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Abstract

We propose a toy model for self-organized road tra�c taking into account the state of orderli-
ness in drivers' behavior. The model is reminiscent of the wide family of generalized second-order
models (GSOM) of road tra�c. It can also be seen as a phase-transition model. The orderliness
marker is evolved along vehicles' trajectories and it in�uences the fundamental diagram of the
tra�c �ow. The coupling we have in mind is non-local, leading to a kind of �weak decoupling�
of the resulting 2 × 2 system; this makes the mathematical analysis similar to the analysis of
the classical Key�tz-Kranzer system. Taking advantage of the theory of weak and renormalized
solutions of one-dimensional transport equations [Panov, 2008], which we further develop on this
occasion in the �rst chapter, we prove the existence of admissible solutions de�ned via a mixture
of the Kruzhkov and the Panov approaches; note that this approach to admissibility does not
rely upon the classical hyperbolic structure for 2 × 2 systems. First, approximate solutions are
obtained via a splitting strategy; compacti�cation e�ects proper to the notion of solution we rely
upon are carefully exploited, under general assumptions on the data. Second, we also address
fully discrete approximation of the system, constructing a BV-stable Finite Volume numerical
scheme and proving its convergence under the no-vacuum assumption and for data of bounded
variation. As a byproduct of our approach, an original treatment of local GSOM-like models in
the BV setting is brie�y discussed, in relation to discontinuous-�ux LWR models.
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1 INTRODUCTION

1 Introduction

This paper is devoted to mathematical and numerical analysis of a 2 × 2 system of balance laws
with non-local coupling. Our motivations come from macroscopic modeling of road tra�c, and more
speci�cally, from taking into account the distinction between ordered or disordered behaviors of
drivers within the paradigm of the so-called Generalized Second-Order Models (GSOM).

1.1 Generalities on macroscopic PDE tra�c models

Let us start by providing a brief account on advantages and drawbacks (in terms of modeling, but
also in terms of completeness and �exibility of their mathematical and numerical analysis) of �rst-
order and second-order hyperbolic models for road tra�c, including phase transition models that
combine both of the above. More information can be found, e.g., in the surveys and monographs
[13, 45, 47]. In Section 1.2, we will insert our work within this general picture and highlight the
analytical purpose of our work that goes beyond its modeling purpose.

1.1.1 The fundamental �ow equation

Although tra�c description in terms of individual agents and their interactions is relevant, typically
it leads to large ODE systems which mathematical analysis is cumbersome; moreover, they may
encrypt the relevant tra�c information (such as presence of shock waves) in a non-obvious way. The
in�uence of �uid mechanics and the well developed mathematical machinery of hyperbolic PDEs and
their approximation made macroscopic models very popular, starting from the pioneering Lighthill-
Whitham and Richards model. All these models are based on the fundamental �ow equation

∂tρ+ ∂x(ρv) = 0 (1.1)

with ρ representing the density of the �ow, bounded by some maximum value, and v representing
the velocity. Di�erent models are built upon this equation by adding functional and/or di�erential
relations linking the two state variables ρ and v (or ρ and ρv).

1.1.2 First-order models

These models use an explicit closure relation linking v to ρ by a functional dependence, such as

v(ρ) = Vmax(1− ρ

ρmax
). The classical Lighthill-Whitham and Richards model [40, 46] (LWR, in the

sequel) is the prototype of the whole class. We refer to [12] for a survey of �rst-order models. The
major advantage of such models is the possibility of their complete mathematical analysis, rigorous
assessment of several approximation strategies, proved relation to certain microscopic many-particle
models. Their theory is �rmly attached to the classical theory of Kruzhkov entropy solutions to scalar
conservation laws [37]. The robustness of the theory facilitates the introduction, into the �rst-order
models, of additional features such as delays, non-locality, point constraints, variation of the number
of lines, etc; see [12], see also [16, 18, 3, 14] for a few more recent examples. The clear drawback of the
�rst-order models is their inadequacy to experimental data which exhibit a functional dependence
of ρv on ρ only for low enough densities, see, e.g., the experimental fundamental diagram in [27,
Fig.1].

1.1.3 Second-order models

In the context of tra�c �ows, the name �second-order� is given to models describing the joint
evolution of the state variables (ρ, v) (or (ρ, ρv)) by means of a 2 × 2 system of PDEs. After the
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1 INTRODUCTION

controversy of [23], the second-order model of Aw-Rascle and Zhang [11, 50] (ARZ, in the sequel)
became popular. In [39, 38] a wide family of generalized second-order models (GSOM, in the sequel)
was described. The mathematical structure of these models is a 2 × 2 system of conservation or
balance laws, strictly hyperbolic away from the vacuum ρ = 0, with one genuinely nonlinear and
one linearly degenerate characteristic �elds. Selection criteria in terms of Riemann solver can be
reformulated under the form of entropy conditions (see, in particular, [4] for a Kruzhkov-like choice
of entropies). Variants of ARZ with additional features, as for the variants of the LWR model
mentioned here above, were proposed. Existence analysis with, sometimes, numerical analysis could
be extended to some of these variants, see, e.g., [4]. However, the mathematical analysis of GSOM is
not complete at the present stage, except for the case of the Riemann problems [38]. The additional
complexity of ARZ and more generally, of GSOM is compensated by a better description of some of
the features of tra�c, yet for low densities and especially for vacuum the LWR model may represent
a simpler and more reliable model.

1.1.4 Phase transition models

Phase transitions between a �free� and a �congested� states of �ow were identi�ed in the engineering
literature, see e.g., [32, 34], as the crucial property of real tra�c �ows responsible for the self-
organization patterns such as the stop-and-go waves. The two phases are associated with two
di�erent regions of the experimental fundamental diagrams, like [27, Fig.1]. Several two-phase
mathematical models with phase transitions were proposed. In particular, the model of [17] is
close to the GSOM family, see [39]. In principle, these models o�er a better description of tra�c,
combining the advantages of the �rst-order and the second-order models (e.g., [28, 19]) and the
insight from the engineering literature. This comes at the price of a much heavier mathematical
treatment. Indeed, typically the phase-transition models are posed in terms of the Riemann solver
(which describes, among other, the phase transition behavior) and the wave-front tracking algorithm
with delicate control of variation is used for the existence analysis. Even slight modi�cations of such
models may result in heavy modi�cations of the analysis of front interactions. We refer to [5] for
one recent example of phase transition model enriched with point constraints and for a brief survey
of mathematical literature on phase transition models.

1.2 Analytical and modeling purposes of the present work

Our purpose is two-fold. Our primary goal is to contribute to mathematical analysis for some GSOM
models based upon the robust theory of scalar conservation laws like for the �rst-order case and on
the theory of renormalization for the kind of transport equations encountered in typical GSOM.
This line is an alternative to the classical line based on the general theory of hyperbolic systems of
conservation laws, and it may allow for more �exibility when variants of the model are considered.

Our secondary goal is to enrich the GSOM family of models with a variant built on taking into
account the state of orderliness in drivers' behavior and its evolution along vehicles' trajectories.
Our mathematical analysis is developed having in mind the key features of this non-local variant of
GSOM, though it may have wider applications.

1.2.1 Contributions into analysis and approximation of GSOM-kind models and sys-

tems of the Key�tz-Kranzer kind

We develop adequate analysis and approximation tools for an exemplary GSOM model featuring
non-local coupling between the equation for the density ρ and the equation for the auxiliary marker
w. The non-locality has a regularizing e�ect that makes the system under study reminiscent, in terms
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1 INTRODUCTION

of the analytical approach, of the classical Key�tz-Kranzer system [35]. In this situation, the central
role is played by the renormalization property for the component w of the solution which evolves
along the trajectories of the �ow. This surprising - in view of the involved and celebrated theory [25]
of renormalized solutions - structural property was established in [42] for general weak solutions w
of the transport equation ∂tw + ∂x(wv) = 0 with the velocity v involved in the continuity equation
∂tρ+ ∂x(ρv) = 0 for the density ρ, having in mind application to the Key�tz-Kranzer system. We
further develop the tool of the weak/renormalized solution adding nonlinear source terms in the
Panov setting [42] and uncovering a �propagation of compactness� mechanism proper to this linear
equation.

Indeed, the renormalization structure yields compactness - either through the total variation control,
or through the analysis in terms of Young measures. This structure also guides us in developing
an original numerical strategy which enters, in a non-obvious way, the standard framework of �nite
volume approximations. It turns out that this numerical strategy can be seen as a generalization
of the speci�c discretization strategy developed for the Key�tz-Kranzer system [36]. Note that
the renormalization property was already identi�ed in [4] as a key ingredient in the study of the
Aw-Rascle and Zhang system (ARZ, the best known example of GSOM) with point constraints at
bottlenecks, and it can be instrumental as well for studying boundary-value problems for ARZ.

Applicable to a wider class of GSOM with non-local coupling, our analysis does not rely on the
standard hyperbolic structure of the system. Instead, it relies upon a sort of decoupling due to the
non-local dependence on w of the fundamental diagram ρ 7→ v(x, t, ρ). Moreover, we brie�y discuss
the possibility of pursuing this line of analysis for more standard local GSOM models, linking the
question to the need for a deeper understanding of discontinuous-�ux scalar conservation laws with
moderately or wildly discontinuous in space �ux function. Rigorous application of this approach to
local GSOM is postponed to future work. Note that also the discretization strategy we pursue is
applicable to the local GSOM.

1.2.2 Contribution to tra�c modeling with GSOM

We propose a prototype model able to take into account the state of orderliness of drivers' behav-
ior. Roughly speaking, we represent the state of the tra�c by a family of fundamental diagrams
ρ 7→ ρv that depend on the additional orderliness parameter ω and interpolate between fundamen-
tal diagrams ρ 7→ ρVmin(ρ) (corresponding to ω = 0, fully disordered tra�c) and ρ 7→ ρVmax(ρ)
(corresponding to ω = 1, fully ordered tra�c).

This idea was put forward by the authors in [10] with the goal to model self-organization (and
disorganization) of tra�c at bottlenecks, in the frame of the basic LWR model adapted to the
presence of bottlenecks [3, 1, 2]. In [10], ω is a time-dependent parameter attached to the bottleneck;
the passing capacity of the bottleneck is a function of the orderliness parameter ω. The dynamics of
ω is governed by an ODE of the logistic type. This ODE is driven by averaged values of the density
in the upstream neighbourhood of the bottleneck: this o�ers a mechanism of progressive ordering of
the tra�c (self-organization) in stable tra�c conditions, and of quick disordering in the situations
with abruptly growing averaged density upstream the bottleneck.

In view of the extensive evidence of self-organization of tra�c beyond bottlenecks [33], we trans-
pose this idea towards taking into account the in�uence of orderliness in drivers' behavior on the
fundamental diagram of the �ow in the bulk (so we do not focus on bottlenecks any more, unlike in
[10]).

Many attempts have been made to model the self-organization in tra�c and its salient features like
the stop-and-go waves. One important paradigm for these models is phase transitions, resulting in
formulation of two-phase models [34, 20]. Some of two-phase models are close, in their structure,
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2 THE GSOM-KIND MODEL WITH ORDERLINESS

to the GSOM models [17, 39]. In the present paper, we propose a toy model which can be situated
at the crossroads of the above mentioned ideas. It has the structure of GSOM with the Lagrangian
marker interpreted as the orderliness parameter. It can be seen as a two-phase model, due to the
fact that we take Vmin ≡ Vmax for low densities. And it borrows from [10] the mechanism for the
evolution of the orderliness marker w attached to individual vehicles. We de�ne the orderliness
parameter ω = ω(x, t) of the fundamental diagram as the weighted average, over a small vicinity
of every point (x, t), of the individual orderliness marker w. The corresponding local model (with
ω = w) makes sense and it is brie�y discussed.
Any attempt to link the model we work with, or the values of the parameters of this model, to road
tra�c data is far beyond the scope of this paper. As a matter of fact, we have in mind the whole
class of systems of non-local GSOM kind of which our exemplary model is a particular instance.
Indeed, the mathematical analysis we carry out is suitable for a wide family of non-local GSOM
models, including source terms for evolution of the Lagrangian marker.

2 The GSOM-kind model with orderliness

Once and for all, �x a time horizon T > 0 and denote Ω = R× (0, T ). We consider that the maximal
density ρmax on the road equals 1. In our new model, the �rst equation on [0, 1]-valued density ρ,

∂tρ+ ∂x (ρv(x, t, ρ)) = 0, (x, t) ∈ Ω, (2.1)

expresses the conservation of mass and it is driven by a time and space dependent velocity v. This
dependency reads:

v(x, t, ρ) = (1− ω(x, t))Vmin(ρ) + ω(x, t)Vmax(ρ). (2.2)

In (2.2), Vmin, Vmax are the two levels of tra�c velocity; the one for the ordered regime of tra�c
and the other for the disordered regime. As usual, we require both of them to be nonincreasing
and nonnegative Lipschitz continuous functions de�ned for ρ ∈ [0, 1]: naturally, Vmax ≥ Vmin. The
actual velocity v in (2.2) is a convex combination of the two regimes' velocities with ω(x, t) ∈ [0, 1]
representing the state of orderliness of the tra�c at time t and position x. We further consider
the orderliness parameter w associated to individual vehicles, which is evolved according to the
transport equation

∂t (ρw) + ∂x (ρwv(x, t, ρ)) = ρs(x, t,w). (2.3)

For a regular velocity �eld, equation (2.3) corresponds to the evolution of w according to the ODE
ẇ(X(t), t) = s

(
X(t), t,w(X(t), t)

)
along the integral curves x = X(t) of the velocity �eld v. In

absence of regularity of v, the rigorous meaning to such evolution is provided by the weak formulation
(2.3) which, moreover, automatically implies the renormalization property (see Appendix A). The
coupling of (2.1), (2.2) with (2.3) is provided by relations linking ω, s to w, ρ.
First, we concentrate on the choice of the source term s in (2.3): it is directly inspired by our previous
work [10] where self-organization at bottlenecks, governed by an analogous orderliness parameter ω,
is considered. Let us take s(x, t,w) = Kw(1−w) where K, depending on ρ and ∂tρ in a non-local
way, re�ects a mechanism of ordering/disordering subject to the tra�c conditions in a vicinity of
each point (x, t). To this end, we introduce the subjective density

ξ(x, t) =

∫
R
ρ(y, t)µ(x− y) dy , (2.4)

where µ ≥ 0,

∫
R
µ(x) dx = 1, is a smooth weight function used to average ρ, similarly to non-local

models of [3, 14, 10]. Further, we make K depend on ρ through the subjective density ξ and its
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2 THE GSOM-KIND MODEL WITH ORDERLINESS

time variations ∂tξ. For future use, let us precise that classical PDE computations using the weak
formulation of (2.1) ensure that ξ admits a time derivative in the sense of the distributions and that
for a.e. (x, t) ∈ Ω,

∂tξ(x, t) = −
∫
R
ρ(y, t)v(y, t, ρ)µ′(x− y) dy .

