(I2(5)) ~ H2. N(I2(7)) ~ H2.

FI1GURE 2. Two regular tessellations of the Poincaré disk.

In this tessellation, we can identify the triangles that are in the Q-orbit of CNH. These are
displayed in green in Figure @ Collapsing these triangles in one gives the surface T (I2(5)).

FIGURE 3. The green triangles form the )-orbit of the fundamental triangle
C N H inside the Poincaré disk.

We remark that we can extract a fundamental domain for Q on T(I2(5)) as the projection
of the domain displayed in Figure [{d,.
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a 9\'0
v :
b a
c c
a a

b

(A) Fundamental domain for (B) Fundamental domain for
Q@ in the Poincaré disk. I(5) in T(I5(5)) = Ts.

FIGURE 4. Fundamental domain for @) and its image in T(I2(5)).

Rearranging the figure we obtain the triangulation displayed in the Figure [{V, where the
points with the same name (resp. the edges with the same color) are identified. We notice
that the resulting space is indeed a closed surface of genus 2.

The case of Ia(m) for m odd is pretty similar and we obtain the {3,2m}-tessellation of
the Poincaré disk. For instance, the Figure 2l shows the case of I5(7).

5. EQUIVARIANT CHAIN COMPLEX OF T(W) AND COMPUTATION OF HOMOLOGY

5.1. The W-dg-algebra of T(WV).

The combinatorics of the complex C!(T(W), W;Z) is fairly similar to the one of the
complex C¢(T,W;Z) we constructed in the first part and the proofs given above can be
applied verbatim to this new situation. We obtain the following results:

Theorem 5.1.1. The quotient simplicial complex A(W,g)/Q is a reqular W -equivariant
triangulation of the manifold T(W). Recalling the projection m : W —» W, the resulting
homology Z[W|-chain complex CSN(T(W), W;Z) is given (in homogeneous degrees k and
k—1) by
—~ 9 —~
= D W — D ZrW)]
1c8 IcS
\T|=n—k I|=n—k+1
with boundaries defined as follows:
L k+1
VkeN, VI C 8 S\I={j1 <-<jir} O0)pmarn = 2 (- "Prug.y:
u=1

where, for J C I, p‘} denotes the projection
i 7 (W) = n(W/W;) — n(W/Wy) = m(W").
Corollary 5.1.2. The Z[W]-dg-algebra C* ,(T(W), W Z) associated to the W -triangulation

cell

A(W,8)/Q of T(W) has homogeneous components

Cea(TW), W;2) = B ZIn(W)= P Zr(W))\W)

I1cS IcS
[I|=n—k [I|=n—k
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differentials

VIic S ; §\ I={jo<-<jrh dk(w(fw)) = Z (—1)7 <6§\{j}w) ’ 6}7 _ Z .
0<u<k+1 eI W
Ju—1<i<Ju I

and product

(T(W), W3 Z) — CEL(T(W), W; Z),

cell

CP

cell

(T(W),W;Z) @z C4

cell
induced by a product
ZI'W) @z Z1' W] — Z[™ W],
given by the formula
wy~Yy) if zy~t € Wi,

vg;yeW Tpuly=9¢ € min(JC) X I
) ) max(10),min(JC) 0 otherwise.

Remark 5.1.3. We make several observations on the previous results.
o As explained in [BRO4, §2.3], a quotient simplicial complex of the form A(ﬁ/\, §)/H
(with H < W) has a an interpretation in terms of double cosets. In our case, we
have an isomorphism of posets

~

(PAW.9)/Q).c) = ({0,QuIWD}cs e =)
r(Whsrw)  — (I, QuWr)
where the order = on the second factor is defined by

N . I12J
, . , daf = A
(I, QuWr) = (J,Qu'Wy) = { QuWr 2 Qu'W;

and we may rephrase the above results using this poset.

o As the subgroup Q is torsion-free, it contains no reflection and we have @ < ker(e),
so by the general result [Rei92), Proposition 2.4.2], the quotient T(W) is an orientable
pseudomanifold. The Theorem[{.3.3 can be seen as a refinement of this result in our
particular setting.

