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ON THE BOOLEAN DIMENSION OF A GRAPH AND OTHER RELATED PARAMETERS

MAURICE POUZET, HAMZA SI KADDOUR, AND BHALCHANDRA D. THATTE*

Abstract. We present the Boolean dimension of a graph, we relate it with the notions of inner, geometric and
symplectic dimensions and the rank and minrank of a graph. We obtain an exact formula for the Boolean dimension

of a tree in terms of a certain star decomposition. We relate the Boolean dimension with the inversion index of a

tournament.

1. Presentation and preliminaries

We define the notion of Boolean dimension of a graph, as it appears in [6] (see also [5],[7]). We present the
notions of geometric and symplectic dimensions and the rank and minrank of a graph, which have been considered
earlier. When finite, the Boolean dimension correspond to the inner dimension; it plays a intermediate role between
the geometric and symplectic dimension and does not seem to have been considered earlier. The notion of Boolean
dimension was introduced in order to study tournaments and their reduction to acyclic tournaments by means of
inversions. The key concept is the inversion index of a tournament [5, 6, 7] presented in Section 3. Our main results
are an exact formula for the Boolean dimension of a tree in terms of a certain star decomposition (Theorem 2.9)
and the computation of the inversion index of an acyclic sum of 3-cycles (Theorem 3.7).

Notations in this paper are quite elementary. The diagonal of a set X is the set ∆X ∶= {(x,x) ∶ x ∈ X}. We
denote by ℘(X) the collection of subsets of X, by Xm, resp., by [X]m, the set of m-tuples (x1, . . . , xm), resp.,
m-element subsets, of X and by [X]<ω the collection of finite subsets of X. The cardinality of X is denoted by
∣X ∣. We denote by ℵ0 the first infinite cardinal. If κ denotes a cardinal, 2κ is the cardinality of the powerset ℘(X)
of any set X of cardinality κ. If κ is an infinite cardinal, we set log2(κ) for the least cardinal µ such that κ ≤ 2µ.
We note that for an uncountable cardinal κ the equality log2(2κ) = κ may require some set theoretical axiom, as
the Generalized Continuum hypothesis (GCH). If κ is an integer, we use log2(κ) in the ordinary sense, hence the
least integer µ such that κ ≤ 2µ is ⌈log2 κ⌉. We refer the reader to [23] for further background about axioms of set
theory if needed (and to [10] and [24] for graphs and tournaments).

The graphs we consider are undirected and have no loop. They do not need to be finite, but our main results are
for finite graphs. A graph is a pair (V,E) where E is a subset of [V ]2, the set of 2-element subsets of V . Elements
of V are the vertices and elements of E are its edges. The graph G be given, we denote by V (G) its vertex set and
by E(G) its edge set. For u, v ∈ V (G), we write u ∼ v and say that u and v are adjacent if there is an edge joining
u and v. The neighbourhood of a vertex u in G is the set NG(u) of vertices adjacents to u. The degree dG(u) of a
vertex u is the cardinality of NG(u). If X is a subset of V (G) the graph induced on X is G↾X ∶= (X,E ∩ [X]2). A
clique in a graph G is a set X of vertices such that any two distinct vertices are adjacent. If X is a subset of a set
V we set KV

X ∶= (V, [X]2); we say also that this graph is a clique.

1.1. Boolean sum of graphs and Boolean dimension of a graph. Let (Gi)i∈I be a family of graphs, all with
the same vertex set V . The Boolean sum of this family is the graph, denoted by +̇(Gi)i∈I , with vertex set V such
that an unordered pair e ∶= {x, y} of distinct elements is an edge if and only if it belongs to a finite and odd number
of E(Gi). If the family consists of two elements, say (Gi)i∈{0,1} we denote this sum by G0+̇G1. This is an associative
operation (but, beware, infinite sums are not associative). If each E(Gi) is the set of edges of some clique Ci, we
say (a bit improperly) that +̇(Gi)i∈I is a sum of cliques. We define the Boolean dimension of a graph G, that we
denote by dimBoolG, as the least cardinal κ such that G is a Boolean sum of κ cliques. In all, dimBool(G) = κ
if there is a family of κ subsets (Ci)i∈I of V (G), and not less, such that an unordered pair e ∶= {x, y} of distinct
elements is an edge of G if and only if it is included in a finite and odd number of Ci’s.
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A Boolean representation of a graph G in a set E is a map f ∶ V (G) → ℘(E) such that an unordered pair
e ∶= {x, y} of distinct elements is an edge of G if and only if the intersection f(x) ∩ f(y) is finite and has only an
odd number of elements.

Example 1.1. Let G be a graph. For a vertex x ∈ V (G), let EG(x) ∶= {e ∈ E(G) ∶ x ∈ e}. Set E ∶= E(G). Then the
map f ∶ V (G) → ℘(E) defined by f(x) ∶= EG(x) is a Boolean representation. Indeed, for every 2-element subset
e ∶= {x, y} of V (G), the intersection f(x) ∩ f(y) has one element iff e ∈ E(G), otherwise it is empty.

The following result is immediate, still it has some importance.

Proposition 1.2. A graph G is the Boolean sum of κ cliques if and only if G has a Boolean representation in a
set of cardinality κ.

Proof. If G is the Boolean sum of a family (Ci)i∈I of κ cliques, let f ∶ V (G) → ℘(I) defined by setting f(x) ∶= {i ∈ I ∶
x ∈ Ci}. This defines a Boolean representation in I. Conversely, if f ∶ V (G) → ℘(E) is a Boolean representation in a
set E, set Ci ∶= {x ∈ V ∶ i ∈ f(x)} for i ∈ E. Then G is the Boolean sum of the family (Gi)i∈E where Gi ∶= (V, [Ci]2)
for each i ∈ E. �

We immediately note that the Boolean dimension of a graph and of the graph obtained by removing some isolated
vertices are the same. So that dimBool(G) = 1 if and only if it is of the form G = KV

X with ∣X ∣ ≥ 2. Since every
graph G ∶= (V,E) can be viewed as the Boolean sum of its edges, the Boolean dimension of G is always defined
and is at most the number of edges, that is at most the cardinality ∣[V ]2∣ of [V ]2. If V is infinite, ∣[V ]2∣ = ∣V ∣,
hence dimBool(G) ≤ ∣V ∣ (but see Question 1.1 below). If V is finite, with n elements, an easy induction shows that
dimBool(G) ≤ n− 1 [6]. In fact, paths on n vertices are the only graphs with Boolean dimension n− 1, see Theorem
2.4, a result that requires some ingredients developped below.

Recall that a module in a graph G is any subset A of V (G) such that for every a, a′ ∈ A and b ∈ V (G) ∖A, a ∼ b
iff a′ ∼ b. A duo is any two-element module (e.g., see [13] for an account of the modular decomposition of graphs).

Lemma 1.3. If a graph G has no duo then every Boolean representation is one to one. In particular, dimBool(G) ≥
log2(∣V (G)∣).

