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Abstract

This paper exposes inversion techniques of a simple yet efficient system-level approach for model-

ing quasi-static hysteretic behavior of piezoelectric actuators, allowing the transducer voltage to

be properly shaped to get the desired target strain response. The inversion principles lie in consid-

ering a coefficient relating the voltage derivative to the target strain derivative through a simple

formulation using a function of the input strain, combined with equivalent strain cancellation and

inversion when the desired target strain derivative crosses zero value. Conceptual and theoretical

developments are validated through experimental measurements that show good control capabil-

ities of the quasi-static strain. Hence, the proposed concept provides a lightweight yet efficient

approach for embedded control systems.

Keywords: hysteresis, actuator, piezoelectric, control, inverse model

1. Introduction

The rise of electroactive devices and associated smart materials and structures has unveiled

the development of numerous control systems for ensuring proper response of structures with

respect to their application environments (control, sensing, positioning or vibration control for

instance - [1, 2, 3, 4, 5, 6]). Nevertheless, actuators may not exhibit a perfect linear response5

to input stimulus and are even hysteretic in most cases ([7, 8, 9, 10]), yielding quite complex

implementation. Therefore, control systems should be able to adapt to these non-ideal behaviors,

while being as simple as possible in order to be easily implementable in lightweight controllers with

limited computational abilities and memory in the framework of embedded systems.

Classical hysteresis modeling approaches may typically be decomposed into two classes ([11]).10

The first family, conceptually close to the material behavior (in terms of domain switching for

example), lies in considering several unit elements (“hysterons”) that, when put together, allow

relating the global transducer behavior. This class of hysteresis models includes the well-known

Preisach model ([12]) and its derivatives ([9, 13, 14, 15]) as well as Maxwell-slip and dry friction-
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based approaches ([16, 17, 18]). The second kind of models lies in mathematical formulation based15

on physical analysis or phenomenological approach, such as Jiles-Atherton ([19, 20, 21]), Bouc-Wen

([22, 23, 24]), Duhem models ([25, 26, 27]) or more recently the NARMAX method (Nonlinear

AutoRegressive Moving Average model with eXogenous inputs - [28]). Each class of these hysteresis

models has its own advantages and drawbacks: while being able to closely match the transducer

response, hysteron-based formulations, requiring a relatively large amount of unit elements, are20

computationally intensive which may compromise their effective implementation in lightweight

controllers for embedded systems for instance. On the other hand, mathematical function-based

approaches are much lighter and require a reduced parameter set, but may fail in representing

particular behaviors such as minor loops and could feature stability issues as well.

In order to provide a trade-off between computational efforts and accurate representativeness25

of a transducer’s response, a system-level approach inspired from the strain-electric field butterfly

shape at the material level has recently been introduced in [29]. The model basics lie in the defi-

nition of a output derivative-input derivative coefficient (e.g., voltage-dependent strain derivative

over voltage derivative coefficient for a piezoelectric transducer) using a mathematical function

that is shifted and reversed, both along the x-axis (i.e., voltage in the case of a piezotransducer)30

when the input signal (voltage) derivative crosses zero value1. Such a model therefore allows simple

implementation (requiring 1 memory quantity - representing the remanence - and typically 2 or

3 fixed parameters) while being able to take into account particular behaviors such as actuator

minor loops.

Meanwhile, in terms of hysteretic actuator control, many works have been devoted to the use35

of one or the other kind of hysteresis models. Nevertheless, the principles for ensuring proper

response of the transducer with respect to the target value is typically done in two ways (without

consideration of neural network-based approaches that may not be implementable in lightweight,

embedded systems). First, the hysteresis effect may be compensated by including a direct model of

the actuator in the control loop (either feedforward or feedback), using inverse multiplicative struc-40

ture ([30, 31]) for example. While these approaches may be quite simple to implement when the

direct hysteretic model is available, they may yield high computational cost as well as robustness

and stability issues. Hence, the other method lies in directly inverting the direct hysteresis model,

hence directly giving the control signal to get the desired transducer response ([32, 33, 34, 35]).

