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Data Augmentation in High Dimensional Low
Sample Size Setting Using a Geometry-Based

Variational Autoencoder
Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonnière, for the Alzheimer’s

Disease Neuroimaging Initiative, and the Australian Imaging Biomarkers and Lifestyle flagship study of
ageing

Abstract—In this paper, we propose a new method to perform data augmentation in a reliable way in the High Dimensional Low
Sample Size (HDLSS) setting using a geometry-based variational autoencoder. Our approach combines a proper latent space
modeling of the VAE seen as a Riemannian manifold with a new generation scheme which produces more meaningful samples
especially in the context of small data sets. The proposed method is tested through a wide experimental study where its robustness to
data sets, classifiers and training samples size is stressed. It is also validated on a medical imaging classification task on the
challenging ADNI database where a small number of 3D brain MRIs are considered and augmented using the proposed VAE
framework. In each case, the proposed method allows for a significant and reliable gain in the classification metrics. For instance,
balanced accuracy jumps from 66.3% to 74.3% for a state-of-the-art CNN classifier trained with 50 MRIs of cognitively normal (CN)
and 50 Alzheimer disease (AD) patients and from 77.7% to 86.3% when trained with 243 CN and 210 AD while improving greatly
sensitivity and specificity metrics.

F

1 INTRODUCTION

E VEN though always larger data sets are now available,
the lack of labeled data remains a tremendous issue in

many fields of application. Among others, a good example
is healthcare where practitioners have to deal most of the
time with (very) low sample sizes (think of small patient
cohorts) along with very high dimensional data (think of
neuroimaging data that are 3D volumes with millions of
voxels). Unfortunately, this leads to a very poor represen-
tation of a given population and makes classical statistical
analyses unreliable [1], [2]. Meanwhile, the remarkable per-
formance of algorithms heavily relying on the deep learning
framework [3] has made them extremely attractive and very
popular. However, such results are strongly conditioned by
the number of training samples since such models usually
need to be trained on huge data sets to prevent over-fitting

Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu).
As such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investigators
can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to apply/
ADNI Acknowledgement List.pdf
Data used in the preparation of this article was obtained from the Australian
Imaging Biomarkers and Lifestyle flagship study of ageing (AIBL) funded by
the Commonwealth Scientific and Industrial Research Organisation (CSIRO)
which was made available at the ADNI database (http://adni.loni.usc.edu).
The AIBL researchers contributed data but did not participate in analysis or
writing of this report. AIBL researchers are listed at www.aibl.csiro.au.
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or to give statistically meaningful results [4].
A way to address such issues is to perform data aug-

mentation (DA) [5]. In a nutshell, DA is the art of increasing
the size of a given data set by creating synthetic labeled
data. For instance, the easiest way to do this on images
is to apply simple transformations such as the addition
of Gaussian noise, cropping or padding, and assign the
label of the initial image to the created ones. While such
augmentation techniques have revealed very useful, they
remain strongly data dependent and limited. Some trans-
formations may indeed be uninformative or even induce
bias. For instance, think of a digit representing a 6 which
gives a 9 when rotated. While assessing the relevance of aug-
mented data may be quite straightforward for simple data
sets, it reveals very challenging for complex data and may
require the intervention of an expert assessing the degree
of relevance of the proposed transformations. In addition
to the lack of data, imbalanced data sets also severely limit
generalizability since they tend to bias the algorithm toward
the most represented classes. Oversampling is a method
that aims at balancing the number of samples per class by
up-sampling the minority classes. The Synthetic Minority
Over-sampling TEchnique (SMOTE) was first introduced
in [6] and consists in interpolating data points belonging to
the minority classes in their feature space. This approach
was further extended in other works where the authors
proposed to over-sample close to the decision boundary
using either the k-Nearest Neighbor (k-NN) algorithm [7]
or a support vector machine (SVM) [8] and so insist on sam-
ples that are potentially misclassified. Other over-sampling
methods aiming at increasing the number of samples from
the minority classes and taking into account their difficulty
to be learned were also proposed [9], [10]. However, these

http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu
www.aibl.csiro.au.
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methods hardly scale to high-dimensional data [11], [12].
The recent rise in performance of generative models

such as generative adversarial networks (GAN) [13] or
variational autoencoders (VAE) [14], [15] has made them
very attractive models to perform DA. GANs have al-
ready seen a wide use in many fields of application [16],
[17], [18], [19], [20], including medicine [21]. For instance,
GANs were used on magnetic resonance images (MRI) [22],
[23], computed tomography (CT) [24], [25], X-ray [26], [27],
[28], positron emission tomography (PET) [29], mass spec-
troscopy data [30], dermoscopy [31] or mammography [32],
[33] and demonstrated promising results. Nonetheless, most
of these studies involved either a quite large training set
(above 1000 training samples) or quite small dimensional
data, whereas in everyday medical applications it remains
very challenging to gather such large cohorts of labeled pa-
tients. As a consequence, as of today, the case of high dimen-
sional data combined with a very low sample size remains
poorly explored. When compared to GANs, VAEs have only
seen a very marginal interest to perform DA and were
mostly used for speech applications [34], [35], [36]. Some
attempts to use such generative models on medical data
either for classification [37], [38] or segmentation tasks [39],
[40], [41] can nonetheless be noted. The main limitation to
a wider use of these models is that they most of the time
produce blurry and fuzzy samples. This undesirable effect
is even more emphasized when they are trained with a small
number of samples which makes them very hard to use in
practice to perform DA in the high dimensional (very) low
sample size (HDLSS) setting.

In this paper, we argue that VAEs can actually be used
for data augmentation in a reliable way even in the context
of HDLSS data, provided that we bring some modeling of
the latent space and amend the way we generate the data.
Hence, in this paper we propose the following contributions:

• We propose to combine a proper modeling of the
latent space of the VAE, here seen as a Riemannian
manifold, and a new geometry-aware non-prior-based
generation procedure which consists in sampling
from the inverse of the Riemannian metric volume el-
ement. The choice of such a framework is discussed,
motivated and compared to some other VAE models.

• We propose to use such a framework to perform data
augmentation in the challenging context of HDLSS
data. The robustness of the augmentation method
to data sets and classifiers changes along with its
reliance to the number of training samples is then
tested through a series of experiments.

• We validate the proposed method on several real-life
classification tasks on complex 3D MRI from ADNI
and AIBL databases where the augmentation method
allows for a significant gain in classification metrics
even when only 50 samples per class are considered.

2 VARIATIONAL AUTOENCODER

In this section, we quickly recall the idea behind VAEs along
with some proposed improvements relevant to this paper.

2.1 Model Setting
Let x ∈ X be a set of data. A VAE aims at maximizing the
likelihood of a given parametric model {Pθ, θ ∈ Θ}. It is
assumed that there exist latent variables z living in a lower
dimensional space Z , referred to as the latent space, such that
the marginal distribution of the data can be written as:

pθ(x) =

∫
Z

pθ(x|z)q(z)dz , (1)

where q is a prior distribution over the latent variables
acting as a regulation factor and pθ(x|z) is most of the time
taken as a simple parametrized distribution (e.g. Gaussian,
Bernoulli, etc.). Such a distribution is referred to as the
decoder, the parameters of which are usually given by neural
networks. Since the integral of Eq. (1) is most of the time
intractable, so is the posterior distribution:

pθ(z|x) =
pθ(x|z)q(z)∫

Z
pθ(x|z)q(z)dz

.

This makes direct application of Bayesian inference impos-
sible and so recourse to approximation techniques such as
variational inference [42] is needed. Hence, a variational dis-
tribution qφ(z|x) is introduced and aims at approximating
the true posterior distribution pθ(z|x) [14]. This variational
distribution is often referred to as the encoder. In the initial
version of the VAE, qφ is taken as a multivariate Gaussian
whose parameters µφ and Σφ are again given by neural net-
works. Importance sampling can then be applied to derive
an unbiased estimate of the marginal distribution pθ(x) we
want to maximize in Eq. (1)

p̂θ(x) =
pθ(x|z)q(z)
qφ(z|x)

and Ez∼qφ
[
p̂θ
]

= pθ(x) .

Using Jensen’s inequality allows finding a lower bound on
the objective function of Eq. (1)

log pθ(x) = logEz∼qφ
[
p̂θ
]

≥ Ez∼qφ
[

log p̂θ
]

≥ Ez∼qφ
[

log pθ(x, z)− log qφ(z|x)
]

= ELBO .
(2)

The Evidence Lower BOund (ELBO) is now tractable since
both pθ(x, z) and qφ(z|x) are known and so can be opti-
mized with respect to the encoder and decoder parameters.

2.2 Improving the Model: Literature Review
In recent years, many attempts to improve the VAE model
have been made and we briefly discuss three main areas of
improvement that are relevant to this paper in this section.

2.2.1 Enhancing the Variational Approximate Distribution
When looking at Eq. (2), it can be noticed that we are
nonetheless trying to optimize only a lower bound on the
true objective function. Therefore, much efforts have been
focused on making this lower bound tighter and tighter [43],
[44], [45], [46], [47], [48]. One way to do this is to enhance
the expressiveness of the approximate posterior distribution
qφ. This is indeed due to the ELBO expression which can be
also written as follows:

ELBO = log pθ(x)−KL(qφ(z|x)||pθ(z|x)) .
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This expression makes two terms appear. The first one
is the function we want to maximize while the second
one is the Kullback–Leibler (KL) divergence between the
approximate posterior distribution qφ(z|x) and the true
posterior pθ(z|x). This very term is always non-negative and
equals 0 if and only if qφ = pθ almost everywhere. Hence,
trying to tweak the approximate posterior distribution so
that it becomes closer to the true posterior should make
the ELBO tighter and enhance the model. To do so, a
method proposed in [49] consisted in adding K Markov
chain Monte Carlo (MCMC) sampling steps on the top of
the approximate posterior distribution and targeting the
true posterior. More precisely, the idea was to start from
z0 ∼ qφ(z|x) and use parametrized forward (resp. reverse)
kernels r(zk+1|zk, x) (resp. r(zk|zk+1, x)) to create a new
estimate of the true marginal distribution pθ(x). With the
same objective, parametrized invertible mappings fx called
normalizing flows were instead proposed in [50] to sample z.
A starting random variable z0 is drawn from an initial dis-
tribution qφ(z|x) and then K normalizing flows are applied
to z0 resulting in a random variable zK = fKx ◦ · · · ◦ f1

x(z0)
whose density writes:

qφ(zK |x) = qφ(z0|x)
K∏
k=1

|detJfkx |
−1 ,

where Jfkx is the Jacobian of the kth normalizing flow.
Ideally, we would like to have access to normalizing flows
targeting the true posterior and allowing enriching the
above distribution and so improve the lower bound. In
that particular respect, a model inspired by the Hamiltonian
Monte Carlo sampler [51] and relying on Hamiltonian dy-
namics was proposed in [49] and [52]. The strength of such
a model relies in the choice of the normalizing flows which
are guided by the gradient of the true posterior distribution.

2.2.2 Improving the Prior Distribution

While enhancing the approximate posterior distribution
resulted in major improvements of the model, it was also
argued that the prior distribution over the latent variables
plays a crucial role as well [53]. Since the vanilla VAE
uses a standard Gaussian distribution as prior, a natural
improvement consisted in using a mixture of Gaussians
instead [54], [55] which was further enhanced with the
proposal of the variational mixture of posterior (VAMP) [56].
In addition, other models trying to change the prior distri-
bution and relying on hierarchical latent variables have been
proposed [43], [57], [58]. Prior learning is also a promising
idea that has emerged (e.g. [59]) or more recently [60],
[61], [62] and allows accessing complex prior distributions.
Another approach relying on accept/reject sampling to im-
prove the expressiveness of the prior distribution [63] can
also be cited. While these proposals indeed improved the
VAE model, the choice of the prior distribution remains
tricky and strongly conditioned by the training data and
the tractability of the ELBO.

