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ON THE BOOLEAN DIMENSION OF A GRAPH AND OTHER RELATED PARAMETERS

MAURICE POUZET, HAMZA SI KADDOUR, AND BHALCHANDRA D. THATTE*

Abstract. We present the Boolean dimension of a graph, we relate it with the notions of inner, geometric and
symplectic dimensions, and with the rank and minrank of a graph. We obtain an exact formula for the Boolean

dimension of a tree in terms of a certain star decomposition. We relate the Boolean dimension with the inversion

index of a tournament.

1. Presentation and preliminaries

We define the notion of Boolean dimension of a graph, as it appears in [5] (see also [4],[6]). We present the notions
of geometric and symplectic dimensions, and the rank and minrank of a graph, which have been considered earlier.
When finite, the Boolean dimension corresponds to the inner dimension; it plays an intermediate role between the
geometric and symplectic dimensions, and does not seem to have been considered earlier. The notion of Boolean
dimension was introduced in order to study tournaments and their reduction to acyclic tournaments by means of
inversions. The key concept is the inversion index of a tournament [4, 5, 6] presented in Section 3. Our main results
are an exact formula for the Boolean dimension of a tree in terms of a certain star decomposition (Theorem 2.9)
and the computation of the inversion index of an acyclic sum of 3-cycles (Theorem 3.7).

Notations in this paper are quite elementary. The diagonal of a set X is the set ∆X ∶= {(x,x) ∶ x ∈X}. We denote
by ℘(X) the collection of subsets of X, by Xm the set of m-tuples (x1, . . . , xm) of elements in X, by [X]m the
m-element subsets of X, and by [X]<ω the collection of finite subsets of X. The cardinality of X is denoted by ∣X ∣.
We denote by ℵ0 the first infinite cardinal, by ℵ1 the first uncountable cardinal, and by ω1 the first uncountable
ordinal. A cardinal κ is regular if no set X of cardinal κ can be divided in strictly less than κ subsets, all of
cardinality strictly less than κ. If κ denotes a cardinal, 2κ is the cardinality of the power set ℘(X) of any set X
of cardinality κ. If κ is an infinite cardinal, we set log2(κ) for the least cardinal µ such that κ ≤ 2µ. We note
that for an uncountable cardinal κ the equality log2(2κ) = κ may require some set theoretical axioms, such as the
Generalized Continuum Hypothesis (GCH). If κ is an integer, we use log2(κ) in the ordinary sense, hence the least
integer µ such that κ ≤ 2µ is ⌈log2 κ⌉. We refer the reader to [23] and [24] for further background about axioms of
set theory if needed.

The graphs we consider are undirected and have no loops. They do not need to be finite, but our main results are
for finite graphs. A graph is a pair (V,E) where E is a subset of [V ]2, the set of 2-element subsets of V . Elements
of V are the vertices and elements of E are the edges. Given a graph G, we denote by V (G) its vertex set and by
E(G) its edge set. For u, v ∈ V (G), we write u ∼ v and say that u and v are adjacent if there is an edge joining u and
v. The neighbourhood of a vertex u in G is the set NG(u) of vertices adjacent to u. The degree dG(u) of a vertex
u is the cardinality of NG(u). If X is a subset of V (G), the subgraph of G induced by X is G↾X ∶= (X,E ∩ [X]2).
A clique in a graph G is a set X of vertices such that any two distinct vertices in X are adjacent. If X is a subset
of a set V , we set KV

X ∶= (V, [X]2); we say also that this graph is a clique.

1.1. The Boolean sum of graphs and the Boolean dimension of a graph. Let (Gi)i∈I be a family of graphs,
all with the same vertex set V . The Boolean sum of this family is the graph, denoted by +̇(Gi)i∈I , with vertex set
V such that an unordered pair e ∶= {x, y} of distinct elements of V is an edge if and only if it belongs to a finite
and odd number of E(Gi). If the family consists of two elements, say (Gi)i∈{0,1} we denote this sum by G0+̇G1.
This is an associative operation (but, beware, infinite sums are not associative). If each E(Gi) is the set of edges
of some clique Ci, we say (a bit improperly) that +̇(Gi)i∈I is a sum of cliques. We define the Boolean dimension
of a graph G, which we denote by dimBool(G), as the least cardinal κ such that G is a Boolean sum of κ cliques.
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10-LABX-0070) of Université de Lyon within the program ”Investissements d’Avenir (ANR-11-IDEX-0007)” operated by the French

National Research Agency (ANR).

1



In all, dimBool(G) = κ if there is a family of κ subsets (Ci)i∈I of V (G), and not less, such that an unordered pair
e ∶= {x, y} of distinct elements is an edge of G if and only if it is included in a finite and odd number of Ci’s.

A Boolean representation of a graph G in a set E is a map f ∶ V (G) → ℘(E) such that an unordered pair
e ∶= {x, y} of distinct elements is an edge of G if and only if the intersection f(x) ∩ f(y) is finite and has an odd
number of elements.

Example 1.1. Let G be a graph. For a vertex x ∈ V (G), let EG(x) ∶= {e ∈ E(G) ∶ x ∈ e}. Set E ∶= E(G). Then the
map f ∶ V (G) → ℘(E) defined by f(x) ∶= EG(x) is a Boolean representation. Indeed, for every 2-element subset
e ∶= {x, y} of V (G), the intersection f(x) ∩ f(y) has one element if and only if e ∈ E(G), otherwise it is empty.

The following result is immediate, still it has some importance.

Proposition 1.2. A graph G is a Boolean sum of κ cliques if and only if G has a Boolean representation in a set
of cardinality κ.

Proof. If G is the Boolean sum of a family (Ci)i∈I of κ cliques, then let f ∶ V (G) → ℘(I) defined by setting
f(x) ∶= {i ∈ I ∶ x ∈ Ci}. This defines a Boolean representation in I. Conversely, if f ∶ V (G) → ℘(E) is a Boolean
representation in a set E, then set Ci ∶= {x ∈ V (G) ∶ i ∈ f(x)} for i ∈ E. Then G is the Boolean sum of the family
(Gi)i∈E , where Gi ∶= (V (G), [Ci]2) for each i ∈ E. �

We note that the Boolean dimension of a graph and of the graph obtained by removing some isolated vertices
are the same. Hence dimBool(G) = 1 if and only if it is of the form G = KV

X with ∣X ∣ ≥ 2. Since every graph
G ∶= (V,E) can be viewed as the Boolean sum of its edges, the Boolean dimension of G is always defined, and is at
most the number of edges, that is, at most the cardinality ∣[V ]2∣ of [V ]2. If V is infinite, then ∣[V ]2∣ = ∣V ∣; hence
dimBool(G) ≤ ∣V ∣ (but see Question 1.1 below). If V is finite, with n elements, then dimBool(G) ≤ n − 1 [5] (by
induction on n: pick x ∈ V and observe that G = (V,E ∖ {{x, y} ∈ E})+̇KV

NG(x)+̇KV
NG(x)∪{x}). In fact, paths on n

vertices are the only n-vertex graphs with Boolean dimension n − 1, see Theorem 2.4, a result that requires some
ingredients developed below.

Recall that a module in a graph G is any subset A of V (G) such that for every a, a′ ∈ A and b ∈ V (G) ∖A, we
have a ∼ b if and only if a′ ∼ b. A duo is any two-element module (e.g., see [13] for an account of the modular
decomposition of graphs).

Lemma 1.3. If a graph G has no duo then every Boolean representation is one to one. In particular, dimBool(G) ≥
log2(∣V (G)∣).