This comes from using ϕ(y, t) = µ(x − y)ψ(t) (x ∈ R) as a test function in the weak formulation.
To sum up, we take

s(x, t,w) = K(ξ, ∂tξ)w(1−w) (2.5)

for some K : [0, 1]× R 7→ R. To �x the ideas, in the simulations we will take, following [10],

K(ξ, χ) = C
( ξ
ξc
− 1
)+(

1− χ+

D+
− χ−

D−

)
with some threshold ξc ∈ (0, 1) and constants C > 0, D+ >> D− > 0 (see Figure 1). Mathematically
speaking, we only suppose that K ∈ Liploc([0, 1] × R). The idea behind the above choice of K is
to allow for progressive ordering of the tra�c with time when the tra�c conditions are stable, and
for a quick disordering when sudden and strong variations (especially in the case of densi�cation)
of the tra�c occur. Note that random �uctuations of w could be considered, as a further step of
modeling, but this is beyond the scope of our work.

Figure 1: Typical behavior of the orderliness-driving function K.

The key features of the dynamics of w encoded in (2.3)�(2.5) with the above choice of K are as
follows:

� conservation of the �momentum� quantity ρw in the region of low densities, because K is zero
for low densities;

� rapid decrease of ρw for moderate and particularly for high densities, under strong density
variations (disordering);

� progressive increase of ρw in dense and very dense tra�c with small density variations (order-
ing).
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2 THE GSOM-KIND MODEL WITH ORDERLINESS

Finally, let us write the link between ω in (2.2) and the individual ordering markers w as

ω =M[w] (2.6)

where M is an operator on L∞(Ω; [0, 1]). We have in mind the following three choices. For the
simplest one,M = Id, i.e., ω = w, (2.1) can be seen as an LWR equation with space-time discon-
tinuous �ux. Its mathematical study still requires deeper analysis, despite much progress made in
this direction. We brie�y discuss the issue in Section 5.2. Because tra�c involves only a limited
number of agents in a neighbourhood of each point, in this paper we focus on non-local impact of
the individual vehicle markers w on the global tra�c orderliness ω. Two variants will be considered.
In Section 4, the existence will be obtained with

M[w](x, t) =

∫ t

−∞

∫
R
w(y, s)η(x− y, t− s) dy ds . (2.7)

In (2.7), the function η is a weight function of the form η(x, t) = η1(x)η2(t) with η1 ∈ C1
c(R)

and η2 ∈ BV(R) and supported in a compact subset of [0, T ). Note also that to make sense of
(2.7), we will extend w by the initial data w0 for negative times. Note that the space averaging
means that the perception, by the drivers, of the tra�c conditions relies on their observations of
their immediate neighbourhood (typically, several dozens of meters downstream the �ow) and the
time averaging means that the drivers' perception of the situation is not instantaneous. Remark
that the non-locality in time only looks in the past. In Section 5.1 and throughout Section 6, we
assume a stronger reactivity of the drivers to instantaneous tra�c conditions in their immediate
neighbourhood, and take the mere space averaging

M[w](x, t) =

∫
R
w(y, t)η(x− y) dy . (2.8)

with η ≡ η1. For the mathematical analysis of the resulting system, the di�erence between (2.7) and
(2.8) is that that the latter one requires the BV framework for existence analysis, while the �rst
choice is regularizing enough to deal with mere L∞ solutions and data.

Finally, we stress that we have in mind the situation where

∃ρf ∈ (0, 1), ∀ρ ∈ [0, ρf ], Vmin(ρ) = Vmax(ρ) (2.9)

so that (2.1)�(2.6) exhibits a two-phase behavior with ρ ∈ [0, ρf ] corresponding to the free tra�c
�ow phase while ρ > ρf correspond to the congested tra�c.

We are now in a position of presenting the outline of the paper. In Section 3 we �x the mathematical
framework of our work. The equation (2.1) is understood in the sense of Kruzhkov entropy solutions
[37] of LWR models. The equation prescribing the evolution of the orderliness marker (2.3) is
understood in the weak and renormalized sense of Panov [42] for one-dimensional transport equations
driven by zero-divergence coe�cients, with necessary adaptations. Indeed, an important ingredient
of our analysis is the re�nement of the theory of weak (and renormalized) solutions of transport
PDEs of the kind (2.3) under the key assumptions that the coe�cients form a zero-divergence �eld
in Ω, and for a wide class of source �elds with separation on (x, t) and w dependence. We gather
original results on this problem in Appendix A. Further, Section 4 is devoted to the proof of the
existence of solutions of Problem (2.1) � (2.6) with the averaging choice (2.7). In Section 5 we
discuss the extension of the existence analysis to other choices ofM in (2.6). In Section 6 we build
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3 NOTION OF SOLUTION

a numerical scheme adapted to the speci�c structure of the system at hand (LWR equation for ρ
and a transport equation for w). We make the simpler averaging choice (2.8) and prove that the
scheme is BV-stable and convergent. We point out structural similarities between our scheme and
the scheme of the authors of [36] developed for the classical Key�tz-Kranzer system. Finally, Section
7 is devoted to performing numerical simulations to illustrate our model.

3 Notion of solution

We denote by f the time and space dependent �ux f(x, t, ρ) = ρv(x, t, ρ) and Φ its Kruzhkov entropy
�ux (see [37]):

∀ρ, κ ∈ [0, 1], ∀(x, t) ∈ Ω, Φ(x, t, ρ, κ) = sgn(ρ− κ) (f(x, t, ρ)− f(x, t, κ)) .

Relying upon [37] for the PDE describing the evolution of ρ and upon [42] (see also our Appendix
A) for the PDE describing the evolution of w, we give the following de�nition of solution to Problem
(2.1) � (2.6).

De�nition 3.1. A couple (ρ,w) ∈ L∞(Ω)2 is a solution to (2.1) � (2.6) with initial data (ρ0,w0) ∈
L∞(R)2 if
(i) ρ ∈ C([0, T ];L1

loc(R; [0, 1])) and ρw ∈ C([0, T ];w∗−L∞(R; [0, 1])), where w∗−L∞ means the space
L∞ endowed with its topology of weak-∗ convergence;
(ii) ρ is an entropy solution to (2.1) with initial data ρ0 in the following sense: ρ(·, 0) = ρ0 in L1

loc(R);
and for all test functions ϕ ∈ C∞c (R× R+), ϕ ≥ 0, for all κ ∈ [0, 1] and for all τ, s ∈ [0, T ] (s < τ),∫ τ

s

∫
R

(
|ρ− κ|∂tϕ+ Φ(x, t, ρ, κ)∂xϕ− sgn(ρ− κ)∂xf(x, t, κ)ϕ

)
dx dt

+

∫
R
|ρ(x, s)− κ|ϕ(x, s) dx−

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx ≥ 0;

(3.1)

(iii) w is a weak solution to (2.3) with initial data w0 in the following sense: ρ(·, 0)w(·, 0) = ρ0w0

in L∞(R)-weakly*; and for all test functions φ ∈ C∞c (R× R+) and for all τ, s ∈ [0, T ] (s < τ),∫ τ

s

∫
R

(
(ρw)∂tφ+ (ρvw)∂xφ+ ρK (ξ, ∂tξ)w(1−w)φ

)
dx dt

+

∫
R
ρ(x, s)w(x, s)φ(x, s) dx−

∫
R
ρ(x, τ)w(x, τ)φ(x, τ) dx = 0,

(3.2)

where ξ is linked to ρ by (2.4);

(iv) v and ω are linked by (2.2) and ω and w are linked by (2.6).

Remark 3.1. According to the result of Corollary A.8 based upon the theory of [42], given ρ,v and
setting g = K (ξ, ∂tξ) with ξ given by (2.4), the solution w in the sense (3.2) automatically veri�es
the renormalization property, cf. De�nition A.2. We will say, for short, that the weak solution in
the sense (3.2) is also a renormalized solution, meaning that it ful�lls this renormalization property.
This aspect is essential for the compactness properties, and it also means that, in a sense, the
solution is evolving as if characteristics could be de�ned (though the latter cannot be de�ned due
to the possible irregularity of ρ,v). The latter observation is the key to the construction of the the
numerical scheme and it also ensures the propagation of the BV regularity, for BV initial data.
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

Remark 3.2 (On the time-continuity). It is more usual to formulate (3.1)-(3.2) with s = 0, τ = T
and ϕ, φ ∈ C∞c (R× [0, T )). Our present formulations are instrumental for the splitting argument we
employ in our construction, see Section 4.1. The equivalence between the two formulations is due
to the time-continuity of entropy solutions of LWR equation and of weak solutions of the transport
equations at hand, see De�nition 3.1(i).

In Section 4, we prove the following existence result.

Theorem 3.2. Fix ρ0,w0 ∈ L∞(R; [0, 1]). Assume that Vmin ≤ Vmax ∈ C1([0, R]) are nonnegative

and that V ′min and V ′max do not vanish on any interval of [0, 1]. Then Problem (2.1) � (2.6),(2.7)
admits at least one solution.

In Section 6, we obtain the following results of numerical approximation and existence for the time-
local variant (2.8) of our model; note that (2.7) can also be considered in our numerical framework.

Theorem 3.3. Suppose that TV(ρ0) < +∞ and that w0 ∈ L1(R; [0, 1]),TV(w0) < +∞. Moreover

suppose that ρ0 is separated from the vacuum in the sense that

∃ε ∈ (0, 1), ε ≤ ρ0 ≤ 1 and Vmin(ε) = Vmax(ε). (3.3)

Then up to a subsequence, the sequence of discrete solutions produced by the scheme of Section 6

converges to a solution of (2.1) � (2.6), (2.8).

Note that the second requirement in (3.3) follows from the assumption (2.9), while the �rst re-
quirement in (3.3) is essential in order to de�ne the CFL condition of the numerical scheme we
develop.

Theorem 3.4. Suppose that TV(ρ0) < +∞ and ρ0 satis�es (3.3), and that w0 ∈ L1(R; [0, 1]),
TV(w0) < +∞. Then Problem (2.1) � (2.6), (2.8) admits at least one solution.

Let us precise that the assumption (3.3) is only useful to construct and prove the convergence of
the scheme developed in Section 6. The last existence result can be obtained without it, see the
discussion in Section 5.1, by using the splitting construction borrowed the proof of Theorem 3.2
along with a BV stability argument ensuring compactness.

4 Existence of solutions via splitting

4.1 Time-splitting procedure and approximate solution

To prove existence of solutions to (2.1) � (2.6),(2.7), we use a time-splitting technique. This way,
we split the model combining the notion of Kruzhkov entropy solution to LWR models with the
notion of weak-and-renormalized solutions to transport equations under the speci�c form of Panov
[42], extended in Appendix A in order to include the nonlinear source term.

Fix ρ0,w0 ∈ L∞(R; [0, 1]). Let ν > 0 be a time step, denote for all n ∈ Z, tn = nν and let N ∈ N∗
such that T ∈ [tN , tN+1).
Initialization. For all t ∈ R,

ρ0(·, t) = ρ0 and ∀n ∈ Z−, wn(·, t) = w0.
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

Induction. Fix n ∈ {1, . . . , N + 1}.
(1) First de�ne the orderliness parameter: ∀t ∈ [tn−1, tn), ∀x ∈ R,

ωn(x, t) =

∫ t−ν

tn−2

∫
R
wn−1(y, s)η(x− y, t− s) dy ds

+
∑

k≤n−2

∫ tk

tk−1

∫
R
wk(y, s)η(x− y, t− s) dy ds .

Remark that the values of ωn only depend on the values of ρ and w before time tn−1, which is the
key to the splitting.
(2) We use ωn to de�ne the car velocity

∀t ∈ [tn−1, tn), ∀x ∈ R, vn(x, t, ·) = (1− ωn(x, t))Vmin(·) + ωn(x, t)Vmax(·)

and the �ux fn(x, t, ρ) = ρvn(x, t, ρ).
(3) The �ux function is smooth in x, Lipschitz in ρ and BV in t. Since ρn−1(·, tn−1) is bounded, we
can de�ne ρn ∈ C([tn−1, tn];L1

loc(R; [0, 1])) as the unique entropy solution, in the sense of De�nition
3.1 (i)-(ii), see [37, Theorem 1] and [21, Theorem 2.3], to{

∂tρ
n + ∂x (fn(x, t, ρn)) = 0

ρn(·, tn−1) = ρn−1(·, tn−1).

(4) Setting

∀t ∈ [tn−1, tn), ∀x ∈ R, ξn(x, t) =

∫
R
ρn(y, t)µ(x− y) dy ,

and following Corollary A.8, we can de�ne wn ∈ L∞(R× (tn−1, tn)) as the unique weak solution to{
∂t (ρnwn) + ∂x (fn(x, t, ρn)wn) = ρnK (ξn, ∂tξ

n)wn(1−wn)

wn(·, tn−1) = wn−1(·, tn−1).

Corollary A.8 ensures that wn veri�es the renormalization property, see De�nition A.2; and Re-
mark A.1 based upon [42, Lemma 1] provides the required regularity in time: wn ∈ C([tn−1, tn];w∗−
L∞(R)). Note that by construction, w takes values in [0, 1].
Conclusion. De�ne the following functions: for a.e. (x, t) ∈ Ω,

(ρν(·, t),wν(·, t)) = (ρ0,w0)1R−(t) +

N+1∑
n=1

(ρn(·, t),wn(·, t))1(tn−1,tn](t);

(vν(x, t, ·), ων(x, t), ξν(x, t)) =
N+1∑
n=1

(vn(x, t, ·), ωn(x, t), ξn(x, t))1[tn−1,tn)(t)

fν(x, t, ·) =
N+1∑
n=1

fn(x, t, ·)1[tn−1,tn)(t).

Proposition 4.1. The couple (ρν ,wν) constructed above is a solution in Ω to the following system:

∂tρν + ∂x (fν(x, t, ρν)) = 0

vν(x, t, ρ) = (1− ων(x, t))Vmin(ρ) + ων(x, t)Vmax(ρ)

∂t (ρνwν) + ∂x (fν(x, t, ρν)wν) = ρνK (ξν , ∂tξν)wν(1−wν)

ων(x, t) =

∫ t−ν

−∞

∫
R
wν(y, s)η(x− y, t− s) dy ds .

(4.1)
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

Proof. By construction, for all n ∈ {1, . . . , N+1}, ρn ∈ C([tn−1, tn];L1
loc(R)). Combining this with

the stop-and-restart conditions ρn(·, tn−1) = ρn−1(·, tn−1), we ensure that ρν ∈ C([0, T ];L1
loc(R)).

Using a similar reasoning, we obtain ρνwν ∈ C([0, T ];w∗−L∞(R)). Fix now ϕ ∈ C∞c (R×R+), ϕ ≥ 0
and κ ∈ [0, 1]. Let us denote by Φν the Kruzhkov entropy �ux associated with fν . By construction,
for every n ∈ {1, . . . , N + 1}, we have∫ tn

tn−1

∫
R

∣∣ρν − κ∣∣∂tϕ+ Φν(x, t, ρν , κ)∂xϕdx dt

=

∫ tn

tn−1

∫
R

∣∣ρn − κ∣∣∂tϕ+ sgn(ρn − κ)

(
fn(x, t, ρn)− fn(x, t, κ)

)
∂xϕdx dt

≥
∫ tn

tn−1

∫
R

sgn(ρn − κ)∂xf
n(x, t, κ)ϕdx dt

−
∫
R

∣∣ρn(x, tn−1)− κ
∣∣ϕ(x, tn−1) dx+

∫
R
|ρn(x, tn)− κ|ϕ(x, tn) dx

=

∫ tn

tn−1

∫
R

sgn(ρn − κ)∂xfν(x, t, κ)ϕdx dt

−
∫
R

∣∣ρν(x, tn−1)− κ
∣∣ϕ(x, tn−1) dx+

∫
R
|ρν(x, tn)− κ|ϕ(x, tn) dx .

