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Paris, France

3 Renault, 1 Avenue du Golf, 78084 Guyancourt, France
4 Aragon Institute of Engineering Research, Universidad de Zaragoza, Maria de Luna s/n, 50018 Zaragoza, Spain

Received: 19 January 2021 / Accepted: 8 April 2021

Abstract. Solving mechanical problems in large structures with rich localized behaviors remains a challenging
issue despite the enormous advances in numerical procedures and computational performance. In particular,
these localized behaviors need for extremely fine descriptions, and this has an associated impact in the
number of degrees of freedom from one side, and the decrease of the time step employed in usual explicit time
integrations, whose stability scales with the size of the smallest element involved in the mesh. In the present
work we propose a data-driven technique for learning the rich behavior of a local patch and integrate it into
a standard coarser description at the structure level. Thus, localized behaviors impact the global structural
response without needing an explicit description of that fine scale behaviors.

Keywords: Model Order Reduction / Spot-Welds / Machine Learning / Artificial Intelligence / Data-Driven
Mechanics.

1 Introduction

High-fidelity simulations in computational structural
mechanics involving large transformations (e.g., spot-
weld rupture) become extremely expensive because of the
strong nonlinearities, the extremely small time steps that
usual explicit simulations imply and the extremely fine
meshes required for describing adequately the different
thermo-mechanical fields. These issues are not really new,
having motivated in the past the proposal of a variety of
homogenization procedures, today well experienced when
the problems allow separating scales as well as identi-
fying and extracting the so-called representative volume
elements — RVE [1–5].
Moreover, many structures involve complex and rich

space and time localized behaviors. This is the case when
analyzing structures involving components joined by using
spot welding, largely employed in car manufacturing.
For avoiding high-resolution numerical analysis proce-
dures, simplified models were proposed for addressing the
spot-weld mechanical behavior into standard structural
models, most of them based on the use of shell finite
elements. These models usually consist of rigid or flexi-
ble beams, coincident nodes, ... enriched sometimes with
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some simplified structural elements within a patch in the
shells that the spot-weld connects [6–17].
However, simplified modeling procedures can impact

significantly the inelastic spot-weld behavior with the
associated effects in the whole structure. Thus, for increas-
ing accuracy, high-resolution 3D models are retained in
many cases when addressing crash-test simulations. How-
ever, that accuracy increase is accompanied by an unrea-
sonable computational effort. Even if the involved struc-
tural parts are in general modeled by using shell elements,
when addressing spot-welds, their description needs the
use of extremely fine 3D models able to represent the
intrinsic themo-mechanical richness, involving elasticity,
elasto-visco-plasticity, damage and fracture, as sketched
in Figure 1. In addition, the fact of using very fine 3D dis-
cretizations (meshes) has another side effect, additionally
to the natural increase of the number of degrees of free-
dom: the one associated with the reduction of the time
step for keeping stable the usual explicit time integration.
Obviously, these difficulties do not represent real con-

ceptual challenges. Models and solution procedures are
mature and predictions are often in good agreement
with the experimental results, despite the accuracy lim-
its attained in the description of material behaviors in
extreme loading conditions. The main issues concern nei-
ther the feasibility, nor the accessibility to the right
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Fig. 1. Spot-weld 3D modeling.

material models, calibration procedures, computational
algorithms, computing platforms and validation facilities,
... All these just referred topics attracted the interest of
researchers and practicians during the last decades, and
nowadays there is a solid, accurate and validated cor-
pus of knowledge, with certified procedures and advanced
analysis procedures [18]. For example, Renault recently
announced a full car design with zero intermediate
physical prototypes.
Definitively, the main difficulty concerns the comput-

ing time, a difficulty that persists despite the impressive
advances around computer capability and the democrati-
zation of HPC. However, today the goal is not solving
a problem to simulate a crash scenario, for instance,
but solving a number of them for different parameter
choices (related to the loading but also to the struc-
tural parts, viz. materials, component thicknesses, ...). In
other words: the so-called many-query framework. This is
needed to optimize designs with respect to the selected
quantities of interests (multi-objective optimization); to
perform inverse analysis in order to calibrate component
or global models, or to propagate the uncertainty that a
certain deviation around a nominal parameter value will
involve in the structural response [19].
For all the just mentioned problems, one should solve

numerous scenarios while keeping all the richness in the
description (high-fidelity simulations). Even if solving
one case is acceptable regarding the computational cost,
solving hundreds of them becomes unreasonable because
of the excessive computational resources and processing
time required. Model Order Reduction (intrusive and
non-intrusive) seems an appealing route [20–23].
The present work proposes the construction of reduced

models, by learning and assimilating the high-fidelity data
coming from rich and expensive simulations performed
offline, in order to represent the behavior of patches in
which complex thermomechanical transformations occur.
Thus, the whole structure accounts for the rich patch
behavior, without the need of describing them explic-
itly. Their behavior manifest and express online in the
structural response, without the necessity of simulating
or co-simulating them.
The remaining part of the present paper is organized as

follows:
– Section 2 revisits the main concepts related to struc-
tural dynamics problems.

– Section 3 discusses the possibility of describing the
mechanical behavior introduced in Section 2 from
the displacement and forces acting on the domain
boundary.

