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ELEMENTARY GEOMETRY
SPLIT INTO DIFFERENT GEOMETRICAL PARADIGMS

Catherine Houdement and Alain Kuzniak
DIDIREM Université Denis Diderot, Paris VII France.

Since several years, we have developed a scientific investigation on the teaching of
Geometry, especially for pre-service teachers. This research is based on a specific
theoretical frame. We have chosen to give some elements of our frame and we hope
to present more consistent examples of our empirical studies during the working
group. For us elementary geometry appears to be split into three various paradigms:
natural geometry (Geometry l), natural axiomatic geometry (Geometry Il) and
formalist axiomatic geometry (Geometry Ill). We confront our approach with the
approach of van Hiele, which to date is not used in France. We obtain a synthesis
that we currently study in teachers training.

During their school career, students are faced with different mathematical worlds, at
least with a numerical one and a geometrical one. In the numerical world, the objects
(e.g. the numbers) are represented by “abstract signs” (juxtaposition of digits), that do
not evoke the quantity they refer to. In contrast to this, in the geometrical world
representations of objects often remain spatial objets. And in fact, the way is very
long from a real spatial object to the notion of “figural concept” described by E.
Fischbein (1993).

Well known researchers, like van Hiele (1986), have based a pedagogical approach to
Geometry upon the development of the conception of the figure and of its processing.
Students come along from a global and perceptive approach to a structural way to see
Geometry. The crucial point of this development is the appearance of deduction,
which allows the transition from “seeing to knowing” (Parzysz 1988)

For us, this way to Geometry is to a great extent correct but too strictly linear and
univocal especially if we want to understand the obstacles met by adults who want to
become teachers. Indeed, after Bachelar(jjj and Koyrzg, several thinkers have shown
the illusion of a peaceful evolution of scientific concepts even in mathematics. A kind
of culmination of this conflicting view of the history of the ideas is reached with
Kuhn’s works. Eor him, there are scientific revolutions that replace the old paradigms
with new ones”. We retain and develop this idea of different paradigms for
Elementary Geometry. Before presenting these paradigms, let us begin with an
example.

1. Rouen’s Bell
The problem was given to students in a pre-service teachers exam in Normandy.

! Bachelard G (1938). La formation de ['esprit scientifique. Paris :Vrin 1983 (transl Formation of the Scientific Spirit,
Clinamen P)

* for instance Koyré A (1957) From the closed World to the Infinite Universe John Hopkins Baltimore.

3 For the case of mathematics, see Gillies Ed (1992) Revolutions in Mathematics. Oxford University Press
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These students wish to become teachers in primary school; they have finished
university studies but not necessarily in mathematics.

The bell: We wish to enlarge the figure below (ABHC) into (A’B’H’C’) so that the length A’H’ is the double of
AB.

1) Make this enlargement with ruler and
compass. Leave the lines of construction
visible.

2) Some pupils say that the area of the final
figure is four times bigger than the one of the
initial figure. Are there correct? Justify your
answer.

If they are wrong, find the exact proportion
between the two areas.

The drawing given during the exam is made with CABRI and the candidates must draw
the figure with ruler and compass on white paper.

1.1 On the analysis of the figure

No hypotheses are explicitly given; students must find properties needed for the
construction at different scale. Immediately the problem requests a perceptive
analysis of the drawing, based upon the intuition in its first meaning: apprehension of
an object by vision. This intuition is related to a first typology of the geometrical
objects depending on knowledge of the individual who proceeds to the analysis.

Let us give a certain number of the possible hypotheses. Let I, J, K and L be the
points in the drawing below (not given on the original figure).

HI A is on the straight lines (BI) and (CJ)

H2 H is the midpoint of [BC]

H3 Angles IBC and JCB are equal to 60°.

H4  Angles BIC and CJB are right angles.

H5 Arc 1] is an arc of a circle of centre K and
radius KI.

H6  The circle of diameter AL is tangent in L
to the arc 1J.

H7 BC is an arc of a circle of centre A and
radius AB.

1.2 On the validation.

How can one validate all these hypotheses? Here we meet with two levels related to
two different conceptions of Geometry. In the first level, it is allowed to use




measurement tools and to experiment in the sensible world. In the second one,
reasoning relies on the mathematical properties of the abstract geometrical figure.