From this inequality, it is straightforward to prove that for all s, τ ∈ [0, T ] (s < τ), we have∫ τ

s

∫
R

(
|ρν − κ|∂tϕ+ Φν(x, t, ρν , κ)∂xϕ− sgn(ρν − κ)∂xfν(x, t, κ)ϕ

)
dx dt

+

∫
R
|ρν(x, s)− κ|ϕ(x, s) dx−

∫
R
|ρν(x, τ)− κ|ϕ(x, τ) dx ≥ 0,

(4.2)

see [49] for an analogous calculation. Let us precise here the link between ρν and ξν . For all t ∈ [0, T ],
if t ∈ [tn−1, tn) for some n ∈ {1, . . . , N + 1}, then for all x ∈ R,

ξν(x, t) = ξn(x, t) =

∫
R
ρn(y, t)µ(x− y) dy =

∫
R
ρν(y, t)µ(x− y) dy .

We now turn to the obtaining of an approximate weak formulation similar to (3.2). Let φ ∈
C∞c (R× R+). For every n ∈ {1, . . . , N + 1}, we have∫ tn

tn−1

∫
R
ρνwν∂tφ+ fν(x, t, ρν)wν∂xφ dx dt

=

∫ tn

tn−1

∫
R
ρnwn∂tφ+ fn(x, t, ρn)wn∂xφ dx dt

= −
∫ tn

tn−1

∫
R
ρnK (ξn, ∂tξ

n)wn(1−wn)φ dx dt

−
∫
R
ρn(x, tn−1)wn(x, tn−1)φ(x, tn−1) dx+

∫
R
ρn(x, tn)wn(x, tn)φ(x, tn) dx

= −
∫ tn

tn−1

∫
R
ρνK (ξν , ∂tξν)wν(1−wν)φ dx dt

−
∫
R
ρν(x, tn−1)wν(x, tn−1)φ(x, tn−1) dx+

∫
R
ρν(x, tn)wν(x, tn)φ(x, tn) dx ,
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

and from this, once again, it is easy to prove that for all s, τ ∈ [0, T ] (s < τ), we have∫ τ

s

∫
R

(
(ρνwν)∂tφ+ (ρνvνwν)∂xφ+ ρνK (ξν , ∂tξν)wν(1−wν)φ

)
dx dt

+

∫
R
ρν(x, s)wν(x, s)φ(x, s) dx−

∫
R
ρν(x, τ)wν(x, τ)φ(x, τ) dx = 0.

(4.3)

By construction, vν and ων are linked by the second equality in (4.1). Finally, if t ∈ [tn−1, tn) for
some n ∈ {1, . . . , N + 1}, then we have for all x ∈ R,

ωn(x, t) =

∫ t−ν

tn−2

∫
R
wn−1(y, s)η(x− y, t− s) dy ds+

∑
k≤n−2

∫ tk

tk−1

∫
R
wk(y, s)η(x− y, t− s) dy ds

=

∫ t−ν

−∞

∫
R
wν(y, s)η(x− y, t− s) dy ds ,

i.e. ων and wν are linked by the last equality in (4.1). �

4.2 Compactness and convergence

We now want to pass to the limit in (4.2)-(4.3), and for that we need su�cient compactness of the
sequences involved. The di�culty lies in the obtaining of strong compactness for the sequence (wν)ν .
For this sake, we developed the �compactness from renormalization� argument for one-dimensional
transport equations addressed in [42], see Theorem A.6. To apply it, we need:

� uniform L∞ bounds for the sequences (ρν)ν , (vν)ν , (K(ξν , ∂tξν))ν and (wν)ν ;

� strong compactness for the sequences (ρν)ν , (fν(·, ·, ρν))ν , (K(ξν , ∂tξν))ν ;

� to prove that (wν)ν is a sequence of weak solutions to the second PDE of (4.1), which implies
that they verify the renormalization property, by virtue of Corollary A.8.

Note that we proved the last point in the proof of Proposition 4.1. We now focus on the two other
requirements. Let us start with the L∞ bounds.

Lemma 4.2. For all ν > 0, we have the bounds:

0 ≤ ρν ,wν , ων ≤ 1; 0 ≤ vν ≤ Vmax; |K(ξν , ∂tξν)| ≤ sup
0≤ξ≤1

|χ|≤Vmax‖µ′‖L1

|K(ξ, χ)| .

Proof. The bounds for (ρν)ν and (wν)ν are clear. Since η is a weight function, for all ν > 0, we
have

∀(x, t) ∈ Ω, 0 ≤ ων(x, t) ≤
∫ T

0

∫
R
η(y, s) dy ds = 1,

which implies the desired bounds for (vν)ν since it is a convex combination of Vmin and Vmax. Now,
once we recall that for a.e. (x, t) ∈ Ω,

∂tξν(x, t) = −
∫
R
ρν(y, t)vν(y, t, ρν)µ′(x− y) dy ,

we immediately get the bound for (K(ξν , ∂tξν))ν . �
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

We now turn to the strong compactness for the sequences (ρν)ν , (f(·, ·, ρν))ν , (K(ξν , ∂tξν))ν . Let us
start with (f(·, ·, ρν))ν .

Lemma 4.3. There exists ω ∈ C(Ω) such that up to the extraction of a subsequence, (ων)ν converges
uniformly on compact sets to ω. Moreover, for all (x, t) ∈ Ω, ω(x, t) ∈ [0, 1].

Proof. We now prove that the sequence (ων)ν is bounded in W1,∞(Ω). We already proved in
Lemma 4.2 that (ων)ν is bounded in L∞(Ω). Fix now (x, t), (ξ, τ) ∈ Ω. On the one hand, we have

|ων(x, t)− ων(ξ, t)| ≤
∫ t−ν

−∞

∫
R
|η(x− y, t− s)− η(ξ − y, t− s)| dy ds

≤ |x− ξ|
∫ t−ν

−∞
TV(η(·, t− s)) ds ≤ ‖η‖L1((0,T );BV)|x− ξ|.

On the other hand,

|ων(x, t)− ων(x, τ)| ≤
∫ t−ν

−∞

∫
R
|η(x− y, t− s)− η(x− y, τ − s)| dy ds

+

∣∣∣∣∫ τ−ν

t−ν

∫
R
η(x− y, τ − s) dy ds

∣∣∣∣
≤
(
‖η‖L1(R;BV) + ‖η‖L∞((0,T );L1)

)
|t− τ |.

The compactness result follows from the compact embedding W1,∞(
◦
U) ⊂ C(U) when U ⊂ Ω is a

compact subset. A standard diagonal process ensures then the existence of subsequence of (ων)ν
that converges to some ω ∈ C(Ω) on every compact subset of Ω. �

Corollary 4.4. De�ne the velocity v(x, t, ρ) = (1− ω(x, t))Vmin(ρ) + ω(x, t)Vmax(ρ) and the �ux

f(x, t, ρ) = ρv(x, t, ρ). Then, up to a subsequence, (vν)ν and (fν)ν converge uniformly on compact

subsets of Ω× [0, 1] to v and f , respectively.

Proof. The claim is immediate because of the convergence of (ων)ν . �

We see here the e�ect of the non-locality of (ων)ν . To obtain strong compactness of (ρν)ν , we impose
a non-degeneracy assumption on the �ux.

Lemma 4.5. Suppose that V ′min and V ′max do not vanish on any interval of [0, 1]. Then there exists

a subsequence of (ρν)ν which converges a.e. on Ω to some ρ ∈ L∞(Ω). Moreover, for a.e. (x, t) ∈ Ω,

ρ(x, t) ∈ [0, 1].

Proof. Fix U a bounded open subset of Ω, V a compact subset of Ω containing U and κ ∈ [0, 1].
Using the formalism of [41, 42], we show that(

div(t,x)

(
(ρν − κ)+

(ρν − κ)+(f(x, t, ρν)− f(x, t, κ))

))
ν

is precompact in H−1(U).

By construction, for all ν > 0,

2∂t(ρν − κ)+ + 2(ρν − κ)+(f(x, t, ρν)− f(x, t, κ))

= −∂xf(x, t, κ) + ∂t|ρν − κ|+ ∂xΦ(x, t, ρν , κ)

+ ∂x (f(x, t, ρν)− fν(x, t, ρν))︸ ︷︷ ︸
Rν(x,t)

(4.4)
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4 EXISTENCE OF SOLUTIONS VIA SPLITTING

For all ϕ ∈ C∞c (U), we have∣∣∣∣∫∫
U
Rνϕdx dt

∣∣∣∣ =

∣∣∣∣∫∫
U

(f(x, t, ρν)− fν(x, t, ρν)) ∂xϕdx dt

∣∣∣∣
≤ ‖f − fν‖L∞(V )mes(U)1/3‖∂xϕ‖L3/2(U)

≤ sup
ν>0

(
‖f − fν‖L∞(V )

)
mes(U)1/3‖ϕ‖W1,3/2(U),

which proves that the sequence (Rν)ν is bounded in W−1,3(U). Since (Rν)ν is also clearly bounded
in the space of �nite signed Radon measures Ms(U), [26, Corollary 1.3.1] ensures that (Rν)ν is
precompact in H−1(U). The same method applies to prove that the reminder of the right-hand side
of (4.4) is precompact in H−1(U). Hence,(

div(t,x)

(
(ρν − κ)+

(ρν − κ)+(f(x, t, ρν)− f(x, t, κ))

))
ν

is precompact in H−1
loc(Ω).

Since (ρν)ν ⊂ L∞(Ω) is bounded, for all (x, t) ∈ Ω, the �ux f(x, t, ·) being non-degenerate in the
sense required in [42] due to our assumption on Vmin, Vmax, [43, Corollary 2] yields a subsequence of
(ρν)ν that converges to some ρ ∈ L∞(Ω) in L1

loc(Ω). A further extraction yields the a.e. convergence
on Ω. The fact that ρ takes values in [0, 1] comes from the L∞ bound of Lemma 4.2. �

Corollary 4.6. De�ne for all (x, t) ∈ Ω,

ξ(x, t) =

∫
R
ρ(y, t)µ(x− y) dy ; χ(x, t) = −

∫
R
ρ(y, t)v(y, t, ρ)µ′(x− y) dy .

Then, up to a subsequence, (ξν)ν , (∂tξν)ν and (K(ξν , ∂tξν))ν converge a.e. on Ω to ξ, χ and K(ξ, χ),
respectively.

Proof. The claim is immediate. �

We now assess the compactness of (wν)ν .

Corollary 4.7. There exists w ∈ L∞(Ω; [0, 1]) such that (wν)ν converges a.e. to w on Ω.

Proof. Throughout this section, we ensured that all the hypotheses of Theorem A.6 are ful�lled,
yielding the desired compactness. �

With the established compactness, we can prove the

Theorem 4.8. The couple (ρ,w) constructed in Lemma 4.5 and Corollary 4.7 is a solution to

Problem (2.1) � (2.6),(2.7).

Proof. For all ν > 0 and for all (x, t) ∈ Ω, we have

ων(x, t) =

∫ t−ν

−∞

∫
R
wν(y, s)η(x− y, t− s) dy ds

= −
∫ t

t−ν

∫
R
wν(y, s)η(x− y, t− s) dy ds+

∫ t

−∞

∫
R
wν(y, s)η(x− y, t− s) dy ds .

Page 13



5 VARIANTS OF THE MODEL

The �rst term clearly vanishes as ν → 0, and since η ∈ L1(Ω), the second one converges to∫ t

−∞

∫
R
w(y, s)η(x− y, t− s) dy ds as ν → 0. Recall (cf. Lemma 4.3) that (ων)ν converges uni-

formly to ω on compact sets of Ω and we get:

∀(x, t) ∈ Ω, ω(x, t) =

∫ t

−∞

∫
R
w(y, s)η(x− y, t− s) dy ds .

It is clear from this formula that ω ∈W1,∞(Ω). Apply now (4.2) with ϕ ∈ C∞c (R× [0, T )), ϕ ≥ 0,
κ ∈ [0, 1], s = 0 and τ = T and let ν → 0. We get:∫ T

0

∫
R

(
|ρ− κ|∂tϕ+Φ(x, t, ρ, κ)∂xϕ− sgn(ρ− κ)∂xf(x, t, κ)ϕ

)
dx dt

+

∫
R
|ρ0(x)− κ|ϕ(x, 0) dx ≥ 0.

This proves that ρ is an entropy solution to (2.1). Therefore, ρ ∈ C([0, T ];L1
loc(R)), see [21].

Moreover, it implies that ξ de�ned in Lemma 4.6 veri�es for all x ∈ R, ξ(x, ·) ∈W1,∞((0, T )) and
that for a.e t ∈ (0, T ),

∂tξ(x, t) = χ(x, t),

where χ was de�ned in 4.6 as well. Now the convergences we have proved for (ρν)ν and (fν)ν ensure
that for a.e. τ, s ∈ [0, T ] (s < τ),∫ τ

s

∫
R

(
|ρ− κ|∂tϕ+ Φ(x, t, ρ, κ)∂xϕ− sgn(ρ− κ)∂xf(x, t, κ)ϕdx dt

)
+

∫
R
|ρ(x, s)− κ|ϕ(x, s) dx−

∫
R
|ρ(x, τ)− κ|ϕ(x, τ) dx ≥ 0.

The expression in the left-hand side of the previous inequality is a continuous function of (s, τ)
which is almost everywhere greater than the continuous function 0. By continuity, this expression is
everywhere greater than 0, which proves that ρ satis�es the entropy inequalities (3.1). To conclude
the proof of the statement, we have to prove that w is a weak solution to (2.3). We apply (4.3) with
φ ∈ C∞c (R × [0, T )), s = 0 and τ = T , and we let ν → 0. The strong convergence of (wν)ν and
(K(ξν , ∂tξν)ν) are crucial here. We obtain:∫ T

0

∫
R

(
(ρw)∂tφ+ (ρvw)∂xφ+ ρK (ξ, ∂tξ)w(1−w)φ

)
dx dt+

∫
R
ρ0(x)w0(x)φ(x, 0) dx = 0,

implying in particular that ρw ∈ C([0, T ];w∗−L∞(R)). Therefore, we can conclude the same way
we did for ρ that w satis�es the weak formulation (3.2), concluding the proof. �

Proof of Theorem 3.2. The existence claim readily follows from Theorem 4.8. �

5 Variants of the model

In the previous section, we conducted the existence analysis of Problem (2.1) � (2.6) with (2.7).
The averaging in both space and time of the orderliness marker (2.6),(2.7) allowed for a strong
decoupling of the system (2.1)�(2.3) and thus led us to a proof of existence via a time-splitting
technique with merely bounded initial datum. Notice however that, while optimal results on scalar
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conservation laws feature merely L∞ solutions ([37]), the assumption of bounded variation is typical
in tra�c modeling not only because of the numerous mathematical advantages it may o�er and the
consistency of the BV-based theory, but also because it is natural in the context due to the relative
smallness of the number of tra�c agents.

