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Abstract 

This research proposes a new kind of piezoelectric metamaterials with nonlinear SSDI 

(Synchronized Switching Damping on Inductor) Dual-connected electronic networks, 

which provides a new electrical medium coupled with the piezoelectric beam 

metamaterial for elastic wave manipulation and vibration control. Specifically, the 

proposed topology considers several piezoelectric elements periodically and evenly 

bonded onto the substructure. The proposed structure is composed of several 

electromechanical (EM) periodic cells. All the piezoelectric elements in one EM 

periodic cell are connected to each other in a cyclic fashion by identical SSDI shunts, 

and there is no electrical connection between every two EM periodic cells, shaping 

the Dual-connected electrical connection. Based on the wave propagation theory and 

finite element modeling, band structure and eigenmode shapes of the proposed 

structure are investigated for elastic wave manipulation and low-frequency vibration 

control. Results show that the proposed structure with SSDI 2-order-Dual-connected 

electrical networks exhibits broad phononic band gaps. Especially, band gap 

hybridization with Bragg-type band gap generation mechanism in the proposed 

structure with SSDI 2-order-Dual-connected electrical networks outperforms that of 

the piezoelectric metamaterial with SSDI independent networks. Furthermore, the low 

frequency vibration reduction and wave attenuation performance of the proposed 

structure is experimentally validated by measuring the harmonic response of a 

periodic clamped-clamped piezoelectric beam structure.  
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1. Introduction 

Thanks to the development of periodic structures and smart materials, smart 

metamaterials which can generate band gaps, within which mechanical waves cannot 

propagate or are greatly attenuated, have attracted great attention in recent years. 

Traditionally, purely mechanical metamaterials [1] can generate Bragg-type stop 

bands for mechanical wave control. Their central frequencies are determined by the 

Bragg condition [2]. According to the latter, the lattice constant must be of the same 

order as the relevant wavelength. Therefore, low-frequency Bragg-type band gaps 

cannot appear in small-scale mechanical metamaterials, but only in structures 

featuring large dimensions, which is a limiting factor in many practical applications. 

By comparison, purely mechanical metamaterials based on locally resonant band gap 

mechanism [3] can address this limitation and generate low-frequency band gaps even 

in small dimensions. However, except some scalable mechanical metamaterials [4], 

such as morphing metamaterials using origami techniques [5], which tune mechanical 

properties of wave-guide meta-structures through changing their structure shape using 

purely geometric considerations, wave attenuation properties for most of purely 

mechanical metamaterials cannot be easily changed after assembly [6]. By 

comparison, smart metamaterials [7-10] can exhibit different resonant-type stop band 

characteristics by altering the resonant features in the electrical domain without 

changing the metamaterial shapes, since resonant-type stop bands in smart 

metamaterials are partially determined by the electromechanical periodicity of smart 

materials coupled with external electrical resonant circuits.  

In this research, smart metamaterials specifically refer to piezoelectric metamaterials 

[11-13]. After the mechanical structure of piezoelectric metamaterial is molded and 

formed, mechanical structure optimization cannot be performed. Under such 

condition, only different electrical impedance and electrical circuit networks can be 

selected for optimizing the electrical medium of the piezoelectric metamaterial. 

Therefore, so as to improve the wave propagation performance of piezoelectric 

metamaterials from the electrical medium aspect, it is necessary to develop different 

electrical circuit networks for coupling the piezoelectric metamaterials and study the 

band structure and vibration transmittance properties of the piezoelectric 

metamaterials. In recent decades, a number of researchers have studied piezoelectric 

metamaterials with resonant linear electrical networks (including negative capacitance 

electrical networks). However, few studies have been conducted on the band structure 

and electromechanical coupling properties between the non-independent electric 
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networks and the mechanical structure of piezoelectric metamaterials, especially 

piezoelectric metamaterial with nonlinear electrical networks.  

Specifically, for piezoelectric metamaterials with resonant linear electrical networks 

[14-18], Thorp et al. [19] adopted monomodal resonant oscillators in a piezoelectric 

rod metamaterial for elastic wave attenuation and localization. Locally resonant-type 

stop bands are generated and centered at the tuning frequencies of the electrical 

unimodal resonant shunt. Nevertheless, using passive shunting is limited either by the 

performance and robustness with respect to frequency drifts, and/or by the volume of 

passive components (i.e., inductance) that require to be finely tuned. Furthermore, in 

the low frequency region, the value of the optimal inductance may be prohibitive and 

even unrealistic, necessitating the use of synthetic inductors that require external 

energy. For piezoelectric metamaterials featuring negative capacitance electrical 

networks [20-24], Tateo et al. [24] proposed a piezoelectric meta-composite plate with 

independent negative capacitance electrical networks for broadband vibration 

reduction over tunable frequency ranges. The results showed that the investigated 

approach provides a robust and effective vibration control solution for complex 

structures. However, negative capacitance shunts require the use of active electronic 

circuits that may consume too much energy for the targeted application. 

In recent years, nonlinear elastic wave metamaterials [25-27] have exhibited 

promising potentials for elastic wave manipulation. In order to address the issues of 

energy consumption and size of electronic components, nonlinear electrical damping 

techniques have been introduced into piezoelectric metamaterials in the last four years. 

Lallart et al. [28] proposed a piezoelectric beam metamaterial with nonlinear 

electrical networks using independent SSDI (Synchronized Switching Damping on 

Inductor) shunts. In the investigated periodic cell, each SSDI shunt, which has 

self-powered versions for implementation [29], is separately connected to each PZT. 