2.2.3 Adding Geometrical Consideration to the Model

In the mean time, several papers have been arguing that
geometrical aspects should also be taken into account. For

instance, on the ground that the vanilla VAE fails to appre-
hend data having a latent space with a specific geometry,
several latent space modelings were proposed as a hyper-
shere [64] where Von-Mises distributions are considered
instead of Gaussians or as a Poincare disk [65], [66]. Other
works trying to introduce Riemannian geometry within the
VAE framework proposed to model either the input data
space [67], [68] or the latent space (or both) [69], [70], [71],
[72] as Riemannian manifolds. The authors of [73] went
further and bridged the gap with Sec. 2.2.1 by combining
MCMC sampling and Riemannian metric learning within
the model. They indeed proposed to see the latent space as
a Riemannian manifold and instead learn a parametrized
Riemannian metric over this space. This idea of Rieman-
nian metric learning is attractive since it allows modeling
the latent space as desired and was recently re-used and
combined with prior learning [74].

3 THE PROPOSED METHOD

In this section, we present the proposed method which
consists in combining a proper latent space modeling with
a new non-prior based generation scheme. We argue that
while the vast majority of works dealing with VAE generate
new data using the prior distribution, which is standard
procedure, this is often sub-optimal, in particular in the
context of small data sets. We indeed believe that the choice
of the prior distribution is strongly data set dependent
and is also constrained to be simple so that the ELBO in
Eq. (2) remains tractable. Hence, the view adopted here is to
consider the VAE only as a dimensionality reduction tool
which is able to extract the latent structure of the data,
i.e. the latent space modeled as the Riemannian manifold
(Rd, g) where d is the dimension of the manifold and g is the
associated Riemannian metric. Since the latent structure is a-
priori far from being trivial, we propose in this paper to rely
on the setting first introduced in [73] where the Riemannian
metric is directly learned from the data. Before going further
we first recall some elements on Riemannian geometry.

3.1 Some Elements on Riemannian Geometry
In the framework of differential geometry, one may define
a Riemannian manifoldM as a smooth manifold endowed
with a Riemannian metric g that is a smooth inner prod-
uct g : p → 〈·|·〉p on the tangent space TpM defined
at each point of the manifold p ∈ M. We call a chart
(or coordinate chart) (U,ϕ) a homeomorphism mapping
an open set U of the manifold to an open set V of an
Euclidean space. The manifold is called a d−dimension
manifold if for each chart of an atlas we further have
V ⊂ Rd. That is there exists a neighborhood U of each
point p of the manifold such that U is homeomorphic to
Rd. Given p ∈ U , the chart ϕ : (x1, . . . , xd) induces a
basis

(
∂
∂x1 , . . . ,

∂
∂xd

)
p

on the tangent space TpM. Hence, a

local representation of the metric of a Riemannian manifold
in the chart (U,ϕ) can be written as a positive definite
matrix G(p) = (gi,j)p,0≤i,j≤d = (〈 ∂∂xi | ∂∂xj 〉p)0≤i,j≤d at each
point p ∈ U . That is for v, w ∈ TpM and p ∈ U , we
have 〈u|w〉p = u>G(p)w. Since we propose to work in
the ambient-like manifold (Rd, g), there exists a global chart



4

decoder

encoder
metric network

Fig. 1. Geometry-aware VAE framework. Neural networks are high-
lighted with the colored arrows and HRiemannian are the normalizing
flows using Riemannian Hamiltonian equations. πθ represents the pa-
rameters of the decoder (e.g. Gaussian, Bernoulli, etc.).

given by ϕ = id. Hence, for the following, we assume that
we work in this coordinate system and so G will refer to the
metric’s matrix representation in this chart.

There are two ways to apprehend manifolds. The ex-
trinsic view assumes that the manifold is embedded within
a higher dimensional Euclidean space (think of the 2-
dimensional sphere S2 embedded within R3). The intrin-
sic view, which is adopted in this paper, does not make
such an assumption since the manifold is studied using its
underlying structure. For example, a curve’s length cannot
be interpreted using the distance defined on an Euclidean
space but requires the use of the metric defined onto the
manifold itself. The length of a curve γ between two points
of the manifold z1, z2 ∈ M and parametrized by t ∈ [0, 1]
such that γ(0) = z1 and γ(1) = z2 is then given by

L(γ) =

1∫
0

‖γ̇(t)‖γ(t)dt =

1∫
0

√
〈γ̇(t)|γ̇(t)〉γ(t)dt .

Curves minimizing such a length are called geodesics and a
distance dist between elements of a (connected) manifold
can be introduced as follows:

dist(z1, z2) = inf
γ
L(γ) s.t. γ(0) = z1, γ(1) = z2 (3)

The manifold M is said to be geodesically complete if all
geodesic curves can be extended to R. In other words, at
each point p of the manifold one may draw a straight line
(with respect to the formerly defined distance) indefinitely
and in any direction.

3.2 Setting
Since the latent space is here seen as the Riemannian
manifold (Rd, g), it is in particular characterised by the
Riemannian metric g whose choice is very important. While
several attempts have been made to try to put a Riemannian
structure over the latent space of VAEs [70], [71], [72], [75],
[76], [77], the proposed metrics involved the Jacobian of the
generator function which is hard to use in practice and
is constrained by the generator network architecture. As
a consequence, we instead decide to rely on the idea of
Riemannian metric learning [78].

3.2.1 The Metric
As discussed before, the Riemannian metric plays a crucial
role in the modeling of the latent space. In this paper, we
decide to use a parametric metric inspired from [79] having
the following matrix representation:

G−1(z) =
N∑
i=1

LψiL
>
ψi exp

(
− ‖z − ci‖

2
2

T 2

)
+ λId , (4)

where N is the number of observations, Lψi are lower tri-
angular matrices with positive diagonal coefficients learned
from the data and parametrized with neural networks, ci
are referred to as the centroids and correspond to the mean
µφ(xi) of the encoded distributions of the latent variables
zi (zi ∼ qφ(zi|xi) = N (µφ(xi),Σφ(xi)), T is a temperature
scaling the metric close to the centroids and λ is a regular-
ization factor that also scales the metric tensor far from the
latent codes. The shape of this metric is very powerful since
we have access to a closed-form expression of the inverse
metric tensor which is usually useful to compute shortest
paths (through the exponential map). Moreover, this metric
is very smooth, differentiable everywhere and allows scal-
ing the Riemannian volume element

√
detG(z) far from

the data very easily through the regularization factor λ. A
similar metric was proposed in [69] but was used in the
input data space X and is not learned from the data. To be
able to refer to geodesics on the entire learned manifold we
need the following proposition (proved in Appendix A. in
the supplementary materials).
Proposition 1. The Riemannian manifold (Rd, g) is geodesi-

cally complete.

3.2.2 The Model
The metric is learned in the same way as proposed in [73]
since we rely on Riemannian Hamiltonian dynamics [80],
[81]. The main idea is to encode the input data points
xi and so get the means µφ(xi) of the posterior distribu-
tions associated with the encoded latent variables z0

i ∼
N (µφ(xi),Σφ(xi)). These means are then used to update the
metric centroids ci. In the mean time, the input data points
xi are fed to another neural network which outputs the
matrices Lψi used to update the metric. The updated metric
is then used to sample zKi from the z0

i the same way it is done
with normalizing flows [50] but Riemannian Hamiltonian
equations are employed instead. The zKi are then fed to
the decoder network which outputs the parameters of the
conditional distribution pθ(x|z). The reparametrization trick
is used to sample z0

i as is common and since the Riemannian
Hamiltonian equations are deterministic, back-propagation
can be performed to update all the parameters. A scheme
of the geometry-aware VAE model framework can be found
in Fig. 1. In the following, we will refer to the proposed
model either as geometry-aware VAE or RHVAE for short.
An implementation using PyTorch [82] is available in the
supplementary materials.

3.2.3 Sampling from the Latent Space
In this paper, we propose to amend the standard sampling
procedure of classic VAEs to better exploit the Riemannian
structure of the latent space. The geometry-aware VAE is here
seen as a tool able to capture the intrinsic latent structure
of the data and so we propose to exploit this property
directly within the generation procedure. This differs greatly
from the standard fully probabilistic view where the prior
distribution is used to generate new data. We believe that
such an approach remains far from being optimal when one
considers small data sets since, depending on its choice,
the prior may either poorly prospect the latent space or
sample in locations without any usable information. This
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is discussed and illustrated in Sec. 3.2.4 and Sec. 3.3. We
instead propose to sample from the following distribution:

p(z) =
ρS(z)

√
detG−1(z)∫

R
ρS(z)

√
detG−1(z)dz

, (5)

where S is a compact set1 so that the integral is well
defined. Fortunately, since we use a parametrized metric
given by Eq. (4) and whose inverse has a closed form,
it is pretty straightforward to evaluate the numerator of
Eq. (5). Then, classic MCMC sampling methods can be
employed to sample from p on Rd. In this paper, we propose
to use the Hamiltonian Monte Carlo (HMC) sampler [83]
since the gradient of the log-density is computable. Given
a target density ptarget we want to sample from, the idea
behind the HMC sampler is to introduce a random variable
v ∼ N (0, Id) independent from z and rely on Hamiltonian
dynamics. Analogous to physical systems, z may be seen as
the position and v as the velocity of a particle whose potential
energy U(z) and kinetic energy K(v) are given by

U(z) = − log ptarget(z), K(v) =
1

2
v>v .

These two energies give together the Hamiltonian [84], [85]

H(z, v) = U(z) +K(v) .

The evolution in time of such a particle is governed by
Hamilton’s equations as follows

∂zi
∂t

=
∂H

∂vi
,

∂vi
∂t

= −∂H
∂zi

.

Such equations can be integrated using a discretization
scheme known as the Stormer-Verlet or leapfrog integrator
which is run l times

v(t+ ε/2) = v(t)− ε

2
· ∇zU(z(t)) ,

z(t+ ε) = z(t) + ε · v(t+ ε/2) ,

v(t+ ε) = v(t+ ε/2)− ε

2
∇zU(z(t+ ε)) ,

(6)

where ε is the integrator step size. The HMC sampler
produces a Markov chain (zn) with the aforementioned
integrator. More precisely, given zn0 , the current state of
the chain, an initial velocity is sampled v0 ∼ N (0, Id) and
then Eq. (6) are run l times to move from (zn0 , v0) to
(znl , vl). The proposal znl is then accepted with probability
α = min

(
1,

exp(−H(znl ,vl))
exp(−H(zn0 ,v0))

)
. It was shown that the chain

(zn) is time-reversible and converges to its stationary distri-
bution ptarget [51], [84], [86].