In this section, we will adopt the setting of densities with bounded variation; within the BV frame-
work, we will consider two variants of the model (2.1) � (2.6). In Section 5.1 we replace (2.7) with
(2.8) with only space averaging of the orderliness marker. Note that this will be the framework of
our Section 6 devoted to numerical analysis of the model. The essential property that allows for
analysis and numerical analysis of this variant is the propagation of the initial BV regularity of the
orderliness marker ω uniformly with respect to the dynamics of ρ, which is the speci�c feature of
solutions to (2.3) intimately related to the renormalization property of [42]. Further, in Section 5.2
we will brie�y discuss the local variant of the model without averaging of the orderliness marker,i.e.
, the variant where ω is taken equal to w. Up to the source term in (2.3) that keeps non-local
character, such model boils down to a system of conservation laws, thus falling within the class of
so-called GSOM (generalized second-order) models put forward in [39, 38]. The unconditional BV
regularity for w (provided initial data are BV) allows us to make a �rst step towards existence,
however, we stress that mathematical tools for handling this situation are not ripe yet. Indeed, (2.1)
becomes in this setting a conservation law with BV in space-time coe�cients (see, e.g., [43]) and
one need to ensure that the candidate solutions ful�ll selection criteria proper to the tra�c context
(see, e.g., [9]) among in�nitely many consistent selection criteria ([7]). The theory of (2.1),(2.2) is
well understood for the case of isolated discontinuities in ω (cf. [31, 48]) but the case of interest, in
the context of our model, requires much deeper investigation.

5.1 On the time-local model (2.1)�(2.6),(2.8)

Consider the variant of Problem (2.1) � (2.6) with averaging only in space of the orderliness marker
(2.8). This simpler model keeps the non-local in space character re�ecting the fact that, while the
orderliness marker is attached to individual drivers, the impact (2.2),(2.6),(2.8) of the individual
orderliness states on the fundamental diagram is taken in average.

The goal of this section is to sketch the existence theory, via convergence of the splitting approx-
imations, based upon the propagation of the BV regularity of the initial datum w0. We do not
expand this section, because the same problem is addressed in the setting of fully discrete numerical
approximations in Section 6. We only point out the key arguments of the argumentation leading to
convergence of the splitting approximations in this case.

To start with, we require ρ0,w0 ∈ BV(R). The notion of solution is the one of De�nition 3.1, with
the necessary adjustment to replace (2.7) by (2.8); within the de�nition of solution, we can add
the BV regularity of ρ,w since we achieve existence of such solutions. The splitting construction
is unchanged. Our whole attention goes to the compactness issue, and at this point, we change
the order of arguments and fully change the compactness analysis of w. With BV datum ρ0,
compactness for (ρν)ν is straightforward to obtain and it comes without the assumption on Vmin, Vmax

of Lemma 4.5. Indeed, due to the uniform space regularity of (ων)ν we can infer that (ρν)ν is
bounded in L∞([0, T ];BV(R)), see [21]. For (wν)ν , global BV bounds can be explained by the
fact, highlighted in [42], that weak solutions to equations like (2.3) behave like if they were evolving
along characteristics. In the basic sourceless case with piecewise constant data, this means that the
solution at any time assumes the same states - and in the same order - as the initial datum, therefore
its variation in space is controlled, for any time, by the variation of the initial data. For general
BV datum and in presence of the source term, in order to infer this property one can rely upon the
regularization approach of Appendix A and the renormalization property. We do not develop the

Page 15



5 VARIANTS OF THE MODEL

argument here, but we stress that the numerical counterpart of the BV bound for (wν)ν is assessed
in detail in Section 6. While in Section 6 we require the restriction ρ0 ≥ ε > 0 in the appropriate
area, see (3.3), let us stress here that this restriction is needed only to de�ne the scheme and to
guarantee the appropriate CFL condition. As far as the splitting procedure is considered, there is
no need to introduce this restriction, as one can see it from the arguments of Appendix A where the
case of ρ ≥ 0 can be handled via a regularization procedure.

5.2 On the local model (2.1)�(2.6)

In this subsection, we discuss the purely local variant of our model, takingM = Id in (2.6); in other
words, we consider the situation where the 2 × 2 system on ρ,w and ω is closed by identifying ω
with w. The resulting model is a variant of GSOM (generalized second-order) models proposed in
[39, 38], inspired by the already classical Aw-Rascle and Zhang model (ARZ). However, due to the
choice (2.2) of the velocity, in our case the model need not reduce to a hyperbolic system with one
genuinely nonlinear and one linearly degenerate �eld. Let us sketch a non-standard approach to this
kind of GSOM models. First, as in Section 5.1, the dynamics of w ensures the propagation of BV
regularity if we assume w0 ∈ BV(R). For the sake of simplicity, consider �rst the case where K = 0.
Then it can be shown using the theory of [42] - due to the fact that the renormalization property
is valid for general Borel functions - that piecewise constant w0 lead to piecewise constant w (cf.
[38] for the analogous observation in the frame of GSOM). In this particular case equation (2.1)
becomes a discontinuous-�ux conservation law with separated interfaces. The theory (or, rather,
multiple theories) of such equations were developed over more than 25 years, and we point out
that it is possible to apply such theories in order to de�ne the notion of solution to the model we
are dealing with, and more generally, to GSOM models with or without the standard hyperbolicity
structure. The key issue is to select the appropriate coupling conditions across discontinuities of
ω ≡ w (called interfaces), which is a clearly understood issue in the tra�c context. According
to phenomenological argumentation and to the numerical simulations involving the deterministic
many-particle approximation (the so-called Follow-the-leader model), see [9], the coupling condition
is the one maximizing the �ux across interfaces. Either we do not pursue this line in the present
paper, let us point out that - for piecewise constant initial datum w0 of the orderliness marker - it is
possible to de�ne solutions (admissible in the sense of maximizing the �ow across interfaces) for the
splitting scheme we used in Section 4, and pass to the limit in the scheme. The compactness of (ρν)ν
can be assessed relying on the non-degeneracy of the �ux [43]. The general setting with piecewise
C1 or merely BV component w of the solution is a challenging issue for which some elements of
analysis are ready, and others are lacking. Let us pinpoint the two main issues we leave for future
work:

� One needs a plausible (on heuristic grounds, such as the uniqueness for Riemann problems)
characterization of admissible solutions suitable for general ω ≡ w ∈ BV.We stress that
the one of [43], obtained in a very general setting, does not lead to uniqueness for general
�ux con�gurations but may be su�cient in the setting we are considering. In particular,
due to the fact that Vmax ≥ Vmin in our model, fundamental diagrams for di�erent values of
ω ≡ w do not cross, so that the crossing condition of [30] is automatically ful�lled. In this
situation, the optimal-�ux entropy solutions we are interested in coincide with the so-called
vanishing viscosity solutions studied in [30, 8](see also [6] and in [22]). Note that a subtler
characterization of admissible vanishing viscosity solutions is provided in [8] and [22]; the
particularity of [22] is that the analysis extends to the general BV structure of the �ux, which
is what we have in mind.
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6 NUMERICAL APPROXIMATION

� Being understood that the uniqueness of solutions for the system is probably beyond the reach
of full analysis, it would be interesting to assess uniqueness of ρ, given ω ≡ w ∈ BV(R).
Towards this goal, delicate re�nements of techniques of [30, 8, 22] need to be elaborated.

To sum up, the present investigation of the non-local problem (2.1)�(2.6) highlights a novel approach
to the de�nition of admissibility of solutions of the local GSOM models, weakening at the same time
the requirement on the hyperbolic structure of the system. Last but not least, the numerical strategy
developed in Section 6 below for the spatially non-local problem of Section 5.1 is applicable also to
the local problem of Section 5.2, provided consistent discretization of (2.1),(2.2) is used taking into
account the possible sharp discontinuities in the expression of the �ux function (cf. [48]).

6 Numerical approximation

In this section, we develop a �nite volume numerical scheme for approximation of the model (2.1)�
(2.6), with the averaging operator M in (2.6) given by (2.8). We analyze the BV stability and
infer the convergence of the scheme. The approximation of the transport equation (2.3) is obtained
exploiting the idea of propagation along characteristics; to state the idea clearly, we start with
a simpli�ed problem and expose the motivations behind the marching formula for the component
(wn

j+1/2)j∈Z of the numerical solution. The scheme for the simpli�ed problem turns out to be similar

to the approximation of the Key�tz-Kranzer [35] system put forward in [36], see Remark 6.1.

6.1 Motivation

We build a simple �nite volume scheme and prove its convergence to a solution of (2.1) � (2.6) with
(2.8) this time. Let us explain the ideas behind the construction of our scheme. For the sake of
clarity, instead of (2.1) � (2.6), consider the problem{

∂tρ+ ∂x (f(ρ)) = 0
∂t (ρw) + ∂x (f(ρ)w) = ρS(x, t).

(6.1)

This system is a triangular one in the sense that we can solve the �rst equation and �nd ρ without
w, and then solve the second one. Numerically, this is what we do as well. The approximate density
ρ∆ = (ρnj+1/2)n,j is constructed with a standard �nite volume scheme:

(ρn+1
j+1/2 − ρ

n
j+1/2)∆x+ (fnj+1 − fnj )∆t = 0,

where fnj is a suitable approximation of the �ux f(ρ), see (6.2). We then use these values to construct
w∆. The starting point is that if all the involved functions are smooth and if ρ > 0, the second
PDE in (6.1) can be solved with the method of characteristics. More precisely, if x ∈ C1((0, T )) and
u(t) = w(x(t), t), assuming in addition that ρ > 0 in Ω, the second equation in (6.1) can be solved
by solving the family of ODE systems

x′(t) = v(ρ(x(t), t)) =
f(ρ(x(t), t))

ρ(x(t), t)

u′(t) = S(x(t), t).

On each time step [tn, tn+1), for all j ∈ Z, we draw characteristics starting from xj with slope

snj :=
fnj

ρn+1
j+1/2

, which is our choice for the approximation of
f(ρ(x(t), t))

ρ(x(t), t)
. At this point we need to
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know that ρn+1
j+1/2 ≥ ε > 0, in order to guarantee the existence of a CFL condition ensuring that at

time tn+1, the characteristics which started at xj ends up at point Xn+1
j ∈ (xj , xj+1), see Figure 2.

Figure 2: Illustration of the two steps of the construction of the scheme.

Now, the ODE solved by u(t) = w(x(t), t) tells us that

u(tn+1) = u(tn) +

∫ tn+1

tn
S(x(t), t) dt i.e. w(Xn+1

j , tn+1) ' w(xj , t
n) + ∆tSn+1

j+1/2︸ ︷︷ ︸
∼
w
n

j+1/2

,

Sn+1
j+1/2 being a suitable approximation of the source term on the cell (xj , xj+1)× (tn, tn+1]. At the

numerical level, we are led to assign the value
∼
w
n

j+1/2 on (Xn+1
j , xj+1). At this point we choose to

de�ne w∆(·, tn+1) on (xj , xj+1) by averaging the values
∼
w
n

j−1/2 and
∼
w
n

j+1/2 on (xj , xj+1). This is
expressed as:

wn+1
j+1/2∆x = (xj+1 −Xn+1

j )
∼
w
n

j+1/2 + (Xn+1
j − xj)

∼
w
n

j−1/2

=

((
1− ∆t

∆x
snj

)
∼
w
n

j+1/2 +
∆t

∆x
snj
∼
w
n

j−1/2

)
∆x

The above choices lead to a conservative scheme for ρw. Looking at the simplest case S = 0
(
∼
w
n

j+1/2 = wn
j+1/2), by multiplying the last expression by ρn+1

j+1/2, we �nd that:(
(ρw)n+1

j+1/2 − (ρw)nj+1/2

)
∆x

= ρn+1
j+1/2

(
wn+1
j+1/2 −wn

j+1/2

)
∆x+

(
ρn+1
j+1/2 − ρ

n
j+1/2

)
wn
j+1/2∆x

= −ρn+1
j+1/2s

n
j

(
wn
j+1/2 −wn

j−1/2

)
∆t− (fnj+1 − fnj )wn

j+1/2∆t

= −fnj
(
wn
j+1/2 −wn

j−1/2

)
∆t− (fnj+1 − fnj )wn

j+1/2∆t

= −
(
fnj+1w

n
j+1/2 − f

n
j w

n
j−1/2

)
∆t,
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so that the numerical �ux for ρw turns out to be fnj w
n
j−1/2. This observation is a cornerstone of

our convergence proof.

Remark 6.1. In the case S ≡ 0, system (6.1) has the same structure as the classical Key�tz-Kranzer
system [35] up to the properties of the �ux function f which is monotone in the Key�tz-Kranzer
case and which is bell-shaped in the case we are concerned with, see also [15]. Discretization of the
Key�tz-Kranzer system by �nite di�erence schemes was addressed, in particular, in [36]. One of the
schemes proposed in this reference (see [36, Section 5]) closely resembles our scheme. In the setting
of [36] the �ux has the form f(ρ) = ρφ(ρ) but the assumptions on φ - di�erent from our assumptions
on v - ensure that f is increasing. Therefore the upwind choice is made for the numerical �uxes:
fnj = ρnj−1/2φ(ρnj−1/2). The scheme of [36, Section 5] then reads:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x
(fnj+1 − fnj )

wn+1
j+1/2 =

(
1− ∆t

∆x
s̄nj

)
wn
j+1/2 +

∆t

∆x
s̄njw

n
j−1/2.

with s̄nj =
fnj

ρn
j−1/2

= φ(ρnj−1/2) due to the upwind choice for fnj . This choice of s̄
n
j di�ers slightly from

our choice of snj . It does not require the lower bound on ρnj−1/2, but this is due to the monotonicity
of f and cannot be mimicked in the setting of bell-shaped f which is the ours.

The ideas to deal with Problem (2.1) � (2.6) are the same as the ones we just develop. The di�erence
is the presence of the coupling between ρ and w. The coupling is taken care of in Step 1 below.
Section 6.2 details the construction of the scheme for (2.1) � (2.6), following the ideas developed
above.

6.2 De�nition of the scheme

In what concerns the initial density, we assume that TV(ρ0) < +∞ and that ρ0 is separated from
the vacuum in the sense stated in assumption (3.3); for the initial orderliness, we assume that
TV(w0) < +∞ and w0 ∈ L1(R; [0, 1]).
For a �xed spatial mesh size ∆x > 0 and time mesh size ∆t > 0, let xj = j∆x (j ∈ Z), tn = n∆t
(n ∈ N) and N ∈ N∗ such that T ∈ (tN , tN+1]. We de�ne the cell grids:

R× (0, T ] ⊂
N⋃
n=0

⋃
j∈Z
Pn+1
j+1/2, Pn+1

j+1/2 = (xj , xj+1)× (tn, tn+1].

We aim at constructing an approximate solution (ρ∆,w∆) de�ned almost everywhere on Ω:
ρ∆ = ρ01{t≤0} +

N∑
n=0

∑
j∈Z

ρn+1
j+1/21Pn+1

j+1/2

w∆ =
N∑
n=0

∑
j∈Z

wn
j+1/21(xj ,xj+1)×[tn,tn+1).

First, we discretize the initial data ρ0 (respect. w0) with
(
ρ0
j+1/2

)
j
, (respect. with

(
w0
j+1/2

)
j
) where

for all j ∈ Z, ρ0
j+1/2 (respect. w0

j+1/2) is its mean value on the cell (xj , xj+1). Fix n ∈ {0, . . . , N}.