Proof. Observe that if f is a representation and v is in the range of f , then f−1(v) is a module and this module is
either a clique or an independent set. �

Question 1.1. The inequality in Lemma 1.3 may be strict if V (G) is finite. Does dimBool(G) ≤ log2(∣V (G)∣) when
V (G) is infinite? The answer may depend on some set theoretical hypothesis (see Example 1.9). But we do not
known if the Boolean dimension of every graph on at most a continuum of vertices is at most countable. Same
question may be considered for trees.

Let E be a set; denote by O(E)¬� the graph whose vertices are the subsets of E, two vertices X and Y being
linked by an edge if they are distinct and their intersection is finite and odd. If κ is a cardinal, we set O(κ)¬� for
any graph isomorphic to O(E)¬�, where E is a set of cardinality κ.

Theorem 1.4. A graph G with no duo has Boolean dimension at most κ if and only if it is embedable in O(κ)¬�.
The Boolean dimension of O(κ)¬� is at most κ. It is equal to κ if κ ≥ 2 and κ is at most countable, or if κ is
uncountable and (GCH) holds.

Proof. If there is an embedding f from G in a graph of the form O¬�(E), then f is a Boolean representation of
G, hence dimBool(G) ≤ ∣E∣. Conversely, if G has no duo and has a Boolean representation f in a set E then, by
Lemma 1.3, f is an embedding of G in O¬�(E). Let E be a set of cardinality κ. For each X ∈ O(E)¬� set f(X) ∶=X
viewed as a subset of ℘(E). The map f is a Boolean representation, hence dimBoolO(E)¬� ≤ κ. Alternatively, set
Ci ∶= {X ∈ ℘(E) ∶ i ∈ X} for each i ∈ E. Then O(E)¬� is the Boolean sum of the [Ci]2, i ∈ E. If κ = 2, a simple
inspection shows that the Boolean dimension of O(E)¬� is κ. If κ ≥ 3 then O(E)¬� has no duo. This relies on the
following claim.

Claim 1.5. If A,B are two distinct subsets of E, then there is a subset C of E, distinct from A and B, with at
most two elements such that the cardinalities of the sets A ∩C and B ∩C cannot have the same parity.
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Indeed, we may suppose that A /⊆ B. Pick x ∈ A ∖B. If ∣A∣ > 1, then set C ∶= {x}. If not, then A = {x}. In this
case, either B is empty and C ∶= {x, y}, with y /= x will do, or B is nonempty, in which case, we may set C ∶= {y},
where y ∈ B if ∣B∣ > 1, or C ∶= {y, z}, where B = {y} and z ∈ E ∖ (A ∪B).

Since O(E)¬� has no duo, Lemma 1.3 ensures that dimBool(O(E)¬�) ≥ log2(∣V (O(E))∣) = log2(2κ). If κ is at
most countable, or κ is uncountable and (GCH) holds, then this last quantity is κ. This completes the proof of the
theorem. �

We can obtain the same conclusion with a weaker hypothesis than (GCH).

Lemma 1.6. Let κ be an infinite cardinal. If µω < κ for every µ < κ, then dimBool(O(κ)¬�) = κ.

Proof. The proof relies on the following claim, which is of independent interest.

Claim 1.7. Let µω be the cardinality of the set of countable subsets of an infinite cardinal µ. Then the cliques in
O(µ)¬� have cardinality at most µω.

The proof relies on a property of almost disjoint families. Let us recall that an almost disjoint family is a family
A ∶= (Aα)α∈I of sets such that the intersection Aα ∩Aβ is finite for α /= β. Note that if C is a clique in O(µ)¬�, then
for every pair of distinct sets X,Y in C, the intersection X ∩ Y is finite and its cardinality is odd. Hence, C is an
almost disjoint family.

To prove our claim it suffices to prove the following claim, well known by set theorists.

Claim 1.8. There is no almost disjoint family of more that µω subsets of an infinite set of cardinality µ.

Proof of Claim 1.8. Suppose that such a family A ∶= (Aα)α∈I exists, with ∣I ∣ > µω. Since µ<ω = µ, we may
suppose that each Aα is infinite and then select a countable subset Bα of Aα. The family B ∶= (Bα)α∈I is almost
disjoint, but since ∣I ∣ > µω, there are α /= β such that Bα = Bβ , hence Bα ∩Bβ is infinite, contradicting the fact that
B is an almost disjoint family. ◻

Now the proof of the lemma goes as follows. Suppose that dimBool(O(κ)¬� = µ < κ. Then there is an embedding
from the graph O(κ)¬� into the graph O(µ)¬�. Trivially, O(κ)¬� contains cliques of cardinality at least κ. Hence
O(µ)¬� too. But since µω < κ, Claim 1.7 says that this is impossible. Thus dimBool(O(κ)¬�) = κ. �

We thank Uri Avraham [2] for providing Claim 1.8.

Examples 1.9. For a simple illustration of Lemma 1.6, take κ = (2ℵ0)+ the successor of 2ℵ0 . For an example,
negating (GCH), suppose ω1 = 2ℵ0 , κ = ω2, ω3 = 2ω1 = 2ω2 . In this case, dimBool(O(κ)¬�) = κ and log2(2κ) = ω1 < κ.

Question 1.2. Does the equality dimBool(O(κ)¬�) = κ hold without any set theoretical hypothesis?

Remark 1.10. Theorem 1.4 asserts that O(κ)¬� is universal among graphs with no duo of Boolean dimension at
most κ (that is embeds all graphs with no duo of dimension at most κ), but we do not know which graphs on at
most 2κ vertices embed in O(κ)¬�.

In contrast with Claim 1.7 we have:

Lemma 1.11. For an infinite cardinal κ, the graph O(κ)¬� embeds a graph made of 2κ disjoint edges. It embeds
also some trees made of 2κ vertices.

Proof. Let G be the graph made of 2κ disjoint edges {aα, bα} with α ∈ 2κ. We show that G is isomorphic to an
induced subgraph of O(E)¬�, where E is the set [κ]<ω of finite subsets of κ, augmented of an extra element r. Since
∣E∣ = κ, this proves our first statement. For the purpose of the proof, select 2κ subsets Xα of κ which are pairwise
incomparable with respect to inclusion and contain an infinite subset X. For each α ∈ 2κ, let Aα ∶= [Xα]<ω∪{r} and
Bα ∶= E ∖ [Xα]<ω. We claim that the graph H induced by O(E)¬� on the set {Aα,Bβ ∶ α,β ∈ 2κ} is a direct sum of
the edges {Aα,Bα} for α ∈ 2κ. That Aα and Bα form an edge is obvious: their intersection is the one element set
{r}. Now, let α /= β. We claim that the three intersections Aα ∩Aβ , Aα ∩Bβ and Bα ∩Bβ are all infinite. For the
first one, this is obvious (it contains [Xα ∩Xβ]<ω), for the next two, use the fact that the Aα are up-directed with
respect to inclusion, hence the difference Aα ∖Aβ is cofinal in Aα, thus must be infinite, and the union Aα ∪Aβ
cannot cover [κ]<ω, hence its complement is infinite. It follows that the graph H contains no other edges than the
pairs {Aα,Bα}’s. This proves that H is isomorphic to G, and yields our first statement. For the second statement,
add R ∶= [X]<ω ∪ {r} to the set of vertices of H. We get a tree. Indeed, for each α, the vertices R and Aα do not
form an edge in O(E)¬� (indeed, R ∩Aα = [X]<ω hence is infinite), while for each β, the vertices R and Aβ form
an edge (since R ∩Aβ = {r}). �

For infinite graphs with finite Boolean dimension, a straightforward application of Tychonoff’s theorem yields
the following result.
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Theorem 1.12. Let n ∈ N. For every graph G, dimBool(G) ≤ n if and only if dimBool(G↾X) ≤ n for every finite
subset X of V (G).