While being more efficient, the latter technique cannot be strictly applicable to all of the hystere-45

sis models (especially in an analytical fashion) thus requiring approximated functions ([36]), or

yields computationally and memory-intensive approaches (e.g., look-up tables). Other approaches

than these two classical ones also exist, such as tracking error bounding ([37]). Although ro-

bust with respect to the hysteretic behavior of the transducer, such approaches are still usually

1While the model principles allow to consider any derivative, it will be considered in the followings that the

derivation variable is the time.
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computationally-intensive and their implementation in lightweight controllers may be an issue.50

Still, inversion techniques are facing a trade-off between computational requirements and ac-

curacy. Hence, the purpose of this study is to expose and devise the inverse approach of the

direct system-level model presented in [29] for the control of a piezoelectric transducer, providing

a computationally efficient yet accurate way for controlling the mechanical output of the actuator.

The motivation behind such an analysis lies in that fact that the direct hysteretic model, although55

allowing a quite precise prediction of the actuator response to an electrical stimulus, cannot be

directly and readily applied for controlling the actuator with a desired input strain (including it in

a compensation loop would lead to a quite computationally-intensive technique possibly featuring

robustness issues), while an inverse model takes directly the target strain as direct input. Hence,

the originality of this present study with respect to this previous model ([29]) yields in the direct60

disposal of a method able to automatically set the required voltage to reach the desired target

strain in quasi-static hysteretic actuators, without the need of using complex methods based on

direct actuator models. The inversion strategies are twofold for obtaining such a readily applicable

control technique. First, an analytical inverted model will be presented when the function describ-

ing the output derivative-input derivative coefficient of the direct model is simple (linear). Then,65

the generalization to any kind of function, based on experimental procedures, will be exposed. It

will be shown that one strength of the inverted model approach is that its generalization is based

on similar principles than the direct model, considering the coefficient linking the input quantity

derivative to the output one.

The paper is organized as follows. Section 2 recalls the main basics of the direct model, and70

introduces the concepts and theory for the inverse approach, with an example of analytical inversion

given in Section 3. Then, Section 4 will present, in a pragmatic and applicative point of view, the use

of the inverse model for more complex functions. Before final conclusions in Section 6, experimental

and numerical investigations in terms of control will be exposed in Section 5 to validate the model

and show its effectiveness.75

2. Theoretical Modeling

2.1. Direct model basics

The principles of the direct approach described in [29] lie in describing the strain S-voltage

V relationship through the voltage-dependent coefficient α(V ) linking the strain derivative to the

voltage derivative as:80

S(t) =

∫ t

−∞
α (V (τ))

dV (τ)

dτ
dτ (1)

where t refers to the time variable for instance (the model can however be applied as a function of

any variable).
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Hence, through the proper shaping of the voltage-dependent strain derivative-voltage derivative

coefficient α(V ), the actuator response may be obtained. More particularly, hysteretic response

may be achieved by defining α(V ) through a mathematical function h as well as introducing a85

variable shifting voltage Vshift for relating the hysteretic behavior as:

α(V ) = α0 + h (V − Vshift) (2)

with α0 representing the linear, low-voltage coefficient. Vshift, actually representing the hysteretic

remanence / memory effect, is therefore a piecewise function defined in continuous time domain

re-evaluated to the actual voltage value when the derivative of the latter crosses zero value:

∀t ∈ [tk; tk+1[ : dV
dt (tk) = 0 ∧ dV

dt (tk+1) = 0

∧dV
dt (t 6= tk) 6= 0⇒ Vshift(t) = V (tk)

(3)

with tk and tk+1 representing the time instants when this piecewise constant function changes its90

value2. In other words, Vshift is set to the voltage extremum value until the next one occurs. As

an example, Figure 1(a) depicts both the evolution of α(V ) and strain as a function of applied

voltage.