Proof. Observe that if f is a representation and v is in the range of f then f−1(v) is a module and this module is
either a clique or an independent set. �

The inequality in Lemma 1.3 may be strict if V (G) is finite. But:

Question 1.1. Does dimBool(G) ≤ log2(∣V (G)∣) when V (G) is infinite? The answer may depends on some set
theoretical hypothesis (see Example 1.9). But, we do not known if the Boolean dimension of every graph on at
most a continuum of vertices is at most countable. Same question for trees.

Let E be a set; denote by O(E)¬� the graph whose vertices are the subsets of E, two vertices X and Y being
linked by an edge if they are distinct and their intersection is finite and odd. If κ is a cardinal, we set O(κ)¬� for
any graph isomorphic to O(E)¬� where E is a set of cardinality κ.

Theorem 1.4. A graph G with no duo has Boolean dimension at most κ iff it is embeddable in O(κ)¬�. The
Boolean dimension of O(κ)¬� is at most κ. It is equal to κ if κ is at most countable or if κ is uncountable and
(GCH) holds.

Proof. If there is an embedding f from G in a graph of the form O¬�(E) then f is a Boolean representation of G
hence dimBool(G) ≤ ∣E∣. Conversely, if G has no duo and has a Boolean representation f in a set E then, by Lemma
1.3, f is an embedding of G in O¬�(E). Let E be a set of cardinality κ. For each X ∈ O(E)¬� set f(X) ∶= X
viewed as a subset of ℘(E). The map f is a Boolean representation, hence dimBoolO(E)¬� ≤ κ. Alternatively,
set Ci ∶= {X ∈ ℘(E) ∶ i ∈ X} for each i ∈ E. Then O(E)¬� is the Boolean sum of the [Ci]2’s. If κ ≤ 2, a simple
inspection shows that the Boolean dimension of O(E)¬� is κ. If κ ≥ 3 then O(E)¬� has no duo. This relies on the
following claim.

Claim 1.5. If A,B are two distinct subsets of E, there is a subset C of E, distinct from A and B, with at most
two elements such that the cardinalities of the sets A ∩C and B ∩C cannot have the same parity.

Indeed, we may suppose that A /⊆ B. Pick x ∈ A ∖B. If ∣A∣ > 1, set C ∶= {x}. If not, then A = {x}. In this case,
either B is empty and C ∶= {x, y}, with y /= x will do, or B is nonempty, in which case, we may set C ∶= {y} where
y ∈ B if ∣B∣ > 1, or C ∶= {y, z}, where B = {y} and z ∈ E ∖ (A ∪B).

Since O(E)¬� has no duo, Lemma 1.3 ensures that dimBool(O(E)¬�) ≥ log2(∣V (O(E))∣) = log2(2κ). If κ is at
most countable or κ is uncountable and (GCH) holds, this last quantity is κ. This completes the proof of the
theorem. �
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We can obtain the same conclusion with a weaker hypothese than (GCH).

Lemma 1.6. Let κ be an infinite cardinal; if µω < κ for every µ < κ, then dimBool(O(κ)¬�) = κ.

Proof. The proof relies on the following claim on independent interest.

Claim 1.7. Let µω be the cardinality of the set of countable subsets of an infinite cardinal µ. Then the cliques in
O(µ)¬� have cardinality at most µω.

The proof relies on a property of ∆-systems. Let us recall that a ∆-system is a family A ∶= (Aα)α∈I of sets such
that the intersection Aα ∩Aβ is finite for α /= β. Note that if C is a clique in O(µ)¬� then for every pair of distinct
sets X,Y in C, the intersection X ∩ Y is finite and its cardinality is odd. Hence, C is a ∆-system.

To prove our claim it suffices to prove the following claim, well known of set theorists.

Claim 1.8. There is no ∆-system of more that µω subsets of an infinite set of cardinality µ.

Proof of Claim 1.8. Suppose that such a system A ∶= (Aα)α∈I exists, with ∣I ∣ > µω. Since µ<ω = µ we may
suppose that each Aα is infinite and then select a countable subset Bα. The family B ∶= (Bα)α∈I must form a
∆-system, but since ∣I ∣ > µω there are α /= β such that Bα = Bβ , hence Bα ∩Bβ is infinite, contradicting the fact
that B is a ∆-system. ◻

Now the proof of the lemma goes as follows. Suppose that dimBool(O(κ)¬�) = µ < κ. Then there is an embedding
from the graph O(κ)¬� into the graph O(µ)¬�. Trivially, O(κ)¬� contains cliques of cardinality at least κ. Hence
O(µ)¬� too. But since µω < κ, Claim 1.7 says that this is impossible. Thus dimBool(O(κ)¬�) = κ. �

We thank Uri Avraham [2] for providing Claim 1.8.

Examples 1.9. For a simple illustration of Lemma 1.6 holds, take κ = (2ℵ0)+ the successor of 2ℵ0 . For an example,
negating (GCH), suppose ω1 = 2ℵ0 , κ = ω2, ω3 = 2ω1 = 2ω2 . In this case, dimBool(O(κ)¬�) = κ and log2(2κ) = ω1 < κ.

Question 1.2. Does the equality dimBool(O(κ)¬�) = κ hold without any set theoretical hypothesis?

Remark 1.10. Theorem 1.4 asserts that O(κ)¬� is universal among graphs with no duo of Boolean dimension at
most κ (that is embeds all graphs with no duo of dimension at most κ), but we do not know which graphs on at
most 2κ vertices embed in O(κ)¬�.

In contrast with Claim 1.7 we have:

Lemma 1.11. For an infinite cardinal κ, O(κ)¬� embeds a graph made of 2κ disjoint edges. In particular, it
embeds some trees made of 2κ vertices.

Proof. Let {aα, bα} for α ∈ 2κ be a direct sum of edges. Adding a vertex r connected to each aα, we get a tree.
To the family of cliques whose Boolean sum is the direct sum of edges, add the clique made of all the aα’s and
the clique made of the aα’s and r. The resulting Boolean sum is the tree. Said differently, adding a new vertex
linked to each end-vertex of a star, we get a tree of the same Boolean dimension as the star (note that if we do the
construction below, there is no need to add the clique made of the α’s). Now, we prove the first statement. To the
set [κ]<ω of finite subsets of κ, add an extra element r. Let E be the resulting set. Select 2κ subsets Xα of κ which
are pairwise incomparable w.r.t. inclusion and which pairwise intersect on an infinite subset (we may impose that
all Xα’s contain a fixed infinite subset). For each α ∈ 2κ, let Aα ∶= [Xα]<ω ∪ {r} and Bα ∶= E ∖ [Xα]<α. We claim
that the graph induced by O(κ)¬� on the set V ∶= {Aα,Bβ ∶ α,β ∈ 2κ} is a direct sum of the edges {Aα,Bα} for
α ∈ 2κ. That Aα and Bα form an edge is obvious: their intersection is the one element set {r}. Now, let α /= β. We
claim that the four intersections Aα∩Aβ , Aα∩Bβ , Bα∩Aβ , Bα∩Bβ are all infinite. For the first one this is obvious
(it contains Xα ∩Xβ), for the next three, use the fact that the Aα’s are up-directed subsets, hence the difference
Aα ∖Aβ is cofinal in Aα thus must be infinite, and the union Aα ∪Aβ cannot cover [κ]<α, hence its complement is
infinite. It follows that V contains no other edges than the {Aα,Bα}’s. �

For infinite graphs with finite Boolean dimension, a straightforward application of Tychonoff’s theorem yields
the following result.