Proof. Suppose that the second condition holds. For every finite subset X of V (G) let UX be the set of maps f
from V (G) into the powerset K ∶= ℘({1, . . . , n}) such that the restriction f↾X is a Boolean representation of G↾X
in {1, . . . , n}. Each such set UX is nonempty and closed in the set KV (G) equipped with the product topology, the
set K being equipped with the discrete topology. Every finite intersection UX1 ∩ ⋅ ⋅ ⋅ ∩UX`

contains UX1∪⋅⋅⋅∪X`
hence

is nonempty. The compactness of KV (G) ensures that the intersection of all of those sets is nonempty. Any map in
this intersection is a Boolean representation of G. �

Examples of graphs with finite Boolean dimension are given at the end of the next subsection.

1.2. Geometric notions of dimensions of graphs. We introduce three notions of dimensions: geometric, inner,
and symplectic, all based on bilinear forms. We prove that if the Boolean dimension of a graph is finite, then
it coincides with the inner dimension, and either these dimensions minus 1 coincide with the geometric and the
symplectic dimension, or they coincide with the geometric dimension, the symplectic being possibly larger (Theo-
rem 1.18). We note before all that in general, the Boolean dimension is not based on a bilinear form. It uses the
map ϕ ∶ ℘(E) → 2 ∶= {0,1} defined by setting ϕ(X,Y ) ∶= 1 if ∣X ∩ Y ∣ is finite and odd and 0 otherwise. But except
when E is finite, it is not bilinear on ℘(E) equipped with the symmetric difference.

Let F be a field, and let U be a vector space over F, and let ϕ be a bilinear form over U . We recall that this form
is symmetric if ϕ(x, y) = ϕ(y, x) for all x, y ∈ U . Two vectors x, y are orthogonal if ϕ(x, y) = 0. A vector x ∈ U is
isotropic if ϕ(x,x) = 0. The orthogonal of a subset X of U is the subspace X� ∶= {y ∈ U ∶ ϕ(x, y) = 0 for all x ∈ X}.
We set x� instead of {x}�. We recall that ϕ is degenerate if there is some x ∈ U ∖ {0} such that ϕ(x, y) = 0 for all
y ∈ U . The form ϕ is said to be alternating if each x ∈ U is isotropic, in which case (U,ϕ) is called a symplectic
space. The form ϕ is an inner form or a scalar product if U has an orthonormal basis (made of non-isotropic and
pairwise othogonal vectors).

Definition 1.13. Let U be a vector space equipped with a symmetric bilinear form ϕ. Let G be a graph. We say
that a map f ∶V (G) → U is a geometric representation of G in (U,ϕ) if for all u, v ∈ V (G), u ≠ v, we have u ∼ v if
and only if ϕ(f(u), f(v)) ≠ 0. The geometric dimension of G, denoted by dimgeom(G), is the least cardinal κ for
which there exists a geometric representation of G in a vector space U of dimension κ equipped with a symmetric
bilinear form ϕ. The symplectic dimension of G, denoted by dimsymp(G), is the least cardinal κ for which there
exists a symplectic space (U,ϕ) in which G has a geometric representation. The inner dimension of G, denoted
by diminn(G), is the least cardinal κ for which G has a geometric representation in a vector space of dimension κ
equipped with a scalar product.

The notions of geometric and symplectic dimension were considered by several authors, for example, [18, 19].
There is an extensive literature about this subject (e.g. [16], [21]), and notably the role of the field. But apparently,
the Boolean dimension was not considered.

Except in subsection 1.4, we consider these notions only for the 2-element field F2, identified with the set {0,1}.
If U has finite dimension, say k, we identify it with Fk2 , the set of all k-tuples over {0,1}; the basis (ei)i∶=1,...,k,
where ei is the 0-1-vector with a 1 in the i-th position and 0 elsewhere, is orthonormal; the scalar product of two
vectors x ∶= (x1, . . . , xk) and y ∶= (y1, . . . , yk) of Fk2 is then ⟨x ∣ y⟩ ∶= x1y1 + ⋅ ⋅ ⋅ + xkyk. We recall following dichotomy
result.

Theorem 1.14. A nondegenerate bilinear symmetric form ϕ on a finite k-dimensional space U over the two-
element field F2 falls into two types. Either ϕ is non-alternating and (U,ϕ) is isomorphic to (Fk2 , ∣) with the scalar
product, or ϕ is alternating, k is even, and (U,ϕ) is isomorphic to the simplectic space H(k) ∶= (1¬�, ∣↾1¬�), where
1¬� is the orthogonal of 1 ∶= (1, . . . ,1) with respect to the scalar product ∣ on Fk+1

2 .

For reader’s convenience, we give a proof. The proof, suggested by C.Delhommé, is based on two results exposed
in Algebra, Vol. 3, of P.M.Cohn [12]. Let (U,ϕ) be as stated in the above theorem. Case 1: ϕ is not simplectic,
that is ϕ(x,x) ≠ 0 for some vector x. We apply Proposition 7.1 page 344 of [12], namely: If U is a vector space of
characteristic 2 and ϕ is a symmetric bilinear form which is not alternating, then U has a orthogonal basis. Since
ϕ is non degenerate and the field if F2, any orthogonal basis is orthonormal, hence ϕ is a scalar product. Case 2:
ϕ is simplectic. In this case, Lemma 5.1, p.331 of [12] asserts in particular that: Every simplectic space, (that is a
space equipped with a bilinear symmetric form which is non degenerate and alternating) on an arbitrary field is a
sum of hyperbolic planes. Thus k is even and in our case U is isomorphic to any simplectic space with the same
dimension, in particular to H(k).
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When dealing with these notions of dimension, we may always consider nondegenerate forms, hence in the case
of finite dimensional representation, Theorem 1.14 applies. In fact Lemma 1.3 and Theorem 1.4 extend.

Let U be a vector space over F2 and ϕ a symmetric bilinear form defined on U with values in F2. Let O¬�

ϕ be the
graph of the non-orthogonality relation on U , that is, the graph whose edges are the pairs of distinct elements x
and y such that ϕ(x, y) = 1. If k is an integer, then we denote by O¬�

F2
(k) the graph on Fk2 of the non-orthogonality

relation associated with the inner product ∣. Similarly, for k even, let O¬�

H (k) be the graph on H(k), the orthogonal

of 1 ∶= (1, . . . ,1) with respect to the scalar product ∣ on (F2)k+1, equipped with the symplectic form induced by the
scalar product.

Lemma 1.15. If dim(U), the dimension of the vector space U , is at least 3, then the graph O¬�

ϕ has no duo if and

only if ϕ is nondegenerate. Hence, dimgeom(O¬�

ϕ ) = dim(U) when ϕ is nondegenerate.

Proof. Suppose that ϕ is degenerate. Pick a nonzero element a in the kernel of ϕ. Then, as it is easy to check, the
2-element set {0, a} is a module of O¬�

ϕ . Conversely, let {a, b} be a duo of O¬�

ϕ . We claim that c ∶= a + b belongs to
the kernel of ϕ, that is ϕ(x, c) = 0 for every x ∈ U . Indeed, if x /∈ {a, b}, then ϕ(x, a) = ϕ(x, b), hence ϕ(x, c) = 0 since
{a, b} is a module. If x ∈ {a, b} (e.g. x ∶= a), then since dim(U) ≥ 3, we may pick some z /∈ span{a, b} ∶= {0, a, b, a+b},
hence ϕ(z, c) = 0. Since z + a /∈ {a, b}, ϕ(z + a, c) = 0. It follows that ϕ(a, c) = 0, proving our claim. According
to Lemma 1.3, every representation of O¬�

ϕ is one to one; since the identity map is a representation, we have

dimgeom(O¬�

ϕ ) = dim(U). �

We give below an existential result. The proof of the second item is based on the ∆-system lemma (see [24] and
[28] for an elementary proof) that we recall now.