e The triangulation A(I%)/Q (resp. A(E)/Q} has f-vector (4,124,240,120) (resp.
(266, 7920, 29280, 36000, 14400) ). In particular, the Euler characteristics are given
by

X(T(Hs)) =0 and x(T(H,)) = 26.
We notice that the f-vector of our triangulation of T(Hy) is far bigger than the one
found in [RTO01), §3], which is (1,60,144,60,1) but of course, this last one doesn’t
correspond to an equivariant triangulation. Notice finally that the general Gauss-
Bonnet formula gives Vol(T(Hy)) = %x(T(I—L;)) = 1047%/3 ~ 342.15.

5.2. The homology W-representation of T(W).

We can now determine the action of W on H,(T(W),Z). In fact, as for the classical
tori, we will show that there is no torsion in H,(T(W),Z) but we shall decompose the
representations H,(T(W), Q(W)) over a splitting field Q(W) of W, which is bigger than Q
in the non-crystallographic cases.

Recall from [GP00, Theorem 5.3.8] that a splitting field for W is given by

QW) = Q(cos(2m/msy), s,t € 5) =Q(xo(w), we W) CR,

where x, = tr(o) is the character of the geometric representation o : W — GL(V) of W. If
W is a Weyl group, then Q(W) = Q and we have

Q(I2(m)) = Q(cos(2m/m)) and Q(H3) = Q(Ha) = Q(V5).
We suppose from now on that W is one of the groups Hs, Hy or I2(m), with m > 3 and
we keep the notation of the previous section. The first groups to be determined are the top

and bottom homology of T(W). Recall that we have n = rk(W) = dim T(W).
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Proposition 5.2.1. Let 1 and € respectively the trivial and signature modules over Z[W].
Then we have isomorphisms of Z[W]-modules
Ho(T(W),Z) ~ 1,
H,(T(W),Z) ~e.
Proof. Since S is path-connected, its quotient T'(WW) is path-connected too and is orientable
by Theorem [4.3.3] Thus, we have an isomorphism of abelian groups

Ho(T(W),Z) ~ Z ~ H,(T(W),Z).
It is clear that Ho(T (W), Z) is the trivial module and, as Z[W]-modules we have H, (T(W),Z) =
ker(9,,) with

On = ZW] — Do Z[W/ (s)]

w2 (=) w (si)

where s; = m(5;) is a simple reflection of W for ¢ > 1 and sy := rw = 7(89). Define
e =, elw)yw € Z[W] with e(w) = (—=1)“®) and notice that we = e(w)e for w € W and
On(e) =0. Let x =) x,w € Z[W] such that d,(x) = 0. Then, for all 0 < i < n, we have
Y w Tww (s;) = 0. Fixing 1 <14 < n, we can choose a set {wr,...,wy} of representatives of
the left coset W/ (s;) (the minimal length representatives for instance). We have

k k

0= Z Typw (s;) = wajwj (si) + Zl’sziszi (i) = Z(ij + Tuw;s;)Wj (i)
weW j=1 j=1 j

hence @y, + Tw;s; = 0 for all 1 < j < k. This implies zy, + zys; = 0 for all w € W and

doing this for every i > 1 gives xy + xws = 0 for all w € W and s € S, in other words,

Ty = e(w)zy for w € W and x = z1e € Ze. O

Proposition 5.2.2. The homology H.(T(W),Z) is torsion-free and the Poincaré duality
on T(W) induces isomorphisms of Z[W]-modules

H, (TW),Z)" ~ H(T(W),Z)" ®ze.
Proof. Tt suffices to prove that H, (T (W), Z) is torsion-free, the Poincaré pairing H*(T(W), Z)®
H,_,(T(W),Z) — H,(T(W),Z) = ¢ and the universal coefficient theorem implying the sec-
ond one.
For simplicity, if A is an abelian group, we denote by Tors(A) its torsion subgroup.
We also denote H; := H;(T(W),Z) and H' := H'(T(W),Z). Again using Poincaré
duality and the universal coefficients theorem, we get
Tors(H" ") = Tors(H;) = Tors(H™).