Results showed that the piezoelectric metamaterial with independent SSDI electrical 

networks achieved much better wave attenuation performance than the piezoelectric 

metamaterial with pure resistor electrical networks. Broadly resonant-type band gaps 

can be generated by the proposed meta-structure, especially suitable for 

low-frequency multimodal vibration control applications. Following this concept, Yan 

et al. [30] and Bao et al. [31-33] then proposed several different piezoelectric 

metamaterial systems with nonlinear electrical networks in which electrical 

irregularities and nonlinearities are introduced into the electromechanical 

metamaterial design for enhancing wave attenuation and vibration reduction 

performance in some specific frequency bands, especially in the low frequency region. 
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However, such piezoelectric metamaterials combined with nonlinear electrical 

networks for elastic wave manipulation are still rarely reported in recent years. 

In order to further investigate EM coupling mechanism between the mechanical 

medium and the electrical medium including nonlinear SSDI shunts for wave 

propagation and vibration control, this article proposes a new piezoelectric 

metamaterial with nonlinear SSDI Dual-connected electrical networks for optimizing 

and controlling the elastic wave properties of the piezoelectric metamaterial. 

Specifically, the proposed structure includes N piezoelectric elements periodically and 

evenly spaced attached on the beam structure. And it is composed of Ng (Ng=2, 3, 4…) 

EM (electromechanical) periodic cells. Every EM periodic cell includes N (N=2, 3, 

4…) Bragg-type periodic cells. Each Bragg-type periodic cell includes only one 

piezoelectric element. Thus the proposed beam structure includes Nb (Nb=Ng×N, 

Ng=2, 3, 4…, N=2, 3, 4…) Bragg-type periodic cells. In the EM periodic cell, every 

two adjacent piezoelectric elements are connected each other by an identical SSDI 

shunt, and the piezoelectric elements at the both ends of the EM periodic cell are also 

connected by identical SSDI shunt. Thus, all the piezoelectric elements are connected 

in a circle by identical SSDI shunts in one EM periodic cell. In addition, there is no 

electrical connection between every two adjacent EM periodic cells. Band structure 

and vibration transmittance of the proposed structure are investigated for elastic wave 

manipulation and low-frequency vibration control based on the wave propagation 

theory and finite element modeling. The article is organized as follows. Section 2 

introduces the basic principle of nonlinear SSDI technique and SSDI impedance 

estimation. In Section 3, the wave and finite element modeling approach for 

predicting the propagative wave within the proposed electromechanical metamaterial 

is presented. Section 4 aims at analyzing mechanical wave propagation characteristics 

of the proposed structure. In Section 5, the low-frequency structural damping 

performance of the proposed structure is experimentally validated and discussed. 

Conclusions on the presented work are eventually given in Section 6.  

2. Basics of nonlinear SSDI (Synchronized Switch Damping on Inductor) 

technique 

The principles of the nonlinear Synchronized Switch Damping on Inductor (SSDI) 

technique consist of quickly inverting the piezoelectric voltage on each displacement 

extremum of the structure, which yields a voltage magnification through a cumulative 

process as well as a decrease of the time shift between voltage and velocity. Such 

voltage inversion and shift processes therefore denote an increase of the mechanical 
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energy irreversibly converted into electrical energy, thus significantly reducing the 

mechanical energy within the structure. Specifically, in this research, as shown in 

Figure 1(a), a SSDI control shunt, composed of an electronic switch in series with an 

inductor, is applied between two identical PZTs bonded on the piezoelectric structure, 

which is represented schematically in Figure 1(b). When the PZT is in open-circuit 

condition, the piezoelectric voltage varies with the piezoelectric strain difference in a 

linear fashion. When an extremal voltage difference between two PZTs appears, the 

switch is closed, and an oscillator, composed of the inductance L and the equivalent 

inherent capacitance of the two PZTs, is formed. The switching time period is equal to 

half of the pseudo-period of this oscillator. For most of the time in one mechanical 

vibration period, the switch is open.  

The technique is adaptive to frequency shifts due to the extremum detection principles. 

Precisely, according to the literatures [32], the nonlinear SSDI impedance Z of the 

SSDI control shunt connected between two identical PZTs, and the SSDI impedance 

Zind of the SSDI control shunt independently connected to one PZT can be estimated 

by using first harmonic approximation in the frequency domain, yielding： 
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As described by above equations, the imaginary terms of the nonlinear SSDI 

impedances are the optimized imaginary parts of the electronic load in the 

independent and Dual-connected methods, which means that the SSDI shunt has the 

capability of automatic impedance adaptation. In addition, the inversion coefficient 

γdiff in the interconnected method is greater than γ since the equivalent piezoelectric 

capacitance in the Dual-connected topology is less than that in the independent 

method. The stability of control system is important for elastic wave metamaterial 

[34]. The SSDI control system has high system stability, which is validated by the 

reference [32].  
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(a) 

 

(b) 

Figure 1 (a) SSDI shunt connected between two identical PZTs of the structure; (b) 

schematic diagram of the differential SSDI control device. 