Lemma 1.16. Suppose that κ is a regular uncountable cardinal, and A ∶= (Aα)α∈κ is a family of finite sets. Then
there exist a subfamily B ∶= (Aα)α∈K , where the cardinality of K is κ, and a finite set R such that Aα ∩Aβ = R for
all distinct α,β ∈K

Theorem 1.17. (1) Every graph has a symplectic dimension, and hence, it has a geometric one. However:
(2) not every graph has an inner dimension, e.g., a graph with κ vertices, with κ regular, and no clique and no

independent set of κ vertices, does not have an inner representation; on an other hand:
(3) every locally finite graph has an inner dimension.

Proof. (1) Let G be a graph, and κ ∶= ∣V (G)∣. Let U be a vector space over F2 with dimension κ (e.g.,

U ∶= F[V (G)]

2 , the set of maps f ∶ V (G) → F2 which are 0 almost everywhere). Define a symplectic form ϕ
on a basis B ∶= {bv ∶ v ∈ V (G)} of U indexed by the elements of V (G) (e.g., bv is the map from V (G) to F2

defined by bv(v) = 1 and bv(u) = 0 for u /= v). For that, set ϕ(bu, bv) ∶= 1 if u /= v and u ∼ v; in particular
ϕ(bv, bv) = 0 for every v ∈ V (G). Then extend ϕ on U by bilinearity. Since the vectors of the basis are
isotropic and F2 has characteristic two, ϕ is symplectic. By construction, the map v → bv is a representation
of G in (U,ϕ). Hence G has a symplectic dimension.

(2) An inner representation of a graph G reduces to a map f from V (G) into the vector space [E]<ω of finite
subsets of a set E equipped with the symmetric difference such that for every two-element subset e ∶= {u, v}
of V (G), we have e ∈ E(G) if and only if ∣f(u)∩f(v)∣ is odd. Suppose that V (G) = κ and no subset of V (G)
of cardinality κ is a clique or an independent set. According to Ramsey’s theorem, κ is uncountable. Apply
Lemma 1.16 to A ∶= (f(u))u∈V (G). Let B ∶= (Aα)α∈K and R be given by this lemma. Since f(u)∩ f(v) = R
for all distinct α,β in K, the set R is a clique or an independent set depending on the fact that the
cardinality of R is odd or even. Hence, if G has no clique and no independent set of κ vertices, it cannot
have an inner representation. A basic example on cardinality ℵ1 is provided by the comparability graph G
of a Sierpinskization of a subchain A of the reals of cardinality ℵ1 with an order of type ω1 on A.

(3) Let E ∶= E(G). Let [E]<ω be the collection of finite subsets of E; equipped with the symmetric difference ∆,
[E]<ω is a vector space over F2; the one-element subsets of E form a basis; the map ϕ ∶ [E]<ω × [E]<ω → F2

defined by setting ϕ(X,Y ) = 1 if ∣X ∩ Y ∣ is odd and ϕ(X,Y ) = 0 otherwise is a bilinear form for which the
one-element subsets of E form an orthonormal basis. Hence ϕ is an inner product. Let f ∶ V (G) → ℘(E)
be defined by setting f(x) ∶= EG(x) (= {e ∈ E ∶ x ∈ e}). Since for any pair of distinct vertices x, y ∈ V (G),
∣EG(x) ∩EG(y)∣ = 1 amounts to ϕ(f(x), f(y)) = 1, f is an inner representation of G. �

As noted by Christian Delhommé [14], the Boolean dimension can be strictly smaller than the geometric di-
mension. For an example, if κ is an infinite cardinal, the geometric dimension of O(κ)¬� is 2κ while its Boolean
dimension is at most κ. Indeed, from Theorem 1.17, O(κ)¬� has a geometric representation in a vector space U .
As for any representation, Lemma 1.3 is still valid; since O(κ)¬� has no duo (for κ ≥ 3) the cardinality of U is at
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least 2κ, thus the dimension of the vector space U is 2κ, while O(κ)¬� has a Boolean representation in a set of
cardinality κ.

Problem 1.3. Does every countable graph has an inner dimension? 1

1.3. Graphs with finite geometric dimension.

Theorem 1.18. If the Boolean dimension of a graph G is finite, then it is equal to the inner dimension of G and
either

(1) the geometric dimension, the symplectic dimension and the Boolean dimension of G are equal,
or

(2) the geometric dimension and the symplectic dimension of G are equal to the Boolean dimension of G minus
1,

or
(3) the geometric dimension and the Boolean dimension of G are equal and are strictly less than the symplectic

dimension of G, in which case the difference between these two numbers can be arbitrarily large.

Proof. The first assertion is obvious. By definition, dimgeom(G) ≤ min{dimBool(G),dimsymp(G)}. Apply Theo-

rem 1.14. Let k ∶= dimgeom(G). If k /= dimBool(G), then G is representable into H(k) and thus in Fk+1
2 , hence

(2) holds. If k = dimBool(G), then dimsymp(G) ≥ k. The examples given in (a) below show that the difference
dimsymp(G) − dimBool(G) can be large. �

We give some examples when the graphs are finite.

Examples 1.19. (a) dimgeom(KV
X) = dimBool(KV

X) = 1 if X ≠ ∅ (in fact they equal 0 if X = ∅) and dimsymp(KV
X) =

2k if ∣X ∣ ∈ {2k,2k + 1}.
(b) dimgeom(O¬�

F2
(k)) = dimBool(O¬�

F2
(k)) = k for k ≥ 2, and 0 otherwise.

(c) dimgeom(O¬�

H (k)) = dimsymp(O¬�

H (k)) = dimBool(O¬�

H (k)) − 1 = k for k = 2m ≥ 4, and dimgeom(O¬�

H (2)) =
dimBool(O¬�

H (2)) = dimsymp(O¬�

H (2)) − 1 = 1.

These examples are extracted from [6]. The paper being unpublished, we give a hint below. We use the following
lemma.

Lemma 1.20. If G ∶= (V,E) is a graph for which dimsymp(G) = 2k ∈ N, then every clique of G has at most 2k + 1
elements.

This fact is a straightforward consequence of the following claim which appears equivalently formulated in [31]
as Problem 19O.(i), page 238.

Claim 1.21. If ` + 1 subsets Ai, i < ` + 1, of an `-element set A have odd size, then there are i, j < ` + 1, i /= j such
that Ai ∩Aj has odd size.

We prove now that the examples satisfy the stated conditions.
Item (a). The first part is obvious. For the second part, we use Claim 1.21 and Lemma 1.20. Indeed, let

f ∶ V (G) → H(2k). Composing with the involution h of F2k+1
2 we get a representation in 1 +H(2k), where the

involution h is defined by h(x) = x+ 1, where 1 ∶= (1,1, . . . ,1) ∈ F 2k+1
2 . The image of a clique of G yields subsets of

odd size such that the intersection of distinct subsets has even size. Thus from Claim 1.21 above there are no more
than 2k + 1 such sets.

With that in hand, we prove the desired equality dimsymp(KV (G)

X ) = 2k if ∣X ∣ ∈ {2k,2k + 1}.
Indeed, let X be an n-element subset of V (G) and let (xi)i<n be an enumeration of X. Let k with n ≤ 2k + 1

and f ∶ V (G) → F2k+1
2 be defined by f(x) = 0 if x ∈ V (G) ∖X and f(x) ∶= (bj)j<2k+1, where bj = 1 for all j /= i and

bi = 0 if x = xi. Clearly, f is a representation of G in H(2k), thus dimsymp(KV (G)

X ) ≤ 2k. The reverse inequality
follows from Lemma 1.20.

Item (b). If k = 1, the graph O¬�

F2
(k) is made of two isolated vertices, and if k = 2 the graph is a path on three

vertices plus an isolated vertex, their respective Boolean dimensions are 1 and 2, as claimed. If k ≥ 3 the result
follows from the conclusion of Lemma 1.15.