– Section 4 presents different methodologies for extract-
ing such a condensed model from data (displacement
and forces on the domain boundary) collected from
high-fidelity solutions.

– The learned models constructed in Section 4 on a patch
are inserted in Section 5 into a larger structural system
by using a local-global strategy.

– Section 6 illustrates and discusses the local-global
procedure in a simple case-study.

– Section 7 addresses a complex inelastic behavior in a
patch involving a spot-weld, and proves that its behav-
ior can be learned by using the techniques described
in Section 4, enabling fast and accurate enough predic-
tions.

– Section 8 groups the main conclusions and perspectives
of the present work.

2 Structural solver

The general, semi-discretized form of the linear solid
dynamics equations, writes

MÜ(t) + CU̇(t) + KU(t) = F(t), (1)

whereM,C andK are respectively the usual mass, damp-
ing and stiffness matrices. U represents the vector that
contains the nodal displacements (Ü and U̇ being respec-
tively the associated accelerations and velocities) and F
stands for the nodal external loads.
Sometimes damping vanishes, i.e., C = 0, but in the

more general case it is usually assumed to be propor-
tional, C = a0M + a1K, a fact that facilitates, among
many other appealing advantages, the use of modal anal-
ysis, for forced responses (structural vibration). Thus, by
ignoring (without loss of generality) the damping term,
the previous semi-discrete form can be expressed as

MÜ(t) + KU(t) = F(t). (2)

Explicit integration is preferred in fast dynamics involv-
ing strong nonlinearities, and for that the previous
equation is expressed

M`Ü(t) = −Fint(t) + Fext(t), (3)

where M` represent the lumped mass matrix that usu-
ally replaces the so-called consistent mass matrix M. The
lumped mass matrix being diagonal, its inverse is trivial.
In the right-hand side of equation (3) we distinguish the

internal and external force vectors, the former resulting
from KU and the latter grouping all the external actions.
The explicit time discretization computes from the

internal and external force vector at time t, Fint(t) and
Fext(t) respectively, the associated acceleration Ü(t), from
which the updated of velocities and displacements fol-
low. Then, as soon as the displacement is known at time
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t + ∆t, the associated internal forces must be evaluated
Fint(t+∆t), before computing again the new acceleration,
and so on.
If the domain Ω is partitioned with a mesh M com-

posed of E subdomains ωe, e = 1, . . . , E, such that Ω =
∪Ee=1ω

e, with ∩Ee=1ω
e = ∅, the calculation of Fint needs

the calculation of the stiffness of each subdomain ωe, Ke.

Remark 1.
– In the previous expression the displacement and forces
must be understood in their most general sense. When
using shell elements for example, they involve general
displacements (displacements and rotations) and their
dual quantities, the generalized forces, consisting of
forces and moments.

– The subdomains ωe are in general the finite ele-
ment partition of the domain Ω, but in fact it could
also involve some patches or macro-patches as soon
as a consistent approximation (ensuring the required
continuity) is adopted to describe the displacement
field.

– To calculate the internal force vector, one could proceed
to assemble first the elementary stiffness matrices Ke

to construct K, from

K =

E

A
e=1

Ke,

with A the assembling operator, and then compute
Fint = KU(t); or compute the elementary internal force
vectors Feint = KeUe and then assemble them into their
global counterpart Fint = A

E
e=1 Feint.

– When addressing inelastic behaviors, the stiffness
matrix Ke, ∀e, is parametrized by a set of internal or
latent variables grouped into the vector µ that allows
condensing all the accumulated thermo-mechanical his-
tory experienced by each element, to express the present
state without the necessity of explicitly considering all
the experienced history. Thus, two approaches are pos-
sible: (i) the one that expresses the present state from
all the experienced history and (ii) the one in which
the present state depends on some latent variables
expressed at the present time and that allows ignoring
the past events whose actions or effects are condensed
on those latent variables. Even if the last approach
seems more frugal, many recurrent difficulties concern
the nature, number, explainability, measurability and
modeling of these latent variables.

3 On the condensed static and dynamic
linear models

This section discusses condensed models in the elastic
(static and dynamic) linear case [24] that, as proved, will
depend on: (i) the existence of constant or time-dependent
external forces acting inside the region concerned by the
condensation procedure; and (ii) the necessity of con-
sidering the previous states that the time-integration

of time-dependent models involve through their time
derivatives.

3.1 Statics

The generic discrete form of mechanical problem involving
elasto-statics in a given domain, can be expressed by

KU = F, (4)

that considering the variables on the domain boundary,
UB , and the internal ones, UI , can written as(

KBB KBI

KIB KII

)(
UB

UI

)
=

(
FB
FI

)
. (5)

Developing the second relationship in equation (5)

KIBUB + KIIUI = FI → UI = K−1II FI −K−1II KIBUB ,
(6)

the first relationship in equation (5) results

(KBB −KBIK
−1
II KIB)UB = FB −KBIK

−1
II FI , (7)

that can be rewritten as

K̃BBUB = FB − F̃I , (8)

with F̃I = KBIK
−1
II FI and K̃BB = KBB−KBIK

−1
II KIB .