Theorem 1.12. Let n ∈ N. For every graph G, dimBool(G) ≤ n if and only if dimBool(G↾X) ≤ n for every finite
subset X of V (G).

Proof. Suppose that the second condition holds. For every finite subset X of V let UX be the set of maps f
from V into the powerset K ∶= ℘({1, . . . , n}) such that the restriction f↾X is a Boolean representation of G↾X in
{1, . . . , n}. Each such set UX is nonempty and closed into the set KV equipped with the product topology. Every
finite intersection UX1 ∩ ⋅ ⋅ ⋅ ∩UX`

contains UX1∪⋅⋅⋅∪X`
hence is nonempty. The compactness of KV ensures that the

intersection of all of those sets is nonempty. Any map in this intersection is a Boolean representation of G. �

Examples of finite graphs with finite Boolean dimension are given at the end of the next subsection.
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1.2. Geometric notions of dimensions of graphs. Considering bilinear forms, we define three other notions
of dimensions: geometric, inner, and simplectic. We prove that if the Boolean dimension of a graph is finite, then
it coincides with the inner dimension, and either these dimensions minus 1 coincide with the geometric and the
simplectic dimension, or they coincide with the geometric dimension, the simplectic being possibly larger (Theorem
1.17).

Let F be a field, U be a vector over F and ϕ be a bilinear form over U . We recall that this form is symmetric if
ϕ(x, y) = ϕ(y, x) for all x, y ∈ U . Two vectors x, y are orthogonal if ϕ(x, y) = 0. A vector x ∈ U ∖ {0} is isotropic if
ϕ(x,x) = 0. The orthogonal of a subset X of U is the subspace X� ∶= {y ∈ U ∶ ϕ(x, y) = 0 for all x ∈ X}. We set x�

instead of {x}�. We recall that ϕ is degenerate if there is some x ∈ U ∖ {0} such that ϕ(x, y) = 0 for all y ∈ U . The
form ϕ is said to be alternating if each x ∈ U ∖ {0} is isotropic, in which case (U,ϕ) is called a symplectic space.
The form ϕ is a inner form or a scalar product if U has an orthonormal base (made of non-isotropic and pairwise
othogonal vectors).

Definition 1.13. Let G be a graph. We say that a map f ∶V (G) → U is a geometric representation of G in (U,ϕ)
if for all u, v ∈ V (G), u ≠ v, we have u ∼ v if and only if ϕ(f(u), f(v)) /= 0. The geometric dimension of G, denoted
by dimgeom(G), is the least cardinal κ for which there exists a geometric representation of G in a vector space U of
dimension κ equipped with a symmetric bilinear form ϕ. The symplectic dimension of G, denoted by dimsymp(G),
is the least cardinal κ for which there exists a symplectic space (U,ϕ) in which G has a geometric representation.
The inner dimension of G, denoted by diminn(G), is the least cardinal κ for which G has a geometric representation
in a vector space of dimension κ equipped with a scalar product.

The notions of geometric and symplectic dimension were considered by several authors, for example, [18, 19].
There is an extensive litterature about this subject (e.g. [16], [21]), and notably the role of the field. But apparently,
the Boolean dimension was not considered.

Except in subsection 1.4, we consider these notions only for the 2-element field F2, identified with the set {0,1}.
If U has finite dimension, say k, we identify it with Fk2 , the set of all k-tuples over {0,1}; the basis (ei)i∶=1,...,k, where
ei is the 0-1-vector with a 1 in the i-th position and 0 elsewhere, is orthonormal; the scalar product of two vectors
x ∶= (x1, . . . , xk) and y ∶= (y1, . . . , yk) of Fk2 is then ⟨x ∣ y⟩ ∶= x1y1 + ⋅ ⋅ ⋅ + xkyk. We recall the following dichotomy
result.

Theorem 1.14. A non-degenerate form ϕ on a finite k-dimensional space U falls into two types. Either ϕ is
non-alternating and (U,ϕ) is isomorphic to (Fk2 , ∣). Or ϕ is alternating, k is even and (U,ϕ) is isomorphic to
H(k) ∶= (1¬�, ∣↾1¬�), where 1¬� is the orthogonal of 1 ∶= (1, . . . ,1) with respect to the scalar product ∣ on Fk+1

2 .

When dealing with these notions of dimension, we may always consider nondegenerate forms, hence in the case
of finite dimensional representation, Theorem 1.14 applies. In fact Lemma 1.3 and Theorem 1.4 extend.

Let U be a vector space over F2 and ϕ be a symmetric bilinear form defined on U with values in F2. Let O¬�

ϕ be
the graph of the non orthogonality relation on U , that is the graph whose edges are the pairs of distinct elements
x and y such that ϕ(x, y) = 1. If k is an integer, we denote by O¬�

F2
(k) be the graph on Fk2 of the non-orthogonality

relation associated with the inner product ∣. Similarly, for k even, let O¬�

H (k) be the graph on H(k), the orthogonal

of 1 ∶= (1, . . . ,1) with respect to the scalar product ∣ on (F2)k+1, equipped with the simplectic form induced by the
scalar product.

Lemma 1.15. If dim(U), the dimension of the vector space U , is at least 3, then the graph O¬�

ϕ has no duo if and

only if ϕ is non degenerate. Hence, dimgeom(O¬�

ϕ ) = dim(U).

Proof. Suppose that ϕ is degenerate. Pick a nonzero element a in the kernel of ϕ. Then, as it is easy to check, the
2-element set {0, a} is a module of O¬�

ϕ . Conversely, let {a, b} be a duo of O¬�

ϕ . We claim that c ∶= a+b belongs to the
kernel of ϕ. Indeed, if x /∈ {a, b} then ϕ(x, a) = ϕ(x, b), hence ϕ(x, c) = 0 since {a, b} is a module. If x ∈ {a, b} (e.g.
x ∶= a), then since dim(U) ≥ 3, we may pick some z /∈ {a, b}, hence ϕ(z, c) = 0. Since z + a /∈ {a, b}, ϕ(z + a, c) = 0.
It follows that ϕ(a, c) = 0, proving our claim. According to Lemma 1.3 every representation of O¬�

ϕ is one to one;

since the identity map is a representation, dimgeom(O¬�

ϕ ) = dim(U). �

Theorem 1.16. Every graph G has a geometric representation.