Item (c) If k = 2, the graph O¬�

H (k) is made of a clique on three vertices plus an isolated vertex, hence its
Boolean dimension is 1. If k ≥ 4, the equality dimgeom(O¬�

H (k)) = dimsymp(O¬�

H (k)) follows from the conclusion
of Lemma 1.15. The number of edges of O¬�

H (k) and O¬�

F2
(k) are different, hence O¬�

H (k) cannot have a Boolean

representation in (Fk2 , ∣). Since it has a representation in (Fk+1
2 , ∣), the result follows. ◻

The paper by Godsil and Royle [19] contains many more results on the symplectic dimension over F2 of finite
graphs.

1Norbert Sauer informed us on january 2022 that the answer is positive
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1.4. Dimension and rank. We compute the symplectic dimension and the geometric dimension of a graph G in
terms of its adjacency matrix.

Let n ∈ N. Let A be an n × n symmetric matrix with coefficients in a field F. We denote by rankF(A) the rank
of A computed over the field F. The minrank of A, denoted by minrankF(A), is the minimum of rankF(A +D),
where D is any diagonal symmetric matrix with coefficients in F. If F = F2, we denote these quantities by rank2(A)
and minrank2(A). Let G ∶= (V,E) be a graph on n vertices. Let v1, . . . , vn be an enumeration of V . The adjacency
matrix of G is the n × n matrix A(G) ∶= (ai,j)1≤i,j≤n such that ai,j = 1 if vi ∼ vj and ai,j = 0 otherwise.

Theorem 1.22. If G is a graph on n vertices, then the symplectic and the geometric dimensions of G over a field
F are respectively equal to the rank and the minrank of A(G) over F.

An n×n symmetric matrix B ∶= (bi,j)1≤i,j≤n over a field F is representable as the matrix of a symmetric bilinear
form ϕ on a vector space U over a field F if there exists n vectors u1, . . . , un in U , not necessarily distinct, such
that bi,j = ϕ(ui, uj) for all 1 ≤ i, j ≤ n.

The matrix B can be represented in U ∶= Fn, where (ui)1≤i≤n is the canonical basis and ϕ(ui, uj) = bi,j . According
to the following lemma (see Corollary 8.9.2 p. 179 of [20]), there is a representation in a vector space whose dimension
is the rank of the matrix B.

Lemma 1.23. An n × n symmetric matrix B of rank r has a principal r × r submatrix of full rank.

The following result shows that this value is optimum.

Lemma 1.24. The smallest dimension of a vector space in which a symmetric matrix B is representable is the
rank of B.

Proof. It is an immediate consequence of the following facts, whose proofs are a simple exercise in linear algebra.
1) Let r ∶= rank(B). Then r ≤ dim(U) for any vector space U in which B is representable. Let ϕ be a

bilinear form on U , and let u1, . . . , un be n vectors of U such that ϕ(ui, uj) = bij for all 1 ≤ i, j ≤ n, where
(bi,j)1≤i,j≤n = B. Let B(j1), . . . ,B(jr) be r linearly independent column vectors of B with indices j1, . . . , jr. We
claim that the corresponding vectors uj1 , . . . , ujr are linearly independent in U . Suppose that a linear combination
r

∑
k=1

λjkujk is zero. Then, for every vector u ∈ U , ϕ(
r

∑
k=1

λjkujk , u) = 0. This rewrites as
r

∑
k=1

λjkϕ(ujk , u) = 0. In

particular,
r

∑
k=1

λjkϕ(ujk , ui) = 0 for every i = 1, . . . , n. That is,
r

∑
k=1

λjkBjk = 0. Since these column vectors are linearly

independent, the λjk ’s are zero. This proves our claim.
2) Suppose that ϕ is nondegenerate and U is spanned by the vectors u1, . . . , un. Then r ≥ dim(U). The proof

follows the same lines as above. Let s ∶= dim(U). Then, among the uj ’s there are s linearly independent vectors,
say uj1 , . . . , ujs . We claim that the column vectors B(j1), . . . ,B(js) are linearly independent. Suppose that a linear

combination
s

∑
k=1

λkBjk is zero. This yields
s

∑
k=1

λkϕ(ujk , ui) = 0 for every i, 1 ≤ i ≤ n, hence ϕ(
s

∑
k=1

λkujk , ui) = 0. Since

the ui’s generate U , we have ϕ(
s

∑
k=1

λkujk , u) = 0 for every u ∈ U . Since the form ϕ is nondegenerate,
s

∑
k=1

λkujk = 0.

Since the vectors uj1 , . . . , ujs are linearly independent, the λk’s are all zero. This proves our claim.
3) Suppose that B is representable in a vector space U equipped with a symmetric bilinear form ϕ. Then B is

representable in a quotient of U equipped with a nondegenerate bilinear form. �

Theorem 1.22 follows immediately from Lemma 1.24.

Remark 1.25. Theorem 1.22 for the symplectic dimension of graphs over F2 is due to Godsil and Royle [19]. The
minrank over several fields has been intensively studied, see Fallat and Hogben [16] for a survey. These authors
consider the problem of minrank of graphs, and obtain a combinatorial description for the minimum rank of trees.
In the next section, we only state that in case of trees, the Boolean dimension, geometric dimension and the
minimum rank coincide, thus the formula given in Theorem 2.9 below for the Boolean dimension gives yet another
combinatorial description for the minimum rank of a tree.

2. Boolean dimension of trees

In this section, we show that there is a nice combinatorial interpretation for the Boolean dimension of trees. We
mention first the following result of Belkhechine et al. [6].
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Lemma 2.1. Let G ∶= (V,E) be a graph, with V ≠ ∅. Let m ∈ N, and let f ∶V → Fm2 be a representation of G in the
vector space Fm2 equipped with a symmetric bilinear form ϕ. Let A ⊆ V such that A ≠ ∅. Suppose that for all finite
X ⊆ A,X ≠ ∅, there exists v ∈ V ∖X such that ∣NG(v) ∩X ∣ is odd. Then {f(x) ∣ x ∈ A} is linearly independent in
the vector space Fm2 .

Proof. Let X be a non empty finite subset of A. We claim that ∑x∈X f(x) /= 0. Indeed, let v ∈ V ∖X such that
∣NG(v) ∩X ∣ is odd. We have ϕ(∑x∈X f(x), f(v)) = ∑x∈X ϕ(f(x), f(v)). This sum is equal to ∣NG(v) ∩X ∣ modulo
2. Thus ∑x∈X f(x) /= 0 as claimed. Since this holds for every finite subset X of A, the conclusion follows. �

This suggests the following definition.

Definition 2.2 (Belkhechine et al. [6]). Let G ∶= (V,E) be a graph. A set A ⊂ V is called independent (mod 2) if
for all finite X ⊆ A,X ≠ ∅, there exists v ∈ V ∖X such that ∣NG(v)∩X ∣ is odd, otherwise A is said to be dependent
(mod 2). Let ind2(G) be the maximum size of an independent set (mod 2) in G. From now, we omit (mod 2)
unless it is necessary to talk about independence in the graph theoretic sense.

Corollary 2.3. For every graph G, we have ind2(G) ≤ dimgeom(G).

Problem 2.1. Does the equality hold?

Note that the independent sets (mod 2) of a graph do not form a matroid in general. Indeed, let G be made
of six vertices, three, say {a, b, c} forming a clique, the three others, say a′, b′, c′ being respectively connected to
a, b and c. Then {a′, a, b, c} is independent (mod 2), hence 4 ≤ ind2(G). Also, {a′, b′, c′} is independent (mod 2)
but cannot be extended to a larger independent set (mod 2). Since G is the Boolean sum of a 3-vertex clique and
three edges, dimBool(G) ≤ 4. Finally, ind2(G) = dimgeom(G) = dimBool(G) = 4.