Page 19
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Step 1: Orderliness marker (mean value). For all j ∈ Z, de�ne

ωnj =

∫
R
w∆(x, tn)η(xj − y) dy =

∑
i∈Z

wn
i+1/2

(∫ xi+1

xi

η(xj − y) dy

)
︸ ︷︷ ︸

ηj−(i+1/2)

.

Step 2: Finite volumes for the density. We use ωj to de�ne the velocity

vnj (ρ) = (1− ωnj )Vmin(ρ) + ωnj Vmax(ρ)

and the �ux fnj (ρ) = ρvnj (ρ). Introduce the notations:

fmin,max(ρ) = ρVmin,max(ρ); δf = fmax − fmin.

Let Fnj = Fnj (u, v) be a monotone, Lipschitz and consistent numerical �ux associated with fnj . For
the sake of simplicity, we use the Rusanov �ux, that is for all u, v ∈ [0, 1],

Fnj (u, v) =
1

2

(
fnj (u) + fnj (v) + L(u− v)

)
, L = max{‖f ′min‖L∞ , ‖f ′max‖L∞}.

The conservation of ρ written in a cell Pn+1
j+1/2 (j ∈ Z) leads to the following marching formula:

ρn+1
j+1/2 = ρnj+1/2 −

∆t

∆x

(
Fnj+1(ρnj+1/2, ρ

n
j+3/2)− Fnj (ρnj−1/2, ρ

n
j+1/2)

)
. (6.2)

Eventually, it will be convenient to write the scheme under the form:

ρn+1
j+1/2 = Hn

j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
,

where Hn
j = Hn

j (a, b, c) is given by the right-hand side of (6.2) with ρnj−1/2, ρ
n
j+1/2, ρ

n
j+3/2 replaced

by a, b, c ∈ [0, 1].

Step 3: Source term. For all j ∈ Z, we set

ξn+1
j+1/2 =

∑
i∈Z

ρn+1
i+1/2

(∫ xi+1

xi

µ(xj+1/2 − y) dy

)
︸ ︷︷ ︸

µj+1/2−(i+1/2)

χn+1
j+1/2 = −

∑
i∈Z

Fni (ρn+1
i−1/2, ρ

n+1
i+1/2)

(∫ xi+1

xi

µ′(xj+1/2 − y) dy

)
︸ ︷︷ ︸

dµj+1/2−(i+1/2)

.

Note that hereabove, we discretize the expression for χ = ∂tξ that is obtained combining the de�ni-
tion of ξ and the weak formulation of the mass conservation equation.

Then we de�ne the source term by

∀j ∈ Z, Sn+1
j+1/2 = K

(
ξn+1
j+1/2, χ

n+1
j+1/2

)
wn
j+1/2(1−wn

j+1/2).
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Step 4: Orderliness marker. Fix j ∈ Z. Set

Xn+1
j = xj + ∆t

(
Fnj (ρnj−1/2, ρ

n
j+1/2)

ρn+1
j+1/2

)
︸ ︷︷ ︸

snj

.

We will prove that under (3.3) and a suitable CFL condition, see (6.4), the sequence (Xn+1
j )j is well

de�ned. Following the approach outlined in Section 6.1, we compute the updated orderliness marker
as follows: 

∼
w
n

j+1/2 = wn
j+1/2 + ∆tSn+1

j+1/2

wn+1
j+1/2 =

(
1− ∆t

∆x
snj

)
∼
w
n

j+1/2 +
∆t

∆x
snj
∼
w
n

j−1/2.
(6.3)

We also de�ne

(ξ∆, χ∆,S∆) =

N∑
n=0

∑
j∈Z

(ξn+1
j+1/2, χ

n+1
j+1/2,S

n+1
j+1/2)1Pn+1

j+1/2

and

ω∆ =
N∑
n=0

∑
j∈Z

ωnj 1(xj ,xj+1)×[tn,tn+1).

For later use, introduce the notations:

‖K‖L∞ = sup
ε≤ξ≤1

|χ|≤L×TV(µ)

|K(ξ, χ)|; ‖∇K‖L∞ = sup
ε≤ξ1,ξ2≤1

|χ1|,|χ2|≤L×TV(µ)

|K(ξ1, χ1)−K(ξ2, χ2)|

and
‖δf‖L∞ = sup

0≤ρ≤1
δf(ρ); ‖δf ′‖L∞ = sup

0≤ρ≤1
|δf ′(ρ)|.

6.3 L∞ stability via monotonicity

Proposition 6.1. Under the conditions

λmax

{
2,

1

ε

}
L ≤ 1; λ =

∆t

∆x
(6.4)

and

∆t‖K‖L∞ ≤ 1, (6.5)

the scheme (6.2)-(6.3) is monotone and L∞ stable. More precisely, for all n ∈ {0, . . . , N + 1} and
j ∈ Z, we have

ε ≤ ρnj+1/2 ≤ 1 and 0 ≤ wn
j+1/2 ≤ 1. (6.6)

Proof. We prove the result by induction on n.

The result is clearly true for n = 0 by de�nition of
(
ρ0
j+1/2

)
j
and

(
w0
j+1/2

)
j
. Suppose now that for

some n ∈ {0, . . . , N}, (6.6) holds. Fix j ∈ Z.
(i) Since 0 ≤ w∆(·, tn) ≤ 1, we have

ωnj =

∫
R
w∆(y, tn)η(xj − y) dy ∈ [0, 1],
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from which we deduce that fnj is a convex combination of fmin and fmax. Note also that

|ωnj+1 − ωnj | ≤
∑
i∈Z

∫ xi+1

xi

|wn
j+1/2| · |η(xj+1 − y)− η(xj − y)| dy

≤
∫
R
|η(y −∆x)− η(y)| dy ≤ TV(η)∆x.

(ii) Using the CFL condition, we can prove that the scheme (6.2) is monotone. More precisely, for
a.e. a, b, c ∈ [0, 1], we have:

∂Hn
j

∂a
(a, b, c) = λ

∂Fnj
∂u

(a, b) ≥ 0;
∂Hn

j

∂c
(a, b, c) = −λ

∂Fnj+1

∂v
(b, c) ≥ 0

and
∂Hn

j

∂b
(a, b, c) = 1− λ

(
∂Fnj+1

∂u
(b, c)−

∂Fnj
∂u

(a, b)

)
≥ 1− 2λL ≥ 0.

Using the monotonicity of the scheme and the induction property, we deduce that

ρn+1
j+1/2 = Hn

j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
≤ Hn

j (1, 1, 1) = 1

and, since δf(ε) = 0 due to assumption (3.3),

ρn+1
j+1/2 ≥ Hn

j (ε, ε, ε) = ε− λ(ωnj+1 − ωnj )δf(ε) = ε.

(iii) Since ε ≤ ρ∆(·, tn+1) ≤ 1, we have

ξn+1
j+1/2 =

∫
R
ρ∆(y, tn+1)µ(xj+1/2 − y) dy ∈ [ε, 1],

and clearly,

|χn+1
j+1/2| ≤ L ×TV(µ).

(iv) Let us prove that
∼
w
n

j+1/2 ∈ [0, 1]. Introduce the function

g : w 7→ w + ∆tK
(
ξn+1
j+1/2, χ

n+1
j+1/2

)
w(1−w).

Using (6.5), we obtain that for all w ∈ [0, 1],

g′(w) = 1 + ∆tK
(
ξn+1
j+1/2, χ

n+1
j+1/2

)
(1− 2w) ≥ 1−∆t

∣∣∣K(ξn+1
j+1/2, χ

n+1
j+1/2

)∣∣∣ ≥ 0.

Since g(0) = 0 and g(1) = 1, the monotonicity of g implies that
∼
w
n

j+1/2 = g(wn
j+1/2) ∈ [0, 1]. Due

to the CFL condition, wn+1
j+1/2 is a convex combination of

∼
w
n

j+1/2 and
∼
w
n

j−1/2. This implies that

wn+1
j+1/2 ∈ [0, 1], which completes the induction argument. �
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Remark 6.2. The stability estimates (6.6) immediately imply:

ε ≤ ρ∆, ξ∆ ≤ 1; 0 ≤ w∆, ω∆ ≤ 1; |χ∆| ≤ L ×TV(µ); |S∆| ≤
‖K‖L∞

4
.

For all a, b ∈ [0, 1], set

a ∧ b = min{a, b} a ∨ b = max{a, b}.

Corollary 6.2 (Discrete entropy inequalities). The numerical scheme (6.2) ful�lls the following

discrete entropy inequalities for all n ∈ {0, . . . , N}, j ∈ Z and κ ∈ [0, 1]:(∣∣∣ρn+1
j+1/2 − κ

∣∣∣− ∣∣∣ρnj+1/2 − κ
∣∣∣)∆x+ (Φn

j+1 − Φn
j )∆t

≤ − sgn
(
ρn+1
j+1/2 − κ

)
× (fnj+1(κ)− fnj (κ))∆t,

(6.7)

where Φn
j denotes the numerical entropy �ux:

Φn
j = Fnj

(
ρnj−1/2 ∨ κ, ρ

n
j+1/2 ∨ κ

)
− Fnj

(
ρnj−1/2 ∧ κ, ρ

n
j+1/2 ∧ κ

)
.

Proof. This is mostly a consequence of the scheme monotonicity. Remark that

∀j ∈ Z, Hn
j (κ, κ, κ) = κ− λ(fnj+1(κ)− fnj (κ)).

We combine this with the convexity of the function | · −κ| to obtain:∣∣∣ρn+1
j+1/2 − κ

∣∣∣
=
∣∣∣Hn

j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
− κ
∣∣∣

≤
∣∣∣Hn

j

(
ρnj−1/2, ρ

n
j+1/2, ρ

n
j+3/2

)
−Hn

j (κ, κ, κ)
∣∣∣+ sgn

(
ρn+1
j+1/2 − κ

)
×
(
Hn
j (κ, κ, κ)− κ

)
≤ Hn

j

(
ρnj−1/2 ∨ κ, ρ

n
j+1/2 ∨ κ, ρ

n
j+3/2 ∨ κ

)
−Hn

j

(
ρnj−1/2 ∧ κ, ρ

n
j+1/2 ∧ κ, ρ

n
j+3/2 ∧ κ

)
− λ sgn

(
ρn+1
j+1/2 − κ

)
× (fnj+1(κ)− fnj (κ))

=
∣∣∣ρnj+1/2 − κ

∣∣∣− λ(Φn
j+1 − Φn

j )− λ sgn
(
ρn+1
j+1/2 − κ

)
× (fnj+1(κ)− fnj (κ)).

�

6.4 Compactness via BV stability

The key to obtain compactness is to derive global BV bounds for (ρ∆,w∆)∆.

Theorem 6.3. There exists a constant c > 0 such that for all n ∈ {1, . . . , N}:

TV(ρ∆(·, tn)) + TV(w∆(·, tn)) ≤ (TV(ρ0) + TV(w0))e(2c+c2∆t)tn . (6.8)

Proof. Fix n ∈ {0, . . . , N} and j ∈ Z. For the sake of clarity, set

Fnj = Fnj

(
ρnj−1/2, ρ

n
j+1/2

)
.
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6 NUMERICAL APPROXIMATION

We start by writing the scheme (6.2) under the form:

ρn+1
j+1/2 = ρnj+1/2 − λ

Fnj+1 − Fnj+1

(
ρnj+1/2, ρ

n
j+1/2

)
ρnj+3/2 − ρ

n
j+1/2


︸ ︷︷ ︸

−Bj+1

(
ρnj+3/2 − ρ

n
j+1/2

)

− λ

Fnj

(
ρnj+1/2, ρ

n
j+1/2

)
−Fnj

ρnj+1/2 − ρ
n
j−1/2


︸ ︷︷ ︸

Aj

(
ρnj+1/2 − ρ

n
j−1/2

)
− λ(ωnj+1 − ωnj )δf(ρnj+1/2).

The monotonicity of Fnj+1 and Fnj ensures that Aj , Bj+1 ≥ 0. We deduce that

ρn+1
j+1/2 − ρ

n+1
j−1/2 = (1−Aj −Bj)

(
ρnj+1/2 − ρ

n
j−1/2

)
+Aj−1

(
ρnj−1/2 − ρ

n
j−3/2

)
+Bj+1

(
ρnj+3/2 − ρ

n
j+1/2

)
− λ(ωnj+1 − ωnj )δf(ρnj+1/2) + λ(ωnj − ωnj−1)δf(ρnj−1/2).

Making use of the CFL condition (6.4), we have

|Aj |+ |Bj | ≤ 2λL ≤ 1,

hence: ∑
j∈Z

∣∣∣ρn+1
j+1/2 − ρ

n+1
j−1/2

∣∣∣ ≤∑
j∈Z

(1−Aj −Bj)
∣∣∣ρnj+1/2 − ρ

n
j−1/2

∣∣∣
+
∑
j∈Z

Aj−1

∣∣∣ρnj−1/2 − ρ
n
j−3/2

∣∣∣+
∑
j∈Z

Bj+1

∣∣∣ρnj+3/2 − ρ
n
j+1/2

∣∣∣
+ λ

∑
j∈Z

∣∣∣(ωnj+1 − 2ωnj + ωnj−1)δf(ρnj+1/2)
∣∣∣

+ λ
∑
j∈Z

∣∣∣∣(ωnj − ωnj−1)

(
δf(ρnj+1/2)− δf(ρnj−1/2)

)∣∣∣∣
≤
(
1 + ∆tTV(η)‖δf ′‖L∞

)∑
j∈Z

∣∣∣ρnj+1/2 − ρ
n
j−1/2

∣∣∣
+ λ‖δf‖L∞

∑
j∈Z

∣∣ωnj+1 − 2ωnj + ωnj−1

∣∣ .
We now rewrite the last term of the inequality using the Abel procedure. For all j ∈ Z, we have

ωnj+1 − 2ωnj + ωnj−1 =
∑
i∈Z

wn
i+1/2

((
ηj−(i−1/2) − ηj−(i+1/2)

)
−
(
ηj−(i+1/2) − ηj−(i+3/2)

))

=
∑
i∈Z

(
wn
i+1/2 −wn

i−1/2

) (
ηj−(i−1/2) − ηj−(i+1/2)

)
,

from which we deduce:∑
j∈Z
|ωnj+1 − 2ωnj + ωnj−1| ≤

∑
i∈Z
|wn

i+1/2 −wn
i−1/2|

∑
j∈Z
|ηj−(i−1/2) − ηj−(i+1/2)|


≤ TV(η)TV(w∆(·, tn))∆x.
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6 NUMERICAL APPROXIMATION

We now derive a similar estimate for (w∆)∆. We have

wn+1
j+1/2 −wn+1

j−1/2 =
(
1− λsnj

) (
wn
j+1/2 −wn

j−1/2

)
+ λsnj−1

(
wn
j−1/2 −wn

j−3/2

)
+ ∆t

{(
1− λsnj

) (
Sn+1
j+1/2 − Sn+1

j−1/2

)
+ λsnj−1

(
Sn+1
j−1/2 − Sn+1

j−3/2

)}
.