3. Modeling for the proposed beam metamaterial using SSDI Dual-connected 

electrical networks   

3.1 Overview of the proposed structure 

As shown in Figure 2(a), there are Nb (Nb=Ng×N, Ng=2, 3, 4…, N=2, 3, 4…) identical 

piezoelectric elements periodically and evenly spaced attached to the beam 

substructure in the proposed beam metamaterial with SSDI Dual-connected electronic 

networks. It is composed of Ng EM periodic cells. In the EM periodic cell of the 

proposed structure as shown in Figure 2(b), there are N Bragg-type periodic cells 

connected each other by the same SSDI shunt. Two Bragg-type periodic cells at both 

ends of the EM periodic cell are also connected by the SSDI shunt. There is no 

electrical connection between every two adjacent EM periodic cells which form the 

Dual-connected electrical connection. Each Bragg-type periodic cell include only one 

piezoelectric element. Herein, N not only denotes the number of Bragg-type periodic 

cells composing a minimal N-order EM periodic cell, but also the order of the 

Dual-connected electronic networks. The estimated impedance of the SSDI shunt 

between two PZTs is equal to Z. 

Physically, the EM periodic cell of proposed structure is comprised of two coupling 

media: electrical one and mechanical one. The mechanical medium includes several 

identical PZTs periodically placed throughout the beam substrate, while the electrical 

medium denotes the SSDI Dual-connected electrical networks coupled with the 
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electrical characteristics of the PZTs. Bragg-type band gap generation mechanism 

depends on the mechanical medium, and resonance-type band gap generation 

mechanism is mainly linked to the electrical medium. As shown in Figure 2, 

IM1, …IMi, …IMN (i∈[2,3,4,5,… N]) respectively denotes the currents flowing through 

the N SSDI shunt branches among piezoelectric elements. I1, …Ii, …IN (i∈[2,3,4,5,… 

N]) respectively refers to the the output currents from the piezoelectric elements of the 

EM periodic cell. Finally, V1, …Vi, …VN (i∈[2,3,4,5,… N]) are the respective output 

voltages of the piezoelectric elements in the EM periodic cell. 

 

i i+1 N
... ……

N-order EM Cell 1

i-1

Z Z

1

ZZ

Z

……...
i i+1 N

...

N-order EM Cell j

i-1

Z Z

1

ZZ

Z

...
i i+1 N

...

N-order EM Cell Ng

i-1

Z Z

1

ZZ

Z

...

…… ……

Switch L
: Z: electrical impedance;  Identical piezoelectric element; Beam substructure.Z

 

(a) 

i i+1 N
...

N-order EM Cell j

i-1

Z Z

1

ZZ

Z

...Bragg-type Bragg-type Bragg-type Bragg-type Bragg-type

p1I

p1V

( )1p i
I −

( )1p i
V −

( )p i
I

( )p i
V

( )1p i
I +

( )1p i
V +

( )p N
I

( )p N
V

M1
I ( )1M i

I − ( )M i
I

( )1M i
I +

( )M N
I

... Bragg-type ...
N-1
( )1p N

I −

( )1p N
V −N-2

( )2p N
I −

( )2p N
V −

Z Z

Bragg-type

 

(b) 

Figure 2 (a) Proposed piezoelectric metamaterial with SSDI N-order Dual-connected 

electronic networks; (b) one N-order EM cell of the proposed structure.  

 

In order to clearly exhibit the wave propagation properties and the schematics of the 

proposed structure with SSDI N-order Dual-connected electronic networks, the SSDI 

2-order Dual-connected electronic networks and the SSDI 3-order Dual-connected 

electronic networks for coupling the piezoelectric metamaterials are given and 

investigated as shown in Figure 3 and Figure 4. In one 2-order Dual-connected 

periodic cell of the proposed structure, two PZTs in every two adjacent minimal 

Bragg-type periodic cells are connected by the SSDI shunt. While in one 3-order 

Dual-connected periodic cell of the proposed structure, three PZTs in every three 

adjacent minimal Bragg-type periodic cells are connected each other by the SSDI 

shunt.  
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(b) 

Figure 3 (a) Proposed piezoelectric metamaterial with nonlinear SSDI 2-order 

Dual-connected electronic networks; (b) one 2-order EM cell of the proposed 

structure with SSDI 2-order Dual-connected electronic networks. 
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(b) 

Figure 4 (a) Proposed piezoelectric metamaterial with nonlinear SSDI 3-order 

Dual-connected electronic networks; (b) one 3-order EM cell of the proposed 

structure with SSDI 3-order Dual-connected electronic networks. 

3.2 Modeling of the proposed structure with SSDI N-order Dual-connected 

electronic networks. 

According to the FEM (finite element modeling) method of an Euler-Bernoulli 

piezoelectric beam [35], assuming the proposed beam structure fits Euler-Bernoulli 

beam hypotheses, and considering that the N-order Dual-connected periodic cell in the 
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proposed metamaterial can be divided into n finite elements, the fundamental EM 

relationships in the frequency domain within a N-order Dual-connected periodic cell 

can be given by: 
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According to the above electrical relationships, the expressions linking the 

generalized nodal displacement vectors dni and the output voltages Vp of the PZTs in 

one EM periodic cell can be obtained. For instance, the 2-order Dual-connected 

periodic cell (Figure 3) has the following relationships: 

 

1

2

131 21

232 22

1 1 0 0

1 1 0 0
0

0 1 0

0 0 1

p

p ni

p

p

VZ

VZ
d

Ij B j B

Ij B j B

ω ω
ω ω

− −     
    − −     + =
    − −
    − −      

  (8) 

Therefore, Vp
2-order can be obtained as: 
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Similarly, the 3-order Dual-connected periodic cell (Figure 4) has the following 

relationships: 
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And then, Vp
3-order can be obtained as: 
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Denoting the dynamical stiffness matrix of the short-circuited system [Acell], that is 

therefore equal to [ ] [ ]2

cell cell cellM j C Kω ω − + +  , and the dynamical relationships of the 

Dual-connected EM periodic cell can yield:  
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4. Wave propagation properties of the proposed structure 

4.1 Wave propagation comparison between the SSDI 2-order Dual-connected 

method and the SSDI 3-order Dual-connected method. 