From Corollary 2.3 above, we deduce the following result.

Theorem 2.4. The Boolean dimension of a path on n vertices (n ∈ N, n > 0) is n − 1. Every other n-vertex graph,
with n ≥ 2, has dimension at most n − 2.

Proof. Let Pn be the path on {0, . . . , n−1}, whose edges are pairs {i, i+1}, with i < n−1. Suppose n ≥ 2. Since Pn is
the Boolean sum of its edges, dimBool(Pn) ≤ n−1. Let A ∶= {0, . . . , n−2}. Then A is independent (mod 2). Indeed,
let X be a nonempty subset of A and x be its largest element, then the vertex v ∶= x+1 is such that ∣NPn(v)∩X ∣ = 1.
Thus ind2(Pn) ≥ n − 1. From the inequalities n − 1 ≤ ind2(Pn) ≤ dimgeom(Pn) ≤ dimBool(Pn) ≤ n − 1, the fact that
the dimension of Pn is n − 1 follows.

Now we prove that if the Boolean dimension of a graph G on n vertices is n − 1, then G is a path. Observe first
that G is connected. Otherwise, G is the direct sum G′⊕G′′ of two non trivial graphs G′ and G′′ with respectively
n′ and n′′ vertices. As it is immediate to see, dimBool(G) = dimBool(G′ ⊕ G′′) ≤ dimBool(G′) + dimBool(G′′) ≤
n′ − 1+n′′ − 1 = n− 2. Next we observe that G cannot be a cycle. Indeed, an easy induction shows that cycles on n
vertices have dimension at most n − 2. Indeed, the cycle C3 is a clique thus has dimension 1. For n ≥ 4, the cycle
Cn on n vertices {0, . . . , n − 1} is the Boolean sum of the cycle on the first n − 1 vertices and the 3-vertex cycle
on {0, n − 2, n − 1}, thus its dimension is at most n − 2 (in fact it is equal to n − 2; this is obvious for C4 while for
n ≥ 5, its dimension is at least n − 2 since it contains a path on n − 1 vertices). Next, we check that if G has no
more than four vertices, then it is a path. For the final step, we argue by induction, but we need a notation. Let
G ∶= (V,E) be a graph and x ∈ V . Let G−x be the subgraph of G induced by V ∖ {x}. Let Gx ∶= (G−x)+̇KG(x),
where KG(x) ∶= KV ∖{x}

NG(x)
. Let Ġx be the graph obtained by adding to Gx the vertex x as an isolated vertex. In

simpler terms, we obtain Gx by deleting from G the vertex x and by adding, via the Boolean sum, all edges between
vertices of NG(x). For an example, if G is a path then Gx is a path on V ∖ {x}.

Claim 2.5. If V is finite then ∣dimBool(G) − dimBool(Gx)∣ ≤ 1.

Proof of Claim 2.5 Note that Ġx+̇KV
NG(x)∪{x} = G and G+̇KV

NG(x)∪{x} = Ġx. Thus ∣dimBool(G) − dimBool(Ġx)∣ ≤
dimBool(KV

NG(x)∪{x}). Since KNG(x)∪{x} is a clique, its Boolean dimension is 1; and since Ġx and Gx differ by an

isolated vertex, they have the same Boolean dimension. The claimed inequality follows.
Now, let G be our graph on n vertices such that dimBool(G) = n−1. Suppose that every graph G′ on n′ vertices,

n′ < n, is a path whenever dimBool(G′) = n′ − 1.

Claim 2.6. Gx is a path for every x ∈ V (G).

Indeed, since Gx has n − 1 vertices, dimBool(Gx) ≤ n − 2; since dimBool(G) = n − 1, the claim above ensures that
dimBool(Gx) = n − 2. The conclusion follows for the hypothesis on graphs with n − 1 vertices.
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Claim 2.7. Let x, y ∈ V (G) with x /= y. If Gx and Gy are two paths Px and Py, then dG(x), dG(y) ≤ 2 if
{x, y} /∈ E(G), and dG(x), dG(y) ≤ 3 otherwise.

Proof of Claim 2.7 We have Gx+̇Gy = G+̇KV
NG(x)∪{x}+̇G+̇KV

NG(y)∪{y} = KV
NG(x)∪{x}+̇KV

NG(y)∪{y}. Since Gx and

Gy are two paths Px and Py, we have Px+̇Py = KV
NG(x)∪{x}+̇KV

NG(y)∪{y}. We have dPx+̇Py
(x) ≤ 2, hence for the

Boolean sum EG(x)+̇EG(y) of stars EG(x) and EG(y), we have dEG(x)+̇EG(y)(x) ≤ 2. The conclusion of the claim
follows.

Now let x ∈ V . Since dG(x) ≤ 3 and n ≥ 5 there is some vertex y not linked to x by an edge. Hence by Claim 2.7,
dG(x) ≤ 2. From this follows that G is a direct sum of paths and cycles.

Since G must be connected and cannot be a cycle, G is a path. �

We thank Adrian Bondy [9] for suggesting this result several years ago. In fact, it is a consequence of previous
results about geometric dimension of graphs, obtained for general fields [8, 27].

We go from paths to trees as follows.

Definition 2.8. Let T ∶= (V,E) be a tree. A star decomposition Σ of T is a family {S1, . . . , Sk} of subtrees of T
such that each Si is isomorphic to K1,m (a star) for some m ≥ 1, the stars are mutually edge-disjoint, and each edge
of T is an edge of some Si. For a star decomposition Σ, let t(Σ) be the number of trivial stars in Σ (stars that
are isomorphic to K1,1), and let s(Σ) be the number of nontrivial stars in Σ (stars that are isomorphic to K1,m for
some m > 1). We define the parameter m(T ) ∶= minΣ{t(Σ) + 2s(Σ)} over all star decompositions Σ of T . A star
decomposition Σ of T for which t(Σ) + 2s(Σ) =m(T ) is called an optimal star decomposition of T .

The Boolean dimension of a graph counts the minimum number of cliques needed to obtain this graph as a

Boolean sum. If Σ ∶= {S1, . . . , Sk} is a star decomposition of a tree T , one has dimBool(T ) ≤
k

∑
i=1

dimBool(Si). Since

dimBool(Si) = 1 if Si is a trivial star, and dimBool(Si) = 2 otherwise (note that if Si = K1,m, it is the Boolean sum

of a clique on m + 1 vertices and a clique on a subset of m vertices), hence we have
k

∑
i=1

dimBool(Si) = t(Σ) + 2s(Σ),

hence dimBool(T ) ≤ t(Σ) + 2s(Σ). The inequality dimBool(T ) ≤m(T ) follows.
Here is our result.

Theorem 2.9. For all trees T , we have ind2(T ) = dimBool(T ) =m(T ).

We introduce the following definition.

Definition 2.10. A cherry in a tree T is a maximal subtree S isomorphic to K1,m for some m > 1 that contains m
end vertices of T . We refer to a cherry with m edges as an m-cherry.

Proposition 2.11. Let T ∶= (V,E) be a tree that contains a cherry. If all proper subtrees T ′ of T satisfy ind2(T ′) =
m(T ′), then ind2(T ) =m(T ).

Proof. Let x ∈ V be the center of a k-cherry in T , with NT (x) = {u1, . . . , uk,w1, . . . ,w`}, where dT (ui) = 1 for all i,
and dT (wi) > 1 for all i. For each i = 1 to `, let Ti be the maximal subtree that contains wi but does not contain x.