2.2. Inverse model principles

The previous model linking the strain to the applied voltage may be useful for predicting the95

voltage-induced strain of a piezoelectric actuator for instance. However, being able to directly get

the required voltage to obtain a desired target strain is of particular interest in an applicative

point of view for control systems. Although compensation techniques can be applied with the

direct approach, the novelty of the present study is to propose to inverse this direct model in order

to dispose of a straightforward implementation, hence requiring less computational efforts while100

being less prone to error.

To do so and in a similar way than the direct model, a coefficient β(S), this time linking the

voltage derivative to the strain derivative as a function of the strain, is introduced as:

β(S) =
dV

dS
(S) (4)

Using the same example as previously (Figure 1) but representing β(S) yields the curves shown

in Figure 1(b). From these results, it can be seen that a similar procedure than the direct model105

can be applied by reversing the input/output quantities (i.e., voltage and strain), highlighting the

advantage of the system-level approach in terms of versatility.

Hence, considering an input target strain S, the procedure of the inverse model consists in

defining the voltage as:

2Note that Eq. (3) is only valid for C1 functions. While this condition may not be respected for pure theoretical

signals, practical implementation does not suffer from this limitation.
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Figure 1: Original direct and proposed inverse model principles.

V (t) =

∫ t

−∞
β (S (τ))

dS (τ)

dτ
dτ (5)

where the coefficient β(S) is defined by:110

β(S) = β0 + h′ (S − Sshift) (6)

with Sshift representing the shifting/memory strain that is obtained when the target strain deriva-

tive crosses zero value:

∀t ∈ [tk; tk+1[ : dS
dt (tk) = 0 ∧ dS

dt (tk+1) = 0

∧dS
dt (t 6= tk) 6= 0⇒ Sshift(t) = S (tk)

(7)

(as previously, Sshift can be also be defined as the strain extremum value until the next one occurs)

and h′ is the hysteresis-defining function that shares similar properties than h:

(i) for a symmetric hysteretic behavior, h′ is even, and the expression of β can be rewritten as a115

function of another function g′ only defined for positive reals as β(S) = β0 + g′ (|S − Sshift|)
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(not that taking into account asymmetric behavior consists in defining h′ not even, with the

the positive part relating the ascending branch and the negative one the descending one)

(ii) h′ can be set as h′(0) = 0 so that the linear, low strain response is represented by β0. Although

not required, setting both h(0) and h′(0) to 0 yields β0 = 1/α0.120

2.3. Direct and inverted model relationship

The previous section demonstrated that a similar approach than the direct model can be con-

sidered to get the voltage-strain relationship, or in other words to compute the required driving

voltage to obtain the desired target strain. This section aims at giving some insights in terms

of direct and inverse model link. Starting from the respective definition of the strain derivative-125

voltage derivative coefficient α(V ′) of the direct model and the voltage derivative-strain derivative

coefficient β(S′) of the inverse model given by:

dS = α(V ′)dV ′ (8)

dV = β(S′)dS′ (9)

where S and V respectively stand for the output strain in the direct model and the required

command voltage for the inverse model and V ′ and S′ the input voltage (direct model) and target

strain (inverse model), respectively, inserting Eq. (8) into Eq. (9) and equalizing both strains and130

voltages yields the following relationship between the coefficients α and β:

dV = β(S′)α(V ′)dV ⇒ α(V ′) =
1

β(S′)
(10)

However, α is here a function of the target strain S′ and β of the input voltage V ′. In order

to obtain an expression of the same input quantity, namely the desired target strain S′, it is

nevertheless possible to use Eq. (9) considering V = V ′, yielding:

α

(∫ S′

S′
init

β(S′)dS′

)
=

1

β(S′)
(11)

where S′init represents the initial strain.135

3. Experimental investigation of an analytical inversion example

3.1. Analytical derivation

From the link between the direct and inverse models, it is proposed here to analytically derive

the relationship between the two models in the simple case of a linear expression for α(V ′):

α(V ′) = α0 + γV ′ (12)
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where γ represents the linear slope of the strain derivative-voltage derivative coefficient.140

Hence, applying Eq. (11) with the previous expression leads to:

α0 + γ

∫ S′

S′
init

β(S′)dS′ =
1

β(S′)
(13)