In our method ptarget is given by Eq. (4) and Eq. (5).
Fortunately, since the HMC sampler allows sampling from
densities known up to a normalizing constant (thanks to the
acceptance ratio), the computation of the denominator of
ptarget is not needed and the Hamiltonian follows

H(z, v) = U(z) +K(v) ∝ −1

2
log detG−1(z) +

1

2
v>v

and is easy to compute. Hence, the only difficulty left is the
computation of the gradient ∇zU(z) needed in the leapfrog
integrator which is actually pretty straightforward using the

1. Take for instance {z ∈ Z, ‖z‖ ≤ 2 ·maxi‖ci‖}
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Fig. 2. Geodesic interpolations under the learned metric in two different
latent spaces. Top: Latent spaces with the log metric volume element
presented in gray scale. Second row: The resulting interpolations under
the Euclidean metric or the Riemannian metric. Third row: The learned
manifolds and corresponding decoded samples. Bottom: Decoded sam-
ples all along the interpolation curves.

chain rule. In this paper, a typical choice for ε and l, the
sampler’s parameters, is ε ∈ [0.01, 0.05] and l ∈ [10, 15]. We
would also like to mention the recent work of [77] where the
authors used the distribution q(z) ∝ (1 +

√
detG(z))−1 to

sample from a Wasserstein GAN [87]. Nonetheless, both the
framework and the metric remain quite different.

3.2.4 Discussion on the Sampling Distribution
One may wonder what is the rationale behind the use of
the distribution p formerly defined in Eq. (5). By design, the
metric is such that the metric volume element

√
detG(z)

is scaled by the factor λ far from the encoded data points.
Hence, choosing a relatively small λ imposes that shortest
paths travel through the most populated area of the latent
space, i.e. next to the latent codes. As such, the metric
volume element can be seen as a way to quantify the amount
of information contained at a specific location of the latent
space. The smaller the volume element the more informa-
tion we have access to. Fig. 2 illustrates well these aspects.
On the first row are presented two learned latent spaces
along with the log of the metric volume element displayed
in gray scale for two different data sets. The first one is
composed of 180 binary circles and rings of different diam-
eters and thicknesses while the second one is composed of
160 samples extracted from the FashionMNIST data set [88].
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Fig. 3. VAE sampling comparison. Top: The learned latent space along with the means µφ(xi) of the latent code distributions (colored dots and
crosses) and 100 latent space samples (blue dots) using either the prior distribution or the proposed scheme. For the geometry-aware VAEs, the
log metric volume element is presented in gray scale in the background. Bottom: The 100 corresponding decoded samples in the data space.

The means µφ(xi) of the distributions associated with the
latent variables are presented with the crosses and dots
for each class. As expected, the metric volume element is
smaller close to the latent variables since small λ’s were
considered (10−3 resp. 10−1). A common way to study the
learned Riemannian manifold consists in finding geodesic
curves, i.e. the shortest paths with respect to the learned
Riemannian metric. Hence, on the second row of Fig. 2, we
compare two types of interpolation in each latent space. For
each experiment, we pick two points in the latent space and
perform either a linear or a geodesic interpolation (i.e. using
the Riemannian metric). The bottom row illustrates the
decoded samples all along each interpolation curve while
the third one displays the decoded samples according to the
latent space location of the corresponding codes. The first
outcome of such an experiment is that, as expected, geodesic
curves travel next to the codes and so do not explore areas
of the latent space with no information whereas linear in-
terpolations do. Therefore, decoding along geodesic curves
produces far better and more meaningful interpolations in
the input data space since in both cases we clearly see
the starting sample being progressively distorted until the
path reaches the ending point. This allows for instance
interpolating between two shoes and keep the intrinsic
topology of the data all along the path since each decoded
sample on the interpolation curve looks like a shoe. This is
made impossible under the Euclidean metric where shortest
paths are straight lines and so may travel through areas of
least interest. For instance, the affine interpolation travels
through areas with no latent data and so produces decoded
samples that are mainly a superposition of samples (see
the red lines and corresponding decoded samples framed
in red) or crosses areas with codes belonging to the other
class (see the blue line and the corresponding blue frames).
This point is even more supported by the plots in the third
row of Fig. 2 where we clearly see that locations with the

highest metric volume element are often less relevant. This
study demonstrates that most of the information in the
latent space is contained next to the codes and so, if we
want to generate new samples that look-like the input data,
we need to sample next to them and that is why we elected
the distribution of Eq. (5).

3.3 Generation Comparison

In this section, we propose to compare the new generation
procedure with other prior-based methods in the context of
low sample size data sets.

3.3.1 Qualitative Comparison

First, we validate the proposed generation method on a
hand-made synthetic data set composed of 180 binary cir-
cles and rings of different diameters and thicknesses (see
Appendix C). We then train 1) a vanilla VAE, 2) a VAE
with VAMP prior [56], 3) a geometry-aware VAE but using
the prior to generate and 4) a geometry-aware VAE with the
proposed generation scheme, and compare the generated
samples. Each model is trained until the ELBO does not
improve for 20 epochs and any relevant parameter setting
is made available in Appendix B. In Fig. 3, we compare the
sampling obtained with the vanilla VAE (left column), the
VAE with VAMP prior (2nd column), the geometry-aware VAE
using a standard normal distribution as prior (3rd column)
and the geometry-aware VAE using the proposed sampling
method (i.e. sampling from the inverse of the metric volume
element). The first row presents the learned latent spaces
along with the means of the encoded training data points
for each class (crosses and dots) and 100 samples issued by
the generation methods (blue dots). For the RHVAE models,
the log metric volume element

√
detG is also displayed in

gray scale in the background. The bottom row shows the
resulting 100 decoded samples in the data space.
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TABLE 1
GAN-train (the higher the better) and GAN-test (the closer to the baseline the better) scores. A benchmark DenseNet model is trained with five

independent runs on the generated data Sg (resp. the real train set Strain) and tested on the real test set Stest (resp. Sg) to compute the
GAN-train (resp. GAN-test) score. 1000 synthetic samples per class are considered for Sg so that it matches the size of Stest.

reduced MNIST reduced MNIST reduced EMNIST(balanced) (unbalanced)
Metric GAN-train GAN-test GAN-train GAN-test GAN-train GAN-test
Baseline 90.6± 1.2 - 82.8± 0.7 - 84.5± 1.3 -
VAE - N (0, Id) 83.4± 2.4 67.1± 4.9 74.7± 3.2 52.8± 10.6 75.3± 1.4 54.5± 6.5
VAMP 84.1± 3.0 74.9± 4.3 28.5± 8.9 61.4± 7.0 43.2± 4.4 58.1± 7.7
RHVAE - N (0, Id) 82.0± 2.9 63.1± 4.1 69.3± 1.8 46.9± 8.4 73.6± 4.1 55.6± 5.0
Ours 90.1± 1.4 88.1± 2.7 86.2± 1.8 83.8± 4.0 82.6± 1.3 76.0± 4.0

The first outcome of this experiment is that sampling
from the prior distribution leads to a quite poor latent
space prospecting. This drawback is very well illustrated
when a standard Gaussian distribution is used to sample
from the latent space (see 1st and 3rd column of the 1st

row). The prior distribution having a higher mass close
to zero will insist on latent samples close to the origin.
Unfortunately, in such a case, latent codes close to the origin
only belong to a single class (rings). Therefore, even though
the number of training samples was roughly the same for
circles and rings, we end up with a model over-generating
samples belonging to a certain class (rings) and even to a
specific type of data within this very class. This undesirable
effect seems even ten-folded when considering the geometry-
based VAE model since adding MCMC steps in the training
process, as explained in Fig. 1, tends to stretch the latent
space. It can be nonetheless noted that using a multi-modal
prior such as the VAMP prior mitigates this and allows
for a better prospecting. However, such a model remains
hard to fit when trained with small data sets [56]. Another
limitation of prior-based generation methods relies in their
inability to assess a given sample quality. They may indeed
sample in areas of the latent space containing very little
information and so conduct to generated samples that are
meaningless. This appears even more striking when small
data sets are considered. An interesting observation that
was noted among others in [75] is that neural networks tend
to interpolate very poorly in unseen locations (i.e. far from
the training data points). When looking at the decoded latent
samples (bottom row of Fig. 3) we eventually end up with
the same conclusion. Actually, it appears that the networks
interpolate quite linearly between the training data points
in our case. This may be illustrated for instance by the red
dots in the latent spaces in Fig. 3 whose corresponding
decoded sample is framed in red. The sample is located
between two classes and when decoded it produces an
image mainly corresponding to a superposition of samples
belonging to different classes. This aspect is also supported
by the observations made when discussing the relevance
of geodesic interpolations on Fig. 2 of Sec. 3.2.4. Therefore,
these drawbacks may conduct to a (very) poor representa-
tion of the actual data set diversity while presenting quite
a few irrelevant samples. Obviously the notion of irrelevance
is here disputable but if the objective is to represent a given
set of data we expect the generated samples to be close to
the training data while having some specificities to enrich it.
Impressively, sampling against the inverse of the metric vol-

ume element as proposed in Sec. 3.2.3 allows for a far more
meaningful sample generation. Furthermore, the new sam-
pling scheme avoids regions with no latent code, which thus
contain poor information, and focuses on areas of interest
so that almost every decoded sample is visually satisfying.
Similar effects are observed on reduced EMNIST [89], reduced
MNIST [90] and reduced FashionMNIST data sets and higher
dimensional latent spaces (dimension 10) where samples are
most of the time degraded when the classic generation is
employed while the new one allows the generation of more
diverse and sharper samples (see Appendix C). Finally, the
proposed method does not overfit the training data since
the samples are not always located on the centroids, and the
quantitative metrics of the following section also support
this point.

3.3.2 Quantitative Comparison
In order to compare quantitatively the diversity and rel-
evance of the samples generated by a generative model,
several measures have been proposed [91], [92], [93], [94].
Since those metrics suffer from some drawbacks [95], [96],
we decide to use the GAN-train / GAN-test measure dis-
cussed in [95] as it appears to us well suited to measure the
ability of a generative model to perform data augmentation.
These two metrics consist in comparing the accuracy of a
benchmark classifier trained on a set of generated data Sg
and tested on a set of real images Stest (GAN-train) or trained
on the original train set Strain (real images used to train
the generative model) and tested on Sg (GAN-test). Those
accuracies are then compared to the baseline accuracy given
by the same classifier trained on Strain and tested on Stest.
These two metrics are quite interesting for our application
since the first one (GAN-train) measures the quality and
diversity of the generated samples (the higher the better)
while the second one (GAN-test) accounts for the generative
model’s tendency to overfit (a score significantly higher
than the baseline accuracy means overfitting). Ideally, the
closer to the baseline the GAN-test score is the better. To
stick to our low sample size setting, we compute these
scores on three data sets created by down-sampling well-
known databases. The first data set is created by extracting
500 samples from 10 classes of MNIST ensuring balanced
classes. For the second one, 500 samples of the MNIST
database are again considered but a random split is applied
such that some classes are under-represented. The last one
consists in selecting 500 samples from 10 classes of the
EMNIST data set having both lowercase and uppercase
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letters. These three data sets are then divided into a baseline
train set Strain (80%) and a validation set Sval (20%) used for
the classifier training. Since the initial databases are huge,
we use the original test set for Stest so that it provides
statistically meaningful results. The same generative models
as in Sec. 3.3.1 are then trained on each class of Strain

to generate 1000 samples per class and Sg is created for
each VAE by gathering all generated samples. A benchmark
classifier chosen as a DenseNet [97] is then 1) trained on
Strain and tested on Stest (baseline); 2) trained on Sg and
tested on Stest (GAN-train) and 3) trained on Strain and
tested on Sg (GAN-test) until the loss does not improve
for 50 epochs on Sval. For each experiment, the model is
trained five times and we report the mean score and the
associated standard deviation in Table 1. As expected, the
proposed method allows producing samples that are far
more meaningful and relevant, in particular to perform DA.
This is first illustrated by the GAN-train scores that are
either very close to the accuracy obtained with the baseline
or higher (see MNIST (unbalanced) in Table 1). The fact
that we are able to enhance the classifier’s accuracy even
when trained only with synthetic data is very encouraging.
Firstly, it proves that the created samples are close to the
real ones and so that we were able to capture the true
distribution of the data. Secondly, it shows that we do not
overfit the initial training data since we are able to add some
relevant information through the synthetic samples. This
last observation is also supported by the GAN-test scores for
the proposed method which are quite close to the accuracies
achieved on the baseline. In case of overfitting, the GAN-test
score is expected to be significantly higher than the baseline
since the classifier is tested on the generated samples while
trained on the real data that were also used to train the
generative model. Having a score close to the baseline
illustrates that the generative model is able to capture the
distribution of the data and does not only memorize it [95].