Remark 2.
– If FI = 0 then F̃I = 0, and from equation (8) it follows
that a direct relation between UB and FB exists.

– In the 1D case, UB and FB contains two components,
i.e., both are defined in R2. If we apply UT

B = (1, 0) and
solve the associated static mechanical linear problem,
the resulting FB will represent the first column of K̃BB .
Then, the solution FB related to UT = (0, 1) will give
the second column of K̃BB .

– Still in 1D, if FI 6= 0, there are two internal variables,
the two components of F̃I . Thus, independently of the
intrinsic richness of FI , that is, of the number of internal
nodes, all them express from only two variables, the two
components of F̃I .

– Computing this two extra internal variables (again in a
1D setting) requires an extra calculation, for example if
UB = 0, then FB = F̃I .

3.2 Dynamical systems

This section analyses the effects of time derivatives fol-
lowing two alternative routes. The first operates from
the discretized form and the second one employs a static
condensation. The former will be illustrated in the next
section by considering a linear model with first order
derivatives, while the latter will be employed in the
structural dynamics setting involving second order time
derivatives.
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3.2.1 Condensing discrete forms

If we consider the generic linear first order dynamical
system

CU̇ + DU = F, (9)

the application of the standard Euler implicit time
discretization reads

C′Un + DUn = F + C′Un−1, (10)

with C′ = C/∆t. By introducing the notation K = C′ +
D and G = C′Un−1, the previous equation results

KU = F + G, (11)

that, with GB vanishing on the domain boundary where
boundary conditions apply, the rationale employed in the
previous section leads to

K̃BBUB = FB − F̃I − G̃I , (12)

where now, the two (in the 1D case) internal variables
F̃I − G̃I are different at each time step because of the
fact that G̃I depends on time, that is, on Un−1. This
is indeed a bit perturbing, because the dependence of the
condensed model on the previous time step solution seems
difficult to implement practically.

3.2.2 Static condensation in elastodynamics

We consider now the elastodynamics problem

MÜ + CU̇ + KU = F, (13)

and inspired by relation (6), that relates internal degrees
of freedom with the ones on the patch border in the static
case,

UI = K−1II FI −K−1II KIBUB ,

one could consider [24]

U =

(
I

−K−1II KIB

)
UB = TUB . (14)

Remark 3. By using U = TUB in the static case, i.e.

KU = F→ KTUB = F,

and premultiplying by TT ,

TTKTUB = TTF,

we obtain the same solution that was already obtained in
the static case.

By using the assumption expressed in equation (14),
the dynamic problem reads

TTMTÜB + TTCTU̇B + TTKTUB = TTF, (15)

that, in contrast with the previous procedure, only con-
tains as internal variables the ones related to the external
forces acting inside the considered patch. However, it does
not depend on the internal solution at the previous time
steps as was the case when discretizing first and then
condensing.
However, in the just discussed procedure, its validity

and accuracy strongly depend on the assumption (14),
that is known to work quite well when dynamical (inertia)
effects are moderate.

3.3 A new view inspired from Fourier analysis

By applying the Fourier transform (for the sake of simplic-
ity, but without loss of generality, damping is here ignored
or assumed proportional) to the displacement and forces
U = F(U) and F = F(F), the elastodynamics problem
reads

− ω2MU + KU = F, (16)

or

K(ω)U = F. (17)

This model is valid in forced regimes, because of the
fact that when applying the Fourier transform, initial con-
ditions (and with them, transient regimes) can not be
enforced.
If for a while we assume that no external forces are

applied within the domain, and that the dynamics involves
a single frequency ω, by using the rationale followed in
Section 3.1, a model relating UB and FB exists

K̃(ω)UB = FB , (18)

and it does not imply any internal variable.
Obviously to address a richer frequency spectrum, the

superposition principle can be used. Thus, for any unitary
loading applied at a boundary node and involving a sin-
gle frequency, one could compute the associated response
(displacement amplitude in all the nodes on the patch
boundary). Thus, when a real load applies on the patch
boundary, the Fourier transform applies at each node
to extract the frequency content, and then the superpo-
sition principle is used to reconstruct the displacement
amplitude at each node.
Now, by using the Fourier inverse transform, the time

evolution of the displacement at each node on the patch
boundary results.
This route proves that in the forced elastodynamics

regime, a model relating forces and displacements on the
patch boundary exists and does not depend on any inter-
nal variable as soon as no external forces act inside the
patch.
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3.3.1 On the associate condensed model in the time-space

If starting from the single-frequency model (18), one
comes back to the time domain, the following relation
results

TT
f MTfÜ

f
B + TT

f KTfU
f
B = TT

f Ff , (19)

where the indexes •f and •f refer to the fact that the
model applies for the generic single frequency.
Obviously, linearity enables again using the superposi-

tion principle to address general loadings, and therefore
concluding that again, in absence of external loads act-
ing inside the patch, a relation between the forces and
displacement on the patch border exists.
Even if the existence has been proved, its validity is

restricted to forced dynamical regimes, and its numeri-
cal implementation remains quite tedious, because of the
necessity to obtain many models and then combine them
to address rich spectra. Another limitation of the just
described procedure is its limitation to regions that do
not contain resonances.