The solution of Eq. (13) has the following form:

β(S′) = k (S′ + σ)
p

(14)

giving, when inserted into Eq. (13):

α0 +
γk

p+ 1

[
(S′ + σ)

p+1 − (S′init + σ)
p+1
]

=
1

k
(S′ + σ)

−p
(15)

Identifying the parameters p and k from the left and right sides of the previous equation therefore

gives the following values:145

p+ 1 = −p ⇒ p = − 1
2

γk
p+1 = 1

k ⇒ k =
√

1
2γ

(16)

that then allows obtaining the strain shift parameter σ when combined with the initial strain Sinit

as:

σ =
α0

2

2γ
− S′init (17)

Finally, the expression of β(S′) is solved from the parameters describing the coefficient α(V ′) and

from the initial strain S′init:

β(S′) =

√
1

2γ (S′ − S′init) + α0
2

(18)

3.2. Experimental assessment150

Figure 2 depicts the reconstructed input voltage from experimentally obtained strains under si-

nusoidal voltage excitation and from the identified parameters for the function α (α0 = 6.4 µdef.V−1

and γ = 0.08 µdef.V−2 - [29]). The test apparatus consisted in a PI
TM

PICMA R© P-888.51 stack

actuator (with input voltage in the range of 0−100 V) equipped with a strain gauge (BQ120−3CA

from Zhonghang Electronic Measuring Instruments Co., LTD - nominal resistance value of 120.3 Ω)155

connected to a quarter Wheatstone bridge and conditioner (Donghua Testing Technology Co., LTD

DH3840) for strain measurement. Strain sampling rate was set to 1 ms, and the signal was then

post-processed using a 5-point moving average filter.

Hence, it can be seen that the voltage reconstruction matches well the actual voltage applied

during the experiment, although slight underestimation can be observed for high voltages (reach-160

ing a relative absolute error of 6% with respect to the experimental voltage magnitude). These
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Figure 2: Voltage reconstruction from experimental strain using inversion of linear model (α0 = 6.4 µdef.V−1 and

γ = 0.08 µdef.V−2).

discrepancies can however be explained by the limit of the linear approximation for the function h

in describing the strain derivative-voltage derivative coefficient α(V ′)3.

4. The Experimental Way

The analytical expression linking the direct and inverse models, Eq. (11), may not be practical165

and even impossible to solve for some forms of α. Hence, this section provides a more convenient way

for obtaining the required voltage derivative-target strain derivative coefficient β. The principles

are based on an experimental identification procedure quite similar to the direct model ([29]). More

specifically, the procedure is as follows:

1. Application of a voltage V to the transducer and recording of the measured strain S.170

2. Computation of strain and voltage derivatives4 (dS and dV respectively) and calculation of

β = dV/dS.

3. Representation of β(S) as a function of the strain S and curve fitting.

3In [29], an exponential function for α is shown to provide a better fit.
4for example time-domain derivatives, or directly differentiation of strain and voltage vectors in discrete case.
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When doing so, the experimental curves (still considering PI
TM

PICMA R© P-888.51 stack ac-

tuator with BQ120 − 3CA strain gauge and DH3840 signal conditioner) giving the coefficient β175

for ascending and descending strains considering several voltage magnitudes are depicted in Fig-

ure 3(a) . In order to remove part of the noise that arises from the derivation/differentiation

process, all signals were downsampled by a factor of 20 and were cropped (by 3, 2 and 1 sam-

ples for driving voltage magnitudes of 20 V, 50 V and 100 V respectively) to remove the deriva-

tion/differentiation divergence due to low strain rate close to minimum and maximum values.180

First, results demonstrate that the shape of β is consistent with the butterfly-shape assumption

and expected model behavior (Figure 1(b)). Secondly, it is possible to properly fit the coefficients.