4 DATA AUGMENTATION: EVALUATION AND RO-
BUSTNESS

In this section we show the relevance of the proposed
improvements to perform data augmentation in a HDLSS
setting through a series of experiments.

4.1 Setting
The setting we employ for data augmentation consists in
selecting a data set and splitting it into a train set (the
baseline), a validation set and a test set. The baseline is then
augmented using the proposed VAE framework and gener-
ation procedure. The generated samples are finally added to
the original train set (i.e. the baseline) and fed to a classifier.
The whole data augmentation procedure is illustrated in
Fig. 4 for a convolutional neural network (CNN) model as
classifier.

4.2 Toy Data Sets
The proposed VAE framework is here used to perform DA
on several down-sampled well-known databases such that
only tens of real training samples per class are considered
so that we stick to the low sample size setting. First, the

In
pu

t
da

ta

VAE
modelTrain

Test

CNN model
(training)

Synthetic
data

Validation

CNN model
(trained)

Fig. 4. Overview of the data augmentation procedure. The input data
set is divided into a train set (the baseline), a validation set and a test
set. The train set is augmented using the VAE framework and generated
data are then added to the baseline to train a benchmark classifier.

robustness of the method across these data sets is tested
with a standard benchmark classifier. Then, the method’s re-
liability across other common classifiers is stressed. Finally,
its scalability to larger data sets is discussed.

4.2.1 Materials
The first data set is created by selecting 500 samples from the
ten classes of the MNIST data set ensuring balanced classes.
We will refer to it as reduced MNIST. The second one consists
in selecting again 500 samples from the MNIST database but
applying a random split such that some classes are over-
represented. We call it the reduced unbalanced MNIST data
set. Then, we create another one using the FashionMNIST
data set and three classes we find hard to distinguish (i.e.
T-shirt, dress and shirt). The data set is composed of 300
samples ensuring balanced classes and is referred to as
reduced Fashion. Finally, we also select 500 samples from
ten classes of the EMNIST. These classes are selected such
that they are composed of both lowercase and uppercase
characters so that we end up with a small database with
strong variability within classes. The balance matches the
one in the initial data set (by merge). In summary, we built
four data sets having different class numbers, class splits
and sample sizes. These data sets are then divided such that
80% is allocated for training (referred to as the Baseline) and
20% for validation. Since the original data sets are huge, we
decide to use the test set provided in the original databases
(e.g. ≈1000 samples per class for MNIST and Fashion) such
that it provides statistically meaningful results while allow-
ing for a reliable assessment of the model’s generalization
power on unseen data.

4.2.2 Robustness Across Data Sets
The first experiment we conduct consists in assessing the
method’s robustness across the four aforementioned data
sets. For this study, we propose to consider a DenseNet [97]
model2 as benchmark classifier. On the one hand, the train-
ing data (the baseline) is augmented by a factor 5, 10 and
15 using classic data augmentation methods (random noise,
random crop, rotation, etc.) so that the proposed method
can be compared with classic and simple augmentation
techniques. On the other hand, the protocol described in
Fig. 4 is employed with a vanilla VAE and a geometry-aware
VAE. The generative models are trained individually on
each class of the baseline until the ELBO does not improve
for 20 epochs. The VAEs are then used to produce 200, 500,

2. We used the PyTorch implementation provided in [98]
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TABLE 2
Data augmentation with a DenseNet model as benchmark. Mean
accuracy and standard deviation across five independent runs are

reported. The first three rows (Aug.) correspond to basic
transformations (noise, crop, etc.). In gray are the cells where the

accuracy is higher on synthetic data than on the baseline (i.e. the raw
data). The test set is the one proposed in the entire original data set

(e.g. ≈1000 samples per class for MNIST) so that it provides
statistically meaningful results and allows for a good assessment of the

model’s generalization power.

MNIST MNIST EMNIST FASHION(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Baseline + Synthetic

Aug. (X5) 92.8± 0.4 86.5± 0.9 85.6± 1.3 77.5± 2.0
Aug. (X10) 88.2± 2.2 82.0± 2.4 85.7± 0.3 79.2± 0.6
Aug. (X15) 92.8± 0.7 85.8± 3.4 86.6± 0.8 80.0± 0.5
VAE-200∗ 88.5± 0.9 84.0± 2.0 81.7± 3.0 78.6± 0.4
VAE-500∗ 90.4± 1.3 87.3± 1.2 83.4± 1.6 78.7± 0.3
VAE-1k∗ 91.2± 1.0 86.0± 2.5 84.3± 1.6 77.6± 2.1
VAE-2k∗ 92.2± 1.6 88.0± 2.2 86.0± 0.2 79.3± 1.1

RHVAE-200∗ 89.9± 0.5 82.3± 0.9 83.0± 1.3 77.6± 1.3
RHVAE-500∗ 90.9± 1.1 84.0± 3.2 84.4± 1.2 78.0± 1.3
RHVAE-1k∗ 91.7± 0.8 84.7± 1.8 84.7± 2.4 79.3± 1.6
RHVAE-2k∗ 92.7± 1.4 86.8± 1.0 84.9± 2.1 79.0± 1.4

Ours-200 91.0± 1.0 84.1± 2.0 85.1± 1.1 77.0± 0.8
Ours-500 92.3± 1.1 87.7± 0.9 85.1± 1.1 78.5± 0.9
Ours-1k 93.2± 0.8 89.7± 0.8 87.0± 1.0 80.2± 0.8
Ours-2k 94.3± 0.8 89.1± 1.9 87.6± 0.8 78.1± 1.8

Synthetic Only
VAE-200∗ 69.9± 1.5 64.6± 1.8 65.7± 2.6 73.9± 3.0
VAE-500∗ 72.3± 4.2 69.4± 4.1 67.3± 2.4 71.4± 8.5
VAE-1k∗ 83.4± 2.4 74.7± 3.2 75.3± 1.4 71.4± 6.1
VAE-2k∗ 86.5± 2.2 79.6± 3.8 78.8± 3.0 76.7± 1.6

RHVAE-200∗ 76.0± 1.8 61.5± 2.9 59.8± 2.6 72.8± 3.6
RHVAE-500∗ 80.0± 2.2 66.8± 3.3 66.9± 4.0 74.3± 2.6
RHVAE-1k∗ 82.0± 2.9 69.3± 1.8 73.6± 4.1 76.0± 4.1
RHVAE-2k∗ 85.2± 3.9 77.3± 3.2 68.6± 2.3 74.3± 3.1

Ours-200 87.2± 1.1 79.5± 1.6 77.0± 1.6 77.0± 0.8
Ours-500 89.1± 1.3 80.4± 2.1 80.2± 2.0 78.5± 0.8
Ours-1k 90.1± 1.4 86.2± 1.8 82.6± 1.3 79.3± 0.6
Ours-2k 92.6± 1.1 87.5± 1.3 86.0± 1.0 78.3± 0.9

* Using a standard normal prior to generate

1000 and 2000 new synthetic samples per class using either
the classic generation scheme (i.e. sampling with the prior
N (0, Id)) or the proposed generation procedure referred to
as ours. Finally, the benchmark DenseNet model is trained
with five independent runs on either 1) the baseline, 2) the
augmented data using classic augmentation methods, 3) the
augmented data using the VAEs or 4) only the synthetic data
created by the generative models. For each experiment, the
mean accuracy and the associated standard deviation across
those five runs is reported in Table 2. An early stopping
strategy is employed and CNN training is stopped if the
loss does not improve on the validation set for 50 epochs.

The first outcome of such a study is that, as expected,
generating synthetic samples with the proposed method
seems to enhance their relevance when compared with other
models, in particular for data augmentation tasks. This is
for instance illustrated by the second section of Table. 2
where synthetic samples are added to the baseline. While
adding samples generated either by the VAE or RHVAE and
using the prior distribution seems to improve the classifier
accuracy when compared with the baseline, the gain remains
limited since it struggles to exceed the gain reached with
classic augmentation methods. For instance, neither the VAE
nor the RHVAE allows the classifier to achieve a better score
on reduced MNIST or reduced EMNIST data sets. On the
contrary, the proposed generation method is able to pro-

duce very useful samples for the CNN model. Adding the
generated data to the baseline indeed allows for a great gain
in the model accuracy which exceeds the one achieved with
any other method while keeping a relatively low standard
deviation on each data set (highlighted in bold).

Secondly, the relevance of the samples produced by the
proposed scheme is even more supported by the last section
of Table 2 where the classifier is trained only using the
synthetic samples generated by the VAEs. First, even with a
quite small number of generated samples (200 per class), the
classifier is almost able to reach the accuracy achieved on the
baseline. For instance, when the CNN is trained on reduced
MNIST with 200 synthetic samples per class generated with
our method, it is able to achieve an accuracy of 87.2%
vs. 89.9% with the baseline. In comparison, both the VAE
and RHVAE fail to produce meaningful samples when the
prior is used since a loss of 15 to 20 points in accuracy is
observed, combined with a potentially very strong loss in
confidence making those samples unreliable. The fact that the
classifier almost performs as well on the synthetic data as on
the baseline is good news since it shows that the proposed
framework is able to produce samples accounting for the
original data set diversity even with a small number of
generated samples. Even more interesting, as the number
of synthetic data increases, the classifier is able to perform
much better on the synthetic data than on the baseline since
a gain of 3 to 6 points in accuracy is observed. Again,
this strengthens the observations made in Sec. 3.3.1 and
Sec. 3.3.2 where it was noted that the proposed method is
able to enrich the initial data set with relevant and realistic
samples.

Finally, it can be seen in this experiment why geomet-
ric data augmentation methods are still questionable and
remain data set dependent. For example, augmenting the
baseline by a factor 10 (where we add flips and rotations on
the original data) seems to have no significant effect on the
reduced MNIST data sets while it still improves results on
reduced EMNIST and FashionMNIST. We see here how the
expert knowledge comes into play to assess the relevance
of the transformations applied to the data. Fortunately, the
method we propose does not require such knowledge and
appears to be quite robust to data set changes.

4.2.3 Robustness Across Classifiers

In addition to assessing the robustness of the method to
data sets changes, we also propose to evaluate its reliabil-
ity across classifiers. To do so, we consider very different
common supervised classifiers: a multi layer perceptron
(MLP) [3], a random forest [99], the k-NN algorithm and
a SVM [100]. Each of the aforementioned classifiers is again
trained either on 1) the original training data set (the base-
line); 2) the augmented data using the proposed method
and 3) only the synthetic data generated by our method
with five independent runs and using the same data sets as
presented in Sec. 4.2.1. Finally, we report the mean accuracy
and standard deviation across these runs for each classifier
and data set. The results for the balanced (resp. unbalanced)
reduced MNIST data set can be found in Fig. 5a (resp.
Fig. 5b). Metrics obtained on the two other data sets are
available in Appendix D but reflect the same tendency.
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Fig. 5. Evolution of the accuracy of four benchmark classifiers on reduced balanced MNIST (left) and reduced unbalanced MNIST data sets (right).
Stochastic classifiers are trained with five independent runs and we report the mean accuracy and standard deviation on the test set.