3.4 Learning condensed models

To avoid the difficulties just referred at the end of the
previous section, the most direct procedure consists in
assuming the general form

TTMTÜB + TTCTU̇B + TTKTUB = TTF, (20)

or

MTÜB + CTU̇B + KTUB = F, (21)

and learn the condensed models{
M∗ = MT
C∗ = CT
K∗ = KT

, (22)

from the collected data UB and FB .
The learning procedure will be described in the next

section. In the case in which external forces act within the
patch, more data will be needed to learn the associated
internal variables as indicated in Section 3.1.

Remark 4.
In the nonlinear case all the nonlinearities must be
considered as effective forces acting inside the domain.

4 Model learning procedures

For the sake of simplicity, we start by assuming the
discrete linear problem

KU = F, (23)

where F and U represent the input and output vectors
respectively. In what follows forces and displacements at

the nodes located on the patch boundary. Their respective
size are N× 1 and N× 1.
As in the case of reduced order modeling (ROM), we

assume that inputs and outputs are (to a certain degree
of approximation) living in a sub-space of dimension n,
much smaller than N. Thus, the rank of K is expected to
be also n, even if a priori, it was ready to operate in a
larger space of dimension N.
To learn the model K from the available data —

displacement and force vectors —, two strategies were
proposed in [25] within the so-called iDMD (incremental
Dynamic Mode Decomposition), inspired from the original
DMD [26].

4.1 Incremental Dynamic Mode Decomposition,
iDMD

In what follows we describe the two constructors that will
be considered in our numerical applications, the Rank-n
and the progressive Rank-1 constructors.

4.1.1 Rank-n constructor

Here, we consider a set of S input-output couples (Fi,Ui),
i = 1, . . . , S, and assume the model to be expressible from
its low-rank form KLR

K ≈ KLR =

n∑
j=1

Cj ⊗Rj =

n∑
j=1

CjR
T
j (24)

where ⊗ denotes the tensor product, and Cj and Rj

are the so-called column and row vectors. This expres-
sion is somehow similar to the separated representation
used in the PGD (Proper Generalized Decomposition),
the SVD (Singular Value Decomposition) or the CUR
decomposition.
Let us define the functional E(KLR) according to

E(KLR) =

S∑
i=1

∥∥Fi −KLRUi

∥∥
p
. (25)

The choice of many different norms could be envisaged
here. In what follows we consider the standard Frobenius
norm ‖ • ‖F .
By considering matrices F and U containing in their

columns vectors Fi and Ui respectively, the previous
expression can be rewritten

E(KLR) =
∥∥F −KLRU

∥∥
F
, (26)

whose minimization results in KLR. A procedure based on
the use of the PGD was proposed in [25].
In order to alleviate the computational issues related to

the extremely high dimensional spaces N � 1, a reduced
counterpart can be defined, which proceeds by extracting
a n-dimensional reduced basis from vectors Ui, grouped
in the N× n matrix B. Thus, the displacement vectors can
be expressed as Ui = Bui.
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Now the discrete system (23) can be expressed in the
reduced form (

BTKB
)
u = BTF, (27)

or in its more compact counterpart

ku = f . (28)

Thus, from the available data,Ui and Fi, one first com-
putes their reduced forms, ui = BTUi and fi = BTFi,
and then the reduced model k from the previous ratio-
nale. It is important to note that, when considering the
procedure based on the employement of the reduced basis
B, filtering noisy data directly results from the considera-
tion and construction of the reduced basis (high frequency
modes are discarded in the construction of reduced basis).
In the nonlinear case a tangent subspace can be found at

each point of the data manifold. Consequently, the model,
KLR works well in a neighborhood of the data U or F, i.e.
KLR(U).
Thus, each time that a datum U arrives, the cluster

to which it belongs, κ, is first identified. The cluster is
identified from the distance between vectorU and theU|κ
related to each cluster (average of vectors U belonging to
the cluster κ). Then, the low-rank model of that cluster,
KLR
κ , is chosen and the solution evaluated according to

F = KLR
κ U. (29)

4.1.2 Progressive Rank-1 greedy construction

In this case we proceed progressively. We consider the
first available datum, the pair (F1,U1). Thus, the first,
rank-one reduced model reads

K1 = C1R
T
1. (30)

When looking for a symmetric model the simplest
choice consists of C1 = F1 and R1 = F1

FT
1 U1

, leading to

K1 =
F1F

T
1

FT1 U1
. (31)

Assume now that a second datum arrives, (F2,U2),
from which we can also compute its associated rank-one
approximationK2, and so on, for any new datum (Fi,Ui),
that results in Ki, by simply replacing F1 and U1 by Fi
and Ui respectively, in equation (31).
For any other U, the model could be interpolated

from the just defined rank-one models, Ki, i = 1, . . . , S,
according to

K|U ≈
S∑
i=1

KiIi(U), (32)

with Ii(U) the interpolation functions operating in the
space of the dataU, assumed decreasing with the distance
between U and Ui.