For simplifying and predicting the wave propagation analysis of the proposed 

structure with SSDI N-order Dual-connected electrical networks, herein, the SSDI 

2-order and 3-order Dual-connected methods are investigated and their wave 

propagation performance are compared in the investigated frequency range based on a 

beam sample whose parameters are listed in Table 1 and Table 2 (the parameters 

corresponding to the experimental test structure used in Section 5). Figure 5 shows the 

investigated periodic cell with four different electrical medium methods for coupling 

the mechanical medium of the piezoelectric metamaterial. For fair comparison, each 

investigated periodic cell in different electrical medium methods includes 6 minimal 

Bragg-type periodic cells in this section. The dimension of a minimal Bragg-type 

periodic cell is 22 mm. Each piezoelectric element in the middle of the beam 

substructure of a minimal Bragg-type periodic cell is 10 mm long. Specifically, there 

is no electrical connection to Bragg-type periodic cells in the open circuit method, and 

6 independent EM periodic cells are considered in the SSDI independent method. For 

the SSDI 2-order and 3-order Dual-connected methods, each investigated periodic cell 

respectively includes 3 2-order EM periodic cells and 2 3-order EM periodic cells. 

 

Table 1 Dimensional and material properties of the beam substructure 

Young 

modulus 

Yb=190×109P

a 

Poisson 

ratio 
vb=0.21 

Beam 

density 

ρb=7875 

kg/m3 

Beam length Lb=176mm 
Beam 

width 

wb=35m

m
 

Beam 

thicknes

s 

tb=1.5mm 

 

Table 2 Dimensional and material properties of the piezoelectric element 

Short-circuit Compliance  
s11

E=10.7×10-12m2/N 
PZT length Lp=10mm 

s12
E=－3.3×10-12m2/N 

Charge coefficient d31=－108×10-12m/V
 PZT 

thickness 
tp=0.5mm 
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Relative dielectric constant εT/ε0=1150 PZT density 
ρp=7650 

kg/m3 

Zind

Z Z Z

Z Z

Z

Z Z

Z

Zind Zind Zind Zind Zind

(a) Open Circuit

(b) SSDI Independent

(c) SSDI 2-order Dual-connected

(d) SSDI 3-order Dual-connected

0.5mm

1.5mm

6mm

6mm

10mm

22mm

 

Figure 5 The investigated periodic cell (a) with no electrical connection to Bragg-type 

periodic cells; (b) with SSDI independent electrical networks; (c) with SSDI 2-order 

Dual-connected electrical networks; (d) with SSDI 3-order Dual-connected electrical 

networks. 

 

According to FEM analysis, the investigated periodic cell can be decomposed into 

several finite elements. In order to obtain propagation coefficients (attenuation and 

phase) of the investigated periodic cell under different electrical media, transfer 

matrix for the whole cell is derived using transfer matrix method. Herein, attenuation 

coefficient denotes the logarithmic decay of the vibration amplitude of an elastic wave 

propagating from one periodic cell to the next one. Phase coefficient denotes the 

phase difference between the wave in two adjacent periodic cells. Only positive 

direction is taken into account in following analysis and no structural damping 

([Ccell]= [0]) is considered. 

Figure 6 shows the attenuation and phase coefficients of propagative wave under 

different electrical boundary conditions. In open circuit condition, two separate 

Bragg-type bandgaps appear in the frequency ranges [7.2 kHz, 8.1 kHz]∪[29 kHz, 32 

kHz]. Due to Bragg scattering, bandgaps representing frequency intervals in which 
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wave propagation is not allowed or attenuated, are generated at wavelengths 

comparable to the spatial scale of the periodicities in the periodic structures. Such 

bandgaps  are  called  Bragg-type  bandgaps,  whose  central  frequencies  

are determined by the Bragg condition: 

 ( )1,2,3...
2

L nn nn
λ = = 
 

  (18) 

Herein, L is the lattice constant of the periodic system and λ is the wavelength of 

elastic waves in the host material. 

The SSDI independent method can achieve broad resonance bandgaps in the whole 

investigated frequency range, while the SSDI 2-order Dual-connected method can 

achieve better wave attenuation performance than the SSDI independent method in 

the frequency range [3.35 kHz, 13.9 kHz]. However, the wave attenuation 

performance of the SSDI 2-order Dual-connected method is worse than that of the 

SSDI independent method in other frequency domains. With the increase of the order 

of the Dual-connected electrical networks, it can be seen that the wave attenuation 

performance of the SSDI 3-order Dual-connected method is globally worse than that 

of the SSDI 2-order Dual-connected method. Therefore, it can be predicted that the 

increase of the order of the Dual-connected electrical networks will weaken the wave 

propagation performance of the piezoelectric metamaterial when the SSDI shunts are 

applied to the Dual-connected electrical networks for coupling the mechanical 

medium of the piezoelectric metamaterial. However, the SSDI 2-order 

Dual-connected networks is still worth to be further investigated for enhancing the 

wave attenuation performance in some specific frequency domains. 
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Figure 6 Attenuation coefficient curves of propagative wave in the proposed structure 

with different SSDI Dual-connected electrical networks (γdiff=0.6) compared with the 

SSDI independent method (γ=0.5) and the open circuit condition, corresponding to 

Figure 5. 

 

4.2 Wave propagation analysis for the proposed structure with SSDI 2-order 

Dual-connected electronic networks under different polarizations of the 

piezoelectric inserts. 