As illustrated in Fig. 5, the method appears quite ro-
bust to classifier changes as well since it allows improving
the model’s accuracy significantly for almost all classifiers
(the accuracy achieved on the baseline is presented by the
leftmost bar in Fig. 5 for each classifier). The method’s
strength is even more striking when unbalanced data sets
are considered since the method is able to produce mean-
ingful samples even with a very small number of training
data and so it is able to over-sample the minority classes
in a reliable way. Moreover, as observed in the previous
sections, synthetic samples are again helpful to enhance
classifiers’ generalization power since they perform better
when trained only on synthetic data than on the baseline in
almost all cases.

4.2.4 A Note on the Method Scalability
Finally, we also quickly discuss the method scalability to
larger data sets. To do so, we consider the MNIST data
set and a benchmark classifier taken as a DenseNet which
performs well on such data. Then, we down-sample the
original MNIST database in order to progressively decrease
the number of samples per class. We start by creating a
data set having 1000 samples per class to finally reach 20
samples per class. For each created data set, we allocate 80%
for training (the baseline) and reserve 20% for the validation
set. A geometry-aware VAE is then trained on each class of the
baseline until the ELBO does not improve for 50 epochs and
is used to generate synthetic samples (12.5× the baseline).
The benchmark CNN is trained with five independent runs
on either 1) the baseline, 2) the augmented data or 3) only
the synthetic data generated with our model. The evolu-
tion of the mean accuracy on the original test set (≈1000
samples per class) according to the number of samples
per class is presented in Fig. 6. The first outcome of this
experiment is that the fewer samples in the training set,
the more useful the method appears. Using the proposed
augmentation framework indeed allows for a gain of more
than 9.0 points in the CNN accuracy when only 20 samples
per class are considered. In other words, as the number
of samples increases, the marginal gain seems to decrease.
Nevertheless, this reduction must be put into perspective
since it is commonly acknowledged that, as the results on
the baseline increase (and thus get closer to the perfect score),
it is even more challenging to improve the score with the
augmented data. In this experiment, we are nonetheless still
able to improve the model accuracy even when it already
achieves a very high score. For instance, with 500 samples
per class, the augmentation method still allows increasing
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Fig. 6. Evolution of the accuracy of a benchmark CNN classifier ac-
cording to the number of samples per class in the train set (i.e. the
baseline) on MNIST. The VAE is trained on each class of the baseline
to augment its size by a factor 12.5. A CNN is then trained 5 times on
1) the baseline (blue), 2) the augmented baseline (orange) and 3) only
the synthetic data (green). The curves show the mean accuracy and
associated standard deviation on the original test set.

the model accuracy from 97.7% to 98.8%. Finally, for data
sets with fewer than 500 samples per class, the classifier
is again able to outperform the baseline even when trained
only with the synthetic data. This shows again the strong
generalization power of the proposed method which allows
creating new relevant data for the classifier.

5 VALIDATION ON MEDICAL IMAGING

With this last series of experiments, we assess the validity of
our data augmentation framework on a binary classification
task consisting in differentiating Alzheimer’s disease (AD)
patients from cognitively normal (CN) subjects based on
T1-weighted (T1w) MR images of human brains. Such a
task is performed using a CNN trained, as before, either
on 1) real images, 2) synthetic samples or 3) both. In this
section, label definition, preprocessing, quality check, data
split and CNN training and evaluation is done using Clin-
ica3 and ClinicaDL4, two open-source software packages for
neuroimaging processing.

5.1 Data Augmentation Literature for AD vs CN Task

Even though many studies use CNNs to differentiate AD
from CN subjects with anatomical MRI [101], we did not

3. https://github.com/aramis-lab/clinica
4. https://github.com/aramis-lab/AD-DL

https://github.com/aramis-lab/clinica
https://github.com/aramis-lab/clinica
https://github.com/aramis-lab/AD-DL
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Fig. 7. Example of two true patients compared to two generated by our method. Can you find the intruders ? Answers in Appendix F

find any meta-analysis on the use of data augmentation
for this task. Some results involving DA can nonetheless
be cited and are presented in Table 4. However, assessing
the real impact of data augmentation on the performance
of the model remains challenging. For instance, this is
illustrated by the works of [102] and [103], which are two
examples in which DA was used and led to two significantly
different results, although a similar framework was used
in both studies. Interestingly, as shown in Table 4, studies
using DA for this task only relied on simple affine and
pixel-level transformations, which may reveal data depen-
dent. Note that complex DA was actually performed for
AD vs CN classification tasks on PET images, but PET is
less frequent than MRI in neuroimaging data sets [104]. As
noted in the previous sections, our method would apply
pretty straightforwardly to this modality as well. For MRI,
other techniques such as transfer learning [105] and weak
supervision [106] were preferred to handle the small amount
of samples in data sets and may be coupled with DA to
further improve the network performance.

TABLE 3
Summary of participant demographics, mini-mental state examination
(MMSE) and global clinical dementia rating (CDR) scores at baseline.

Data set Label Obs. Age Sex M/F MMSE CDR

ADNI
CN 403 73.3± 6.0 185/218 29.1± 1.1 0: 403

AD 362 74.9± 7.9 202/160 23.1± 2.1
0.5: 169, 1: 192
2: 1

AIBL
CN 429 73.0± 6.2 183/246 28.8± 1.2

0: 406, 0.5: 22
1: 1

AD 76 74.4± 8.0 33/43 20.6± 5.5
0.5: 31, 1: 36
2: 7, 3: 2

5.2 Materials
Data used in this section are obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu) and the Australian Imaging,
Biomarkers and Lifestyle (AIBL) study (aibl.csiro.au).

The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner,
MD. The primary goal of ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment and early
AD. For up-to-date information, see www.adni-info.org. The
ADNI data set is composed of four cohorts: ADNI-1, ADNI-
GO, ADNI-2 and ADNI-3. The data collection of ADNI-3
has not ended yet, hence our data set contains all images
and metadata that were already available on May 6, 2019.
Similarly to ADNI, the AIBL data set seeks to discover
which biomarkers, cognitive characteristics, and health and
lifestyle factors determine the development of AD. This
cohort is also longitudinal and the diagnosis is given ac-
cording to a series of clinical tests [110]. Data collection for
this cohort is over.

Two diagnoses are considered for the classification task:

• CN: baseline session of participants who were diag-
nosed as cognitively normal at baseline and stayed
stable during the follow-up;

• AD: baseline session of participants who were di-
agnosed as demented at baseline and stayed stable
during the follow-up.

Table 3 summarizes the demographics, the mini-mental
state examination (MMSE) and global clinical dementia
rating (CDR) scores at baseline of the participants included
in our data set. The MMSE and the CDR scores are classical

http://adni.loni.usc.edu/
https://aibl.csiro.au/
www.adni-info.org
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TABLE 4
Accuracy obtained by studies performing AD vs CN classification with CNNs applied on T1w MRI and using data augmentation

Accuracy
Study Methods Participants Images Baseline Augmented

Valliani and Soni, 2017 [107] rotation, flip, shift 417 417 78.8 81.3
Backstrom et al., 2018 [108] flip 340 1198 – 90.1
Cheng and Liu, 2017 [109] shift, sampling, rotation 193 193 – 85.5
Aderghal et al., 2017 [102] shift, blur, flip 720 720 82.8 83.7
Aderghal et al., 2018 [103] shift, blur 720 720 – 90.0

clinical scores used to assess dementia. The MMSE score
has a maximal value of 30 for cognitively normal persons
and decreases if symptoms are detected. The CDR score has
a minimal value of 0 for cognitively normal persons and
increases if symptoms are detected.

5.3 Preprocessing of T1-Weighted MRI

The steps performed in this section correspond to the pro-
cedure followed in [101] and are listed below:

1) Raw data are converted to the BIDS standard [111],
2) Bias field correction is applied using N4ITK [112],
3) T1w images are linearly registered to the MNI

standard space [113], [114] with ANTS [115]
and cropped. This produced images of size
169×208×179 with 1 mm3 isotropic voxels.

4) An automatic quality check is performed using an
open-source pretrained network [116]. All images
passed the quality check.

5) NIfTI files are converted to tensor format.
6) (Optional) Images are down-sampled using a tri-

linear interpolation, leading to an image size of
84×104×89.

7) Intensity rescaling between the minimum and max-
imum values of each image is performed.

These steps lead to 1) down-sampled images (84×104×89)
or 2) high-resolution images (169×208×179).

5.4 Evaluation Procedure

The ADNI data set is split into three sets: training, validation
and test. First, the test set is created using 100 randomly
chosen participants for each diagnostic label (i.e. 100 CN,
100 AD). The rest of the data set is split between the training
(80%) and the validation (20%) sets. We ensure that age,
sex and site distributions between the three sets are not
significantly different.

A smaller training set (denoted as train-50) is extracted
from the obtained training set (denoted as train-full). This
set comprises only 50 images per diagnostic label, instead
of 243 CN and 210 AD for train-full. We ensure that age and
sex distributions between train-50 and train-full are not sig-
nificantly different. This is not done for the site distribution
as there are more than 50 sites in the ADNI data set (so they
could not all be represented in this smaller training set).
AIBL data are never used for training or hyperparameter
tuning and are only used as an independent test set.

5.5 CNN Classifiers
A CNN takes as input an image and outputs a vector of
size C corresponding to the number of labels existing in the
data set. Then, the prediction of the CNN for a given image
corresponds to the class with the highest probability in the
output vector.

5.5.1 Hyperparameter Choices
As for the VAE, the architecture of the CNN depends on the
size of the input. Then there is one architecture per input
size: down-sampled images and high-resolution images (see
Fig. 8). Moreover, two different paradigms are used to
choose the architecture. First, we reuse the same architecture
as in [101]. This architecture is obtained by optimizing
manually the networks on the ADNI data set for the same
task (AD vs CN). A slight adaption is done for the down-
sampled images, which consists in resizing the number of
nodes in the fully-connected layers to keep the same ratio
between the input and output feature maps in all layers.
We denote these architectures as baseline. Secondly, we
launch a random search [117] that allows exploring different
hyperperameter values. The hyperparameters explored for
the architecture are the number of convolutional blocks, of
filters in the first layer and of convolutional layers in a
block, the number of fully-connected layers and the dropout
rate. Other hyperparameters such as the learning rate and
the weight decay are also part of the search. 100 differ-
ent random architectures are trained on the 5-fold cross-
validation done on train-full. For each input, we choose the
architecture that obtained the best mean balanced accuracy
across the validation sets of the cross-validation. We denote
these architectures as optimized.

5.5.2 Network Training
The weights of the convolutional and fully-connected layers
are initialized as described in [118], which corresponds
to the default initialization method in PyTorch. Networks
are trained for 100 epochs for baseline and 50 epochs for
optimized. The training and validation losses are computed
with the cross-entropy loss. For each experiment, the final
model is the one that obtained the highest validation bal-
anced accuracy during training. The balanced accuracy of
the model is evaluated at the end of each epoch.