This constructor seems particularly suitable in the non-
linear case. Thus, by defining the secant behavior at
the middle point associated with F = 0.5(F1 + F2) as
Ksec = 0.5(K2 − K1), we will have K = K1 + Ksec =
0.5(K1 + K2), fact that allows viewing the progressive
greedy construction and its associated interpolation as a
linearization procedure.

4.2 Learning parametric models

Again within the PGD rationale, all the previous discus-
sion and developments can be extended to parametric
settings. Thus, linear and nonlinear models (using the
rank-n or the greedy constructors previously presented)
are associated to particular values of the model param-
eters grouped into the vector µ: µ1, · · · ,µP. Thus, as
soon as models K(µp), p = 1, . . . , P, are available, the
one related to µ, is computed from

K(µ) ≈
P∑
p=1

K(µp)Fp(µ), (33)

with Fp(µ) the interpolation functions operating in the
parametric space, assumed to be decreasing with the
distance between µp and µ.
When addressing highly multidimensional models

µ ∈ RM, with M � 1, usual interpolations fail. Thus,
the sPGD [23] interpolation making use of the separated
representations at the heart of the PGD can be applied.

4.3 Learning stable models

When the time evolution of the state z (the state
here groups displacement and velocities) of a system is
approached in a discrete manner, two stability concepts
become key players: (i) the one related to the model itself
(in general models describing physics are stable — their
time evolution do not diverge—but when these models
are learned from data stability can be lost) and (ii) the
one associated with time discretization strategy. Both are
implicit in the discrete form

zn = Mzn−1, (34)

where the index •n, n ≥ 1, refers to the time instant
tn = n∆t. If M is symmetric, it can be diagonalized, lead-
ing to the orthonormal basisV that enables expressing the
state as

z = Vξ, (35)

and with VTMV = Λ (Λ being the diagonal matrix
containing all the eigenvalues), equation (34) reads

ξn = Λξn−1, (36)

or by recurrence

ξn = Λnξ0. (37)
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Fig. 2. 2D/3D patch ω immersed into the whole domain Ω.

Fig. 3. Patch ω and the remaining structure Ω̃.

To have a solution when n→∞, i.e. t→∞, the greater
eigenvalue needs to be lower than one, i.e., ρ(M) ≤ 1 (with
ρ(M) the spectral radius of matrix M).
Thus, if S phase states (grouping displacement and

velocity) are available for a given parameter µ, and we
organize them in the columns of matrices Z and Z̃,
with Z = {z1 · · · zS−1} and Z̃ = {z2 · · · zS}, the cal-
culation of a stable model M consists of looking for
minimizing the Frobenius norm ‖Z̃ −MZ‖F , where the
procedures described in Section 4.1.1 can be applied
(including the reduced formulation) while enforcing the
stability condition ρ(M) ≤ 1.

5 Global-Local structural solver

The procedure that we propose considers the patch
domain ω immersed into the whole domain Ω as sketched
in Figure 2. The patch ω is equipped with a 3D fine
discretization surrounded by a transition zone equipped
with a 2D representation (e.g., by using shell elements) to
better connect with the remaining part of the structure
Ω̃ ≡ Ω − ω where a fully 2D model applies. Domains ω
and Ω̃ are sketched in Figure 3

5.1 Patch modelling

Now, the isolated patch ω is subjected to a very large
variety of loadings applied on its boundary ∂ω, by enforc-
ing the time evolution of the displacement in the different
nodes on ∂ω, which result in vectors Ui(t), i = 1, . . . , S,
with Ui ∈ RD, where the dimension D scales with the
number of nodes on the patch boundary ∂ω multiplied by
the number of degrees of freedom per node.
By solving the S quasi-static inelastic problems in ω, one

obtains the displacement at each node in the fine patch

Fig. 4. Time integrator making use of the learned patch model.

mesh, Uω
i (t), as well as the forces on ∂ω that constitute

vectors Fi(t).
Now, the data pairs (Ui,Fi), i = 1, . . . , S, at any time,

should suffice to define the local rank-n or rank-one
models according to the procedures described in Section 4.
In what follows the following assumptions are made:

(i) no external forces apply inside the patch ω; (ii) the
mechanical effects are very important compared to the
ones related to the dynamical effects (inertia) enabling
static condensation in reference to the discussion in
Section 3 (this assumption seems quite reasonable except
close to the rupture stage); and (iii) irreversible trans-
formations (plasticity, damage and fracture) must be
parametrized from the introduction of some latent vari-
ables grouped into the vector µ, that with the loading
quite monotonic in practice (as inferred from the anal-
ysis of crash simulations), can be associated to the
displacement on the boundary itself.

5.2 Time integration

By assuming the patch stiffness Kω(µ) known, the time
integration performs at time t as sketched in Figure 4, by
chaining the following calculations:
– From the nodal displacements in Ω̃(t), Ũ(t), the ones
acting on the patch boundary U(t) are extracted.

– From U(t) and the present internal state µ(t) the patch
database is interrogated to recover the patch model
Kω(µ(t)).

– Evaluate the forces on the patch boundary F(t) =
Kω(µ(t))U(t);

– Compute the nodal accelerations in Ω̃ by solving the
momentum balance:

M̃ ¨̃U = F̃int(t) + F̃ext(t) + F(t), (38)

where •̃ refers to quantities defined in Ω̃ whereas F(t)
traduces the patch effects;

– Integrate acceleration to compute velocities and dis-
placements at time t+ ∆t.