Since 0 ≤ λsnj ≤ 1 due to the CFL condition, we obtain∑
j∈Z

∣∣∣wn+1
j+1/2 −wn+1

j−1/2

∣∣∣ ≤∑
j∈Z

∣∣∣wn
j+1/2 −wn

j−1/2

∣∣∣+ ∆t
∑
j∈Z

∣∣∣Sn+1
j+1/2 − Sn+1

j−1/2

∣∣∣ .
But ∣∣∣Sn+1

j+1/2 − Sn+1
j−1/2

∣∣∣ ≤ ‖K‖L∞ ∣∣∣wn
j+1/2 −wn

j−1/2

∣∣∣
+
‖∇K‖L∞

4

(∣∣∣ξn+1
j+1/2 − ξ

n+1
j−1/2

∣∣∣+
∣∣∣χn+1
j+1/2 − χ

n+1
j−1/2

∣∣∣) ,
so that from

ξn+1
j+1/2 − ξ

n+1
j−1/2 =

∑
i∈Z

ρn+1
i+1/2(µj+1/2−(i+1/2) − µj−1/2−(i+1/2))

=
∑
i∈Z

ρn+1
i+1/2(µj+1/2−(i+1/2) − µj+1/2−(i−1/2))

=
∑
i∈Z

(ρn+1
i+1/2 − ρ

n+1
i+3/2)µj+1/2−(i+1/2),

we deduce (remember that µ is a weight function):∑
j∈Z

∣∣∣ξn+1
j+1/2 − ξ

n+1
j−1/2

∣∣∣ ≤ TV(ρ∆(·, tn+1)).

We prove in the same way that∑
j∈Z

∣∣∣χn+1
j+1/2 − χ

n+1
j−1/2

∣∣∣ ≤ 2L ×TV(µ)TV(ρ∆(·, tn+1)).

Finally, we proved that

TV(ρ∆(·, tn+1)) ≤
(
1 + ∆tTV(η)‖δf ′‖L∞

)
TV(ρ∆(·, tn))

+ ‖δf‖L∞TV(η)∆tTV(w∆(·, tn))

TV(w∆(·, tn+1)) ≤ (1 + ∆t‖K‖L∞)TV(w∆(·, tn))

+ ∆t
‖∇K‖L∞(1 + 2L ×TV(µ))

4
TV(ρ∆(·, tn+1)),

(6.9)

i.e. by setting un = TV(ρ∆(·, tn)) and vn = TV(w∆(·, tn)),{
un+1 ≤ (1 + c1∆t)un + c2∆tvn

vn+1 ≤ (1 + c3∆t+ c2c4∆t2)vn + (1 + c1∆t)c4∆tun.

Putting the above inequalities into a matrix form, with standard linear algebra computations we are
led to (6.8) with c = max

1≤i≤4
ci. �
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6 NUMERICAL APPROXIMATION

Remark 6.3 (L1 stability). Under the additional assumption that w0 ∈ L1(R), the scheme (6.3) is
L1 stable. Indeed, for all n ∈ {0, . . . , N − 1},

‖w∆(·, tn+1)‖L1 =
∑
j∈Z

wn+1
j+1/2∆x

=
∑
j∈Z

wn
j+1/2∆x+

∑
j∈Z

Sn+1
j+1/2∆x∆t

+
∑
j∈Z

λsnj (wn
j−1/2 −wn

j+1/2) +
∑
j∈Z

λsnj (Sn+1
j−1/2 − Sn+1

j+1/2)∆t

≤ (1 + ‖K‖L∞∆t)‖w∆(·, tn)‖L1 +
L

ε
×TV(w∆(·, tn))∆t

+
L

ε
× ‖∇K‖L

∞(1 + 2L ×TV(µ))

4
TV(ρ∆(·, tn))∆t

≤ (1 + c∆t)‖w∆(·, tn)‖L1 +
L

ε
×TV(w∆(·, tn))∆t

+
L

ε
× cTV(ρ∆(·, tn))∆t.

Gronwall lemma yields sup
∆
‖w∆‖L∞((0,T );L1(R)) < +∞.

Corollary 6.4. We have:∑
j∈Z
|ρn+1
j+1/2 − ρ

n
j+1/2|∆x ≤

(
2L ×TV(ρ∆(·, tn)) + ‖δf‖L∞TV(η)TV(w∆(·, tn))

)
∆t

∑
j∈Z
|wn+1

j+1/2 −wn
j+1/2|∆x ≤

(
L

ε

(
TV(w∆(·, tn)) + cTV(ρ∆(·, tn+1))

)
+ c‖w∆(·, tn)‖L1

)
∆t

(6.10)

Consequently, there exist ρ,w ∈ L∞(Ω) ∩C([0, T ];L1
loc(R)), such that along a subsequence,

(ρ∆,w∆)∆ → (ρ,w) a.e. on Ω.

Proof. Estimates (6.10) come from a combination of estimates (6.8) and the scheme (6.2)-(6.3).
More precisely,∑

j∈Z
|ρn+1
j+1/2 − ρ

n
j+1/2|∆x ≤

∑
j∈Z

∣∣∣Fnj+1

(
ρnj+1/2, ρ

n
j+3/2

)
− Fnj

(
ρnj−1/2, ρ

n
j+1/2

)∣∣∣∆t
≤ 2L

∑
j∈Z
|ρnj+1/2 − ρ

n
j−1/2|∆t+

∑
j∈Z
|fnj+1(ρnj+1/2)− fnj (ρnj+1/2)|∆t

≤ 2L ×TV(ρ∆(·, tn))∆t+ ‖δf‖L∞TV(η)TV(w∆(·, tn))∆t.

Regarding (w∆)∆, we write

∑
j∈Z

∣∣∣wn+1
j+1/2 −wn

j+1/2

∣∣∣∆x ≤ L

ε

TV(w∆(·, tn)) +
∑
j∈Z

∣∣∣Sn+1
j+1/2 − Sn+1

j−1/2

∣∣∣
∆t+

∑
j∈Z

∣∣∣Sn+1
j+1/2

∣∣∣∆x∆t

≤ L

ε

(
TV(w∆(·, tn)) + cTV(ρ∆(·, tn+1))

)
∆t+ c‖w∆(·, tn)‖L1∆t.

The compactness comes from [29, Appendix A] since we have the bounds (6.6)-(6.8)-(6.10). �
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6.5 Approximate entropy inequalities and weak formulation

We derive approximate entropy inequalities veri�ed by ρ∆ and an approximate version of the weak
formulation (3.2) satis�ed by w∆. We start with ρ∆. With Φn

j de�ned in Corollary 6.2, we de�ne
the approximate entropy �ux and the w∆-related contribution:

Φ∆(ρ∆, κ) =

N∑
n=0

∑
j∈Z

Φn
j 1Pn+1

j+1/2
; ∂∆f(x, t, κ) =

(∫
R
w∆(y, t)η′(x− y) dy

)
δf(κ). (6.11)

Theorem 6.5 (Approximate entropy inequalities). Fix ϕ ∈ C∞c (R × R+), ϕ ≥ 0, κ ∈ [0, 1] and
n ∈ {0, . . . , N}. Then as ∆→ 0, we have:∫ tn+1

tn

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt

+

∫
R
|ρ∆(x, tn)− κ|ϕ(x, tn) dx−

∫
R
|ρ∆(x, tn+1)− κ|ϕ(x, tn+1) dx

≥ O(∆x∆t) +O
(
∆t2

)
.

(6.12)

Proof. Fix n ∈ {0, . . . , N}, j ∈ Z, ϕ ∈ C∞c (R× R+), ϕ ≥ 0, κ ∈ [0, 1] and set

ϕnj+1/2 =
1

∆x

∫ xj+1

xj

ϕ(x, tn) dx .

Multiply the discrete entropy inequalities (6.7) by ϕnj+1/2 and take the sum over j ∈ Z. Proceeding
to the Abel summation, we obtain:∑

j∈Z
|ρn+1
j+1/2 − κ|ϕ

n+1
j+1/2∆x−

∑
j∈Z
|ρnj+1/2 − κ|ϕ

n
j+1/2∆x︸ ︷︷ ︸

A

−
∑
j∈Z
|ρn+1
j+1/2 − κ|

(
ϕn+1
j+1/2 − ϕ

n
j+1/2

)
∆x︸ ︷︷ ︸

B

−
∑
j∈Z

Φn
j+1/2

(
ϕnj+1/2 − ϕ

n
j−1/2

)
∆t︸ ︷︷ ︸

C

≤ −
∑
j∈Z

sgn(ρn+1
j+1/2 − κ)(fnj+1(κ)− fnj (κ))ϕnj+1/2∆x∆t︸ ︷︷ ︸

D

.

Remark that

A−B =

∫
R
|ρ∆(x, tn+1)−κ|ϕ(x, tn+1) dx−

∫
R
|ρ∆(x, tn)−κ|ϕ(x, tn) dx−

∫ tn+1

tn

∫
R
|ρ∆−κ|∂tϕdx dt .

We now compare the other members of the inequality to their continuous counterparts.
Estimating C. We write:

C =

∫ tn+1

tn

∫
R

Φ∆(x, ρ∆, κ)∂xϕ(x, tn) dx dt+ λ
∑
j∈Z

∫ xj+1

xj

∫ x

x−∆x

∫ y

x
Φn
j+1/2∂xϕ(z, tn) dz dy dx︸ ︷︷ ︸

C1

=

∫ tn+1

tn

∫
R

Φ∆(x, ρ∆, κ)∂xϕ(x, t) dx dt+ C1 +

∫ tn+1

tn

∫
R

∫ tn

t
Φ∆(x, ρ∆, κ)∂2

txϕ(x, τ) dτ dx dt︸ ︷︷ ︸
C2

,
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and we have the estimations:

|C1| ≤ 4L sup
t≥0
‖∂2

xxϕ(·, t)‖L1∆x∆t; |C2| ≤ L sup
t≥0
‖∂2

txϕ(·, t)‖L1∆t2.

Estimating D. With the notation (6.11), we have

D =
∑
j∈Z

∆t

∫ xj+1

xj

sgn(ρn+1
j+1/2 − κ)∂∆f(x, tn, κ)ϕ(x, tn) dx

+
∑
j∈Z

λ

∫ xj+1

xj

∫
R

∫ xj+1

xj

∫ z

x
sgn(ρn+1

j+1/2 − κ)w∆(y, tn)η′′(u− y)δf(κ)ϕ(x, tn) dudz dy dx︸ ︷︷ ︸
D1

=

∫ tn+1

tn

∫
R

sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ(x, t) dx+D1

+

∫ tn+1

tn

∫
R

sgn(ρ∆ − κ)∂∆f(x, tn, κ)(ϕ(x, tn)− ϕ(x, t)) dx︸ ︷︷ ︸
D2

,

which we combine with the bounds:

|D1| ≤ ‖η′′‖L1‖δf‖L∞ sup
t≥0
‖ϕ(·, t)‖L1∆x∆t

|D2| ≤ ‖η′‖L1‖δf‖L∞ sup
t≥0
‖∂tϕ(·, t)‖L1∆t2.

�

We now turn to w∆. Let us de�ne the approximate �ux function:

f∆(x, t, ρ) = (1− ω∆(x, t))fmin(ρ) + ω∆(x, t)fmax(ρ).

Theorem 6.6 (Approximate weak formulation). Fix φ ∈ C∞c (R × R+) and n ∈ {0, . . . , N}. Then

as ∆→ 0, we have:∫ tn+1

tn

∫
R

(
(ρ∆w∆)∂tφ+ (f∆(x, t, ρ∆)w∆)∂xφ− ρ∆S∆φ

)
dx dt

+

∫
R

(ρ∆w∆)(x, tn)φ(x, tn) dx−
∫
R

(ρ∆w∆)(x, tn+1)φ(x, tn+1) dx

= O(∆x∆t) +O
(
∆t2

)
.

(6.13)

Proof. This proof follows the same steps as the one of Theorem 6.5.
Fix n ∈ {0, . . . , N} and j ∈ Z. Let us multiply (6.3) by ρn+1

j+1/2 and combine the result with (6.2).
More precisely, we write:(

(ρw)n+1
j+1/2 − (ρw)nj+1/2

)
∆x

= ρn+1
j+1/2

(
wn+1
j+1/2 −wn

j+1/2

)
∆x+

(
ρn+1
j+1/2 − ρ

n
j+1/2

)
wn
j+1/2∆x

= Fnj
(
wn
j−1/2 −wn

j+1/2

)
∆t+ ρn+1

j+1/2S
n+1
j+1/2∆x∆t+ Fnj × (Sn+1

j−1/2 − Sn+1
j+1/2)∆t2

−
(
Fnj+1 −Fnj

)
wn
j+1/2∆t

= −
(
Fnj+1w

n
j+1/2 −F

n
j w

n
j−1/2

)
∆t+ ρn+1

j+1/2S
n+1
j+1/2∆x∆t+ Fnj × (Sn+1

j−1/2 − Sn+1
j+1/2)∆t2.
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These computations are the analogous of the ones we did in Section 6.1. This last equality expresses
the consistency of our scheme.
Fix now φ ∈ C∞c (R× R+) and set

φnj+1/2 =
1

∆x

∫ xj+1

xj

φ(x, tn) dx .

Multiply the previous equality by φn+1
j+1/2 and take the sum over j ∈ Z. Proceeding to the Abel

summation, we obtain:

∑
j∈Z

(ρw)n+1
j+1/2φ

n+1
j+1/2∆x−

∑
j∈Z

(ρw)nj+1/2φ
n
j+1/2∆x︸ ︷︷ ︸

A

−
∑
j∈Z

(ρw)nj+1/2

(
φn+1
j+1/2 − φ

n
j+1/2

)
∆x︸ ︷︷ ︸

B

−
∑
j∈Z
Fnj+1w

n
j+1/2

(
φn+1
j+3/2 − φ

n+1
j+1/2

)
∆t︸ ︷︷ ︸

C

−
∑
j∈Z

ρn+1
j+1/2S

n+1
j+1/2φ

n+1
j+1/2∆x∆t︸ ︷︷ ︸

D

−
∑
j∈Z
Fnj × (Sn+1

j−1/2 − Sn+1
j+1/2)φn+1

j+1/2∆t2︸ ︷︷ ︸
E

= 0.

The remaining part of the proof consists in estimating each member of this last equality, having in
mind the previously established estimates such as (6.8). Like in the previous proof, we immediately
see that:

A =

∫
R

(ρ∆w∆)(x, tn+1)φ(x, tn+1) dx−
∫
R

(ρ∆w∆)(x, tn)φ(x, tn) dx .