Proof. Let E ∶= E(G). Let ℘(E) be the powerset of E and let f ∶ V (G) → ℘(E) be defined by setting f(x) ∶= EG(x)
(= {e ∈ E ∶ x ∈ e}). Equipped with the symmetric difference ∆, ℘(E) is a vector space over F2. Let U be the subspace
spanned by the range of f . We equip U with a symmetric form and prove that f is a geometric representation of
G. Let E∞ be the set of infinite subsets of E and let B be the set {{e} ∶ e ∈ E} ∪ ({EG(x) ∶ x ∈ V (G)} ∩ E∞).
We claim that the set B is a linearly independent subset of ℘(E). Indeed, if F was a finite subset of B whose sum
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in ℘(E) is zero, separate the singletons {e} ∈ B from the other members. The sum of these singletons is a finite
subset of E, while the sum of the others subsets of E belonging to F is finite too since the intersection of two such
subsets has at most one element. Hence, F must reduce to the emptyset, proving our claim. Now, we define two
bilinear maps on the vector space < B > spanned by B. We give their values on B and we extend by bilinearity on
< B >. On the pairs of distinct elements X, Y of B, the two maps coincide, we set ϕ(X,Y ) ∶= 1 if X ∩ Y is finite
and odd, ϕ(X,Y ) ∶= 0 otherwise. On the diagonal made of pair (X,X) we set ϕ(X,X) = 0 for the first one, and
ϕ(X,X) = 1 for the second one. Since U is a subspace of < B >, each of these two bilinear forms induces a bilinear
form on U . Since for any pair of distinct vertices x, y ∈ V (G), ∣EG(x) ∩EG(y)∣ = 1 amounts to ϕ(f(x), f(y)) = 1, f
is a geometric representation of G. Note that the first form yields a simplectic representation. �

An inner representation of a graph G reduces to a map f from V (G) into the set [E]<ω of finite subsets of a
set E such that for every two-element subset e ∶= {u, v} of V (G), e ∈ E(G) if and only if ∣f(u) ∩ f(v)∣ is odd. In
particular, such a representation is a Boolean representation.

As noted by Christian Delhommé [15], the Boolean dimension can be strictly smaller than the geometric di-
mension. For an example, if κ is an infinite cardinal, the geometric dimension of O(κ)¬� is 2κ while its Boolean
dimension is at most κ. Indeed, from Theorem 1.16, O(κ)¬� has a geometric representation in a vector space U . As
for any representation, Lemma 1.3 is still valid; since O(κ)¬� has no duo (for κ ≥ 3) the cardinality of U is at least
2κ thus the dimension of the vector space U is 2κ, while O(κ)¬� has a Boolean representation in a set of cardinality
κ.

1.3. Graphs with finite geometric dimension.

Theorem 1.17. If the Boolean dimension of a graph G is finite, then it is equal to the inner dimension of G and
either

(1) the geometric dimension, the simplectic dimension and the Boolean dimension of G are equal,
or

(2) the geometric dimension and the simplectic dimension of G are equal to the Boolean dimension of G minus
1,

or
(3) the geometric dimension and the Boolean dimension of G are equal and are strictly less than the simplectic

dimension of G, in which case the difference between these two numbers can be arbitrarily large.

Proof. The first assertion is obvious. By definition, dimgeom(G) ≤ min{dimBool(G), dimsymp(G)}. Apply Theorem

1.14. Let k ∶= dimgeom(G). If k /= dimBool(G) then G is representable into H(k) and thus in Fk+1
2 , hence (2)

holds. If k = dimBool(G) then dimsymp(G) ≥ k. The examples given in (a) below show that the difference
dimsymp(G) − dimBool(G) can be large. �

We give some examples when the graphs are finite.

Examples 1.18. (a) dimgeom(KV
X) = dimBool(KV

X) = 1 and dimsymp(KV
X) = 2k if ∣X ∣ ∈ {2k,2k + 1}.

(b) dimgeom(O¬�

F2
(k)) = dimBool(O¬�

F2
(k)) = k for k ≥ 2 and 0 otherwise.

(c) dimgeom(O¬�

H (k)) = dimsymp(O¬�

H (k)) = dimBool(O¬�

H (k)) − 1 = k for k = 2m ≥ 4 and dimgeom(O¬�

H (2)) =
dimBool(O¬�

H (2)) = dimsymp(O¬�

H (2)) − 1 = 1.

These examples are extracted from [7]. The paper being not published, we give a hint.

Proof. Item (a). The first part is obvious. For the second part, we use the following lemma.

Lemma 1.19. If G is a graph for which dimsymp(G) = 2k ∈ N then every clique of G has at most 2k + 1 elements.

This fact is a straightforward consequence of the following claim which appears equivalently formulated in [30]
as Problem 19 O (i), page 238.

Claim 1.20. If ` + 1 subsets Ai, i < ` + 1, of a `-element set A have odd size, then there are i, j < ` + 1, i /= j , such
that Ai ∩Aj has odd size.

Indeed, let f ∶ V (G) → H(2k). Composing with the involution h of F2k+1
2 we get a representation in 1 +H(2k).

The image of a clique of G yields subsets of odd size such that the intersection of distinct subsets has even size.
Thus from Claim 1.20 above there are no more than 2k + 1 such sets.

With that in hand, we prove the desired equality dimsymp(KV
X) = 2k if ∣X ∣ ∈ {2k,2k + 1}.

Indeed, let X be a n-element subset of V and let (xi)i<n be an enumeration of X. Let k with n ≤ 2k + 1 and
f ∶ V → F2k+1

2 defined by f(x) = 0 if x ∈ V ∖X and f(x) ∶= (bi)i<2k where bj = 1 for all j /= i and bi = 0 if x = xi.
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Clearly, f is a representation of G in H(2k) thus dimsymp(KV
X) ≤ 2k. The reverse inequality follows from Lemma

1.19.
Item (b). If k = 1, the graph O¬�

F (k) is made of two isolated vertices, and if k = 2 this is a path on three vertices
plus an isolated vertex, their respective Boolean dimension is 1 and 2, as claimed. If k ≥ 3 the result follows from
the conclusion of Lemma 1.15.

Item (c) If k = 2, the graph O¬�

H (k) is made of a clique on three vertices plus an isolated vertex, hence its Boolean
dimension is 1. If k ≥ 4, the equality dimgeom(O¬�

H (h)) = dimsymp(O¬�

H (k)) follows from the conclusion of Lemma
1.15. The number of edges of O¬�

H (k) and O¬�

F2
(k) are different, hence O¬�

H (k) cannot have a representation into

(Fk2 , ∣). Since it has a representation in (Fk+1
2 , ∣) the result follows. �

See the paper by Godsil and Royle [19] contains many more results on the symplectic dimension over F2 of finite
graphs.

1.4. Dimension and rank. We compute the simplectic dimension and the geometric dimension of a graph G in
terms of its adjacency matrix.

Let n ∈ N. Let A be an n×n symmetric matrix with coefficients in a field F. We denote by rankF(A) the rank of
A computed over the field F. The minrank of A, denoted by minrankF(A), is the minimum of rankF(A+D) where
D is any diagonal symmetric matrix with coefficients in F. If F = F2, we denote these quantities by rank2(A) and
minrank2(A). Let G ∶= (V,E) be a graph on n vertices. Let v1, . . . , vn be an enumeration of V . The adjacency
matrix of G is the n × n matrix A(G) ∶= (ai,j)1≤i,j≤n such that ai,j = 1 if vi ∼ vj and ai,j = 0 otherwise.

Theorem 1.21. If G is a graph on n vertices then the symplectic and the geometric dimensions of G over a field
F are respectively equal to the rank and the minrank of A(G) over F.