First, we show that any optimal star decomposition of T in which x is not the center of a nontrivial star can be
transformed into an optimal star decomposition in which x is the center of a nontrivial star. Consider an optimal
star decomposition Σ in which x is not the center of a nontrivial star. Therefore, edges xui are trivial stars of Σ.
Now if k > 2 or if there is a trivial star xwi in Σ, then we could have improved t(Σ)+ 2s(Σ) by replacing all trivial
stars containing x by their union, which is a star centered at x. Hence, assume that k = 2 and each wi is the center
of a nontrivial star Si, which contains the edge xwi. Now replace each Si by S′i ∶= Si − xwi, and add a new star
centered at x with edge set {xw1, . . . , xw`, xu1, xu2}. The new decomposition is also optimal.

Now consider an optimal star decomposition Σ in which x is the center of a nontrivial star. The induced
decompositions on Ti are all optimal since Σ is optimal. For each i ∈ {1, . . . , `}, let Ai be a maximum size
independent set in Ti. Hence ∣Ai∣ = ind2(Ti) = m(Ti) for all i ≥ 1, and m(T ) = 2 +∑im(Ti) = 2 +∑i ind2(Ti). We
show that A ∶= {x,u1} ∪ (∪iAi) is a maximum size independent set in T .

Consider a non-empty set X ⊆ A. We show that there exists v ∈ V ∖X such that ∣NT (v) ∩X ∣ is odd. If x ∈ X,
we have NT (u2) ∩ X = {x}. If X = {u1}, we have NT (x) ∩ X = {u1}. So suppose x /∈ X and X ≠ {u1}. Let
Bi ∶= X ∩ V (Ti) for i ∈ {1, . . . , `}. Since Bi is nonempty for some i, and x /∈ X, we find v ∈ V (Ti) ∖Bi such that
∣NTi(v) ∩Bi∣ is odd. Now ∣NT (v) ∩X ∣ is odd since x /∈X and v is not adjacent to u1. Moreover, ∣A∣ =m(T ). �

Proposition 2.12. Let T ∶= (V,E) be a tree that contains a vertex y of degree 2 adjacent to a vertex z of degree 1.
If ind2(T − z) =m(T − z), then ind2(T ) =m(T ).
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Proof. First, we show that m(T ) =m(T −z)+1. If there is an optimal star decomposition of T −z−y in which some
vertex x is the center of a star, then m(T −z) =m(T −z−y) and m(T ) =m(T −z)+1, else m(T −z) =m(T −z−y)+1
and m(T ) =m(T − z − y) + 2.

Now we consider a maximum sized independent set A′ in T −z. We have ∣A′∣ = ind2(T −z) =m(T −z). We define
A ∶= A′ ∪ {y} if y /∈ A′; and A ∶= A′ ∪ {z} if y ∈ A′. We show that A is independent in T .

Case 1: y /∈ A′, hence y ∈ A and z /∈ A. Let B ⊆ A,B ≠ ∅.
If y ∈ B, then ∣NT (z) ∩B∣ is odd.
If y /∈ B, then B ⊆ A′, hence there exists v ∈ V (T − z) such that ∣NT−z(v) ∩B∣ is odd, and ∣NT (v) ∩B∣ is odd.

Case 2: y ∈ A′, hence z ∈ A. Let B ⊆ A,B ≠ ∅.
If z /∈ B, then B ⊆ A′. Find v ∈ V (T − z) ∖B such that ∣NT−z(v) ∩B∣ is odd. Hence ∣NT (v) ∩B∣ is odd.
Now suppose that z ∈ B. If B = {z}, then ∣NT (y) ∩B∣ is odd. Otherwise, consider B ∖ {z}, which is a subset of

A′. Find v ∈ V (T − z)∖ (B ∖ {z}) such that ∣NT−z(v)∩ (B ∖ {z})∣ is odd. If v ≠ y, then ∣NT (v)∩B∣ is odd. If v = y
and x ∈ NT (y) ∖ {z}, then ∣NT (v) ∩B∣ is even and x ∈ B. In this case, let B′ ∶= (B ∖ {z}) ∪ {y}. This is a subset of
A′. Find u ∈ V (T − z) ∖B′ such that ∣NT−z(u) ∩B′∣ is odd. Since B′ contains x and y, we conclude that u is not
adjacent to any of y and z, hence ∣NT (u) ∩B∣ is odd.

Thus we have shown that A is independent. We have ind2(T ) ≥ ∣A∣ = ∣A′∣ + 1 = m(T − z) + 1 = m(T ). Since
ind2(T ) cannot be more than m(T ), we have ind2(T ) =m(T ). �

Proof of Theorem 2.9. If a tree T has two vertices, then ind2(T ) = m(T ) = 1. Each tree with at least 3 vertices
contains a cherry or a vertex of degree 2 adjacent to a vertex of degree 1. (This is seen by considering the second-
to-last vertex of a longest path in T .) Now, induction on the number of vertices, using Propositions 2.11 and 2.12,
implies the result. �

3. Inversion index of a tournament and Boolean dimension

3.1. Inversion index of a tournament. Let T be a tournament. Let V (T ) be its vertex set and A(T ) be its
arc set. An inversion of an arc a ∶= (x, y) ∈ A(T ) consists to replace the arc a by a⋆ ∶= (y, x) in A(T ). For a subset
X ⊆ V (T ), let Inv(T,X) be the tournament obtained from T after reversing all arcs (x, y) ∈ A(T ) ∩ (X ×X). For
example, Inv(T,V ) is T ∗, the dual of T . For a finite sequence (Xi)i<m of subsets of V (T ), let Inv(T, (Xi)i<m) be
the tournament obtained from T by reversing successively all the arcs in each of the subsets Xi, i <m, that is, the
tournament equal to T if m = 0 and to Inv(Inv(T, (Xi)i<m−1),Xm−1) if m ≥ 1. Said differently, an arc (x, y) ∈ A(T )
is reversed if and only if the number of indices i such that {x, y} ⊆Xi is odd. The inversion index of T , denoted by
i(T ), is the least integer m such that there is a sequence (Xi)i<m of subsets of V (T ) for which Inv(T, (Xi)i<m) is
acyclic.

In the sequel, we consider tournaments for which this index is finite. In full generality, the inversion index of a
tournament T can be defined as the least cardinal κ such the Boolean sum of T and a graph of Boolean dimension
κ is acyclic. The case κ finite is stated in Lemma 3.8 below. We leave tournaments with infinite inversion index to
further studies.

The motivation for the notion of inversion index originates in the study of critical tournaments. Indeed, the
critical tournaments of Schmerl and Trotter [29] can be easily defined from acyclic tournaments by means of one
or two inversions whereas the (−1)-critical tournaments, characterized in [7], can be defined by means of two, three
or four inversions [4]. Another interest comes from the point of view of logic.

Results about the inversion index originate in the thesis of H. Belkhechine [4]. Some results have been announced
in [5]; they have been presented at several conferences by the first author and included in a circulating manuscript
[6]. The lack of answer for some basic questions is responsible for the delay of publication.

The inversion index is a variant of the Slater index : the least number of arcs of a tournament which have to be
reversed in order to get an acyclic tournament ([30]). The complexity of the computation of the Slater index was
raised by Bang-Jensen and Thomassen in 1992. N. Alon [1] and independently Charbit, Thomassé and Yeo [10]
showed in 2007 that the problem is NP-hard. An extension of the inversion index to oriented graphs is studied in
[3].

Problem 3.1. Is the computation of the inversion index NP-hard?

Question 3.2. Are there tournaments of arbitrarily large inversion index?

This last question has a positive answer. There are two reasons, the first one is counting, the second one, easier,
is based on the notion of well-quasi-ordering.
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For n ∈ N, let i(n) be the maximum of the inversion index of tournaments on n vertices. We have i(n) = 0 for
n ≤ 2, i(3) = i(4) = 1, i(5) = i(6) = 2. For larger n a counting argument [4, 5, 6] yields the following result.