Moreover,

B =

∫ tn+1

tn

∫
R

(ρ∆w∆)∂tφ dx dt+
∑
j∈Z

(ρnj+1/2 − ρ
n+1
j+1/2)wn

j+1/2

(
φn+1
j+1/2 − φ

n
j+1/2

)
∆x︸ ︷︷ ︸

B1

and, using Theorem 6.3 and Corollary 6.4, we have

|B1| ≤

∑
j∈Z
|ρn+1
j+1/2 − ρ

n
j+1/2|∆x

 ‖∂tφ‖L∞∆t = O
(
∆t2

)
.
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Estimating C:

C = λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
Fnj+1w

n
j+1/2∂xφ(y, tn+1) dy dx

= λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
fnj+1(ρnj+1/2)wn

j+1/2∂xφ(y, tn+1) dy dx

+ λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
(Fnj+1 − fnj+1(ρnj+1/2))wn

j+1/2∂xφ(y, tn+1) dy dx︸ ︷︷ ︸
C1

= λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
fnj (ρnj+1/2)wn

j+1/2∂xφ(y, tn+1) dy dx+ C1

+ λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
(fnj+1(ρnj+1/2)− fnj (ρnj+1/2))wn

j+1/2∂xφ(y, tn+1) dy dx︸ ︷︷ ︸
C2

= λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
fnj (ρn+1

j+1/2)wn
j+1/2∂xφ(y, tn+1) dy dx+ C1 + C2

+ λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
(fnj (ρnj+1/2)− fnj (ρn+1

j+1/2))wn
j+1/2∂xφ(y, tn+1) dy dx︸ ︷︷ ︸

C3

=

∫ tn+1

tn

∫
R

(f∆(x, t, ρ∆)w∆)∂xφ(x, tn+1) dx dt+ C1 + C2 + C3

+ λ
∑
j∈Z

∫ xj+1

xj

∫ x+∆x

x
fnj (ρn+1

j+1/2)wn
j+1/2(∂xφ(y, tn+1)− ∂xφ(x, tn+1)) dy dx︸ ︷︷ ︸

C4

=

∫ tn+1

tn

∫
R

(f∆(x, t, ρ∆)w∆)∂xφ(x, t) dx dt+ C1 + C2 + C3 + C4

+

∫ tn+1

tn

∫
R

(f∆(x, t, ρ∆)w∆)(∂xφ(x, tn+1)− ∂xφ(x, t)) dx dt︸ ︷︷ ︸
C5

,

and we have the estimations:

|C1| ≤ 2L‖∂xφ‖L∞TV(ρ∆(·, tn))∆x∆t; |C2| ≤ 2‖δf‖L∞TV(η) sup
t≥0
‖∂xφ(·, t)‖L1∆x∆t;

|C3| ≤ L

∑
j∈Z
|ρn+1
j+1/2 − ρ

n
j+1/2|∆x

 ‖∂xφ‖L∞∆t = O
(
∆t2

)
due to Corollary 6.4;

|C4| ≤ 4L sup
t≥0
‖∂2

xxφ(·, t)‖L1∆x∆t; |C5| ≤ L sup
t≥0
‖∂2

txφ(·, t)‖L1∆t2.
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Estimating D. We write

D =

∫ tn+1

tn

∫
R
ρ∆(x, t)S∆(x, t)φ(x, tn+1) dx

=

∫ tn+1

tn

∫
R
ρ∆(x, t)S∆(x, t)φ(x, t) dx dt+

∫ tn+1

tn

∫
R
ρ∆(x, t)S∆(x, t)(φ(x, tn+1 − φ(x, t)) dx dt︸ ︷︷ ︸

D1

,

and we have the bound:
|D1| ≤ ‖S∆‖L∞ sup

t≥0
‖∂tφ(·, t)‖L1∆t2.

To estimate E, we directly write:

|E| ≤ cL‖φ‖L∞ (TV(ρ∆(·, tn)) + TV(w∆(·, tn))) ∆t2,

concluding the proof. �

6.6 Convergence and existence statement

Before proving the convergence result, remark that the strong convergence of (ρ∆)∆ and (w∆)∆

implies the strong convergence of (ξ∆)∆, (χ∆)∆, (ω∆)∆, (f∆(·, ·, ρ∆))∆ and (S∆)∆. More precisely,
�x (x, t) ∈ Ω. Given ∆, let n ∈ {0, . . . , N}, j ∈ Z be such that (x, t) ∈ Pn+1

j+1/2. We have:

ξ∆(x, t) = ξn+1
j+1/2 =

∫
R
ρ∆(y, t)µ(xj+1/2 − y) dy −→

∆→0

∫
R
ρ(y, t)µ(x− y) dy := ξ(x, t).

Moreover,

ω∆(x, t) = ωnj =

∫
R
w∆(y, t)η(xj − y) dy −→

∆→0

∫
R
w(y, t)η(x− y) dy := ω(x, t).

Consequently,

f∆(x, t, ρ∆(x, t)) −→
∆→0

(1− ω(x, t))fmin(ρ(x, t)) + ω(x, t)fmax(ρ(x, t)) := f(x, t, ρ(x, t)),

from which we deduce:

χ∆(x, t) = χn+1
j+1/2 = −

∫
R
f∆(y, t, ρ∆)µ′(xj+1/2 − y) dy

−
∑
i∈Z

(Fni (ρn+1
i−1/2, ρ

n+1
i+1/2)− fni (ρn+1

i+1/2))

∫ xi+1

xi

µ′(xj+1/2 − y) dy︸ ︷︷ ︸
=O(∆x)

−→
∆→0

−
∫
R
f(y, t, ρ)µ′(x− y) dy := χ(x, t).

Also, by continuity of K,

S∆(x, t) = K(ξ∆(x, t), χ∆(x, t))w∆(x, t)(1−w∆(x, t))

−→
∆→0

K(ξ(x, t), χ(x, t))w(x, t)(1−w(x, t)) := S(x, t).
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We now turn to the

Proof of Theorem 3.3. We verify that (ρ,w) satis�es all the points of De�nition 3.1.
(i) Fix ϕ ∈ C∞c (R × [0, T )), ϕ ≥ 0, κ ∈ [0, 1] and τ, s ∈ [0, T ] (τ < s). Being given ∆ > 0,
let n,m ∈ {0, . . . , N + 1} such that τ ∈ [tn, tn+1) and s ∈ [tm, tm+1) By summing (6.12) over
k ∈ {n, . . . ,m− 1}, we obtain:∫ τ

s

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt

= −
∫ s

tn

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt

+
m−1∑
k=n

∫ tk+1

tk

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt

+

∫ τ

tm

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt .

(6.14)

Using the uniform L∞ bounds, we see that the �rst and last term of the right-hand side of this
equality can be written as O(∆t). By (6.12),

m−1∑
k=n

∫ tk+1

tk

∫
R

(
|ρ∆ − κ|∂tϕ+ Φ∆(ρ∆, κ)∂xϕ− sgn(ρ∆ − κ)∂∆f(x, t, κ)ϕ

)
dx dt

≥
∫
R
|ρ∆(x, tm)− κ|ϕ(x, tm) dx−

∫
R
|ρ∆(x, tn)− κ|ϕ(x, tn) dx+

m−1∑
k=n

(
O(∆x∆t) +O

(
∆t2

))
≥
∫
R
|ρ∆(x, s)− κ|ϕ(x, s) dx−

∫
R
|ρ∆(x, τ)− κ|ϕ(x, τ) dx− T (∆x+ ∆t)

+

∫
R

(|ρ∆(x, tm)− κ|ϕ(x, tm)− |ρ∆(x, s)− κ|ϕ(x, s)) dx

−
∫
R

(|ρ∆(x, tn)− κ|ϕ(x, tn)− |ρ∆(x, τ)− κ|ϕ(x, τ)) dx .

Using the time BV estimate (6.10), we deduce that the last two members of this inequality can be
written as O(∆t) as well. Putting everything together, when letting ∆ → 0 in (6.14), we obtain
that ρ is an entropy solution to

∂tρ+ ∂x (f(x, t, ρ)) = 0.

(ii) From (6.13), and using the same ideas as in the previous reasoning, with in this case the second
time BV estimate of Corollary 6.10, we easily obtain that for all φ ∈ C∞c (R× [0, T )) and τ, s ∈ [0, T ]
(τ < s), we have:∫ τ

s

∫
R

(
(ρ∆w∆)∂tφ+ (f∆(x, t, ρ∆)w∆)∂xφ− ρ∆S∆φ

)
dx dt

+

∫
R
ρ∆(x, s)w∆(x, s)φ(x, s) dx−

∫
R
ρ∆(x, τ)w∆(x, τ)φ(x, τ) dx = O(∆x) +O(∆t) ,
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which by taking the limit as ∆→ 0 implies that w is a weak solution of

∂t (ρw) + ∂x (f(x, t, ρ)w) = ρK (ξ, χ)w(1−w).

Finally, since ρ is a weak solution to ∂tρ+ ∂x (f(x, t, ρ)) = 0, we deduce that ξ is di�erentiable with
respect to t, with derivative χ.
(iii) We proved that v and ω are linked and that ω and w are linked by (2.6) at the beginning of
the section. The proof is completed. �

Proof of Theorem 3.4. The existence claim readily follows from Theorem 3.3. �

7 Numerical simulation

In this section, we present a numerical test performed with the scheme analyzed in Section 6. For
fmin, we take the uniformly concave �ux fmin(ρ) = ρ(1− ρ), and for fmax, we take

fmax(ρ) =

{
fmin(ρ) if 0 ≤ ρ ≤ ρc

P (ρ) if ρc < ρ ≤ 1,

where ρc is some critical threshold and P is polynomial of degree 3 satisfying:

P ≥ 0 on [ρc, 1]; P (ρc) = fmin(ρc); P ′(ρc) = f ′min(ρc); P (1) = 0,

as depicted in Figure 3, left. For the sake of simplicity, we choose η = µ, both equal to a suit-
able regularization of the triangle-shaped function x 7→ 2(1− 2|x|)1{|x|≤ 1

2}. We deal with a road

parametrized by the interval [−2, 5] and time horizon T = 6.0. We choose initial data satisfying the
hypotheses of Theorem 3.3:

ρ0(x) =


0.4 if − 1 < x < 0

0.8 if 1 < x < 2

0.10 otherwise;

w0(x) =

{
0.5 if |x| ≤ 10

0 otherwise,

as represented in Figure 3, right.
Let us comment on the pro�le of the numerical solutions represented in Figure 4. Quite expectedly,
as we can see from Figure 4 at time T , the introduction of the orderliness marker has favored the
global velocity of the density. Now let us look more precisely at the di�erent pro�les of the numerical
solution. We see that at times t = 1.64 and t = 3.01, the highest peaks of density correspond to the
areas where the orderliness is the lowest. In the meantime, notice how this peak of the density is
followed by an increase of the orderliness value, suggesting the emergence of an organizing pattern
upstream the bottleneck. Finally, as incorporated in the model, everywhere the density is lesser
than the threshold ρc, the value of w does not vary.
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Figure 3: Typical choice of fundamental diagrams and initial data.

Figure 4: The numerically computed solutions ρ∆(·, t),w∆(·, t) at di�erent �xed times t; dashed
lines correspond to the reference solution in absence of orderliness marker, i.e. for ω ≡ 0
in (2.2); for an animated evolution of the numerical solution, follow: https://utbox.univ-
tours.fr/s/s9ecPQaq5qLCeLH.
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A WELL-POSEDNESS AND COMPACTIFICATION OF RENORMALIZED SOLUTIONS TO
A SEMILINEAR ONE-DIMENSIONAL TRANSPORT EQUATION

A Well-posedness and compacti�cation of renormalized solutions to

a semilinear one-dimensional transport equation

In this appendix, we extend the results put forward by Panov in [42]. Recall that we write Ω for
R × (0, T ). For the sake of completeness, let us recall the working framework. Fix ρ,v ∈ L∞(Ω)
such that

ρ ≥ 0; ∂tρ+ ∂x (ρv) = 0 in D(Ω). (A.1)

Given a source term S ∈ L∞(Ω) and an initial datum w0 ∈ L∞(R), introduce the transport equation
formally written as ∂tw + v∂xw = S, w(·, 0) = w0 and reformulated as:{

∂t (ρw) + ∂x (ρvw) = ρS

ρ(·, 0)w(·, 0) = ρ(·, 0)w0.
(A.2)

Following [42], we give the following notions of solution for Problem (A.2).

De�nition A.1. A function w ∈ L∞(Ω) is a weak solution to (A.2) with initial data w0 ∈ L∞(R)
if for all test functions φ ∈ C∞c (R× [0, T )), the following weak formulation is satis�ed:∫ T

0

∫
R

(
(ρw)∂tφ+ (ρvw)∂xφ+ (ρS)φ

)
dx dt+

∫
R
ρ(x, 0)w0(x)φ(x, 0) dx = 0. (A.3)

Remark A.1. Since ρ is a distributional solution to ∂tρ+ ∂x(ρv) = 0, we know (see [42, Lemma
1]) that t 7→ ρ(·, t) is weakly* continuous in L∞(R), and the quantity ρ(·, 0) has to be understood
as the weak* limit of ρ(·, t) as t→ 0+. Further, applying [42, Lemma 1] to the �eld (Ã, B),

Ã : (x, t) 7→ (ρw)(x, t)−
∫ t

0
(ρSw)(x, s) ds , B = ρvw

satisfying ∂tÃ + ∂xB = 0, we see that Ã ∈ C([0, T ];w∗−L∞(R)) and since the integral term in the
de�nition of Ã is in C([0, T ];L∞(R)), we also have ρw ∈ C([0, T ];w∗−L∞(R)). In particular, ρw
assumes the initial datum ρ(·, 0)w0 in the sense of the weak* limit in L∞(R).

De�nition A.2. We say that a weak solution w ∈ L∞(Ω) to (A.2) with initial data w0 ∈ L∞(R)
veri�es the renormalization property if for any function p ∈ C1(R), u = p(w) is a weak solution to{

∂t (ρu) + ∂x (ρvu) = ρSp′(w)

ρ(·, 0)u(·, 0) = ρ(·, 0) (p ◦w0)(·).
(A.4)

Let us recall the following results, put forward in [42].

Theorem A.3. Let ρ,v ∈ L∞(Ω) satisfy (A.1) and let S ∈ L∞(Ω).
(i) For any initial data w0 ∈ L∞(R), the transport equation (A.2) admits a unique weak solution.

Moreover, this weak solution veri�es the renormalization property.

(ii) If w1 and w2 are two weak solutions to (A.2) associated with data (w1
0,S

1) and (w2
0,S

2),

respectively, then the following stability estimate holds: for a.e. t ∈ (0, T ),

‖w1(·, t)−w2(·, t)‖L∞ ≤ ‖w1
0 −w2

0‖L∞ +

∫ t

0
‖S1(·, s)− S2(·, s)‖L∞ ds . (A.5)
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Remark A.2. The author of [42] even extended these results with source terms:

S(x, t) = g(x, t)w(x, t) + h(x, t); g, h ∈ L∞(Ω),

w being the unknown.

The contribution of this appendix is to prove an analogous to Theorem A.3 when the source term
of (A.2) takes the form

S(x, t) = g(x, t)F(w(x, t)); g ∈ L∞(Ω). (A.6)

Remark that when the function F is separated from zero in the sense described below, existence of
a weak solution for a given initial datum follows from the renormalization property.

Lemma A.4. Suppose that F ∈ C(R) and that there exists δ > 0 such that F ≥ δ. Then for any

initial data w0 ∈ L∞(R), the transport equation (A.2) with source term S given by (A.6) admits a

weak solution.

Proof. Introduce the C1 function

∀w ∈ R, p(w) =

∫ w

0

dy

F(y)
.