A n × n symmetric matrix B ∶= (bi,j)1≤i,j≤n over a field F is representable as the matrix of a symmetric bilinear
form ϕ on a vector space U over a field F if there exists n vectors u1, . . . , un in U , not necessarily distinct, such
that bi,j = ϕ(ui, uj) for all 1 ≤ i, j ≤ n.

The matrix B can be represented in U ∶= Fn, where (ui)1≤i≤n is the canonical basis and ϕ(ui, uj) = bi,j . According
to the following lemma (see Corollary 8.9.2 p. 179 of [20]), there is a representation in a vector space whose dimension
is the rank of the matrix B.

Lemma 1.22. An n × n symmetric matrix B of rank r has a principal r × r submatrix of full rank.

The following result shows that this value is optimum.

Lemma 1.23. The smallest dimension of a vector space in which a symmetric matrix B is representable is the
rank of B.

Proof. It is an immediate consequence of the following facts, whose proofs are a simple exercice in linear algebra.
1) Let r ∶= rank(B). Then r ≤ dim(U) for any vector space U in which B is representable. Indeed, let f

be a representation of B. And let B(j1), . . . ,B(jr) be r linearly independent column vectors of B with indices
j1, . . . , jr. We claim that the corresponding vectors uj1 , . . . , ujr are linearly independent in U . Suppose that a linear

combination
r

∑
k=1

λjkujk is zero. Then, for every vector u ∈ U , ϕ(
r

∑
k=1

λjkujk , u) = 0. This rewrites as
r

∑
k=1

λjkϕ(ujk , u) = 0.

In particular,
r

∑
k=1

λjkϕ(ujk , u) = 0 for every i = 1, . . . , n. That is
r

∑
k=1

λjkBjk = 0. Since these column vectors are linearly

independent, the λjk ’s are zero. This proves our claim.
2) Suppose that ϕ is nondegenerate and U is spanned by the vectors u1, . . . , un. Then r ≥ dim(U). The proof

follows the same lines as above. Let s ∶= dim(U). Then, among the uj ’s there are s linearly independent vectors, say
uj1 , . . . , ujs . We claim that the column vectors B(j1), . . . ,B(js) are linearly independent. Otherwise, some linear

combination
s

∑
k=1

λkBjk is zero. This yields
s

∑
k=1

λkϕ(ujk , ui) = 0 for every i, 1 ≤ i ≤ n, hence ϕ(
s

∑
k=1

λkujk , ui) = 0. Since

the ui’s generate U , we have ϕ(
s

∑
k=1

λkujk , u) = 0 for every u ∈ U . Since the form ϕ is nondegenerate,
s

∑
k=1

λkujk = 0.

Since the vectors uj1 , . . . , ujs are linearly independent, the λk’s are all zero. This proves our claim.
3) Suppose that B is representable in a vector space U equipped with a symmetric bilinear form ϕ. Then B is

representable in a quotient of U equipped with a nondegenerate bilinear form. �

Theorem 1.21 follows immediately from Lemma 1.23.
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Remark 1.24. Theorem 1.21 for the simplectic dimension of graphs over F2 is due to Godsil and Royle [19]. The
minrank over several fields has been intensively studied, see Fallat and Hogben [16] for a survey. These authors
consider the problem of minrank of graphs, and obtain a combinatorial description for the minimum rank of trees.
In the next section, we only state that in case of trees, the Boolean dimension, geometric dimension and the
minimum rank coincide, thus the formula given in Theorem 2.9 below for the Boolean dimension gives yet another
combinatorial description for the minimum rank of a tree.

2. Boolean dimension of trees

In this section, we show that there is a nice combinatorial interpretation for the Boolean dimension of trees.
We mention first the following result [Belkhechine et al. [7]]

Lemma 2.1. Let G ∶= (V,E) be a graph, with V ≠ ∅. Let m ∈ N and f ∶V → Fm2 be a representation of G in the
vector space Fm2 equipped with a symmetric bilinear form ϕ. Let A ⊆ V such that A ≠ ∅. Suppose that for all finite
X ⊆ A,X ≠ ∅, there exists v ∈ V ∖X such that ∣NG(v) ∩X ∣ is odd. Then {f(x) ∣ x ∈ A} is linearly independent in
the vector space Fm2 .

Proof. Let X be a non empty finite subset of A. We claim that ∑x∈X f(x) /= 0. Indeed, let v ∈ V ∖X such that
∣VG(v) ∩X ∣ is odd. We have ϕ(f(∑x∈X x), f(v)) = ∑x∈X ϕ(f(x), f(v)). This sum is equal to ∣VG(v) ∩X ∣ modulo
2. Thus ∑x∈X f(x) /= 0 as claimed. Since this holds for every finite subset X of A, the conclusion follows. �

This suggests the following definition.

Definition 2.2 (Belkhechine et al. [7]). Let G ∶= (V,E) be a graph. A set A ⊂ V is called independent (mod 2) if
for all finite X ⊆ A,X ≠ ∅, there exists v ∈ V ∖X such that ∣NG(v)∩X ∣ is odd, otherwise A is said to be dependent
(mod 2). Let ind2(G) be the maximum size of an independent set (mod 2) in G. From now, we omit (mod 2)
unless it is necessary to talk about independence in the graph theoretic sense.

Corollary 2.3. For every graph G one has ind2(G) ≤ dimgeom(G).

Problem 2.1. Does the equality holds?

Note that the independent sets (mod 2) of a graph do not form a matroid in general. Indeed, let G be made of
six vertices, three, say {a, b, c} forming a clique, the three others, say a′, b′, c′ being respectively connected to a, b
and c. Then {a′, a, b, c} is independent (mod 2), hence 4 ≤ ind2(G). Also, {a′, b′, c′} is independent (mod 2) but
cannot be extended to a larger independent set (mod 2). Since G is the Boolean sum of a three 3-vertex clique
and three edges, dimBool(G) ≤ 4. Finally, ind2(G) = dimgeom(G) = dimBool(G) = 4.

From Corollary 2.3 above, we deduce:

Theorem 2.4. The Boolean dimension of a path on n vertices (n ∈ N) is n − 1. Every other graph has dimension
at most n − 2.