Theorem 3.1. n−1
2
− log2 n ≤ i(n) ≤ n − 4 for all integer n ≥ 6.

It is quite possible that i(n) ≥ ⌊n−1
2

⌋, due to the path of strong connectivity (it is not even known if reverse
inequality holds).

The path of strong connectivity on n vertices is the tournament Tn defined on N<n ∶= {0, . . . , n − 1} whose arcs
are all pairs (i, i + 1) and (j, i) such that i + 1 < n and i < j < n.

0 1 2 3 4

Figure 1. Path of strong connectivity on 5 vertices

Question 3.3. Is the inversion index of a path of strong connectivity on n vertices equal to ⌊n−1
2

⌋?
3.2. Well-quasi-ordering. Basic notions of the theory of relations apply to the study of the inversion index.
These notions include the quasi order of embedability, the hereditary classes and their bounds, and the notion of
well-quasi-order. For those, we refer to Fräıssé’s book [17].

Let I<ωm be the class of finite tournaments T whose inversion index is at most m. This is a hereditary class
in the sense that if T ∈ I<ωm and T ′ is embedable into T then T ′ ∈ I<ωm . It can be characterized by obstructions
or bounds. A bound is a tournament not in I<ωm such that all proper subtournaments are in I<ωm . We may note
that the inversion index of every bound of I<ωm is at least m + 1. Hence, the fact that I<ωm is distinct of the class
of all finite tournaments provides tournaments of inversion index larger than m. This fact relies on the notion of
well-quasi-ordering.

A poset P is well-quasi-ordered if every sequence of elements of P contains an increasing subsequence.

Theorem 3.2. The class of all finite tournaments is not well-quasi-ordered by embedability.

This is a well known fact. As indicated by a referee, it has been mentioned by several authors. See e.g., Latka
[25] for a much stronger version of Theorem 3.2 and also subsection 3.1 of [11]. For the convenience of the reader
we give a proof.

Proof. Let Tn be the path of strong connectivity on {0, . . . , n − 1} as defined above. Let Cn be the tournament
obtained from Tn by reversing the arc (n − 1,0). We claim that for n ≥ 7, the Cn’s form an antichain. Indeed,
to Cn we may associate the 3-uniform hypergraph Hn on {0, . . . , n − 1} whose 3-element hyperedges are the 3-
element cycles of Cn. An embedding from some Cn to another Cm, m > n, induces an embedding from Hn to Hm.
To see that such an embedding cannot exist, observe first that the vertices 0 and n − 1 belong to exactly n − 2
hyperedges, and the vertices 1 and n − 2 belong to exactly two hyperedges, the other vertices to three hyperedges,
hence an embedding h will send {0, n−1} on {0,m−1}. The preservation of the arc (0, n−1) imposes h(0) = 0 and
h(n − 1) =m − 1. Then, the preservation of the arcs (i, i + 1) yields a contradiction since n <m. �

Theorem 3.3. [5] For each m ∈ N, the class I<ωm is well-quasi-ordered.

Proof. The class L<ωm made of a finite linear order L with m unary predicates U1, . . . , Um (alias m distinguished
subsets) and ordered by embedability is well-quasi-ordered. This is a straightforward consequence of Higman’s
theorem on words [22] (in fact, an equivalent statement). Higman’s result asserts that the collection of words on
a finite alphabet, ordered by the subword ordering, is well-quasi-ordered. Since members of L<ωm can be coded
by words on an alphabet with 2m elements, the class L<ωm is well-quasi-ordered. The map associating to each
(L,U1, . . . , Um) the Boolean sum L+̇U1 . . . +̇Um preserves the embedability relation, hence the range of that map is
well-quasi-ordered. This range being equal to I<ωm , this later class is well-quasi-ordered. �

Corollary 3.4. There are finite tournaments with arbitrarily large inversion index.
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We have the following result concerning the bounds.

Theorem 3.5. [5] The class I<ωm has only finitely many bounds.

Proof. From the proof of Theorem 3.3, the class I<ωm,1 made of tournaments of I<ωm , with one unary predicate added,
is well-quasi-ordered. According to an adaptation of Proposition 2.2 of [26] translated in this case, I<ωm has finitely
many bounds. �

We thank the referee for observing that the well-quasi-ordering of I<ωm,1 suffices to yield the finiteness of the
bounds of I<ωm .

Question 3.4. What is the maximum of the cardinality of bounds of I<ωm ?

Remark 3.6. It must be observed that the collection of graphs with geometric dimension at most m over a fixed
finite field has finitely many bounds and an upper bound on their cardinality is given in [15]. How the cardinality
of these bounds relate to the cardinality of bounds of I<ωm is not known.

3.3. Boolean dimension and concrete examples of tournaments with large inversion index. Let C3.n
be the sum of copies of the 3-cycle C3 indexed by the n-element acyclic tournament n ∶= ({0, . . . , n − 1},{(i, j) ∣ 0 ≤
i < j ≤ n − 1}) with 0 < ⋯ < n − 1.

Theorem 3.7. The inversion index of the sum C3.n of 3-cycles over an n-element acyclic tournament is n.

  x1

y1z1

x2

y2
z2

   x3

y3
z3

x4

y4
z4

Figure 2. C3.4

No elementary proof is known. The proof we present relies on the notion of Boolean sum of graphs.
According to the definition of Boolean sum, we have the following result immediately.

Lemma 3.8. The inversion index of a tournament T is equal to the least integer k such that the Boolean sum T +̇G
of T with a graph G of Boolean dimension k is an acyclic tournament.

Proof of Theorem 3.7. Let T ∶= C3.n, V ∶= V (T ) and r ∶= i(T ). Clearly r ≤ n. Conversely, let H be a graph with
vertex set V such that L ∶= T +̇H is an acyclic tournament and dimBool(H) = r. Let U ∶= (F2)r equipped with the
ordinary scalar product ∣ and f ∶ V → U be a representation of H.

Claim 3.9. For each i ∈ {0, . . . , n− 1}, we may enumerate the vertices of {0,1,2}× {i} into xi, yi, zi in such a way
that (xi, yi), (yi, zi), (zi, xi) are arcs of T , (f(xi)∣f(zi)) = 1 and (f(xi)∣f(yi)) = 0.

Claim 3.10. The set {f(xi) ∶ i < n} is linearly independent in U .

Proof of Claim 3.10. This amounts to prove that ∑i∈I f(xi) /= 0 for every non-empty subset I of {0, . . . , n − 1}.
Let I be such a subset. Let m ∈ {0, . . . , n − 1} such that xm is the largest element of {xi ∶ i ∈ I} in the acyclic
tournament L.

Subclaim 3.11. (f(xi)∣f(zm)) = (f(xi)∣f(ym)) for each i ∈ I ∖ {m}.

Proof of Subclaim 3.11. By construction, we have xm <L zm and xm <L ym, hence by transitivity xi <L zm
and xi <L ym. If i < m in the natural order then, by definition of T , (xi, zm) ∈ A(T ) and (xi, ym) ∈ A(T ), thus
(f(xi)∣f(zm)) = 0 = (f(xi)∣f(ym)), whereas if i >m in the natural order, then (zm, xi) ∈ A(T ) and (ym, xi) ∈ A(T ),
thus (f(xi)∣f(zm)) = 1 = (f(xi)∣f(ym)), proving the subclaim. ◻

Since (f(xm)∣f(zm)) = 1 and (f(xm)∣f(ym)) = 0, it follows that ∑i∈I(f(xi)∣f(zm)) /= ∑i∈I(f(xi)∣f(ym)). That
is ((∑i∈I f(xi))∣f(zm)) /= ((∑i∈I f(xi))∣f(ym)). Thus the sum ∑i∈I f(xi) /= 0 as claimed. ◻

We have n ≤ r. This proves the theorem. ◻
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