In the sensible world, the following tools play the main role: the ruler to verify co-
linearity, the set square (with angles of 90° and 60°ﬁ?t0 check the measure of angles
and the compass to confirm assertions about arcs of circles. In fact, in the last case,
the use of the compass invalidates H7: A is not the centre of an arc from B to C; the
respective centre is the midpoint of the segment [AL].

In the world of geometrical figures, we have common configurations like equilateral
triangles and, in this world, ruler and compass define the set of figures, which can be
constructed. In the elementary school, this set is not very large and it gives important
information about the relations underlying a figure. In our example, it leads to think
that angles measure 60° and curves are actually arcs of circles.

1.3 On the construction.
The effective construction of this drawing depends on the tool-kit that is used. If we
keep the tools used to check the hypotheses on angles and co-linearity, the set square
plays a fundamental role. Indeed, it is easy to construct the bell: draw AH, then the
perpendicular line to (AH) in H and drag the 60° angle of the set square, so you
obtain the equilateral triangle. In that case, the problem is solved in a homogeneous
paradigm where all the devices act in the sensible and measured world. We call this
first paradigm where reasoning is naturally close to experience and intuition: natural
geometry (Geometry I).
But the exercise asks for a ruler and compass construction. In that case, reasoning on
the drawing is not enough: we must connect figures with standard constructions using
mathematical properties. According to the chosen construction, it would be necessary
to apply Thales’ theorem or properties of medians in an equilateral triangle. The
paradigm has changed and a new Geometry appears that favours different ways of
reasoning and a new link to experience and intuition. We call this new one natural
axiomatic geometry (Geometry II).
In this exercise, the change of paradigms is not explicit and causes some sort of
misunderstanding. The problem is given in Geometry I and the test givers expect a
solution in Geometry II. This confusing play between two paradigms may be obvious
for an expert but not for a lot of students: we think that it is useful to make explicit
the existence of these different paradigms, above all in teachers’ training.
In this article we try to advance in the understanding of the complexity of the
geometry.

2. Three geometrical paradigms

In France, the term Geometry is present in all the mathematics curricula from
kindergarten to secondary school and university. Obviously it cannot have the same
signification: the drawing, for instance, does not play the same role, the figure can
even be an obstacle to certain type of geometry (Parzysz 1988), it can also disappear

* In France there are two sorts of set square: one with angles 90°, 30° and 60° and the other, less usual, with angles 90°
and 45°.



in other problems which favour the use of vectors. Our research aims to better
understand the different meanings determined by the same term of Geometry. In this
paper, we only consider Elementary Geometry defined as a theory of space, which
tends to represent the local properties of the real space. Its more elaborate form is R’
with the strucﬁlre of a Euclidean space.

Our research™ puts in evidence three different paradigms, what brings us to
distinguish various forms of geometry. To clarify these paradigms we used the forms
of knowledge of the space put in the evidence by Gonseth (1945-1955): intuition,
experiment, deduction. We revisited them in the light of recent contributions of the
historiography of mathematics and also in a perspective of teaching, which gives a
different sight on this knowledge.

Geometry I (Natural Geometry). The source of validation is the sensitive. It is
intimately related to reality. Intuition is often assimilated to immediate perception,
experiment and deduction act on material objects by means of the perception and the
instruments. The backward and forward motion between the model and the reality is
permanent and allowed to prove the assertions. For example, dynamic proofs are
accepted in this Geometry.

Geometry II (Natural Axiomatic Geometry). The source of validation bases itself
on the hypothetical deductive laws in an axiomatic system. A system of axioms is
necessary but the axioms are as close as possible to the intuition of the space around
us. The axiom system can be uncompleted, but the demonstrations inside the system
are necessary requested for progress and for reaching certainty.

At last, Geometry III (Formalist Axiomatic Geometry). In this Geometry, the
umbilical cord is cut between reality and axiomatic: axioms are not any more based
on the sensitive. The system of axioms can be without any relation to reality, what
Wittgenstein (1918) illustrated by the sentence: « Les axiomes d’une géométrie
peuvent ne contenir aucune verité. ». The type of reasoning is the same as inside
Geometry I, but the system of axioms is complete and independent of its possible
applications to the world. The only criterion of truth is consistency (i.e. absence of
contradictions).