Since n < 4, it remains to show that Tors(H;) = 0. This is always true for an orientable

surface and still holds for H3 and Hy, by Corollary O

The above Lemma, combined with the Hopf trace formula (see below) provides enough
information to determine the homology representation of T(W).

Lemma 5.2.3 (Hopf trace formula, [Spa81], Chap. 4, §7, Theorem 6] or [Lin, Lemma 2.4]).
Let k be a field, Cq be a bounded chain complex of finite dimensional k-vector spaces and
f € Endg(C,) be an endomorphism of C. If Hi(f) € Endx(H.«(C)) denotes the induced
endomorphism in homology, then we have the formula

D (=tre(fi) = Y (=)t (Hi(f)).

This can be readily applied to our situation to obtain the following formula. As a re-
minder, if G is a (discrete) group, H < G is a subgroup and if M is an H-module, we
denote by M T% the induced module of M; it is a G-module. Similarly, the restricted mod-
ule of a G-module N is denoted N|%. Observe that we have a canonical isomorphism of
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Q[G]-modules Q[G/H] ~ 11%. Recall also that if N <G and if M is a G-module, then its
deflation Defg/N(M) is a G/N-module.
In our context, we have isomorphisms of Q[I//I\/]—modules
GIEWQ= D 1y
ICS ; |I|l=n—k

Thus . o

CiEl(T(W), W3 Q) = Defip (CF' (S, W3 @) = (D 115

ICS ; |I|=n—Fk

and we obtain the following result:

Lemma 5.2.4. We have the following equality of virtual rational characters of W

n
S (MDefiy (111 ) = S (1) = (<1 Y (<) H(T(W), Q).
IS IcS i=0
For notation simplicity, we shall use the conventions of [GP00] to denote the irreducible
characters of W. We start with Io(m).

Theorem 5.2.5. Let m > 3 and (,, := exp(2im/m). Following [GP0O0, §5.3.4], for 1 < j <
[(m—1)/2], we consider the following representation of In(m) = (s,t | s* =t* = (st)™ = 1)
_ _ 0 1 _ G, 0
pj : Ia(m) — GLy(C) defined by pj(s) := 10 and p;(st) = 0 i)
By [GP00l, Theorem 5.3.8], the real field ky, := Q(cos(2m/m)) is a splitting field for I(m)

and we choose p; to be a realization of p; over ky,.
Then, the first homology representation of T(I2(m)) is given by

@ p; if m is odd,
1<5<(m—1)/2
Hy(T(I2(m)), ki) = @ p; if m is even.

1<j<m/2—1
7 odd

Recall also that Ho(T(I2(m)),Q) =1 and Hy(T(I2(m)),Q) = €.
Proof. We already have obtained the last statement above in Proposition For the first

homology, we let x; := tr(p;) be the character of p; and, denoting by Regy, = ky,[l2(m)]
the regular module, lemma m yields the following equality of virtual characters of Is(m)

Hy(T(Ia(m)) Jm) = 1+ = Regye, — > (=)t
DAIC{Ro,5.t} =t
We deal with each case separately. Recall the computations of the images in Io(m) of the
parabolic subgroups of m from the proof of the Corollary

e m = 2k + 1 is odd. We have r := ryy = (st)¥s. Hence s” = t and t" = s so
Ir(m) = (s,r) = (t,r). Furthermore, in this case we have (cf [GP00, §5.3.4]) Regy, =
1 +e+ >;2x; and the above formula reduces to