Proof. Let Pn be the path on {0, . . . , n− 1}, whose edges are pairs {i, i+ 1} , with i < n− 1. Since Pn is the Boolean
sum of its edges, dimBool(Pn) ≤ n − 1. Let A ∶= {0, . . . , n − 2}. Then A is independent (mod 2). Indeed, let X be
a nonempty subset of A and x be its largest element then the vertex v ∶= x + 1 is such that ∣NPn(v) ∩X ∣ = 1. Thus
ind2(Pn) ≥ n − 1. From the inequalities n − 1 ≤ ind2(Pn) ≤ dimgeom(Pn) ≤ dimBool(Pn) ≤ n − 1, the fact that the
dimension of Pn is n − 1 follows. Now, we prove that if the Boolean dimension of a graph G on n vertices is n − 1,
then G is a path. Observe first that G is connected. Otherwise, G is the direct sum G′ ⊕G′′ of two non trivial
graphs G′ and G′′ with respectively n′ and n′′ vertices. As it is immediate to see, dimBool(G) = dimBool(G′⊕G′′) ≤
dimBool(G′) + dimBool(G′′) ≤ n′ − 1 + n′′ − 1 = n − 2. Next we observe that G cannot be a cycle. Indeed, an easy
induction shows that cycles on n vertices have dimension at most n − 2. Indeed, the cycle C3 is a clique thus has
dimension 1. For n ≥ 4, the cycle Cn on n vertices {0, . . . , n − 1} is the Boolean sum of the cycle on the n − 1 first
vertices and the 3-vertex cycle on {0, n − 2, n − 1} thus its dimension is at most n − 2 (in fact it is equal to n − 2;
this is obvious for C4 while for n ≥ 5, its dimension is at least n− 2 since it contains a path on n− 1 vertices). Next,
we check that if G has no more than four vertices, then it is a path. For the final step we argue by induction,
but we need a notation. Let G ∶= (V,E) be a graph and x ∈ V . Let G−x be the graph induced on V ∖ {x}. Let

Gx ∶= (G−x)+̇KG(x), where KG(x) ∶= KV ∖{x}

NG(x)
. Let Ġx be the graph obtained by adding to Gx the vertex x as an

isolated vertex. In simpler terms, we obtain Gx by deleting from G the vertex x and by adding, via the Boolean
sum, all edges between vertices of NG(x). For an example, if G is a path then Gx is a path on V ∖ {x}.

Claim 2.5. If V is finite then ∣dimBool(G) − dimBool(Gx)∣ ≤ 1.
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Proof of Claim 2.5 Note that Ġx+̇KV
NG(x)∪{x}

= G and G+̇KV
NG(x)∪{x}

= Ġx. Thus ∣dimBool(G) − dimBool(Ġx)∣ ≤
dimBool(KV

NG(x)∪{x}
). Since KNG(x)∪{x} is a clique, its Boolean dimension is 1; and since Ġx and Gx differ by an

isolated vertex they have the same Boolean dimension. The claimed inequality follows.
Now, let G be our graph on n vertices such that dimBool(G) = n−1. Suppose that every graph G′ on n′ vertices,

n′ < n is a path whenever dimBool(G′) = n′ − 1.

Claim 2.6. Gx is a path for every x ∈ V (G).

Indeed, since Gx has n− 1 vertices, dimBool(Gx) ≤ n− 2; since dimBool(G) = n− 1, the claim above ensures that
dimBool(Gx) = n − 2. The conclusion follows for the hypothesis on graphs with n − 1 vertices.

Claim 2.7. Let x, y ∈ V (G) with x /= y. If Gx and Gy are two paths Px and Py, then dG(x), dG(y) ≤ 2 if
{x, y} /∈ E(G) and dG(x), dG(y) ≤ 3 otherwise.

Proof of Claim 2.7 We have Gx+̇Gy = G+̇KV
NG(x)∪{x}

+̇G+̇KV
NG(y)∪{y}

= KV
NG(x)∪{x}

+̇KV
NG(y)∪{y}

. Since Gx and

Gy are two paths Px and Py, we have Px+̇Py = KV
NG(x)∪{x}

+̇KV
NG(y)∪{x}

. We have dPx+̇Py
(x) ≤ 2, hence for the

Boolean sum EG(x)+̇EG(y) of stars EG(x) and EG(y) we have dEG(x)+̇EG(y)(x) ≤ 2. The conclusion of the claim
follows.

Now let x ∈ V . Since dG(x) ≤ 3 and n ≥ 5 there is some vertex y not linked to x by an edge. Hence by the
previous observation dG(x) ≤ 2. From this follows that G is a direct sum of paths and cycles.

Since G must be connected and cannot be a cycle, G is a path. �

We thank Adrian Bondy [11] for suggesting this result several years ago. In fact, it is a consequence of previous
results about geometric dimension of graphs, obtained for general fields [9, 27].

We go from paths to trees as follows.

Definition 2.8. Let T ∶= (V,E) be a tree. A star decomposition Σ of T is a family {S1, . . . , Sk} of subtrees of T
such that each Si is isomorphic to K1,m (a star) for some m ≥ 1, the stars are mutually edge-disjoint, and each edge
of T is an edge of some Si. For a star decomposition Σ, let t(Σ) be the number of trivial stars in Σ (stars that
are isomorphic to K1,1), and let s(Σ) be the number of nontrivial stars in Σ (stars that are isomorphic to K1,m for
some m > 1). We define the parameter m(T ) ∶= minΣ{t(Σ) + 2s(Σ)} over all star decompositions Σ of T . A star
decomposition Σ of T for which t(Σ) + 2s(Σ) =m(T ) is called an optimal star decomposition of T .

The Boolean dimension of a graph counts the minimum number of cliques needed to obtain this graph as a

Boolean sum. If Σ ∶= {S1, . . . , Sk} is a star decomposition of a tree T , one has dimBool(T ) ≤
n

∑
i=1

dimBool(Si). Since

dimBool(Si) = 1 if Si is a trivial star, and dimBool(Si) = 2 otherwise (note that if Si = K1,m it is the Boolean sum

of a clique on m + 1 vertices and a clique on a subset of m vertices), one has
n

∑
i=1

dimBool(Si) = t(Σ) + 2s(Σ), hence

dimBool(T ) ≤ t(Σ) + 2s(Σ). The inequality dimBool(T ) ≤m(T ) follows.
Here is our result.

Theorem 2.9. For all trees T , we have ind2(T ) = dimBool(T ) =m(T ).

We introduce the following definition.

Definition 2.10. A cherry in a tree T is a maximal subtree S isomorphic to K1,m for some m > 1 that contains m
end vertices of T . We refer to a cherry with m edges as an m-cherry.

Proposition 2.11. Let T ∶= (V,E) be a tree that contains a cherry. If all proper subtrees T ′ of T satisfy ind2(T ′) =
m(T ′), then ind2(T ) =m(T ).

Proof. Let x ∈ V be the center of a k-cherry in T , with NT (x) = {u1, . . . , uk,w1, . . . ,w`}, where dT (ui) = 1 for all i,
and dT (wi) > 1 for all i. For each i = 1 to `, let Ti be the maximal subtree that contains wi but does not contain x.

First, we show that any optimal star decomposition of T in which x is not the center of a nontrivial star can be
transformed into an optimal star decomposition in which x is the center of a nontrivial star. Consider an optimal
star decomposition Σ in which x is not the center of a nontrivial star. Therefore, edges xui are trivial stars of Σ.
Now if k > 2 or if there is a trivial star xwi in Σ, then we could have improved t(Σ) + 2s(Σ) by replacing all trivial
stars containing x by their union, which is a star centered at x. Hence, assume that k = 2 and each wi is the center
of a nontrivial star Si, which contains the edge xwi. Now replace each Si by S′i ∶= Si − xwi, and add a new star
centered at x with edge set {xw1, . . . , xw`, xu1, xu2}. The new decomposition is also optimal.
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Now consider an optimal star decomposition Σ in which x is the center of a nontrivial star. The induced
decompositions on Ti are all optimal since Σ is optimal. For each i ∈ {1, . . . , `}, let Ai be a maximum size
independent set in Ti. Hence ∣Ai∣ = ind2(Ti) = m(Ti) for all i ≥ 1, and m(T ) = 2 +∑im(Ti) = 2 +∑i ind2(Ti). We
show that A ∶= {x,u1} ∪ (∪iAi) is a maximum size independent set in T .