Our fundamental principle is that the various proposed paradigms are homogeneous:
it is possible to reason inside one paradigm without knowing the nature of the other.
Students and professor, and it is a source of educational misunderstanding, are not
necessarily situated in the same one. We summarise different aspects of various
‘Geometries’ in the following table.

> The theoretical frame which we developed leans on an epistemological approach, based on the study of philosophic,
mathematical and didactic texts, as well as on mathematicians' papers on geometry. Our research is not only
theoretical but also empirical and we have verified the existence and problem set by geometrical paradigms all along
the school career and in the teachers training (Houdement & Kuzniak 1996, 1999).

6 Wittgenstein L (1964) 1975 Philosophische Bemerkungen. XV1.177 Gallimard p205. “The axioms of a geometry can
contain no truth”.(translation Houdement&Kuzniak)



Geometry [ Geometry II Geometry III
(Natural Geometry) (Natural Axiomatic (Formalist Axiomatic
Geometry ) Geometry)
Intuition Sensible, linked to the | Linked to the figures Internal to mathematics
perception, enriched by
the experiment
Experience Linked to the Linked to schemas of Logical
measurable space the reality

Deduction Near of the Real and Demonstration Demonstration based on a

linked to experiment | based upon axioms complete system of axioms.
Kind of Intuitive and physical Physical and Abstract Euclidean Space
spaces space geometrical space
Status of the | Object of study and of | Support of reasoning | Schema of a theoretical object,
drawing validation and “figural concept” heuristic tool
Privileged Self-Evidence and Properties et Demonstration and links
aspect construction demonstration between the objects. Structure.

3. Look at a drawing through our three paradigms
or the role of the drawing.

Let us consider the well-known problem of the construction of a triangle with the
length of its three sides given, for example lengths are 4 cm, 8 cm and 10 cm.

This problem can be given to young students, for instance if they dispose of many
different sticks of the three lengths. A first natural solution takes place in Geometry I.
The same problem can be given later using ruler and compass. The students realise an
experience in plane and the task is accomplished if the triangle exists really on the
table or on the paper. A closer look can show that certain triangles (i.e. certain
combination of lengths) are ‘strange’ or that others do not exist. Consequently, some
questions will emerge: does the triangle (4, 4, 8) exist or not? Why is it impossible to
draw the triangle (4, 4, 10)? In Geometry I a deduction linked to an experience can
solve the second question: the length of a side is longer than the sum of the two
others.

But the first question conducts to the general question of existence of a triangle: then
it is necessary to make a decision and to introduce a precise definition of a triangle.
This general problem of existence of a triangle with its three lengths can be resumed
by “If A, B and C are three points in a plane, the inequality AB < AC + BC is always
true.” But this affirmation is an axiom that means a point of departure into
Geometry II. In this way an experience in Geometry I can contribute to give sense to
axioms in Geometry II.

Another interpretation can be offered in Geometry III and produce the Chasles
theorem (about the sum of vectors): “If A, B and C are three points in a plane, the
three vectors verify the property: vector (AB)=vector(AC)+vector(CB)”. In this case,
the inequality on the lengths is a consequence of a calculus true in a wide variety of
spaces and not specially related to our real space.

It is easy to see that the same physical object (the drawing of a triangle) could permit
different types of thinking depending on the type of questions (the geometric



paradigm) it can help to answer. The first change of paradigm, the passage from
Geometry I to Geometry Il is really sensitive because it is the first time in
mathematics that the mental perspective on the object has to change drastically,
without any ‘visual’ change, symbol or pictorial aid.

4. Confrontation with the approach of Van Hiele.

To clarify and to deepen our paradigmatic conception of Geometry, it seems helpful
to conr;act our vision with that of Van Hiele. The way we follow was introduced by
Parzysz", the first attempt of a synthesis of our approach with that more classical one
by Van Hiele.

To be clear, we roughly summarise the Van Hiele levels:

e Level 0, visual level. Geometrical figures are recognised by their shapes; the
student recognises the external form, but cannot justify. Van Hiele speaks of
“spatial thinking” (Van Hiele 1986).

e Level 1, descriptive level. Properties of the figures permit to recognise them.
The student possesses a network of relations on the subject. Van Hiele speaks of
“geometric spatial thinking”.

e Level 2, informal deductive level. The third level is a theoretical level that
studies logical relations between properties of the figures. This level needs a
new language (definitions...). Van Hiele speaks of “mathematical geometrical
thinking”.

e Level 3, axiomatic deductive level. This level is a formal logical one, a study of
the nature of relations between certain theorems inside an axiomatic theory. Van
Hiele speaks of “logical mathematical thinking”.

e Level 4, structural level. Different axiomatic structures are envisaged.