More particularly, bi-exponential fit in the form of:

β(S) = η1e
ν1|S−Sshift| + η2e

ν2|S−Sshift| (19)

is considered for analytically describing the evolution of β. It can be noted that the use of expo-

nential functions can be found in other works related to hysteretic actuator modeling for control185

purposes, such as in [38] that consisted in charge-voltage (or current-voltage) mapping for obtain-

ing the hysteretic response. In the present study, the bi-exponential fit is shown to follow quite

well the evolution of the coefficient for all of the considered driving voltage magnitudes, as demon-

strated in Figure 3(b) for ascending strains, although inverse linear approach seems to be slightly

better adapted to medium excitation magnitude case. It should be noted here that the considered190

curves were all obtained considering an zero initial voltage. In the considered approach however,

as the effective strain (target one minus shift) is reset at each extremum, so is the value of β and

thus the slope. While this slope is not the same than the one at the considered strain value for

nonlinear functions (allowing relating minor loops), the fact that the initial slope remains the same

yields minor loops with same gains. However, it has been demonstrated that a slight modification195
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Figure 3: Experimental plots of the voltage-strain derivative coefficient and comparison with inverse linear model

and bi-exponential fit (η1 = 0.04036 V.µdef−1, ν1 = −7.789 × 10−3 µdef−1, η2 = 0.1184 V.µdef−1 and ν2 =

−408.2× 10−6 µdef−1).
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of this gain arises with the bias ([39]). Such an effect is thus actually not taken into account by the

proposed model and provides a way for enhancement5.

Using such an approach, reconstructed voltage from measured strain is shown in Figure 4. It

can be noted that, compared to the fitting procedure in Figure 3, parameters of the bi-exponential

function have been slightly changed for better results, especially for low and medium excitation200

cases. Compared to inverse linear case, similar results in the low/medium range are observed,

with slight high overestimation in this last case, but a significant improvement in the large volt-

age range is achieved. Interestingly however, it can be noted that the maximal relative error (with

respect to the voltage magnitude) is quite constant and around 3% whatever the considered voltage

magnitude.205
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Figure 4: Voltage reconstruction from experimental strain using bi-exponential fit (η1 = 0.078 V.µdef−1, ν1 =

−5.916× 10−3 µdef−1, η2 = 0.1000 V.µdef−1 and ν2 = −277.8× 10−6 µdef−1).

5Although out of the scope of the present study, using a second shifting variable, related to the first one (Sshift)

is a probable way for taking into account variable minor loop gain, at the cost of a slight increase in complexity and

memory and computational requirements.
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5. Experimental Validation - Application to Linear Control of a Hysteretic Piezoelec-

tric Actuator

5.1. Set-up & identification

The aim of the inverse model is to provide a mean of efficiently controlling, in quasi-static

fashion, a transducer without relying on computationally and memory intensive compensation210

techniques for instance. Hence, this section aims at experimentally validating the possibility of

effectively obtaining target strain output using the proposed model. To do so, the previous ap-

paratus (PI
TM

PICMA R© P-888.51 stack actuator with BQ120 − 3CA strain gauge and DH3840

conditioner) is still considered. The control voltage is generated by a dSpace c© DS2102 control sys-

tem (with a time step fixed to 0.1 ms) connected to a power amplifier (PI
TM

E-503 Piezo Amplifier215

Module). The set-up schematic is depicted in Figure 5. It can be noted that the input strain to

the dSpace system is only used for visualization and recording, and does not provide any feedback

to the model block. Finally, preliminary measurements allowed identifying the control system pa-

rameters, either considering direct control (i.e., assuming ideal linear relationship between strain

and voltage), linear strain derivative-voltage derivative coefficient α (with β obtained through the220

analytical inversion exposed in Section 3), or bi-exponential function for β. Identified parameters

are listed in Table 1.