5.6 Experimental Protocol
As done in the previous sections, we perform three types of
experiments and train the model on 1) only the real images,
2) only on synthetic data and 3) on synthetic and real im-
ages. Due to the current implementation, augmentation on
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Fig. 8. Diagrams of the network architectures used for classification. The first baseline architecture (A1) is the one used in [101], the second
one (A2) is a very similar one adapted to process smaller inputs. The optimized architectures (B1) and (B2) are obtained independently with two
different random searches. For convolution layers we specify the number of channels @ the kernel size and for the fully-connected layers we specify
the number of input nodes→ the number of output nodes. Each fully-connected layer is followed by a LeakyReLU activation except for the last one.
For the dropout layer, the dropout rate is specified.

high-resolution images is not possible and so these images
are only used to assess the baseline performance of the CNN
with the maximum information available. Each series of
experiments is done once for each training set (train-50 and
train-full). The CNN and the VAE share the same training
set, and the VAE does not use the validation set during its
training. For each training set, two VAEs are trained, one
on the AD label only and the other on the CN label only.
Examples of real and generated AD images are shown in
Fig. 7. For each experiment 20 runs of the CNN training are
launched. The use of a smaller training set train-50 allows
mimicking the behavior of the framework on smaller data
sets, which are frequent in the medical domain.

5.7 Results

Results presented in Table 5 (resp. Table 6) are obtained
with baseline (resp. optimized) hyperparameters and using
either the train-full or train-50 data set. Scores on synthetic
images only are given in Appendix G. Experiments are done
on down-sampled images unless high-resolution is specified.

Even though the VAE augmentation is performed on
down-sampled images, the classification performance is at
least as good as that of the best baseline performance, or can
greatly exceed it:

• on train-50 with baseline hyperparameters the in-
crease of balanced accuracy is of 6.2 points on ADNI
and 8.9 points on AIBL,

• on train-full with baseline hyperparameters the in-
crease of balanced accuracy is of 5.7 points on ADNI
and 4.7 on AIBL,

• on train-50 with optimized hyperparameters the in-
crease of balanced accuracy is of 2.5 points on ADNI
and 6.3 points on AIBL,

• on train-full with optimized hyperparameters the
increase of balanced accuracy is of 1.5 point on ADNI
and -0.1 point on AIBL,

Then, the performance increase thanks to DA is higher
when using the baseline hyperparameters than the op-
timized ones. A possible explanation could be that the
optimized network is already close to the maximum per-
formance that can be reached with this setup and cannot be
much improved with DA. Moreover, the hyperparameters
of the VAE have not been subject to a similar search, so
this places it at a disadvantage. For both hyperparameters,
the performance gain is higher on train-50 than on train-full,
which supports the results obtained in the previous section
(see Fig. 6).

The baseline balanced accuracy with the baseline hyper-
parameters on train-full, 80.6% on ADNI and 80.4% on AIBL,
are similar to the results of [101]. With DA, we improve our
balanced accuracy to 86.3% on ADNI and 85.1% on AIBL:
this performance is similar to their result using autoencoder
pretraining (which can be very long to compute) and lon-
gitudinal data (1830 CN and 1106 AD images) instead of
baseline data (243 CN and 210 AD images) as we did.

In each table, the first two rows display the baseline
performance obtained on real images only. As expected,
training on high-resolution images leads to a better per-
formance than training on down-sampled images. This is
not the case for the optimized network on train-50, which
obtained a balanced accuracy of 72.1% on ADNI and 71.2%
on AIBL with high-resolution images versus 75.5% on ADNI
and 75.6% on AIBL with down-sampled images. This is
explained by the fact that the hyperparameters choice is
made on train-full and so there is no guarantee that it could
lead to similar results with fewer data samples.

6 DISCUSSION

Contrary to techniques that are specific to a field of ap-
plication, our method produced relevant data for diverse
data sets including 2D natural images (MNIST, EMNIST
and FASHION) or 3D medical images (ADNI and AIBL).
Moreover, we note that the networks learning on medical
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TABLE 5
Mean test performance of each series of 20 runs trained with the baseline hyperparameters

ADNI AIBL
training data set sensitivity specificity balanced sensitivity specificity balanced

set accuracy accuracy

train-50

real 70.3± 12.2 62.4± 11.5 66.3± 2.4 60.7± 13.7 73.8± 7.2 67.2± 4.1
real (high-resolution) 78.5± 9.4 57.4± 8.8 67.9± 2.3 57.2± 11.2 75.8± 7.0 66.5± 3.0
500 synthetic + real 71.9± 5.3 67.0± 4.5 69.4± 1.6 55.9± 6.8 81.1± 3.1 68.5± 2.5
1000 synthetic + real 69.8± 6.6 71.2± 3.7 70.5± 2.1 59.1± 9.0 82.1± 3.7 70.6± 3.1
2000 synthetic + real 72.2± 4.4 70.3± 4.3 71.2± 1.6 66.6± 7.1 79.0± 4.1 72.8± 2.2
3000 synthetic + real 71.8± 4.9 73.4± 5.5 72.6± 1.6 66.1± 9.3 81.1± 5.0 73.6± 3.0
5000 synthetic + real 74.7 ± 5.3 73.5 ± 4.8 74.1 ± 2.2 71.7 ± 10.0 80.5± 4.4 76.1 ± 3.6
10000 synthetic + real 74.7± 7.0 73.4± 6.1 74.0± 2.7 69.1± 9.9 80.7 ± 5.1 74.9± 3.2

train-full

real 79.1± 6.2 76.3± 4.2 77.7± 2.5 70.6± 6.7 86.3± 3.6 78.4± 2.4
real (high-resolution) 84.5± 3.8 76.7± 4.0 80.6± 1.1 71.6± 6.4 89.2± 2.7 80.4± 2.6
500 synthetic + real 82.5± 3.4 81.9± 5.4 82.2± 2.4 76.0± 6.3 89.7± 3.3 82.9± 2.5
1000 synthetic + real 84.6± 4.4 84.3± 5.1 84.4± 1.8 77.0± 7.0 90.4± 3.4 83.7± 2.3
2000 synthetic + real 85.4 ± 4.0 86.4± 5.9 85.9± 1.6 77.2± 6.9 90.4± 3.8 83.8± 2.2
3000 synthetic + real 84.7± 3.6 86.8± 4.5 85.8± 1.7 77.2± 4.8 91.7 ± 2.9 84.4± 1.8
5000 synthetic + real 84.6± 4.2 86.9± 3.6 85.7± 2.1 76.9± 5.2 91.4± 3.0 84.2± 2.2
10000 synthetic + real 84.2± 2.8 88.5 ± 2.9 86.3 ± 1.8 79.1 ± 4.7 91.0± 2.6 85.1 ± 1.9

TABLE 6
Mean test performance of each series of 20 runs trained with the optimized hyperparameters

ADNI AIBL
training image type sensitivity specificity balanced sensitivity specificity balanced

set accuracy accuracy

train-50

real 75.4± 5.0 75.5± 5.3 75.5± 2.7 68.6± 8.5 82.6± 4.2 75.6± 4.1
real (high-resolution) 73.6± 6.2 70.6± 5.9 72.1± 3.1 57.8± 12.3 84.6± 4.2 71.2± 5.1
500 synthetic + real 73.2± 4.2 78.0± 3.3 75.6± 2.5 69.2± 9.4 82.7 ± 4.1 76.0± 4.2
1000 synthetic + real 76.1± 5.3 79.5 ± 2.9 77.8± 2.3 79.3± 5.8 82.5± 4.2 80.9± 3.2
2000 synthetic + real 75.2± 3.8 78.6± 4.4 76.9± 2.4 77.8± 8.8 82.2± 4.5 80.0± 3.6
3000 synthetic + real 76.5± 3.8 79.2± 4.2 77.8± 1.9 80.9± 7.9 81.4± 4.2 81.2± 3.7
5000 synthetic + real 77.1± 3.7 76.7± 4.1 76.9± 2.5 80.7± 6.1 81.2± 3.7 80.9± 2.7
10000 synthetic + real 77.8 ± 4.6 78.2± 4.9 78.0 ± 2.1 81.7 ± 4.9 81.9± 4.6 81.9 ± 2.2

train-full

real 82.5± 4.2 88.5± 6.6 85.5± 2.4 75.1± 8.4 88.7± 9.0 81.9± 3.2
real (high-resolution) 82.6± 4.5 88.9± 6.3 85.7± 2.5 78.9± 5.4 89.9± 4.0 84.4± 1.7
500 synthetic + real 82.3± 2.3 89.8± 2.7 86.0± 1.8 74.9± 5.0 91.4± 2.6 83.2± 2.4
1000 synthetic + real 82.5± 3.3 90.5± 4.1 86.5± 1.9 76.4± 5.6 91.0± 3.4 83.7± 2.0
2000 synthetic + real 83.1 ± 4.2 91.3 ± 3.2 87.2 ± 1.7 76.0± 4.7 92.0± 2.4 84.0± 2.0
3000 synthetic + real 81.3± 3.7 90.4± 3.4 85.8± 2.6 74.9± 7.3 92.3± 2.6 83.6± 3.2
5000 synthetic + real 81.9± 3.5 90.9± 2.5 86.4± 1.3 74.1± 4.9 92.9 ± 1.9 83.5± 2.2
10000 synthetic + real 82.2± 3.4 91.2± 3.6 86.7± 1.8 76.4 ± 4.2 92.1± 2.1 84.3 ± 1.8

images of ADNI gave similar balanced accuracies on the
ADNI test subset and AIBL. This shows that our synthetic
data learned on ADNI benefit in the same way to AIBL, and
that it did not overfit the characteristics of ADNI.

In addition to the robustness across data sets, the usabil-
ity of synthetic data by diverse classifiers was assessed. For
toy data sets these classifiers were a MLP, a random forest,
k-NN algorithm and a SVM. On medical image data sets,
two different CNN were studied: a baseline one that has
been only slightly optimized in a previous study and an
optimized one found with a more extensive search (random
search). All these classifiers performed best on augmented
data than real data only. However, we note that the data
augmentation was more beneficial to the baseline network,
than to the optimized one but both networks obtained a
similar performance with data augmentation on the largest
training set. This means that data augmentation could avoid
spending time and/or resources optimizing a classifier.

The ability of the model to generate relevant data and
enrich the original training data was also supported by
the fact that almost all classifiers could achieve a better
classification performance when trained only on synthetic
data than on the real train set.

Our generation framework appears also very well suited
to perform data augmentation in a HDLSS setting (the
binary classification of AD and CN subjects using T1w MRI).
In all cases the classification performance was at least as
good as the maximum performance obtained with real data
and could even be much better. For instance, the method
allowed the balanced accuracy of the baseline CNN to jump
from 66.3% to 74.3% when trained with only 50 images
per class and from 77.7% to 86.3% when trained with 243
CN and 210 AD while still improving greatly sensitivity
and specificity metrics. We witnessed a greater performance
improvement than the other studies using a CNN on T1w
MRI to differentiate AD and CN subjects [102], [103], [107],
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[108], [109]. Indeed, these studies used simple transforms
(affine and pixel-wise) that may not bring enough variability
to improve the CNN performance. Though many complex
methods now exist to perform data augmentation, they are
still not widely adopted in the field of medical imaging. We
suspect that this is mainly due to the lack of reproducibility
of such frameworks. Hence we provide the source code, as
well as scripts to easily reproduce the experiments of this
paper from the ADNI and AIBL data set download to the
final evaluation of the CNN performance.