– Update the latent variables µ(t+ ∆t).

6 Global-local procedure validation

In the present section we will consider a simple problem
to illustrate all the just discussed concepts and also to
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Fig. 5. 3D model Ω composed of a patch ω where inelastic deformation is expected localizing during the loading and the remaining
part Ω̃ where only elastic deformations will occur.

Fig. 6. Computational domain Ω (left) and its partition Ω = Ω̃ ∪ ω (right).

validate the whole methodology. For the sake of simplic-
ity in the exposition, we consider the 3D model shown
in Figure 5, where the domain Ω is composed of a patch
ω (employed as a breaking fusible) where inelastic defor-
mation is expected to localize during the loading, and
the remaining part Ω̃ where only elastic deformations will
occur.
Even if Figure 5 represents the mechanical system, the

computational domain Ω considered in the present analy-
sis was shortened, in particular the domain exhibiting an
elastic behavior Ω̃, in order to not increase unnecessarily
the computational efforts related to the fully 3D finite ele-
ment discretization. Figure 6 presents the computational
model Ω, and its partition into the patch ω and the elastic
region Ω̃.
In the present case, the global-local solution proce-

dure sketched in Figure 4, reduces to the one shown in
Figure 7. The elastic behavior is defined by the elastic
modulus E = 6.68 N/m2, the Poisson coefficient ν = 0.35
and the material density ρ = 2700 Kg/m3. The elastoplas-
tic behavior is described from the Krupkowski model with
isotropic hardening, whose yield stress σY reads

σY = K (1 + cεp)
n
, (39)

with K = 0.285 109 N/m2, c = 125 and n = 0.1.
The dimensions of the computational domain shown

in Figure 6 are Hx = 350 mm, Hy = 80 mm and
Hz = 20 mm, with the patch ω having Hω

x = 250 mm.
To validate the global-local solution procedure, we first

consider a purely elastic behavior, and then a loading
inducing elastoplastic deformations at the patch level.

6.1 Linear behavior

In this first case study the loading induces stresses that
remain always and everywhere below the yield stress. In
what follows we first present the results obtained from a
fully 3D discretization of the whole domain Ω that will

Fig. 7. Global-local time integration.

serve as reference solution. Then, the patch elastic behav-
ior will be learned and finally used within the global-local
integration procedure previously described.

6.1.1 Fully 3D finite element discretization

Figure 8 shows the applied load on the right boundary of
the whole structure depicted in Figure 6. Figure 9 presents
the quasi-static time evolution of the x-component of the
displacement, averaged on the right surface of the speci-
men (the one on which traction applies and that presents
an almost uniform displacement along the x-direction),
u∗x(x = Hx), defined from

u∗x(x = Hx) =
1

HyHz

∫
(0,Hy)×(0,Hz)

ux(x = Hx, y, z) dy dz.

(40)
Figure 10 compares the displacement u∗x(x = Hx)

solutions obtained by using an undamped and damped
elasto-dynamic explicit integration, where the effects of
the dynamics can be noticed, mainly in the undamped
case. The damped solution remains close to the reference
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Fig. 8. Applied traction on the right boundary of the whole
structure, along the x-direction.

Fig. 9. Averaged displacement of the structure right surface:
u∗
x(x = Hx).

solution depicted in Figure 9. To facilitate the solu-
tions comparison Figure 11 shows the reference solution
(quasi-static) and the explicit damped one.
The final (at t = 3 × 10−3 s) 3D displacement field

obtained with the explicit damped integration is shown
in Figure 12, that remains in perfect agreement with the
one obtained by using a quasi-static integration.

6.1.2 Extracting the patch elastic model

In the purely elastic case and being only interested in
the relation between the applied traction and the induced
displacements along the x-direction at the patch surface
x = Hω

x (that remains almost uniform in the whole sur-
face) a single loading, as the one depicted in Figure 13
consisting of the traction Tx(t), suffices to extract the

reduced behavior (reduced in the sense discussed in [25]
and in Section 4) shown in Figure 14 relating the x-
components of the applied force Fx and the induced
displacement Ux.

6.1.3 Global-local integration

Now, once the patch behavior has been extracted, one
could be interested in solving the quasi-static elasto-
dynamics problem in Ω̃ while using the patch model
just extracted, by employing the global-local integration
previously described and illustrated in Figure 7.
Now, the structural loading shown in Figure 8 will be

applied on the right surface of Ω̃, x = Hx, while on its left
boundary the patch model is applied. The displacement on
x = Hx obtained by using an explicit damped integration
is compared with the reference one (given in Fig. 9) in
Figure 15, proving the ability of the proposed global-local
integration to reproduce the mechanical response.
Figure 16 compares both damped explicit integration,

the one related to the solution in the whole domain
and already depicted in Figure 11 (right) and the one
related to the global-local integration just depicted in
Figure 15 (right). Even if both solutions are very similar,
it seems that the one obtained by using the global-local
integration, that is, the one making use of the patch
model, increases the frequency of the spurious oscillations
generated by the dynamical effects.
To better analyze these effects, Figure 17 compares now

the undamped solutions, the one related to the solution in
the whole domain and already depicted in Figure 11 (left)
and the one related to the global-local integration. The
last figure clearly proves that the use of the static patch
model affects the dynamics because it reflects the waves.
To perform better in dynamics special care must be

paid in constructing a patch model able to perform in the
dynamical regime as discussed in Section 3. However, in
practical applications in which patches are very localized
in large structures (e.g. spot-welds in car structures) patch
static models have a minor effect on the global dynamical
response.