5.2. Control implementation

In order to generate the proper control voltage to get the desired target strain using the previous

model, the dSpace system (still with a time step of 0.1 ms) is this time fed with the Simulink R©
225

schematics depicted in Figure 6, for both the inverted linear direct model and bi-exponential inverse

expression of the voltage derivative-strain derivative coefficient β (these schematics correspond to

the block labeled “Inverse model” in Figure 5). In this study, only open-loop control is considered,

to clearly demonstrate the relevance of the proposed scheme. Input is the target (desired) strain and

Figure 5: Experimental set-up.
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Direct control - β(S) = βdirect

Control gain βdirect
1
12 V.µdef−1

Inverse linear model - β(S) =
√

1
2γ|S−Sshift|+α0

2

Low-voltage strain-voltage

derivative coefficient α0 6.2 µdef.V −1

Slope coefficient γ 0.075 µdef.V −2

Bi-exponential inverse model -

β(S) = η1e
ν1|S−Sshift| + η2e

ν2|S−Sshift|

First pre-exponential

factor η1 0.078 V.µdef−1

First exponential

coefficient ν1 −5.916× 10−3 µdef−1

Second pre-exponential

factor η2 0.100 V.µdef−1

Second exponential

coefficient ν2 −277.8× 10−6 µdef−1

Table 1: Experimental model parameters.

the output is the associated voltage to experimentally reach such a strain. The principles consist230

in sampling the desired strain value when its derivative crosses zero value thanks to a zero-crossing

detection block combined with a switch. Then this sampled target strain value, corresponding to

Sshift, is subtracted from the target strain S. This effective strain S − Sshift is then fed into the

function describing β(S) (block “f(u)” in Figure 6), yielding the current value of β. The strain

derivative is then multiplied by the obtained coefficient, and the resulting variable integrated to235

get the required control voltage to obtain the target strain. In the following experiments, the

desired test strain is set to be a sinusoidal signal of 1 Hz (for which the piezoelectric stack shows

quasi-static response) with varying magnitude and shifted to yield unipolar driving.

5.3. Results & discussion

Figure 7 depicts the measured strain vs. the target one for the three considered control ap-240

proaches (direct, inverse of linear model, bi-exponential inverse model) as well as the relative error

with respect to the maximal command strain for each case. Hence, it can be observed a strong hys-

teretic response in the direct control, along with significant underestimation of the required voltage

to achieve the target strain at low magnitude and significant overestimation at high strain magni-

tude. Therefore, such a control is not useable in practice. The inversion of the linear model permits245

much better response, with matching maximal strains with respect to the target one and reduced

hysteretic response. Interestingly, the proposed approach performs better at high strain/voltage in

12
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Driving voltage

reset

gamma

alpha0

Switch
Scope

Memory

1
s

Integrator

Hit
Crossing

f(u)

Fcn

Dot Product

Derivative

Constant1

Constant

1 Command Strain

Sshift

(a) Inversion of linear behavior

(b) Bi-exponential inverse behavior

Figure 6: Simulink schematics used in the experiment for modeling inverse hysteresis model (the integrator reset is

used when the system is at rest to reinitialize the algorithm in the case of failure in the experiment, such as dSpace

input voltage clipping).

13



0 50 100 150 200

Target strain ( def)

0

50

100

150

200

M
ea

su
re

d 
st

ra
in

 (
de

f)

Target strain magnitude: 200 def

0 50 100 150 200

Target strain ( def)

-20

-10

0

10

20

R
el

at
iv

e 
er

ro
r 

(%
)

0 100 200 300 400 500

Target strain ( def)

0

100

200

300

400

500

M
ea

su
re

d 
st

ra
in

 (
de

f)

Target strain magnitude: 500 def

0 100 200 300 400 500

Target strain ( def)

-20

-10

0

10

20

R
el

at
iv

e 
er

ro
r 

(%
)

0 200 400 600 800

Target strain ( def)

0

200

400

600

800

M
ea

su
re

d 
st

ra
in

 (
de

f)

Target strain magnitude: 800 def

Direct
Inverse
linear

Bi-exponential
inverse

0 200 400 600 800

Target strain ( def)

-20

-10

0

10

20

R
el

at
iv

e 
er

ro
r 

(%
)