Hy(T(Iy(m)),bepn) = 3- 172" =31 =Y 2y,
J

Now, by [GPU0, §6.3.5] we have mf;(m) =1+, x; and thus

H(DLa(m) k) = 3 ;-
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e m = 4k. In this case we have r = (st)?+~1

of I(m) are given as follows

s and let a := st. The conjugacy classes

Representative [ 1 [ a [ a2 |-+ | a®F | o®FH1 s 7

Cardinality 1122 (-] 2 1 2k+1|2k+1

First, we determine the characters ]lT > ) for z = s,t. In the proof of [4.5.1| we

have seen that t = (s7)?*~1s, so (s,7) = Ig( ). Next, as detailed in [GPOO, §5.3.4],
the character x; is given by

' oii '
x;j(a') = 2cos <mj> and x;(sa') = 0.
m
We have (t,r) = {1,t,r,a?*} ~ Oy x Cy and by Frobenius reciprocity
(D) Ia(m X5 (1) + x5 () + x5 (r) + x5 (@
7, <1]~T 2( 7X]) (]l X]J/2( ))<t >: .]( ) ]() ]() ]( )

{t.r) 4
Coxg (1) 4 2x(t) + xj(a%) 1+ COS(TI‘]) 1 if j is even
B 4 2 0 otherwise.

The 1-dimensional irreducible representations of Ia(m) other that 1 and e are given
by e5(s) = €¢(t) = 1 and g4(t) = €¢(s) = —1. Therefore, Regy, =1 +¢e+e5+¢e +
> 52X We directly compute using Frobenius reciprocity

(113, 2 )12<m) = (115, ¢) —
(mb 7 )12(m) (mW) ’ )12(m):1
e =14+ Y

J even

On the other hand, by [GP00, §6.3.5], we have mb(m =1 +e+ Y, x; and

and

and hence

]lT@(m) =1+4+e+>, i X5+ Putting everything together and remembering that ¢ and
r are conjugate yields

Hi(T(Iy(m)),km) =1+ —Reg, — Y (~pHlog2nl
B w(I2(m)p)
0AIC{S0,s,t}
IRt NI L NPT
j odd

e m = 4k 4 2. We proceed in the same way, noticing that r = (st)>*s = a**s. The
characters lng;m) and ]lTa(m) are determined as above. We compute

(e )’58)12(m> = (1ey) oy <m<]§% " ]1>12<m>

but since deg(]ng(gl)) = [L(m) : (s,r)] = [Io(m) : (s,a®*)] = 2 this implies
]ng(:;L) = 1 + &;. Now, we have (t,r) = {1,t,r, a2k+1} ~ (O x Cy and using
again the Frobenius reciprocity we obtain

Iz (m) I2(m) . Xj(l) + Xj(t) + Xj(r) + Xj(an—i-l)
<]1T< r) 7Xj) Lo (m) (11 XJl(Lr) >(t >— :

~ox(1) + xg(@® ) 14 cos(mj)
a 4 a 2 '
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Since ]llf;%n) £ 1 # lllf;(;;@) we also get
Iz (m) _ I3(m) _ Iz (m) _
<1T<t,r) >€S> Io(m) - (1T<t,r> 76t>[2(m) - <1T<t,r> 76) In(m) =0

(ﬁff%n), ]1> I>(m) =t

and

Finally,
WA =14 Y

Jj even

As above, we conclude that

Hi(T(Io(m)), k) = & — Regy, +2- 112" + 172 — 11200 — 11200 = 3™ ),
7 odd

as claimed.

Theorem 5.2.6. With the notation of [GP00, Appendix C, Table C.1], we have
1 if i=0,
@35, if i=1,
3s®3sDH. if i=2,
€ if 1=3.

V0 <i <3, Hi(T(Hs),Q(V5)) =

Proof. Consider the virtual character xp := Zlcg(—l)mH]lTl?ﬁ ) For x € Irr(Hs), we
= ™ 37

may compute

— _ |I|+1 HS/\
(X7X)H3 Z( 1) <1T7T(H31)’XH) Hs

ICS

= L (o Hs _ )l ‘

D R I A )
Ics Igs
wem(Hsr)

We obtain B
xg=e—1—-3,—-3,+3,+3,+5. -5
and therefore, using lemma
Hy(T(H3)) — Hi(T(H3)) = =35 — 35 + 3, + 3, + 5, — 5...