Consider a non-empty set X ⊆ A. We show that there exists v ∈ V ∖ X such that ∣NT (v) ∩ X ∣ is odd. Let
Bi ∶= X ∩ V (Ti) for i ∈ {1, . . . , `}. Since Bi is nonempty for some i, and x /∈ X, we find v ∈ V (Ti) ∖Bi such that
∣NTi ∩Bi∣ is odd. Now ∣NT (v) ∩X ∣ is odd since x /∈X and v is not adjacent to u1. Moreover, ∣A∣ =m(T ). �

Proposition 2.12. Let T ∶= (V,E) be a tree that contains a vertex y of degree 2 adjacent to a vertex z of degree 1.
If ind2(T − z) =m(T − z), then ind2(T ) =m(T ).

Proof. First, we show that m(T ) =m(T −z)+1. If there is an optimal star decomposition of T −z−y in which some
vertex x is the center of a star, then m(T −z) =m(T −z−y) and m(T ) =m(T −z)+1, else m(T −z) =m(T −z−y)+1
and m(T ) =m(T − z − y) + 2.

Now we consider a maximum sized independent set A′ in T − z. We have ∣A′∣ = ind2(T − z) = m(T − z). We
define A ∶= A′ ∪ {y} if y /∈ A′; and A ∶= A′ ∪ {z} if y ∈ A′. We show that A is independent in T .

Case 1: y /∈ A′, hence y ∈ A and z /∈ A. Let B ⊆ A,B ≠ ∅.
If y ∈ B, then ∣NT (z) ∩B∣ is odd.
If y /∈ B, then B ⊆ A′, hence there exists v ∈ V (T − z) such that ∣NT−z(v) ∩B∣ is odd, and ∣NT (v) ∩B∣ is odd.

Case 2: y ∈ A′, hence z ∈ A. Let B ⊆ A,B ≠ ∅.
If z /∈ B, then B ⊆ A′. Find v ∈ V (T − z) ∖B such that ∣NT−z(v) ∩B∣ is odd. Hence ∣NT (v) ∩B∣ is odd.
Now suppose that z ∈ B. If B = {z}, then NT (y)∩B is odd. Otherwise, consider B∖{z}, which is a subset of A′.

Find v ∈ V (T − z)∖ (B ∖{z}) such that ∣NT−z(v)∩ (B ∖{z})∣ is odd. If v ≠ y, then ∣NT (v)∩B∣ is odd. If v = y then
∣NT (v) ∩B∣ is even and x ∈ B. In this case, let B′ ∶= (B ∖ {z}) ∪ {y}. This is a subset of A′. Find u ∈ V (T − z) ∖B′

such that ∣NT−z(u) ∩B′∣ is odd. Since B′ contains x and y, we conclude that u is not adjacent to any of y and z,
hence ∣NT (u) ∩B∣ is odd.

Thus we have shown that A is independent. We have ind2(T ) ≥ ∣A∣ = ∣A′∣ + 1 = m(T − z) + 1 = m(T ). Since
ind2(T ) cannot be more than m(T ), we have ind2(T ) =m(T ). �

Proof of Theorem 2.9. If a tree T has two vertices, then ind2(T ) = m(T ) = 1. Each tree with at least 3 vertices
contains a cherry or a vertex of degree 2 adjacent to a vertex of degree 1. (This is seen by considering the second-
to-last vertex of a longest path in T .) Now, induction on the number of vertices, using Propositions 2.11 and 2.12
implies the result. �

3. Inversion index of a tournament and Boolean dimension

3.1. Inversion index of a tournament. Let T be a tournament. Let V (T ) be its vertex set and A(T ) be its
arc set. An inversion of an arc a ∶= (x, y) ∈ A(T ) consists to replace the arc a by a⋆ ∶= (y, x) in A(T ). For a subset
X ⊆ V (T ), let Inv(T,X) be the tournament obtained from T after reversing all arcs (x, y) ∈ A(T ) ∩ (X ×X). For
example, Inv(T,V ) is T ∗, the dual of T . For a finite sequence (Xi)i<m of subsets of V (T ), let Inv(T, (Xi)i<m) be
the tournament obtained from T by reversing successively all the arcs in each of the subsets Xi, i <m, that is the
tournament equal to T if m = 0 and to Inv(Inv(T, (Xi)i<m−1),Xm−1) if m ≥ 1. Said differently, an arc (x, y) ∈ A(T )
is reversed if and only if the number of indices i such that {x, y} ⊆Xi is odd.The inversion index of T , denoted by
i(T ), is the least integer m such that there is a sequence (Xi)i<m of subsets of V (T ) for which Inv(T, (Xi)i<m) is
acyclic.

In the sequel, we consider tournaments for which this index is finite. In full generality, the inversion index of a
tournament T can be defined as the least cardinal κ such the Boolean sum of T and a graph of Boolean dimension
κ is acyclic. The case κ finite is stated in Lemma 3.8 below. We leave tournaments with infinite inversion index to
further studies.

The motivation for the notion of inversion index originates in the study of critical tournaments. Indeed, the
critical tournaments of Schmerl and Trotter [28] can be easily defined from acyclic tournaments by means of one
or two inversions whereas the (−1)-critical tournaments, characterized in [8], can be defined by means of two, three
or four inversions [5]. Another interest comes from the point of view of logic.

Results about the inversion index originate in the thesis of H.Belkhechine [5]. Some results have been announced
in [6]; they have been presented at several conferences by the first author, e.g., [26], and included in a circulating
manuscript [7]. The lack of answer for some basic questions is responsible for the delay of publication.
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The inversion index is a variant of the Slater index : the least number of arcs of a tournament which have to be
reversed in order to a get an acyclic tournament ([29]). The complexity of the computation of the Slater index was
raised by Bang-Jensen and Thomassen in 1992 [3]. N.Alon [1] and independently Charbit, Thomassé and Yeo [12]
showed in 2007 that the problem is NP hard. An extension of the inversion index to oriented graphs is studied in
[4].

Problem 3.1. Is the computation of the inversion index NP hard?

Question 3.2. Are there tournaments of arbitrarily large inversion index?

This last question has a positive answer. There are two reasons, the first one is counting, the second one, easier,
is based on the notion of well-quasi-ordering.

For n ∈ N, let i(n) be the maximum of the inversion index of tournaments on n vertices. We have i(n) = 0 for
n ≤ 2, i(3) = i(4) = 1, i(5) = i(6) = 2. For larger n a counting argument [5, 6, 7] yields the following result.

Theorem 3.1. n−1
2
− log2 n ≤ i(n) ≤ n − 4 for all integer n ≥ 6.

It is quite possible that i(n) ≥ ⌊n−1
2

⌋, due to the path of strong connectivity (it is not even known if the reverse
inequality holds).