Figure 7: Experimental strain vs. target strain for several control approaches and target strain magnitudes.
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terms of magnitude, when the hysteresis behavior is the most important, especially for the analyt-

ical inversion of the linear direct model. Furthermore, the hysteresis is almost totally suppressed

using the bi-exponential fit of the voltage derivative-strain derivative coefficient β, although minor250

overestimation of the required voltage and thus higher strain than targeted appears at low driving

magnitudes. Even if the models were mainly fitted regarding the high voltage/strain response, the

strain output is still well reconstructed with respect to the target one whatever the driving magni-

tude, thanks to the control principles whose experimental evidence is given in Figure 3. Hence, such

results demonstrate the efficiency of the proposed inverse model for obtaining target strain using255

simple yet effective system-level hysteresis modeling approach. As highlighted by Table 2, while

inverse linear approach slightly outperforms the bi-exponential inverse method at low magnitude

in terms of maximal strain value (which can be explained by the fact that bi-exponential inverse

model parameter set was mainly identified considering high magnitude case), the latter allows a

drastic reduction of the hysteresis behavior, making it more suitable for precise control.260

Experimental driving voltages are depicted in Figure 8. As expected, the direct control voltage

is a direct image of the target strain (i.e., unipolar sine) that therefore cannot correctly control the

hysteretic behavior of the transducer. Compared to the inverse linear and bi-exponential inverse

models, it can be seen that the direct control voltage magnitude is lower at low strain magnitudes

and higher at high strain magnitudes, which is consistent with the strain results of Figure 7.265

Such an effect is actually caused by an underestimation of the voltage derivative-strain derivative

coefficient β at low strain values and by its overestimation at high target strain values. On the

other hand, control signals based on inverse models are not only able to adapt their magnitude,

Inverse Bi-exponential

Direct linear inverse

200 µdef

target

magnitude

Max strain (error) 181 µdef

(−9.4%)

213 µdef

(+6.5%)

221 µdef

(+10.5%)

Hysteresis area (reduction

w.r.t. direct control)

2 725 µdef2

(N/A)

1 758 µdef2

(35.5%)

922 µdef2

(66.2%)

500 µdef

target

magnitude

Max strain (error) 529 µdef

(+5.9%)

522 µdef

(+4.5%)

524 µdef

(+4.8%)

Hysteresis area (reduction

w.r.t. direct control)

30 218 µdef2

(N/A)

7 960 µdef2

(73.7%)

2 639 µdef2

(91.2%)

800 µdef

target

magnitude

Max strain (error) 905 µdef

(+13.1%)

791 µdef

(−1.1%)

796 µdef

(−0.5%)

Hysteresis area (reduction

w.r.t. direct control)

85 743 µdef2

(N/A)

6 714 µdef2

(92.2%)

2 926 µdef2

(96.6%)

Table 2: Quantitative comparison of the considered schemes.
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Figure 8: Experimental voltage waveforms for several control approaches and target strain magnitudes.

but also their shape as the associated waveforms are no longer pure sine, with a dissymmetrical

shape that becomes more and more pronounced as the target strain magnitude increases, hence270

efficiently addressing the hysteresic behavior of the transducer thanks to the evolution of β with

the desired target strain value (contrary to the direct control where β is fixed).

5.4. Case of advanced signals

While the previous developments and validations considered pure sinusoidal signals, it is pro-

posed here to evaluate through numerical simulations the performance of the proposed scheme275

when the target strain waveform is more complex. To do so, a discrete Preisach model of the

actuator is considered (such an approach is preferred here to the previously validated direct model

([29]) in order to exclude any biased result as the inverse model is initially based on the latter). The

control system (using bi-exponential inverse model through the function h) is then implemented
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to feed the obtained transducer block, leading to the representation shown in Figure 9. For com-280

parison purposes, the direct control is also implemented, with the gain fixed as the inverse linear

(low magnitude) gain of the actuator model.

The first simulation consisted in a triangular command strain with an intermediate magnitude

of 400 µdef. The interest in this waveform, in addition to its wide use, is the fact that the triangular

function shows a discontinuous derivative, along with no exact zero crossing. However, as depicted285

in Figure 10(a), the response of the device using the proposed inverse model still allow a faithful

output strain compared to the target one, with a maximal error of less than 3%.