6.2 Inelastic behavior

In this second case study the loading induces stresses
above the yield stress in the region of ω with smaller cross
section.
In what follows we first present the results obtained

from a fully 3D discretization of the whole domain Ω that
will serve as reference solution. Then, the patch inelastic
behavior will be learned and finally used within the global-
local integration procedure previously described.

6.2.1 Fully 3D finite element discretization

The applied load is again the one shown in Figure 8.
Figure 18 presents the quasi-static time evolution of the
x-component of the displacement, averaged on the right
surface of the specimen (the one on which traction applies
and that present an almost uniform displacement along
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Fig. 10. Averaged displacement of the structure right surface: u∗
x(x = Hx) when using undamped and damped explicit integrations,

left and right respectively.

Fig. 11. Quasi-static (left) versus explicit damped (right) solutions.

Fig. 12. Displacement field ux obtained at time t = 3× 10−3 s.

the x-direction), i.e. u∗x(x = Hx) previously defined in
equation (40).
Figure 19 shows the displacement u∗x(x = Hx) obtained

by using a damped elasto-dynamic explicit integration,
where again the effects of the dynamics can be noticed.
The damped solution remains reasonably close to the

Fig. 13. Applied traction along the x-direction on the patch
surface x = Hω

x .
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Fig. 14. Applied force versus induced displacement on the patch surface x = Hω
x .

Fig. 15. Quasi-static solution given in Figure 9 (left) versus the explicit damped obtained using the global-local integration schema
(right).

Fig. 16. Damped explicit integrations: (left) the one related to the solution in the whole domain and already depicted in Figure 11
(right); (right) the one related to the global-local integration just depicted in Figure 15 (right).
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Fig. 17. Undamped explicit integrations: (left) the one related to the solution in the whole domain and already depicted in
Figure 10 (right) and (right) the one related to the global-local integration.

Fig. 18. Displacement of the structure right surface:
u∗
x(x = Hx) in the inelastic case study.

reference solution depicted in Figure 18. To facilitate the
solution comparison, Figure 20 shows the reference solu-
tion (quasi-static) and the explicit damped one. The final
(t = 3× 10−3 s) plastic localization is shown in Figure 21.

6.2.2 Extracting the patch inelastic model

Being only interested in the relation between the applied
traction and the induced displacements along the x-
direction at the patch surface x = Hω

x (that is almost
uniform on the surface) in monotonous loadings, a sin-
gle loading, the one depicted in Figure 13 consisting of
the traction Tx(t), suffices to extract the reduced behav-
ior, shown in Figure 22 relating the x-components of the
applied force Fx and the induced displacement Ux.

6.2.3 Global-local integration

Once the patch behavior has been extracted, we are
solving the quasi-static elastodynamics problem in Ω̃

Fig. 19. Displacement of the structure right surface:
u∗
x(x = Hx) when using a damped explicit integration.

while using the patch model just extracted, by employ-
ing the global-local integration previously described and
illustrated in Figure 7.
Now, the structural loading shown in Figure 8 will be

applied on the right surface of Ω̃, x = Hx, while in its left
boundary the patch model is applied. The displacement on
x = Hx obtained by using an explicit damped integration
is compared with the reference one (given in Fig. 18) in
Figure 23, proving the ability of the proposed global-local
integration to reproduce the mechanical response.
Figure 24 compares both damped explicit integrations,

the one related to the solution in the whole domain
depicted in Figure 20 (right) and the one related to the
global-local integration just depicted in Figure 23 (right).
Even if both solutions are very similar, it seems that the
one obtained by using the global-local integration, that
is, the one making use of the patch model, increases the
frequency of the spurious oscillations generated by the
dynamical effects, already discussed previously.
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Fig. 20. Quasi-static (left) versus explicit damped (right) in the inelastic case.

Fig. 21. Plastic localization at time t = 3 × 10−3 s (elements
colored in yellow are experiencing plastic deformation).