The path of strong connectivity on n vertices is the tournament Tn defined on N<n ∶= {0, . . . , n − 1} whose arcs
are all pairs (i, i + 1) and (j, i) such that i + 1 < j < n.

0 1 2 3 4

Figure 1. Path of strong connectivity on 5 vertices

Question 3.3. Is the inversion index of a path of strong connectivity on n vertices equals ⌊n−1
2

⌋?

3.2. Well quasi ordering. Basic notions of the theory of relations apply to the study of the inversion index.
These notions include the quasi order of embeddability, the hereditary classes and their bounds and the notion of
well quasi order. For those, we refer to the Fräıssé’s book [17].

Let I<ωm be the class of finite tournaments T whose inversion index is at most m. This is a hereditary class in
the sense that if T ∈ I<ωm and T ′ is embeddable into T then T ′ ∈ I<ωm . It can be characterized by obstructions or
bounds. A bound is a tournament not in I<ωm such that all proper subtournaments are in I<ωm . We may note that
the inversion index of every bound of I<ωm is at least m + 1. Hence, the fact that I<ωm is distinct of the class of all
finite tournaments provides tournaments of inversion index larger than m. This fact relies on the notion of well
quasi ordering.

A poset P is well quasi ordered if every sequence of elements of P contains an increasing subsequence.

Theorem 3.2. The class of all finite tournaments is not well quasi ordered by embeddability.

Proof. Let Tn be the path of strong connectivity on {0, . . . , n − 1} as defined above. Let Cn be the tournament
obtained from Tn by reversing the arc (n − 1,0). We claim that for n ≥ 6, the Cn’s forms an antichain. Indeed,
to Cn we may associate the 3-uniform hypergraph Hn on {0, . . . , n − 1} whose the 3-element hyperedges are the
3-element cycles of Cn. An embedding from some Cn to an other Cm, m /= n, induces an embedding from Hn to
Hm. To see that such an embedding cannot exist, observe first that the vertices 0 and n− 1 belong to exactly n− 2
hyperedges, and the vertices 1 and n − 2 belong to exactly two hyperedges, the other vertices to three hyperedges,
hence an embedding h will send {0, n − 1} on {0,m − 1}. The preservation of the arc {0,1} imposes h(0) = 0 and
h(n − 1) =m − 1. Then, the preservation of the arcs (i, i + 1) yields a contradiction since n <m. �

Theorem 3.3. [6] For each m ∈ N, the class I<ωm is well quasi ordered.
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Proof. The class L<ωm made of a finite linear order L with m unary predicates U1, . . . , Um (alias m distinguished
subsets) and ordered by embeddability is well quasi ordered. This is a straightforward consequence of Higman’s
theorem on words [22] (in fact, an equivalent statement). Higman’s result asserts that the collection of words on
a finite alphabet, ordered by the subword ordering, is well quasi ordered. Since members of L<ωm can be coded by
words on an alphabet with 2m elements, the class L<ωm is well quasi ordered. The map associating to each members
of (L,U1, . . . , Um) the Boolean sum L+̇U1+̇ . . . +̇Um preserves the embeddability relation, hence the range of that
map is well quasi ordered. This range being equal to I<ωm , thus this later class is well quasi ordered. �

Corollary 3.4. There are finite tournaments with arbitrarily large inversion index.

Concerning the bounds:

Theorem 3.5. [6] The class I<ωm has only finitely many bounds.

Proof. From, the proof of Theorem 3.3, the class I<ωm,2 made of tournaments of Im,2, with two unary predicates
added, is well quasi ordered. According to Proposition 2.2 of [25] translated in this case, I<ωm has finitely many
bounds. �

Question 3.4. What is the maximum of the cardinality of bounds of I<ωm ?

Remark 3.6. It must be observed that the collection of graphs with geometric dimension at most m over a fixed
finite field has finitely many bounds and an upper bound on their cardinality is given [14]. How the cardinality of
these bounds relate to the cardinality of bounds of I<ωm is not known.

3.3. Boolean dimension and concrete examples of tournaments with large inversion index. Let C3.n be
the sum of copies of the 3-cycle C3 indexed by the n-element acyclic tournament n ∶= {0, . . . , n−1} with 0 < ⋯ < n−1.

Theorem 3.7. The inversion index of the sum C3.n of 3-cycles over an n-element acyclic tournament is n.

  x1

y1z1

x2

y2
z2

   x3

y3
z3

x4

y4
z4

Figure 2. C3.4

No elementary proof is known. The proof we present relies on the notion of Boolean sum of graphs.
According to the definition of Boolean sum, we have immediately.

Lemma 3.8. The inversion index of a tournament T is equal to the least integer k such that the Boolean sum T +̇G
of T with a graph G of Boolean dimension k is an acyclic tournament.

Proof of Theorem 3.7. Let T ∶= C3.n, V ∶= V (T ) and r ∶= inv(T ). As said, r ≤ n. Conversely, let H be a graph
with vertex set V such that L ∶= T +̇H is an acyclic tournament and dimBool(H) = r. Let U ∶= (F2)r equipped with
the ordinary scalar product ∣ and f ∶ V → U be a representation of H.

Claim 3.9. For each i ∈ {0, . . . , n− 1}, we may enumerate the vertices of {0,1,2} × {i} into xi, yi, zi in such a way
that (xi, yi), (yi, zi), (zi, xi) are arcs of T , (f(xi)∣f(zi)) = 1 and (f(xi)∣f(yi)) = 0.

Claim 3.10. The set {f(xi) ∶ i < n} is linearly independent in U .

Proof of Claim . This amounts to prove that ∑i∈I f(xi) /= 0 for every non-empty subset I of {0, . . . , n− 1}. Let I
be such a subset. Let m ∈ {0, . . . , n− 1} such that xm is the largest element of {xi ∶ i ∈ I} in the acyclic tournament
L.

Subclaim 3.11. (f(xi)∣f(zm)) = (f(xi)∣f(ym)) for each i ∈ I ∖ {m}.

Proof of Subclaim 3.11. By construction, we have xm <L zm and xm <L ym, hence by transitivity xi <L zm
and xi <L ym. If i < m in the natural order then, by definition of T , (xi, zm) ∈ A(T ) and (xi, ym) ∈ A(T ), thus
(f(xi)∣f(zm)) = 0 = (f(xi)∣f(ym)), whereas if i >m in the natural order, then (zm, xi) ∈ A(T ) and (zm, xi) ∈ A(T ),
thus (f(xi)∣f(zm)) = 1 = (f(xi)∣f(ym)), proving the subclaim.

Since (f(xm)∣f(zm)) = 1 and (f(xm)∣f(ym)) = 0, it follows that ∑i∈I(f(xi)∣f(zm)) /= ∑i∈I(f(xi)∣f(ym)). That
is ((∑i∈I f(xi))∣f(zm)) /= ((∑i∈I f(xi))∣f(ym)). Thus the sum ∑i∈I f(xi) /= 0 as claimed. ◻

We have n ≤ r. This proves the theorem. ◻
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[13] Bruno Courcelle, Christian Delhommé, The modular decomposition of countable graphs. Definition and construction in monadic
second-order logic, Theoretical Computer Science 394 (2008) 1–38.
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