But from Lemma ??, we have dim(H;(T(Hs))) = dim(Hy(T(Hs))) = 11 = dim(35+35+5..),
S0

Hy(T(Hs), Q(V5)) = 3+3+5, and Hy(T(Hs),Q(V5)) = 34+3:+5, = H1(T(Hs), Q(V5))&e.
O
Finally we treat the case of Hy.
Theorem 5.2.7. With the notation of [GP00, Appendix C, Table C.2], we have
( 1 if i=0,
4 & 4 16, if i=1,
VO <i <4, Hi(T(Hy),Q(5)) =<{ 654 630,830 if i=2,
4 @4, @16, if =3,
€ if i=4.
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Proof. As for the previous proof, we let xypg := ZIC§(—1)|I|1TH(4E\ ) and
= ™ 471

Vx € r(Ha), (oxmp, = ., (—D)Mx(w).
ICS, wen(Hap)
This leads to
xug=1+4+e—4; —4 — 4, — 4, + 64+ 6, — 16, — 16]. + 30, + 30,.
Since dim(H1(T(H4))) = dim(H3(T(Hy))) = 24 we obtain
Hy(T(Hy),Q(V5)) = 30 + 30, + 65 + 65
and o
H\(T(Hy)) + H3(T(Hy)) = 4¢ 4 4; + 4 + 4; + 16, + 16,..
But since the representations Hy(T(H4)) and Hs(T(H4)) must be realizable over Q and
because of the Poincaré duality pairing between the two, we are left with the following four
possibilities:
Hy(T(Hy)) | 4+ % + 16, | 4) + 47 + 16, | 4, + T, + 16, | 4} + 4] + 16
H3(T(Hy)) | 4, +4; +16] | 4, + 4 + 16} | 4, + 4] + 16, | 4; + 4; + 16,
However, the Q[Hy4]-module H1(T(Hy4),Q) is a sub-quotient of the module
cell . _ Hy
CIN(T(Hy), His Q) = Y _ 117 |

ICS
[1[=3

and we compute

(Cfell(T(H4))716T)H =0 = (H1(T(Hy4)),16,), = 0.

4

Hence, only 16/, can be a direct factor of Hy(T(H,), Q(v/5)). In the same fashion we compute
(CFN(T(H) 4;) =0 = (Hi(T(Ha)),47), =0
4
and thus only the third column of the table above is possible. ([

Remark 5.2.8. In [RT01l §3] and [Marl5l, §2.2], the homology of T(Hy) is also described,
but only as a Z-module.

Finally, we exhibit another algebraic meaning of the Euler characteristic of T(W). The

Poincaré series of m, Hs and Hy can be found in [CLS10, §3.1, Table 7.4 and Table 7.5].
Using these expressions, we immediately obtain the following corollary:

Corollary 5.2.9. Let W be a finite irreducible Coxeter group. If W (q) (resp. ﬁ/\(q)) denotes
the Poincaré series of W (resp. of its extension W ), then the Euler characteristic of T(W)
s given by
W(q)
Wia) |,
Moreover, the geometric representation o of W is always a direct summand of Hy(T(W), Q(W))
for every W and the two are equal if and only if W is crystallographic. In particular
@ o is a direct summand of H (T (W), Q).
a€Gal(Q(W)/Q)

x(T(W)) =
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Remark 5.2.10. With |[CLS10| it can be seen that the quotient W(q)/W(q) is a polynomial
m q, but we cannot hope for a generalization of the Bott factorization theorem as in the
affine case, i.e. a formula of the form

I

W(q) _ - o di—1
Wa(q>_2.1;[11 !

with {d;} the degrees of W. Indeed, the polynomial H4(q)/1fl\4(q) is irreducible of degree 60.