7 Learning the spot-weld model

This section addresses a patch inelastic behavior, and
model it from the collected data by using the techniques
previously introduced, discussed and illustrated, in par-
ticular the progressive rank-1 constructor. In the present
case, the local-global strategy is not employed, constitut-
ing a work in progress for addressing valuable industrial
applications.
We consider the spot-weld depicted in Figure 25 with

two different loading typologies, the one corresponding
to the left and the one to the right. The upper images
depict the displacement degrees of freedom that were
frozen while applying the displacements as depicted by
the red arrows in the images at the bottom, by prescribing
different velocity values.
For the different loading cases, a complete design of

experiments –DoE– was considered, with the minimum
and maximum values, 0 and 0.1 m/s respectively, of the
velocities applied on the domain boundary in each coordi-
nate direction. The resulting 3D problems were simulated
and the forces at the 24 nodes located on the bound-
aries of each of the two plates extracted at different
instant (with about 25000 time steps in each simulation),

Fig. 22. Applied force versus induced displacement on the patch
surface x = Hω

x in the inelastic case.

from the beginning of the loading until the spot-weld
totally breaks. By excluding from the DoE the trivial
cases with null applied velocities, the 25 = 32 experi-
ments (2 loading typologies and two velocities along each
of the three coordinate direction) reduces to 28 numerical
experiments.
Form all these simulations, 70.000 displacement-force

couples were extracted, leading to the same number of
stiffness matrices that composed the mechanical dictio-
nary.
Then, 6 test-cases were defined for validating the calcu-

lation procedure, with the loading and magnitude of the
applied velocities reported in Table 1. Figure 26 compares
the associated high-fidelity solutions (reference solutions)
and the ones predicted by using the dictionary.
The agreement is globally acceptable, taking into

account the low number of available data (size of the train-
ing set). The relative errors remains lower than 10% before
the fracture starts, reaching maximum relative errors of
20% in the final steps. It is important to note that the
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Fig. 23. Quasi-static solution given in Figure 18 (left) versus the explicit damped obtained using the global-local integration
(right).

Fig. 24. Damped explicit integrations: (left) the one related to the solution in the whole domain and already depicted in Figure 20
(right); (right) the one related to the global-local integration just depicted in Figure 23 (right).

Fig. 25. Spot-weld supporting conditions (green arrows in the figures at the top) and enforced displacements (red arrows in the
figures at the bottom) for two different loading typologies: left and right images.
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Fig. 26. Predicted forces for the loadings belonging to the test set (images at each row refers to a different loading condition):
(left) Fx; (center) Fy; and (right) Fz.
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Table 1. Validation test-cases.
Prescribed
displacements

Applied
loading Loading m/s

Validation
test-case Boundary Edge Boundary Edge Vx Vy Vz

1 • • 0 0 0.15
2 • • 0.07 0.07 0.07
3 • • 0.07 0.05 0.09
4 • • 0.07 0.05 0.09
5 • • 0.07 0.05 0.09
6 • • 0.07 0.05 0.09

parametric loading space is extremely rich and inten-
sive simulation should be required to populate adequately
the space in order to improve robustness, and to address
general complex loadings.

8 Conclusions

This paper proposes an integrated methodology able
to learn reduced models to be employed in efficient
computational inelasticity.
In particular, when they are applied to model rich and

localized behaviors within a patch, the simulation of the
whole structure can be performed by keeping the patch
effects but without needing to resolve it.
The main advantages of such a procedure are, first the

reduction in the number of degrees of freedom (patches
usually imply fine 3D discretization). Second, the increase
of the time step in explicit integrations, because now the
integration stability is not governed anymore by the size
of the smallest element (the ones needed for describing
the solution at the patches level in standard simulation).
We illustrate the existence of condensed models, then

the possibility of using them in a local-global integration
and finally, the possibility of extracting accurate enough
models of spot-welds.
It is still too early to conclude on both the accuracy

and the performances of the proposed methodology when
applied to industrial problems of relevance. The present
paper presented a methodology for learning inelastic
mechanical models, illustrated the local-global perfor-
mances in a quite simple case-study, and succeeded to
establish the model of a patch involving a spot-weld. How-
ever, in order to conclude on its industrial applicability,
the model should be enriched: (i) by enlarging the sam-
pling used in the model training; and (ii) by setting-up
the local-global methodology with a fine study of the
error propagation and the CPU time savings. The per-
formances are expected significant because of the high
number of spot-welds (thousands in a car structure) and
the ultra-fast evaluation of the constructed patch model.

Acknowledgments

Authors acknowledge the contributions of Dr. Giacomo Quar-
anta concerning the verification of the global-local modeling
framework.

References

[1] R. de Borst, Challenges in computational materials science:
multiple scales, multi-physics and evolving discontinuities,
Comput. Mater. Sci. 43, 1-15 (2008)

[2] F. Feyel, Multiscale FE2 elastoviscoplastic analysis of
composite structures, Comput. Mater. Sci. 16, 344–354
(1999)

[3] H. Lamari, A. Ammar, P. Cartraud, G. Legrain, F.
Jacquemin, F. Chinesta, Routes for efficient computational
homogenization of non-linear materials using the Proper
Generalized Decomposition, Arch. Comput. Methods Eng.
17, 373-379 (2010)

[4] J. Yvonnet, D. Gonzalez, Q.-C. He, Numerically explicit
potentials for the homogenization of nonlinear elastic het-
erogeneous materials, Comput. Methods Appl. Mech. Eng.
198, 2723–2737 (2009)

[5] M.G.D. Geers, V.G. Kouznetsova, W.A.M. Brekelmans,
Multi-scale computational homogenization: trends and
challenges. J. Comput. Appl. Math. in press, DOI:
10.1016/j.cam.2009.08.077

[6] J. Backhans, A. Cedas, A finite element model of spot welds
between non-congruent shell meshes Ñcalculation of stresses
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