We freely use Van Hiele’s levels outside his theory to give us good benchmarks

about the levels of the mathematical thinking of the students. In fact, it gives us a

different view, maybe more easily recognisable, on intuition, experiment and

deduction.

In our conception, it is indeed necessary to distinguish between the individual student

who gradually discovers geometry from the individual adult who is supposed to

master all the levels. If he (or she) is an expert, for him (or her) the use of levels
depends on the problem to be solved and also on the paradigm in which the problem
can be solved.

To cross geometrical paradigms and Van Hiele's levels and to take into account for

the interplay between the paradigms, we introduced a two dimensional table™

7 Parzysz B. (2001). Articulation entre perception et déduction dans une démarche géométrique en PE1. Actes du
XXVIII Collogue COPIRELEM de Tours. IREM Université de Tours

¥ Kuzniak et Rauscher (forthcoming 2003). Autour de quelques situations de formation en géométrie pour les
professeurs d’école. Actes du XXIX Collogue COPIRELEM de La Roche sur Yon.



Geometry [ Geometry II Geometry III
Level 0
Visualisation
Level 1 A
Anal Empirical pole
nalyse
Level 2 (Intuition and
Informal » experiment)
. Transition
deduction
Level 3 Theoretical pole
Deduction Transition (deduction)
demonstration
Level 4 v <
Abstract
Structural |
Technologic horizon Formal horizon

This table should be considered more as a dynamic plan of work in progress than a
fixed point of view. In particular, it will be necessary to clarify the nature of each
field of the table. For example, level 4 is not a part of Geometry II and when it occurs
in Geometry I, it is a sort of very refined geometry where tools developed in
Geometry II justify the empirical practices of Geometry I. There are indeed abstract
developments from Geometry I not shown at school but which were the objects of
theoretical works like Geometrography (Houdement and Kuzniak 2002). By using
Chevallard’s terminology (1999), our paradigms can be interpreted as different
praxeologies of Geometry. Here we find an important difference with Van Hiele’s
levels that present a hierarchy of thinking whereas our geometric paradigms try to
keep an internal coherence and are based on homogeneous theories.

Geometries do not pursue the same long-term objective and have different horizons
of preoccupations: a technological horizon for the GeometryI and a formal and
structural horizon for the Geometry III.

Geometry I integrates level 1 and 2 that send back to an empirical pole, a
sensitive geometry which contains intuition (insight), experiment and deduction on
material objects, that means objects only considered under their physical aspect.

Geometry Il contains level 3 in its component deduction and its axiomatic
system. But level 3 remains a level of transition. Geometry II’s relation to reality
remains important.

Geometry III contains level 4. The reality does not play a role any more. But
for many of us, opposite to Van Hiele, figurative representations offer important help
for investigations in this Geometry (Chartier 2002).

In Geometry I, expertise goes, in our table, top down from the empirical pole towards
the theoretical one. In Geometry III, it goes rather bottom up and the empirical pole
appears as a heuristic tool.

At school, the privileged way (marked in grey in the table) to advanced mathematical



and geometrical thought is that one which passes through transition on our table.
5. Conclusion

The passage from one type of Geometry to another is really complex: it comes to a
change of theory. This change can be seen as a revolution or as a dialectic and
progressive evolution.

At least, two transitions are not of the same nature. The first (from Geometry I to
Geometry I1) concerns the nature of the objects and of the space. The second (from
Geometry II to Geometry III) is more of an epistemological character. During
elementary school, the first transition is certainly the more crucial one and one could
think about the opportunity to teach Geometry II soon and to many middle school
students.

As we have said before, we first developed our theoretical frame for teacher training.
We try to make pre-service teachers sensible to these problems and to make them
explicit the different paradigms (as we have described in our paper for CERME II on
pretty (good) didactical provocation). In this perspective, our recent synthesis helps
us to understand the rapport to the geometry of the students by describing their work
with the help of the classification. The table also offers us hints for acting on the
students’ knowledge.

At least we also used our general frame to analyse various pedagogical
misunderstandings at middle and high school and even during the teacher training.
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