In order to further investigate wave propagation properties of the SSDI 2-order 

Dual-connected electrical networks for coupling the mechanical medium of the 

piezoelectric metamaterial, the 2-order Dual-connected periodic cell is divided into 

two kinds: PP configuration and PN configuration that are depicted in Figure 7. 

Specifically, PP configuration denotes two PZTs with the same polarization direction 

in one Dual-connected periodic cell and PN configuration two PZTs with opposite 

polarization direction in one Dual-connected periodic cell. More specifically, the signs 

of piezoelectric constant depend on the polarization direction of the PZTs (1, 2): when 

the direction is positive (P), it is assumed equal to 1, and when negative (N), it is 

assumed equal to -1.  
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(a) 2-order PP Dual-connected periodic cell

Z

P N

(b) 2-order PN Dual-connected periodic cell

Z

 

Figure 7 (a) 2-order PP Dual-connected periodic cell; (b) 2-order PN Dual-connected 

periodic cell. 

 

As shown in Figure 8 for the SSDI 2-order PP/PN Dual-connected methods, the 

attenuation and phase coefficients of propagative wave can be obtained from the 

previous analysis. Similarly in the open circuit condition, two separate Bragg-type 

stop bands appear in the frequency ranges [7.2 kHz, 8.1 kHz]∪[29 kHz, 32 kHz]. In 

addition, phase coefficient of propagative wave is equal to zero within the Bragg-type 

band gaps in the open circuit condition, as shown in Figure 9. For fairly comparing 

attenuation performance of resonant-type band gaps and band gap hybridization, 

performance comparison is conducted between two minimal independent periodic 

cells with two identical SSDI shunts and one minimal PP / PN Dual-connected 

periodic cell with one SSDI shunt as shown in Figure 8. Results show that, compared 

to the SSDI independent method, the SSDI Dual-connected method exhibits better 

attenuation performance in the frequency range [3.35 kHz, 13.9 kHz] for SSDI PP 

Dual-connected method, and in the frequency ranges [0 Hz, 840 Hz]∪[21.2 kHz, 35 

kHz] for SSDI PN Dual-connected method, although the enhancement is quite 

moderate for the latter case. Therefore, the SSDI PP / PN Dual-connected methods 

can use less SSDI shunts than the SSDI independent method to achieve better 

attenuation performance in some relatively broad frequency ranges close to 

Bragg-type stop bands. 
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Figure 8 Attenuation coefficient curves of propagative wave in the proposed 

metamaterial with the SSDI PP / PN Dual-connected networks (γ=0.5, γdiff=0.6). 

 

Figure 9 Phase coefficient curves of propagative wave in the proposed metamaterial 

with the SSDI PP / PN Dual-connected networks (γ=0.5, γdiff=0.6). 

 

Herein, the flexural vibration of beams along x-z direction is the only considered 

motion in beam metamaterials. In order to better demonstrate the underlying physical 

mechanisms of the 2-order PP/PN Dual-connected periodic cell, several eigenmode 

shapes (in different frequency regions) of the Dual-connected periodic cell including 

two identical PZTs in open circuit condition are calculated numerically by FE method 

based on a unit cell onto which Floquet-Bloch boundary conditions are imposed, 

together with the corresponding flexural vibration displacement vector fields, as 
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shown in Figure 10. To be specific, as shown in Figure 8, SSDI PN Dual-connected 

method achieves better attenuation performance than the SSDI PP Dual-connected 

method in the frequency range [0 Hz, 840 Hz]. For example, both of PZTs in the 

eigenmode shape A (167Hz) are bended and stretched as shown in Figure 10. Due to 

the same strain direction of two PZTs in the eigenmode shape A, the voltage 

difference between the two PZTs in the PN configuration is greater than that with the 

PP configuration, and thus PN Dual-connected periodic cell using SSDI shunt allows 

a much better mechanical to electrical energy conversion, and thus more electrical 

energy is dissipated into the switching branch.  

In the frequency range [3.35 kHz, 13.9 kHz], SSDI PP Dual-connected method 

exhibits better attenuation performance than the SSDI PN Dual-connected method as 

shown in Figure 8. One of two PZTs in the Dual-connected periodic cell is bended 

and stretched and the other one is bended and compressed (e.g., eigenmode shapes B1 

(4.18kHz) and B2 (11.717kHz) as shown in Figure 10), and thus the voltage 

difference between two PZTs with the PP configuration is greater than that with the 

PN configuration because of the opposite strain direction of two PZTs in these 

eigenmode shapes. Hence, the SSDI PP Dual-connected method can get better 

attenuation performance than the SSDI PN Dual-connected method under such 

conditions. 

In the frequency range [21.2 kHz, 35 kHz], better attenuation performance can be 

achieved in the SSDI PN Dual-connected method than the SSDI PP Dual-connected 

method as shown in Figure 8. As an example, eigenmode shapes C1 (22.385kHz) and 

C2 (27.789kHz), within this frequency range as shown in Figure 10, show that the 

two PZTs in one Dual-connected periodic cell are all bended and compressed and 

have the same strain direction, and thus the voltage difference in the PN configuration 

is higher than that in the PP configuration (as in the low frequency - [0 Hz, 840 Hz]. - 

region). Therefore, the SSDI PN approach can achieve better attenuation performance 

than the SSDI PP approach. 
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Figure 10 Eigenmode shapes in the different frequency regions, and the 

corresponding flexural vibration displacement vector fields (along axis x and along z) 

of the Dual-connected periodic cell (including two identical piezoelectric elements 

in the open circuit condition) represented by the color distribution and red arrows 

(displacement direction). 