Another signal under consideration lies in an abruptly changing (decreasing) target strain mag-

nitude, allowing the appearance of minor loops in the hysteretic response. Results, depicted in

Figure 10(b), also show a good strain control. However, after the appearance of the minor cycle, it290

can be noted that a small static error appears. This could be explained by the abrupt change, es-

pecially in the input command strain derivative. Indeed, one limitation of the proposed model lies

in the use of an integral form to get the required voltage (as the method is based on the coefficient

linking strain and voltage derivatives), which is therefore quite sensitive to initial conditions and

abrupt changes. However, in real applicative environments, natural filtering would prevent such295

sudden modification of signals, while the control system should have sufficiently small sampling

rate to avoid aliasing.

Finally, Figure 11 depicts the response to a step input6. It should however be noted here

that the transducer model does not relate the dynamic response of the real transducer, which is

nonetheless out of the scope of the present study. Compared to the direct control case, which300

yields increasing error with the command strain magnitude due more pronounced hysteresis effect,

it can be seen than the proposed model, taking into account such a nonlinearity, permits drastically

Direct control

Inverse model

Voltage Strain

Actuator model

T

F

>

1
sf(u)

Function h

Voltage Strain

Actuator model
Triangle

1

2

*, 3

Signal
selection

Input selection

Out1

Minor loop

Out1

Step

Command strain

Bi-exponential
inverse control

S_shift

Direct control

Figure 9: Simulink model for the assessment of advanced target strain waveforms.

6In order to keep the simulation meaningful and not prone to purely numerical divergence, the step response

has been affected by a slew rate of 104 µdef.s−1.
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Figure 10: Responses to a) Triangular target strain and b) target strain with abruptly varying magnitude (minor

cycles).
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Figure 11: Response to step strain input.

limiting the error, hence providing output strain very close to the target one (Figure 11(b)) . An

underestimation can however be noticed at small driving magnitude, with an error of about 15%

at small driving strains (while this error stays under 5% for strain magnitudes above 200 µdef305

- Figure 11(c) ). Such a deviation can be attributed to the selected bi-exponential function and

the associated fitted parameter sets. More particularly, at small strains, as the exponential terms

approach 1, the sum of the two pre-exponential factors should be equal to the small-signal direct

gain, which is not the case when using the previously fitted parameters, that are more adapted

to medium to high strain magnitudes. In other words, the main limiting factor in this case of310

small-signal excitation arises from the choice of the function h′ (and associated parameters) rather

than the root principles of the proposed model.

6. Conclusion

Based on an computationally and memory efficient yet effective direct hysteresis model, the

present study proposed an open-loop, system-level quasi-static control technique for a hysteretic315

piezoelectric actuator by developing an inverse approach based on rather similar principles as the

direct model. These principles lie in the consideration of the coefficient linking the required driving

voltage derivative to the target strain derivative. More precisely, this coefficient is calculated

according to a mathematical function that is shifted and inverted when the target strain derivative

crosses zero value, with the shifting strain being the target strain value when its derivative crosses320

zero. While the two models (direct and inverse) feature rather different physical roots, objectives

and methods, the rather similar methodology for both of them demonstrates the strong advantage

of such an approach for providing unified concepts.

Analytically derived and experiment-based inverse model applications have also been experi-

mentally implemented in the framework of the quasi-static control of a piezoelectric transducer325
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strain in a successful way, yielding a very good linear relationship between the target and mea-

sured strains, both in terms of hysteresis reduction and magnitude matching. Hence, such an

approach can be of significant interest to dispose of a computationally and memory efficient (as it

only requires few parameters and one storing variable) yet effective model to be implemented into

embedded control systems. Finally, although the model has been demonstrated on a piezoelectric330

transducer, its principles can be extended to any kind of actuators (electromagnetic or magnetorhe-

ological for instance). Further works would consist in including loading effects as well as dynamic

contributions such as (potentially nonlinear) dynamic losses, creep and so on, to further extend

the model accuracy and applicability.
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