Nonetheless, the performance of our classification on
synthetic data could be improved in many ways. First, we
chose in this study not to spend much time optimizing the
hyperparameters of the VAE and hence in Sec. 5 we chose
to work with down-sampled images to deal with memory
issues more easily. We could look for another architecture to
train the VAE directly on high-resolution images, leading to
a better performance, as witnessed in experiments on real
images only. Moreover, we could couple the advantages of
other techniques such as autoencoder pretraining or weak
supervision to our data augmentation framework. However,
the advantages may not stack as observed when using
data augmentation on optimized hyperparameters. Finally,
we chose to train our networks with only one image per
participant, but our framework could also benefit from
the use of the whole follow-up of all patients to further
improve performance. However, a long follow-up is rather
an exception in the context of medical imaging. This is
why we assessed the relevance of our data augmentation
framework in the context of small data sets, which is a main
issue in this field. Nonetheless, a training set of 50 images
per class can still be seen as large in the case of rare diseases
and so it may be interesting to evaluate the reliability of our
method on even smaller training sets (20 or 10 images per
class).

7 CONCLUSION

In this paper, we proposed a new VAE-based data aug-
mentation framework whose performance and robustness
were validated on classification tasks on toy and real-life
data sets. This method relies on the combination of a proper
latent space modeling of the VAE seen as a Riemannian
manifold and a new generation procedure exploiting such
geometrical aspects. In particular, the generation method
does not use the prior as is standard since we showed
that, depending on its choice and the data set considered,
it may lead to a very poor latent space prospecting and a
degraded sampling while the proposed method does not
suffer from such drawbacks. The proposed amendments
were motivated, discussed and compared to other VAE
models and demonstrated promising results. The model
indeed appeared to be able to generate new data faithfully
and demonstrated a strong generalization power which
makes it very well suited to perform data augmentation
even in the challenging context of HDLSS data. For each
augmentation experiment, it was able to enrich the initial
data set so that a classifier performs better on augmented
data than only on the real ones. Future work would consist
in building a framework able to handle longitudinal data

and so able to generate not only one observation but a whole
patient trajectory.
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APPENDIX A
PROOF OF PROP. 1

Proposition 2. The Riemannian manifold (Rd, g) is geodesic
ally complete.

We will show that given the manifoldM = Rd endowed
with the Riemannian metric g whose local representation is
given by:

G−1(z) =
N∑
i=1

LψiL
>
ψi exp

(
− ‖z − ci‖

2
2

T 2

)
+ λId (7)

or Eq. (4) in the paper, any geodesic curve γ :]a, b[→ M
is actually extensible to R that is the Riemannian manifold
(Rd, g) is geodesically complete. The proof we derive is
inspired from the one proposed in [79].

Proof: Let us suppose that there exists a geodesic
curve γ such that it cannot be extended to R. Therefore,
there exist a, b ∈ R such that I =]a, b[ is the domain of
definition of γ : I →M. We show that such an assumption
leads to an absurdity.

First, since Lψi are defined as lower triangular
matrices with positive diagonal coefficients we
have that LψiL

>
ψi

is a symmetric positive-definite
matrix (by Cholesky decomposition). Therefore,
x>LψiL

>
ψi
x > 0, ∀ x ∈ Rd − {0}.

Then, let t ∈]a, b[, we recall that

‖γ̇(t)‖2γ(t) = 〈γ̇(t)|γ̇(t)〉γ(t) = γ̇(t)>G(γ(t))γ̇(t) .

Hence, let t0 ∈]a, b[. For any t ∈]a, b[,

‖γ̇(t)‖22 ≤ ‖γ̇(t)‖22+

1

λ

N∑
i=1

γ̇(t)>LψiL
>
ψi γ̇(t) exp

(
− ‖γ(t)− ci‖22

T 2

)

≤ 1

λ
· ‖γ̇(t)‖2γ(t) =

1

λ
· ‖γ̇(t0)‖2γ(t0) ,

where the last equality comes for the constant speed of
geodesic curves. Therefore

‖γ(t)− γ(t0)‖2 ≤
‖γ̇(t0)‖γ(t0)√

λ
· |t− t0| .

This shows that for any t ∈]a, b[ the geodesic curve γ
remains within a compact set and so γ is bounded on I .
Now consider the sequence tn −−−−→

n→∞
b. As geodesic curves

have constant speed, I = {(tn, γ̇(tn))}n∈N is a compact set.
Moreover, by application of Cauchy-Lipschitz theorem, one
can find ε > 0 such that for any n ∈ N, γ can be defined on
]tn − ε, tn + ε[. Since tn can be as close to b as desired, there
exists N ∈ N such that ∀n ≥ N we have tn ≥ b − ε

2 . This
means that the domain of definition of the curve γ can be
extended to ]a, b+ ε

2 [ which concludes the proof.

APPENDIX B
DETAILED EXPERIMENTAL SETTING

B.1 Parameters of Sec. 3.3. Generation Comparison

For this experiment, we consider a vanilla VAE, a VAE
with VAMP prior and a geometry-aware VAE. For a fair
comparison, each model is trained with the same neural
network architecture for the encoder and decoder along
with the same latent space dimension. The main parameters
for the geometry-aware VAE are presented in Table. 8. We
refer the reader to [73] for a more precise description of each
of these parameters and their impact on the model. For the
VAMP prior the number of pseudo-inputs is set to 10 and
we use the implementation provided by the authors. Each
model is trained until the ELBO does not improve for 20
epochs with an Adam optimizer [119] and a learning rate
of 10−3. Since the data sets sizes are small the training is
performed in a single batch.

TABLE 7
Neural Net Architectures. The same architectures are used for the

vanilla VAE, VAMP - VAE and geometry-aware VAEs.

µφ (D, 400, relu) (400, d, linear)
Σφ (400, d, linear)
πθ (d, 400, relu) (400, D, sigmoid)
L

diag.
ψ (D, 400, relu) (400, d, linear)

Llow.
ψ (400, d(d−1)

2
, linear)

D: Input space dimension
d: Latent space dimension

TABLE 8
Geometry-aware VAE parameters.

Data sets Parameters
d∗ nlf εlf T λ

√
β0

Synthetic shapes 2 3 10−2 0.8 10−3 0.3
reduced MNIST (bal.) 2 3 10−2 0.8 10−3 0.3

reduced MNIST (unbal.) 2 3 10−2 0.8 10−3 0.3
reduced EMNIST 2 3 10−2 0.8 10−3 0.3

* Latent space dimension (same for VAE and VAMP-VAE)

B.2 Parameters of Sec. 4. Data Augmentation

For this experiment, the same parameters and neural net-
works architectures as presented in the former section are
used except for reduced Fashion where the dimension of
the latent space is set to 5. As to training parameters for
the VAEs, for each model we use an Adam optimizer with
a learning rate set to 10−3. Since the data sets sizes are
small the training is performed in a single batch. As to the
DenseNet [97] used as benchmark for data augmentation,
the implementation we use is the one in [98] with a growth
rate equals to 10, depth of 20 and 0.5 reduction and is trained
with a learning rate of 10−3, weight decay of 10−4 and a
batch size of 200. The classifier is trained until the loss does
not improve on the validation set for 50 epochs and tested
on the original test sets (e.g.≈ 1000 samples for MNIST). For
Sec. 4.2.3., the MLP has 400 hidden units with relu activation
function. It is trained with Adam optimizer and a learning
rate of 10−3. Training is stopped if the loss does not improve
on the validation set for 20 epochs
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B.3 Parameters of Sec. 5 Validation on Medical Imaging
To generate new data on the ADNI database we amend the
neural network architectures and use the one described in
Table. 9. The parameters used in the geometry-aware VAE are
provided in Table. 10. An Adam optimizer with a learning
rate of 10−5 and batch size of 25 are used. The VAE model
is trained until the ELBO does not improve for 50 epochs.
Generating 50 ADNI images takes approx. 30 s.5 with the
proposed method on Intel Core i7 CPU (6x1.1GHz) and 16
GB RAM.

TABLE 9
Neural Net Architecture

µφ (D, h1, rel) (h1, h2, relu) (h2, h3, relu) (h3, d, lin)
Σφ (h1, h2, relu) (h2, h3, relu) (h3, d, lin)
πθ (d, h3, relu) (h3, h2, relu) (h2, h1, relu) (h1, D, sig)
L

diag.
ψ (D, h3, relu) (h3, d, lin) - -
Llow.
ψ (h3, d(d−1)

2 , lin) - -

D h1 h2 h3 d
777504 500 500 400 10

TABLE 10
Geometry-aware parameters settings for ADNI database

Data set Parameters
d nlf εlf T λ

√
β0

ADNI 10 3 10−3 1.5 10−2 0.3

APPENDIX C
A FEW MORE SAMPLING COMPARISONS (SEC. 3.3)
In addition to the comparison performed in Sec. 3.3.1, we
also compare qualitatively a Vanilla VAE, a VAE with VAMP
prior and a geometry-aware VAE on 4 reduced data sets
and in higher dimensional latent spaces of dimension 10.
The first one is created with 180 binary rings and circles
with different diameters and thicknesses ensuring balanced
classes. The second one is composed of 120 samples of
EMNIST (letter M) and referred to as reduced EMNIST.
Another one is created with 120 samples from the classes
1, 2 and 3 of MNIST database ensuring balanced classes
and is called reduced MNIST. The last one, reduced Fashion,
is again composed of 120 samples from 3 classes (shoes,
trouser and bag) from FashionMNIST and ensuring balanced
classes. The models have the same architectures as described
in Table. 7 and are trained with the parameters stated in
Table. 11. 10 pseudo-inputs are again used to train the VAE
with VAMP prior. Each model is trained until the ELBO does
not improve for 20 epochs with Adam optimizer, a learning
rate of 10−3 and in a single batch. In Fig. 10 are presented
from top to bottom: 1) an extract of the training samples for
each data set; 2) samples obtained with a vanilla VAE with
a Gaussian prior; 2) data generated from a VAE with VAMP
prior; 3) samples created by a geometry-aware VAE and using
the prior or 4) samples from our method. As discussed in
the paper, the proposed method is again able to visually
outperform peers since for all data sets it is able to create
sharper and more meaningful samples even if the number
of training samples is quite small.

5. Depends on the length of the MCMC chain and HMC hyper-
parameter, l. We used 300 steps with l = 15.

TABLE 11
Geometry-aware VAE parameters.

Data sets Parameters
d∗ nlf εlf T λ

√
β0

Synthetic shapes 10 3 10−2 1.5 10−3 0.3
reduced MNIST 10 3 10−2 1.5 10−3 0.3

reduced EMNIST 10 3 10−2 1.5 10−3 0.3
reduced Fashion 10 3 10−2 1.5 10−3 0.3

* Latent space dimension (same for VAE and VAMP-VAE)

APPENDIX D
ADDITIONAL RESULTS (SEC.4.2.3)
Further to the experiments presented in Sec. 4.2.3, we also
provide the results of the 4 classifiers on reduced EMNIST
and reduced Fashion in Fig. 9. Again, for most classifiers the
proposed method either equals or greatly outperform the
baseline.

APPENDIX E
A FEW MORE SAMPLE GENERATION ON ADNI
In this section, we first provide several slices of a 3D
image generated by our model. The model is trained on
the class AD of train-50 (i.e. on 50 MRI of patient having
been diagnosed with Alzheimer disease). The generated
image is presented in Fig. 11. We also present in Fig. 12, 4
generated patients for a model trained on train-50. The two
left images show cognitively normal generated patients while
the rightmost images represent AD generated patients.