 

 

Figure 11 shows 3D plots of attenuation coefficient of propagative wave for the SSDI 

PP / PN Dual-connected methods versus voltage inversion coefficient compared with 

the SSDI independent method. With the increase of voltage inversion coefficient, all 

the wave attenuation performances are enhanced in different methods. Although the 

SSDI independent has globally better attenuation performance than the SSDI PP / PN 

Dual-connected methods, SSDI PP Dual-connected shows better attenuation 

performance close to the first Bragg-type band gap, while the SSDI PN 

Dual-connected method exhibits better attenuation performance below 1.5 kHz and 

near the second Bragg-type band gap. 
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(a) 

(b) 

 

(c) 
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Figure 11 3D plot of attenuation coefficient of propagative wave for (a) SSDI 

independent and (b) SSDI PP Dual-connected and (c) SSDI PN Dual-connected 

method versus voltage inversion coefficient (
1

2
diff

γ γ= ). 

 

In addition, in order to further demonstrate the damping performance and attenuation 

ability of the SSDI PP / PN Dual-connected approaches, transmission factors of 

propagative wave in finite beam metamaterial with different SSDI connection 

configurations under free-free boundary condition are calculated and compared. 

Herein, a finite piezoelectric beam composed of 8 minimal Bragg-type periodic cells 

arranged in a row along x direction is adopted as a sample for the performance 

assessment, as shown in Figure 12 (a). The investigated piezoelectric beam is 176mm 

long. Figure 12 (b) and Figure 12 (c) respectively show the piezoelectric beam sample 

with SSDI independent electrical networks and with SSDI PP / PN Dual-connected 

electrical networks. External force is applied to one side of the beam whose 

displacement amplitude is assumed to be equal to D0, and the displacement amplitude 

of the other side of the beam is equal to D8. Therefore, transmission factor Ktrans of the 

finite beam metamaterial under various SSDI electrical boundary conditions can be 

obtained using the following equation: 

 

 8
10

0

20 logtrans

D
K

D

 
=  

 
  (19) 

 

Figure 12 (d) shows the transmission factor of the beam sample with various electrical 

boundary conditions. Specifically, all the SSDI methods have good damping 

performance in the whole frequency range compared to open circuit condition. In the 

first two vibration modes, the SSDI PN Dual-connected method exhibits the best 

damping performance. From the 3rd mode to the 6th mode, the SSDI independent 

method shows the best damping performance. From the 7th mode to the 10th mode, the 

SSDI PP Dual-connected method has the best damping performance. Therefore, it can 

be seen that in some relatively broadband frequency ranges, the SSDI PP / PN 

Dual-connected methods can indeed be applied to improve the damping performance 

using less SSDI shunt branches than the SSDI independent approach as shown in 

Table 3, and can also be better adapted to low frequency (first vibration modes) 

control. 
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(a) 

 

(b) 

 

(c) 

  

(d) 

Figure 12 (a) Free-free piezoelectric phononic beam without electrical shunting 

networks and (b) with the SSDI independent networks and (c) with the proposed 

SSDI PP / PN Dual-connected networks and (d) transmission factor of the finite beam 

with different electrical boundary conditions. (γ=0.5, γdiff=0.6).  
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Table 3 comparison of vibration transmittance performance and the number of SSDI 

shunts among different methods. 

Methods 

Vibration transmittance performance 

Number of the SSDI shunts 1st-2nd

Modes 

3rd-6th 

Modes 

7th-10th 

Modes 

Open circuit ------ ------ ------ 0 

SSDI independent ------ Best ------ 8 

SSDI PP Dual-connected ------ ------ Best 4 

SSDI PN Dual-connected Best ------ ------ 4 

 

5. Experimental validation for the low frequency damping performance 

In order to validate the low frequency damping performance and wave propagation 

control performance of the beam metamaterial featuring SSDI Dual-connected 

electrical networks, frequency responses of a clamped-clamped piezoelectric beam 

metamaterial using the different SSDI electrical networks are compared and discussed 

theoretically and experimentally in this section. The beam sample is composed of four 

Dual-connected periodic cells and the length of each Dual-connected cell is 44 mm. 

Parameters of the beam substructure and PZTs are those previously used and 

respectively listed in Table 1 and Table 2. The experimental setup is depicted in 

Figure 13. An external force, applied to the node between the 1st and the 2nd 

Dual-connected periodic cell, is generated by an electromagnet driven by an amplifier 

with the signal delivered by a function generator. The switching command for 

controlling the switching circuits is produced by a dSpace system for obtaining more 

precise experimental results. In practical applications, it is convenient to replace the 

dSpace system by integrated self-powered SSDI circuits as the switching control 

device [29]. An inductive displacement sensor is used for monitoring the displacement 

of the node between the 3rd and the 4th Dual-connected periodic cell. The steady state 

displacement is checked to remain sinusoidal for each measured point for ensuring the 

validity of the first harmonic approximation. Herein, only stationary waves can be 

considered since the steady state of flexural response is observed through the 

displacement of a single nodal point, which is consistent with the flexural nature of 

the vibration. Therefore, no phase delay for each considered mode appears. In order to 

better demonstrate the principle of SSDI PP/PN Dual-connected approaches on the 

periodic piezoelectric beam with finite length and certain boundary conditions and 
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consistent with the low frequency target, the first three resonant flexural vibration 

mode shapes of the investigated beam in the open circuit condition are calculated 

based on FE methods, as shown in Figure 14(a)-(c), respectively. Mode shape analysis 

demonstrates elastic wave propagation control and vibration control performance 

from the vibration damping aspect. 