APPENDIX A. PRESENTATIONS OF T(H3) AND T(Hy)

In this appendix, we make the presentation of 71 (T(W)) from Theoremmore explicit
in the cases of H3 and Hj.
We write W3 =: {f;, 1 <i < 30} for the set of (abstract) generators of m (T(Hs)). We
obtain the presentation
m(T(Hsz)) = (Vs | Rs),
where
R3 :={faafos fa » frof12f11, fifasfoo, fafeefor, fifeofis, fafesfie, fafsofie, faferfiz, fsfacfas, f5fg fi2,

Jisf13f1as Jaf7 f11, frefiafor, f11fisfao, Jrofsfe s fosfy f23, faofouf7: forfs fo2, fg f2afs0, f15f18f19;
Tasfrofi2fa1foys fa2fref10017fog: Fogfooforforfis, fifsfisfs f5's fafofiafs fss fafsgfrofenfy
forfrafasfy f1, faafigf11fe0fan, fogfiifeefs fo, firfigfasfiafag, fifefisfr fo, frefigfacfigfan}-
We verify the following relations among generators:

f1= fisfsfg fa, f5 = frofsfs fiafe, fo = fr1fsfs fiafe, fr = f11fa, fo = fiofs, fi2 = fi1f1y, f15 = frafis,

fie = fo1f14, f1s = frof1afiz, fo0 = firfiz, fa2 = fsfs fiz, f2s3 = frofsfs fiafors foa = f11fsfs fiafio
fos = fy fsfs f17, fo6 = fo for, for = f3 fi7, fas = f3 fiafor, f20 = fi fsfs frafigr f30 = f3 fig-

Thus, replacing the generators on the left hand sides by the words on the right hand side
yields a presentation 71 (T(Hs)) = (V5 | Rs) with

S={fi, 1€1{2,3,4,8,10,11,13,14,17,19,21}},

=:I11

and

Ry :={f13fafg fafefizfi f5 s fafrofsfinfs frafafs fiofs s forfrafafirfizforfs finfisfias forfrafisfiafiofs fa1fisfrofz,
fsfs firfiafor frofirfaa frafsfs fio, farfrafsfiify for1fs fiifsfs fiafe, frrfiofs fsfs fizfiafrofrafafs fa,

Sirfsfrofiy [y fsfs finlfs frofinfa, fafrofafrofy fsfs Fiafiofrafs Fiofs f3, fafafisfs finfiofs fafrofsfizfy finfa s
frofsfs frafaifiofinfioferfrefrafsfs fins fafs firfisfrafiofrnfizfigfrofiafafs fiit-
We notice that any of the above relation becomes trivial once abelianized and indeed,
m1(T(Hj))™ =z

In terms of Hs-conjugates of qo := Sorm,, the 11 generators {f;, i € I11} of m1(T(Hs))
given above may be written f; = ¢;* where the u;’s are given by
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{ui, i € I} = {xy(s2s1)?, y*>*'sas1, s1, s251, Y 83, 2y 's, (7 s1)%, s3(z71s1)?, ssys1, sy, y),
with
z = 53552, y = ((5152)%)%.
We can do the same for Hy. We have a presentation

m1(T(Hy)) = (V4 | Ry),
where Uy =: {f;, 1 <i <60} and

Ry =A{fs fo frofrof2, frfrfinfs fos fifsfishs fa s fafrofiofe fs s frfisfoafigfa s fofiifaofiafy s fafraforfisfa s fefosfizfasfe
I3 fos faof20f51, fo2fsrfsofaofo, fofosfoafasfias fofosf20fs2fias fo fasfssfiafsss F17f30 52 33 36, f5fosfisfoafios fo fasfanfssfrz,
T5fa0f22 faafry, Frofiifsaforfar, frofarfarfaafin, frrfsyfrafighao, fasfrfs foafios fssfisfsofsatse, fazfaefoafanfos, f1 fs7fasfanfsa,
fy fsafsrfaofaes fsfifs fo fiss forfeofsgfosfs s fisfaofsafsafas, fsfsvfrafazfas, fafsafsifaofeo, fi7fsefasfsafsgs fsfonfrofsfr
fafsefarfssfsas fsfsoferfasfia, frfsifeofsafis, fofssfarfiefss, faafssfiafeofs, fisfaafiofs fos, faafiifsof20fass fisfsofisfiefes,
Jas fa9 f20 a2 fos, farfaefagfaofrss fazfisfsafeofos, frfsfofy f7 5 JisfasfasS31fas, S1 fisfaafr6fas frfs7fisfarfae, farfosfssfsafz s