APPENDIX F
THE INTRUDERS: ANSWERS TO FIG. 7
In Fig. 7 of the paper, the synthetic samples are the leftmost
and rightmost images while the real patients are in the
middle. The model is trained on the class AD of train-full
i.e. 210 images.

APPENDIX G
COMPLEMENTARY RESULTS ON MEDICAL IMAGES

Results on synthetic data only for the classification task
on MRIs are added in tables 12 to 15. As observed on the
toy examples, the proposed model is again able to produce
meaningful synthetic samples since each CNN outperforms
greatly the baseline (i.e. the real training data) either on train-
50 or train-full. The fact that classification performances on
AIBL (which is never used for training) are better for a
classifier trained on synthetic data than on the baseline shows
again that the generative model does not overfit the training
data (coming from ADNI) but rather produces samples that
are also relevant for another database.
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TABLE 12
Mean test performance of the 20 runs trained on train-50 with the baseline hyperparameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 70.3± 12.2 62.4± 11.5 66.3± 2.4 60.7± 13.7 73.8± 7.2 67.2± 4.1
real (high-resolution) - 78.5± 9.4 57.4± 8.8 67.9± 2.3 57.2± 11.2 75.8± 7.0 66.5± 3.0

synthetic 500 72.4± 6.4 65.6± 8.1 69.0± 1.9 56.6± 9.9 80.0± 5.3 68.3± 3.0
synthetic 1000 75.0± 6.2 65.6± 7.4 70.3± 2.0 62.7± 9.7 78.8± 5.3 70.8± 3.5
synthetic 2000 71.4± 6.6 70.4± 6.6 70.9± 3.0 62.1± 8.8 80.5± 4.7 71.3± 3.6
synthetic 3000 70.6± 5.2 73.8 ± 4.2 72.2± 1.4 65.7± 6.9 80.5± 4.6 73.1± 1.8
synthetic 5000 78.1 ± 6.1 69.0± 6.9 73.5± 2.0 74.5 ± 7.8 77.3± 5.4 76.5 ± 2.9
synthetic 10000 75.2± 6.8 73.4± 4.8 74.3 ± 1.9 73.6± 10.8 79.4 ± 6.0 75.9± 2.5

synthetic + real 500 71.9± 5.3 67.0± 4.5 69.4± 1.6 55.9± 6.8 81.1± 3.1 68.5± 2.5
synthetic + real 1000 69.8± 6.6 71.2± 3.7 70.5± 2.1 59.1± 9.0 82.1± 3.7 70.6± 3.1
synthetic + real 2000 72.2± 4.4 70.3± 4.3 71.2± 1.6 66.6± 7.1 79.0± 4.1 72.8± 2.2
synthetic + real 3000 71.8± 4.9 73.4± 5.5 72.6± 1.6 66.1± 9.3 81.1± 5.0 73.6± 3.0
synthetic + real 5000 74.7 ± 5.3 73.5 ± 4.8 74.1 ± 2.2 71.7 ± 10.0 80.5± 4.4 76.1 ± 3.6
synthetic + real 10000 74.7± 7.0 73.4± 6.1 74.0± 2.7 69.1± 9.9 80.7 ± 5.1 74.9± 3.2

TABLE 13
Mean test performance of the 20 runs trained on train-full with the baseline hyperparameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 79.1± 6.2 76.3± 4.2 77.7± 2.5 70.6± 6.7 86.3± 3.6 78.4± 2.4
real (high-resolution) - 84.5± 3.8 76.7± 4.0 80.6± 1.1 71.6± 6.4 89.2± 2.7 80.4± 2.6

synthetic 500 81.6± 6.8 79.5± 5.8 80.5± 2.4 74.7± 9.3 87.3± 4.8 81.0± 3.2
synthetic 1000 82.9± 4.5 82.0± 5.8 82.4± 1.9 77.2± 7.4 88.8± 5.2 83.0± 2.0
synthetic 2000 81.9± 4.5 87.7± 3.4 84.8± 2.0 74.7± 6.3 92.1± 1.9 83.4± 2.7
synthetic 3000 84.9 ± 3.5 87.4± 3.5 86.1± 1.5 77.4± 5.8 90.9± 3.0 84.2± 1.8
synthetic 5000 84.0± 3.5 88.4± 3.3 86.2± 1.7 76.8± 4.2 92.2 ± 1.8 84.5 ± 1.8
synthetic 10000 84.2± 5.4 88.6 ± 3.9 86.4 ± 1.8 77.5 ± 7.4 91.0± 3.2 84.2± 2.4

synthetic + real 500 82.5± 3.4 81.9± 5.4 82.2± 2.4 76.0± 6.3 89.7± 3.3 82.9± 2.5
synthetic + real 1000 84.6± 4.4 84.3± 5.1 84.4± 1.8 77.0± 7.0 90.4± 3.4 83.7± 2.3
synthetic + real 2000 85.4 ± 4.0 86.4± 5.9 85.9± 1.6 77.2± 6.9 90.4± 3.8 83.8± 2.2
synthetic + real 3000 84.7± 3.6 86.8± 4.5 85.8± 1.7 77.2± 4.8 91.7 ± 2.9 84.4± 1.8
synthetic + real 5000 84.6± 4.2 86.9± 3.6 85.7± 2.1 76.9± 5.2 91.4± 3.0 84.2± 2.2
synthetic + real 10000 84.2± 2.8 88.5 ± 2.9 86.3 ± 1.8 79.1 ± 4.7 91.0± 2.6 85.1 ± 1.9

TABLE 14
Mean test performance of the 20 runs trained on train-50 with the optimized hyperparameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 75.4± 5.0 75.5± 5.3 75.5± 2.7 68.6± 8.5 82.6± 4.2 75.6± 4.1
real (high-resolution) - 73.6± 6.2 70.6± 5.9 72.1± 3.1 57.8± 12.3 84.6± 4.2 71.2± 5.1

synthetic 500 75.8± 3.0 77.6± 5.3 76.7± 2.8 73.2± 9.0 83.6 ± 4.0 78.4± 4.0
synthetic 1000 76.7± 4.6 78.5± 4.9 77.6 ± 3.7 78.7± 7.5 83.2± 4.8 80.9± 4.3
synthetic 2000 73.9± 3.6 79.8 ± 4.0 76.8± 3.0 78.2± 6.9 82.4± 3.7 80.3± 3.5
synthetic 3000 74.4± 6.1 79.8± 4.9 77.1± 4.0 76.4± 10.1 82.4± 4.3 79.4± 4.7
synthetic 5000 77.1± 4.5 77.4± 5.2 77.2± 2.1 81.1± 5.9 82.0± 3.9 81.5 ± 2.6
synthetic 10000 77.5 ± 5.3 77.3± 4.7 77.4± 3.1 81.7 ± 5.4 79.7± 4.1 80.7± 2.9

synthetic + real 500 73.2± 4.2 78.0± 3.3 75.6± 2.5 69.2± 9.4 82.7 ± 4.1 76.0± 4.2
synthetic + real 1000 76.1± 5.3 79.5 ± 2.9 77.8± 2.3 79.3± 5.8 82.5± 4.2 80.9± 3.2
synthetic + real 2000 75.2± 3.8 78.6± 4.4 76.9± 2.4 77.8± 8.8 82.2± 4.5 80.0± 3.6
synthetic + real 3000 76.5± 3.8 79.2± 4.2 77.8± 1.9 80.9± 7.9 81.4± 4.2 81.2± 3.7
synthetic + real 5000 77.1± 3.7 76.7± 4.1 76.9± 2.5 80.7± 6.1 81.2± 3.7 80.9± 2.7
synthetic + real 10000 77.8 ± 4.6 78.2± 4.9 78.0 ± 2.1 81.7 ± 4.9 81.9± 4.6 81.9 ± 2.2
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TABLE 15
Mean test performance of the 20 runs trained on train-full with the optimized hyperparameters

ADNI AIBL

image type synthetic sensitivity specificity balanced sensitivity specificity balanced
images accuracy accuracy

real - 82.5± 4.2 88.5± 6.6 85.5± 2.4 75.1± 8.4 88.7± 9.0 81.9± 3.2
real (high-resolution) - 82.6± 4.5 88.9± 6.3 85.7± 2.5 78.9± 5.4 89.9± 4.0 84.4± 1.7

synthetic 500 81.7± 3.6 90.5± 3.9 86.1± 1.4 75.5± 7.1 89.8± 4.3 82.6± 2.9
synthetic 1000 82.8± 3.4 90.0± 4.0 86.4± 2.1 76.8± 4.5 91.5± 2.5 84.2± 1.7
synthetic 2000 81.3± 2.8 91.2± 2.8 86.2± 1.7 76.2± 6.7 92.2 ± 3.6 84.2± 2.6
synthetic 3000 82.2± 4.9 90.6± 4.5 86.4± 2.0 77.7± 6.3 90.8± 4.4 84.3± 2.0
synthetic 5000 80.6± 3.4 91.6 ± 2.5 86.1± 1.9 75.3± 5.4 92.4± 2.5 83.8± 2.0
synthetic 10000 84.0 ± 3.8 89.1± 3.1 86.5 ± 1.7 79.2 ± 5.2 90.1± 3.7 84.7 ± 2.3

synthetic + real 500 82.3± 2.3 89.8± 2.7 86.0± 1.8 74.9± 5.0 91.4± 2.6 83.2± 2.4
synthetic + real 1000 82.5± 3.3 90.5± 4.1 86.5± 1.9 76.4± 5.6 91.0± 3.4 83.7± 2.0
synthetic + real 2000 83.1 ± 4.2 91.3 ± 3.2 87.2 ± 1.7 76.0± 4.7 92.0± 2.4 84.0± 2.0
synthetic + real 3000 81.3± 3.7 90.4± 3.4 85.8± 2.6 74.9± 7.3 92.3± 2.6 83.6± 3.2
synthetic + real 5000 81.9± 3.5 90.9± 2.5 86.4± 1.3 74.1± 4.9 92.9 ± 1.9 83.5± 2.2
synthetic + real 10000 82.2± 3.4 91.2± 3.6 86.7± 1.8 76.4 ± 4.2 92.1± 2.1 84.3 ± 1.8
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Fig. 9. Evolution of the accuracy of 4 benchmark classifiers on the reduced EMNIST data set (left) and the reduced Fashion data set (right).
Stochastic classifiers are trained with 5 independent runs and we report the mean accuracy and standard deviation on the test set.
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Training
samples

reduced EMNIST (120) reduced MNIST (120) reduced Fashion (120) Synthetic (180)

VAE +
N (0, Id)

VAE +
VAMP prior

RHVAE +
N (0, Id)

RHVAE +
Ours

Fig. 10. Comparison of 4 sampling methods on reduced EMNIST (120 letters M), reduced MNIST, reduced FashionMNIST and the synthetic data
sets in higher dimensional latent spaces (dimension 10). From top to bottom: 1) samples extracted from the training set; 2) samples generated
with a Vanilla VAE and using the prior (N (0, Id)); 3) from the VAMP prior VAE ; 4) from a RHVAE and the prior-based generation scheme and 5)
from a RHVAE and using the proposed method. All the models are trained with the same encoder and decoder networks and identical latent space
dimension. An early stopping strategy is adopted and consists in stopping training if the ELBO does not improve for 20 epochs. The number of
training samples is noted between parenthesis.
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Fig. 11. Several slices of a generated image. The model is trained on the AD class of train-50 (i.e. 50 images of AD patients)
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Fig. 12. Images generated by our method when trained on train-50. Left : CN generated patients. Right : AD generated patients.
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