 

 

 

 

Figure 13 Experimental setup. 
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(c) 

Figure 14 (a) First vibration mode shape, (b) second vibration mode shape and (c) 

third vibration mode shape of the clamped-clamped piezoelectric phononic beam at 

resonant frequencies in open circuit condition, and the corresponding flexural 

vibration displacement vector fields (the longitudinal strain along the axis x and the 

transverse strain along the axis z) represented by the color distribution and red arrows 

(displacement direction). 

 

In order to reflect the experimental behavior and demonstrate the experimental results, 

structural damping is considered in the following theoretical analysis. Herein, 

Rayleigh damping, defining the damping matrix Cunit of one element as a function of 

mass and stiffness matrices of this single element (respectively noted Munit and Kunit) 

as Cunit =β1Munit +β2Kunit, is introduced in the frequency response analysis. According 

to preliminary experimental measurements, the coefficients β1 and β2 have been 

determined to be equal to 20 s-1 and 13×10-6s, respectively.  

In experiments, the inversion coefficients in the SSDI independent and 

Dual-connected methods are equal to 0.5 and 0.6, respectively. Comparison of 

measured experimental displacement magnitudes and theoretical predictions in 

different methods is depicted in Figure 15(a) and (b), where the displacements have 

been normalized to the maximal displacement in open circuit conditions in each 

analysis (theoretical and experimental). Herein, it should be noted that although the 

inversion coefficients are set to moderate values for achieving better attenuation 
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performance, obvious excellent attenuation performance in different methods are not 

achieved since the structural damping of the used clamped-clamped piezoelectric 

beam is likely to be relatively high. However, the performance difference among 

different investigated methods can still be clearly found by comparison. 

As shown in Figure 15, both of the theoretical and experimental results show that 

damping performance of the SSDI PN Dual-connected method is the best among all 

the methods for the first vibration mode, while the SSDI independent method has the 

best damping performance for the second mode and similar damping performance 

with the SSDI PP Dual-connected method for the third vibration mode, which is in 

good agreement with elastic wave attenuation performance of the investigated beam 

metamaterial as shown in Figure 8 and Figure 12 (d). Hence, SSDI 2-order 

Dual-connected method, especially in the PN configuration, is suitable for simple 

(only 4 switches are required versus 8 for the independent method) yet efficient 

low-frequency vibration control purposes. 

In addition, frequency response results show that the SSDI PN Dual-connected 

approach achieves better damping performance than the SSDI PP Dual-connected 

approach in the first two vibration modes, and the SSDI PP Dual-connected method is 

better than the SSDI PN method in the third vibration mode, which can be explained 

by the principle of SSDI PP/PN Dual-connected approach. As shown in Figure 14(a), 

in the first vibration mode shape, two PZTs in each Dual-connected cell are all bended 

and compressed with the same strain direction, and thus the PN configuration can 

achieve higher voltage difference between two PZTs than the PP configuration, which 

causes that SSDI PN Dual-connected method exhibits better attenuation performance 

than SSDI PP Dual-connected method, as confirmed by theoretical and experimental 

frequency response results. As shown in Figure 14(b), in the second vibration mode 

shape, two PZTs in the 1st and the 2nd Dual-connected cells are bended and 

compressed with the same strain direction, and two PZTs in the 3rd and the 4th 

Dual-connected cells are bended and stretched with the same strain direction. Hence, 

similar to the first vibration mode, the SSDI PN Dual-connected method is better than 

the SSDI PP method in the second vibration mode demonstrated by theoretical and 

experimental frequency response results.  

As shown in Figure 14(c), the 1st and 4th dual-connected cells, in which two PZTs are 

bended and compressed with the same strain direction, fit the PN connection, while 

the 2nd and 3rd dual-connected cells, in which two PZTs have the opposite strain 

direction (one PZT is bended and compressed, and the other one is bended and 

stretched), do not fit for the PN connection. Obviously, the converse observation 

stands for the PP Dual-connected method for this mode. Thus, there is a 
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counter-performance when using solely PP or PN methods. However, as shown in 

Figure 14(c), the 2nd and 3rd Dual-connected cells overall achieves larger longitudinal 

strain (along axis x) than the 1st and 4th Dual-connected cells, and thus may induce 

larger voltage difference. Due to such characteristics, PP effect is prevalent in the 

third mode. Therefore, the SSDI PP Dual-connected method is better than the SSDI 

PN Dual-connected method in the third vibration mode, which is also demonstrated 

by theoretical and experimental frequency response results. In addition, from these 

observations, it can be drawn that PP and PN Dual-connected cells can be mixed to 

provide better attenuation performance for a specific targeted vibration mode. 

 

 

(a) 

 

(b) 

Figure 15 (a) Normalized theoretical displacement of the clamped-clamped 

piezoelectric phononic beam in different electrical boundary conditions; (b) 

normalized experimental displacement of the clamped-clamped piezoelectric 

phononic beam in different electrical boundary conditions. 
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6. Conclusion 

Piezoelectric beam metamaterial with nonlinear SSDI Dual-connected networks is 

proposed in this article. The wave propagation properties are investigated 

theoretically based on finite element modeling method and wave propagation theory, 

and low-frequency damping performance is also demonstrated theoretically and 

experimentally. Results showed that wave attenuation performance of the proposed 

structure becomes worse with the increase of the order of the SSDI Dual-connected 

electrical networks. However, the proposed SSDI 2-order Dual-connected electrical 

networks for coupling the mechanical medium of the proposed structure can achieve 

better band gap hybridization (between broadly resonant-type stop band mechanism 

and Bragg-type stop band mechanism) than the SSDI independent electrical networks. 