Note that the assumption on F implies that p is a C1-di�eomorphism on its image. From Theorem
A.3 (i), we know that the transport equation{

∂t (ρu) + ∂x (ρvu) = ρg

ρ(·, 0)u(·, 0) = ρ(·, 0) (p ◦w0)(·).

admits a unique weak solution u. Since u veri�es the renormalization property, by remarking that
(p−1)′(u) = F(w), we deduce that w = p−1 ◦ u is a weak solution to (A.2). �

Under the mere local assumption on F, uniqueness for the transport equation with source terms of
the form (A.6) follows.

Proposition A.5. Let ρ,v ∈ L∞(Ω) satisfy (A.1), g ∈ L∞(Ω) and F ∈ Liploc(R). Then for any

initial data w0 ∈ L∞(R), the transport equation (A.2) with source term S given by (A.6) admits at

most one weak solution.

Proof. Let w1
0,w

2
0 ∈ L∞(R). We denote by w1 (respect. w2) a weak solution to (A.2) associated

with initial dataw1
0 (respect. w

2
0). Remark in the particular thatw1 (respect. w2) is a weak solution

to (A.2) with source term S1 = gF(w1) (respect. S2 = gF(w2)). Using the stability estimate (A.5),
we obtain that for a.e. t ∈ (0, T ),

‖w1(·, t)−w2(·, t)‖L∞ ≤ ‖w1
0 −w2

0‖L∞ + ‖g‖L∞‖F′‖L∞
∫ t

0
‖w1(·, s)−w2(·, s)‖L∞ ds .

Gronwall lemma yields a stability estimate and the uniqueness follows. �
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We now prove the main result of compactness/stability regarding weak solutions verifying the renor-
malization property.

Theorem A.6. Let ρ,v ∈ L∞(Ω) satisfy (A.1), g ∈ L∞(Ω), F ∈ Lip(R) and w0 ∈ L∞(R). Let

(ρν)ν , (vν)ν , (gν)ν , (w0,ν)ν be sequences of uniformly bounded functions such that:

∀ν > 0, ρν ≥ 0; (ρν)ν , (ρνvν)ν , (gν)ν −→
ν→0

ρ, ρv, g a.e. on Ω.

Moreover, suppose that there exist a, b ∈ R such that F|(a,b) > 0 and

∀ν > 0, a ≤ w0,ν ≤ b; w0,ν −→
ν→0

w0 a.e. on R.

Suppose that (wν)ν ⊂ L∞(Ω) is a sequence of weak solutions to{
∂t (ρνwν) + ∂x (ρνvνwν) = ρνgνF(wν)

ρν(·, 0)wν(·, 0) = ρν(·, 0)w0,ν ,
(A.7)

verifying the renormalization property. Then:

1. There exists w ∈ L∞(Ω) such that (wν)ν → w a.e. on Ω.

2. The function w is a weak solution to the transport equation (A.2) with source term given by

(A.6), and it veri�es the renormalization property.

Proof. 1. We split the study into two steps.
Step 1. The uniform L∞ bound of (wν)ν provides the existence, up to the extraction of a subse-
quence (not relabeled), for a.e. (x, t) ∈ Ω of a Borel probability measure m(x,t) on R such that for
each ϕ ∈ C(R), (ϕ(wν))ν converges L∞-weakly* to ϕ where for a.e. (x, t) ∈ Ω:

ϕ(x, t) =

∫
R
ϕ(y) dm(x,t) (y),

see for example [24, 44]. Suppose that there exists ε > 0 such that for all ν > 0, a+ ε ≤ wν ≤ b− ε.
Introduce the C1([a+ ε, b− ε]) function

p(w) =

∫ w

(a+b)/2

dy

F(y)
.

By the renormalization property, for all ν > 0, uν = p(wν) ∈ L∞(Ω) is a weak solution to{
∂t (ρνuν) + ∂x (ρνvνuν) = ρνgν

ρν(·, 0)uν(·, 0) = ρν(·, 0) (p ◦w0,ν)(·).
(A.8)

Note that the source term does not depend on uν ; this is the reason behind the choice of p above.
Moreover, Theorem A.3 ensures that uν veri�es the renormalization property. By de�nition, for all
test functions φ ∈ C∞c (R× [0, T )), we have∫ T

0

∫
R

(
(ρνuν)∂tφ+ (ρνvνuν)∂xφ+ (ρνgν)φ

)
dx dt+

∫
R
ρν(x, 0)p(w0,ν(x))φ(x, 0) dx = 0. (A.9)

Now from this, we take two routes.
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Route 1: limit �rst, renormalization second. We can safely pass to the limit in (A.9). This
proves that p is a weak solution to{

∂t (ρp) + ∂x (ρvp) = ρg

ρν(·, 0)p(·, 0) = ρν(·, 0) (p ◦w0)(·).

Since the source term of this last transport equation is of the form covered by Theorem A.3 (Remark
A.2), we are assured that p veri�es the renormalization property. Applying it with p = exp, we obtain
that u = exp(p) is a weak solution to{

∂t (ρu) + ∂x (ρvu) = ρgu

ρν(·, 0)u(·, 0) = ρν(·, 0) exp(p ◦w0).
(A.10)

Route 2: renormalization �rst, limit second. From (A.8), we apply the renormalization
property to uν (ν > 0) with exp. This ensures that Uν = exp(uν) is a weak solution to{

∂t (ρνUν) + ∂x (ρνvνUν) = ρνgνUν

ρν(·, 0)Uν(·, 0) = ρν(·, 0) exp(p ◦w0,ν),

i.e. for all test functions φ ∈ C∞c (R× [0, T )), we have∫ T

0

∫
R

(
(ρνUν)∂tφ+ (ρνvνUν)∂xφ+ (ρνgνUν)φ

)
dx dt+

∫
R
ρν(x, 0) exp(p(w0,ν(x)))φ(x, 0) dx = 0.

We now let ν → 0 in this formulation to obtain that exp ◦p is a weak solution to (A.10). By
uniqueness (see Theorem A.3 and Remark A.2), exp ◦p = exp ◦p a.e. on Ω. Consequently, for a.e.
(x, t) ∈ Ω,

exp (p(x, t)) = exp

(∫
R
p(y) dm(x,t) (y)

)
≤
∫
R

exp (p(y)) dm(x,t) (y) = exp(p)(x, t) = exp (p(x, t)) .

Since exp is strictly convex, the function y 7→ p(y) is constant m(x,t)-a.e. and consequently, for a.e.
(x, t) ∈ Ω, m(x,t) = mα(x,t) for some function α : Ω→ R. Finally, for all ν > 0, and for all bounded
open subsets U ⊂ Ω,

‖wν‖2L2(U) =

∫ T

0

∫
R
w2
ν1U dx dt

−→
ν→0

∫ T

0

∫
R

(∫
R
y2 dm(x,t) (y)

)
1U dx dt

=

∫ T

0

∫
R
α(x, t)21U dx dt = ‖w‖2L2(U),

which implies that wν → w in L2
loc(Ω). A standard diagonal process yields a subsequence of (wν)ν

that converges a.e. on Ω to w.

Step 2. We now get back to the general case. Fixe ε > 0 and consider the cut-o� functions

Fε(r) = max{F (r), ε}; Tε(w) = min{min{a+ ε, w}, b− ε}.
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Since Fε ∈ C(R) and Fε ≥ ε > 0, Lemma A.4 ensures that the transport equation{
∂t (ρνw) + ∂x (ρνvνw) = ρνgνFε(w)

ρν(·, 0)w(·, 0) = ρν(·, 0)Tε(w0,ν)

admits a weak solution wν,ε. Note that from Proposition A.5 for all ν, ε > 0,

‖wν,ε(·, t)−wν(·, t)‖L∞ ≤ ‖wν,ε(·, t)−wν(·, t)‖L∞

+ sup
ν>0
‖gν‖L∞

∫ t

0
‖F(wν(·, s))− Fε(wν,ε(·, s))‖L∞ ds

≤ ε+ sup
ν>0
‖gν‖L∞

(
‖F′‖L∞

∫ t

0
‖wν(·, s)−wν,ε(·, s)‖L∞ ds+ εt

)
,

since ‖F− Fε‖L∞ ≤ ε. From this, we deduce with Gronwall lemma, that

∀ν, ε > 0, ‖wν,ε −wν‖L∞(Ω) ≤ ε (1 + sup
ν>0
‖gν‖L∞‖F′‖L∞T ) exp(sup

ν>0
‖gν‖L∞‖F′‖L∞T )︸ ︷︷ ︸

C

. (A.11)

Clearly, if 0 < ε ≤ 1, inequality (A.11) establishes a uniform L∞ bound for the sequence (wν,ε)ν
since (wν)ν is bounded in L∞ by assumption. Consequently, since Fε ≥ ε > 0, Step 1 provides the
existence of wε ∈ L∞(Ω) such that a subsequence of (wν,ε)ν converges a.e. on Ω to wε. Now, by a
standard topological argument we prove that (A.11) leads to strong compactness for the sequence
(wν)ν . More precisely, we are to prove that (wν)ν is relatively compact in L1

loc(Ω). Fix K ⊂ Ω a
compact subset of Ω and �x δ > 0. Since for all ε > 0, (wν,ε)ν converges a.e. on Ω and is uniformly
bounded in L∞, the sequence converges in L1(K). Consequently, for all ε > 0, (wν,ε)ν is relatively
compact in L1

loc(K). Fix ε > 0 such that, with C de�ned in (A.11),

mes(K)Cε ≤ δ

2
.

Now use the precompactness of (wν,ε)ν to introduce a �nite covering{
BL1

(
ui,

δ

2

)}
1≤i≤J

; ui ∈ L1(K), J ∈ N∗.

By construction, {BL1 (ui, δ)}1≤i≤J is a covering of (wν)ν . We can conclude that a subsequence of

(wν)ν converges in L1
loc(Ω) to some w ∈ L∞(Ω). A further extraction establishes the a.e. conver-

gence.

2. Passing to the limit in the weak formulation satis�ed by (wν)ν , we obtain that w is a weak
solution to (A.2) with source term given by (A.6). By uniqueness of such a weak solution, see
Proposition A.5, the whole sequence (wν)ν converges to w. Finally, Theorem A.3 (i) applied with

S(x, t) = g(x, t)F(w(x, t))

ensures that w satis�es the renormalization property, concluding the proof. �
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We conclude this appendix by a well-posedness result for the transport equation (A.2) with source
term (A.6) where we consider functions F which satisfy:

∃a, b ∈ R (a < b), F ∈ Lip([a, b]), F(a) = F(b) = 0 and F > 0 on (a, b). (A.12)

Our study is motivated by the particular case a, b = 0, 1 and F(w) = w(1−w).

Theorem A.7. Let ρ,v ∈ L∞(Ω) satisfy (A.1), g ∈ L∞(Ω), F satisfying (A.12) and w0 ∈
L∞(R; [a, b]). Then the transport equation (A.2) with source term given by (A.6) admits at least

a weak solution. Moreover, this solution veri�es the renormalization property.

Proof. The idea is to construct sequences (ρk)k, (vk)k, (gk)k satisfying the assumptions of Theorem
A.6. For the sake of consistency, let us extend F on R\[a, b] so that F ∈ Lip(R) and veri�es the
assumption of Theorem A.6. Fix ϕ ∈ C∞c (R), ϕ ≥ 0 a test function of mass 1 and supported in
[−1, 0]. For all k ∈ N∗, consider the function

θk(x, t) =
ϕ(kx)ϕ(kt)

k2
∈ C∞c ((R2;R+)).

We now introduce the smooth approximations of the coe�cients:

ρk = ρ ∗ θk +
1

k
; Vk = (ρv) ∗ θk +

1

k
; gk = g ∗ θk.

The sequences (ρk)k, (Vk)k and (gk)k are sequences of smooth functions that converge in L1
loc(Ω)

to ρ, ρv and g, respectively, and even if it means taking subsequences, we can assume that the

convergence is a.e. on Ω. Note also that since ρ ≥ 0, then ρk ≥
1

k
> 0. Fix φ ∈ C∞c (Ω). It is

readily checked that ∂tρk + ∂xVk = 0 in D′(Ω), and since ρk and Vk are smooth, the equality holds
pointwise. Consider now (w0,k)k ⊂ C1(R) such that

∀k ∈ N∗, a ≤ w0,k ≤ b and w0,k −→
k→+∞

w0 a.e. on R.

Since ρk does not vanish, the function vk =
Vk

ρk
is smooth, moreover, it veri�es the uniform L∞

bound:

∀k ∈ N∗, |vk| =
|Vk|
ρk

=
|(ρv) ∗ θk + 1/k|
ρ ∗ θk + 1/k

≤ ‖v‖L∞ + 1.

We can de�ne wk ∈ Lip(Ω) as the classical solution to the following transport equation:{
∂twk + vk∂xwk = gkF(wk)

wk(·, 0) = w0,k.
(A.13)

Indeed, we can solve this PDE using the method of characteristics. More precisely, �x (x, t) ∈ Ω.
First, we solve the following system of ODEs (0 < s < t):{

ξ̇k(s) = vk(ξk(s), s)

ξk(t) = x

{
u̇k(s) = gk(ξk(s), s)F(uk(s))

uk(0) = w0,k(ξk(0)).

The �rst ODE admits a unique global solution since vk is smooth and bounded. Moreover, since
(s, u) 7→ gk(ξk(s), s)F(u) is continuous and Lipschitz continuous with respect to the u variable,
the second ODE admits a unique solution. This de�nes wk everywhere in Ω. Note that since
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uk(0) ∈ [a, b], Assumption (A.12) ensures that u(s) ∈ [a, b] for all s ∈ [0, t]. Consequently, wk(x, t) =
wk(ξ(t), t) = u(t) ∈ [a, b]. Hence:

∀k ∈ N∗, ∀(x, t) ∈ Ω, a ≤ wk(x, t) ≤ b. (A.14)

It is classical that wk de�ned that way is a classical solution to the PDE (A.13) and also to{
∂t(ρkwk) + ∂x(ρkvkwk) = gkF(wk)

ρk(·, 0)wk(·, 0) = ρk(·, 0)w0,k.
(A.15)

since ρk > 0. Therefore wk is also a weak solution to (A.15). Since we also have, for any p ∈ C1(R),

d

ds
(p(uk(s))) = gk(ξk(s), s)F(uk(s))p

′(uk(s)),

we deduce the same way that Uk = p(wk) is a weak solution to{
∂t(ρkUk) + ∂x(ρkvkUk) = gkF(wk)p

′(wk)

ρk(·, 0)Uk(·, 0) = ρk(·, 0) (p ◦w0,k)(·),
(A.16)

i.e. the sequence (wk)k is a sequence of weak solutions to (A.15) which satisfy the renormalization
property.

All the hypotheses of Theorem A.6 are ful�lled. Consequently, there exists w ∈ L∞(Ω; [a, b]) such
that (wk)k converges a.e. to w, w is a weak solution to (A.2) and it veri�es the renormalization
property. �

Putting together Proposition A.5 and Theorem A.7, we proved:

Corollary A.8. Let ρ,v ∈ L∞(Ω) satisfy (A.1), g ∈ L∞(Ω) and F satisfying (A.12). Then for any

initial data w0 ∈ L∞(R; [a, b]), the transport equation{
∂t (ρw) + ∂x (ρvw) = ρgF(w)

ρ(·, 0)w(·, 0) = ρ(·, 0)w0.

admits a unique weak solution w ∈ L∞(Ω; [a, b]). Moreover, w veri�es the renormalization property.
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