fsfsofi1fsofae, frrfagfofe fas. farfasfarfasfiz, foafssfoofarfor, fasfaof21fa1fa0, fsof11f30fa6fs + faafusfosfs fo3, frof38f33 34 f37,

I3 Fosfaafsafsa, fo fo6farfa3fsa, faafsofsafiafags f18farfs6f38fags Faofarfaclsafr, fo faofazfiafss, fasfarfiifeofe, fo fagfarfiefss:
fs1fsefarfaofe, fs1fs fsrfacf2s, fo fasfsrfi1fe0s feafsofasfaofsr, faafssfsafi1fass frofsefiefazfar, f1 foofs7rfeef52, frfarfogfssfo2,
fo1fs5fasfasfs, fosfay fagfarfas, fsgfsafiifasfas, fasfaafsefs f52, frofsofi3faefaa, faaforfaofacfins fs fs1fs5f26fa8s f5 fagfazfisfse:

faafsefafsafass fo3faefanfanfags frrfaof1sf1af31, f3 frafarfisfa, fsafrafs0fs3fsss fa fi1faof1afa, fosfs1fafsrfae, fo f26fa0 3212,

fagfaofaofaofres Fasfa1fsnfszfios fazfaofsefssfs s F19fasfagfaofaa, f1 fosfssfarfss, f1of2ef1af15 a7, feof39F31f52f3s foofaafs0f16 51,

fas fss fafssfoas fasf26f31fa6 18, fosfarfrafsafeo, frofsrfaafssfsss fosfazfoof1afsa, faefazfoofo2fars fosfasfazfaofse, fo f51f56f27 fags

fr = fssfarfasfasfsofiafsafafizfesfe f3 foafaefsrfiofaafsefasfan 30 20 10 17,

fs = fs3farfasfasfsofrafsrfizfsef33f50 22 36 a5 2637 f10 27 fagf2afiofi7f23fg f5 fs2f26f37
frofaafz6F33f21 f30fauf10f17 faz fofao far 1037 fagf23 f36 faafs0f33 36 f17f31 52 3,

f11 = fo fafiafoy fasfesfs1fa0foafsr, f12 = forforfiofs fafiafaosfo, f13 = fszforfasfasfsofiafsafafeafasfaafiofsrfacfs2fy faas
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fis = fq fafarfarfiofs fafiafagfofer, fie = feafsefaafrofzrfeefs2fy

fa0 = farfoafsof31fasfssfor, fas = fizfasfo fa fo2f31f17f36f33f50 22 f 36 f 25 26 faz 10 27 fags
fas = faafasfo faefrafa fafrofozfo1fs Foofa1fizfagfasfoofaz faefasfae faz frof27fags fao = faofsefaafiofszfoe foafy Frafsifiz,
faz = forfas 23 f31 fa0 faafar fac fy farfarfrofs fafrafssfo, faa = fasfasfofsfs fiofsz
f3s = fazfaafr0fs3f30 fa0fe FoafasSsgfa1fao f2af37 f50 27 fau, 30 = fo faef1afa S2f10f27 f21fo fae f37 f2a S50 f31 F o5 fas 21 f35 36 f17,
Jao = faofssfy fo facfrafa fafr0farfo1Fsgfaafrof2afs0f21 f38f 36 faafr0fs7 fa6 f52 s fo fasfrm,