Overall, the proposed metamaterial with SSDI PP Dual-connected electrical networks 

exhibits better band gap hybridization and thus attenuation performance near the first 

Bragg-type band gap, hence being more suitable for low-frequency vibration control. 

On the other hand, the proposed metamaterial with SSDI PN Dual-connected 

electrical networks shows better band gap hybridization performance near the second 

Bragg-type band gap, and better attenuation performance in the medium frequency 

region is achieved. In addition, the proposed structure with SSDI 2-order 

Dual-connected electrical networks has less SSDI shunts than the piezoelectric beam 

metamaterial with the SSDI independent electrical networks for achieving better wave 

attenuation performance in some specific frequency domains, hence providing simpler 

implementation and being less cumbersome.  
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Appendix: A brief Finite element modelling of Euler-Bernoulli piezoelectric 

beam 

Under the Euler-Bernoulli assumptions, assumptions of the stress/strain components 

are made: 

 3 4 5 6

2 3 4 5 6

0

0

p p p p

p p p p p

T T T T

S S S S S

 = = = =
 = = = = =

  (20) 

And thus the constitutive piezoelectric equations can be further reduced as: 
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  (21) 

whereσ is the sign of the piezoelectric constant which depends on the polarization of 

the piezoelectric material. 

Then, the longitudinal stress of the PZT patch can be given as: 
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The electrical field is expressed as a function of the piezoelectric voltage pV : 

 
3

p

p

V
E

t
= −  (23) 

Where pt is the thickness of the PZT patch. 

Therefore, the stress 1

p
T of Eq.(22) can be further rewritten as: 

 ( ) ( ) ( )
31 11

1 1 2 2

11 12 11 12

,
E

p p

p p pE E E E
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d s
T E S V E

t s s s s
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 (24) 

where pE denotes elastic rigidity of the PZT patch in-plane strain. 

Normally, the longitudinal strain is defined as the distance from the second spatial 

derivative of the deflection 
3

u and the neutral axis
c

x . Based on the Euler-Bernoulli 

beam theory, the strain along axis x has the following form: 

 ( )
2

3
1 2c

u
S z x

x

∂= − −
∂

 (25) 

Assuming that 0z = is the lower surface of the beam, the neutral axis 
c

x of the beam 

element without PZT patches can be given by: 

 
2

b
c

t
x =   (26) 

where b
t  is the thickness of the pure beam without PZT patches. 

The neutral axes of different beam elements can also be written as: 

 ( )
2 2

PZT patches cover one surface
2

,  
2

b b p p b p p

c

b b p p

E t E t t t E
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E t E t

+ +
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where 
b

E denotes the elastic modulus of the pure beam without PZT patches -

( )2
1

b
b

b

Y
E

v
=

−
: b

Y  and b
v  respectively refer to the Young modulus and Poisson’s 

ratio of the pure beam substructure. 

Thus, 
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where 1

b
T  denotes the stress of the pure beam structure along x-axis. 

Therefore, the bending moment of the piezoelectric beam 
Euler B

bending
M −

 can be given as: 
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Where b
w is the width of the pure beam (the PZT patch is assumed to have the same 

width as the pure beam structure), 1T is the strain of the piezoelectric beam along 

x-axis. eq eq b b p pE I E I E I= + ( b
I  and pI  are respectively the second moment of area 

of the pure beam structure’s cross-section and the second moment of area of the 

piezoelectric element’s cross-section), and ( )
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1. Dynamical equations of the piezoelectric beam in the mechanical domain 

The elastic waves in the piezoelectric beam are governed by the following differential 

equations: 
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Thus, the mechanical equations of unit FE beam element can be given with Hermitian 

shape functions H(x) as: 
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A damping matrix should also be added in the mechanical equations to relate losses in 

experimental structures, which can be for example modeled as Rayleigh damping, 

yielding: 
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And thus, the mechanical equations of unit FE beam element in the frequency domain 

can be given as: 
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2. Dynamical equations of the piezoelectric beam in the electrical domain 

The electrical relationships between the electrical displacement and the piezoelectric 

voltage can be summarized as: 
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Then, by integrating the electrical displacement over the length pL of the PZT patch, 

the electric charge quantity Q of one PZT patch can be given in matrix-vector 

notation: 



37 

 

 { } { } { }2 3

N order ni N order

pQ B d B V
− −   = +     (35) 

[ ]
( ) [ ]31order

2
0

11 12

l
b pN

E E

w d t
B H dx

s s

σ− −
′′  =  + ∫  

 
( )

( )
2

31 33 11 12order

3

11 12

2 T E E

bN

pE E

p

w d s s
B L

t s s

ε
−

 − +    =    +
 

And thus, the output currents Ip of one piezoelectric element can be given as: 

 { } { } { }2 3

N order ni N order

p pI j B d j B Vω ω− −   = +      (36) 

where [ ]σ and 
pL   denote diagonal matrices which respectively depend on the sign 

of polarization direction of the bonded PZT patches and the length of the bonded PZT 

patches. 

Thus, the electro-elastic relationships of FE modeling of the periodic piezoelectric 

beam based on the Euler-Bernoulli beam theory can be summarized as: 
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 (37) 

 

More detailed FE modeling methodologies for piezoelectric metamaterials with 

electrical networks can be found in Chapter 2 of the dissertation [35]. 

 

 

 