far = faafrofs3f30f40fo fsafazfssforfsofeafarfso, faz = faof36f23fag, faz = fa1f3sfasfsr, fas = fonf36fasfagfs0fa1fao,
fae = f31f26 faaf36 f23 fa5 50 a1 fa0f3 fo2f31f17 3633 50 22 36 a3 26 37 10027 fs0 e fo3firfi0f2a 50 2133 36 f1af10f37 fasf52f3 0 fazf17f10 4,
far = f36f3gfaofs fo2f31f17f36F33 50 22 36 23 26 37 f10f27 s0f9 fo3fi7f10f24F30 21 f33f36 faaf10 3726 f52 3 0 f23f17f10 24,

fas = faafs0f37faaf30 21 f3sf23 fo2fofaofs0f53 10 faafs0 37 f2a 50 31 a5 38 21, f51 = fafsafazfaafiofsrfasf2sfs6fanfs50f33 36 173152 3,

Js6 = faafr0fs3f30f40f0 f52S23 38 f21 fs0 24 37 f50 f33 f55far fas fas S50 f1at26 faz faafaofor Sarfiofa fafrafagfof2, fsr = fagfaofofs2,
fos = foafs1f17f36fss S50 f22 F36Fas f26 Faz frofaafosfoafy fr7 sy frafafso a6 a7 fr0 faa 36 f22 fs36,
fso = fosfu faforforfrofa faSrafacfoforfsofarfrofafs fo fasfss,
feo = fo faefrafa f2fr0farfo1 fss faafiof2afs0f21 33 F36 faafr0f37 fog 5o fafofasfin.

As for Hs, replacing the generators on the left hand sides by the words on the right hand
side yields a presentation m1(T(Hy)) = (¥} | R)) where

Uy = {fi, i €{2,3,4,9,10,14,17,21,22,23, 24, 26, 27, 30, 31, 33, 36, 37, 38, 44, 49, 50, 52, 53} },

=:l2q
and the relations of R/, become all trivial in the abelianization and thus 71 (T(Hy)) = Z*.
In terms of Hy-conjugates of qo := Sorm,, the 24 generators {f;, i € Iaq} of m1(T(Hy))
given above may be written f; = ¢;* where the u;’s are given by

3s180ysa, wysa, (xy)*s, t2ysy, tsoy(wy)™,

{us, i € Ina} = {(zysa)?, (sazy)tsa =rm,, (s1(ysiss)®?)
(s2(s42)%2 55} ) 598384, sozy(wy)®, wzysa, (x2y)*s, wtsayss, (xtsay)™, (sawss)?ssysa,
ws3(zy)®s, si1t2ysa, (s¥sss1)?x sy, wtsay(ay)®s, saxtsay(wy)®s, zzy(zy)®s,
(z2y)*4si2ysa, s1522ysasi?yss, ((ysax)™)3ssyss, wayss(si?ysass)®si?ysalt,
with
T = 83872, Y= ((3132)2)53, Z i= 83548189, t:= 83548951.
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APPENDIX B. HYPERBOLIC EXTENSIONS OF FINITE IRREDUCIBLE WEYL GROUPS

As the irreducible hyperbolic Coxeter groups have rank < 10 and are all classified (see
[Che69]), we can check each reflection of each irreducible finite Weyl group to see which one
of them give hyperbolic extensions. There may are other possible reflections and extensions,
but the resulting Coxeter diagram must appear in the following table. The computations
were made using [GAP4]. Of course, for the case of Go = I5(6), we find in particular the

diagram corresponding to .g(E) defined above.

‘ Type ‘ Dynkin diagram ‘ Hyperbolic diagram ‘ Reflection ‘ Compact? ‘
i >6 51
6
e 1 2 6 and both
; and oo
*——R®

*——o—0

As 1 2 3 S§2 .
4 4

Cs 3—5—5 A 531 o

4 o 4 .
“ 3—5—5—2 sgl = g32°1°%2 no

4
3
v s no
1 2 ) )
3
4

F4 Hig—z 4 83251 o

2
" D—O—I—O—O—O—O 5(75352)545556(8582)545351 no

3 4 5 6 7 8

TABLE 5. Hyperbolic extensions of finite irreducible Weyl groups.
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