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Cartan connections and path structures with large
automorphism groups

E. Falbel, M. Mion-Mouton and J. M. Veloso

Abstract

We classify compact manifolds of dimension three equipped with a path structure
and a fixed contact form (which we refer to as a strict path structure) under the
hypothesis that their automorphism group is non-compact. We use a Cartan connection
associated to the structure and show that its curvature is constant.

1 Introduction

The general context of this paper is the quest to understand, and eventually classify, man-
ifolds equipped with both a geometric structure and a sufficiently large group of diffeomor-
phisms preserving that structure. One should mention here Zimmer’s program to classify
actions of infinite groups which preserve volume, and the vague general conjecture appear-
ing in [DG], stating that compact manifolds with both a rigid geometric structure and a
sufficiently large group of automorphisms can be almost classified.

Several instances of this topic were studied, in different geometric contexts and by nu-
merous authors. As an early example we can mention Ferrand-Obata ([Fe, O]) theorem
classifying conformal manifolds with non-compact groups of automorphisms which was gen-
eralized to other rank one geometries in [F1]. Another example is Ghy’s classification of
Anosov flows with smooth stable and unstable lines on compact three-manifolds ([Gh], see
more details below). This was generalised to higher dimensions in [BFL] using Gromov’s
theory of rigid geometric structures. As a last example, among others, we mention the clas-
sification in [Z] of compact Lorentz three-manifolds admitting a Killing flow not preserving
any Riemannian metric.

In the present work we used a description of the strict path geometric structure (see below)
as a Cartan geometry. The fact that one has a Cartan’s connection which is invariant under
an automorphism group with a dense orbit implies that some components of its curvature
vanish. This will allow us to classify all such spaces.

1.1 Strict path structures with a non-compact automorphism group

The particular instance of the above problem we analyze is that of three manifolds equipped
with a so called Lagrangian contact structure or path structure. This geometric structure
(see [IL] for a detailed introduction) has been studied since a long time (see, in particular,
Cartan’s study [Ca1]). It is related to the geometry of second order Ordinary Differential
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Equations (see [BGH, IL]). It is interesting to note that the first published paper by S. S.
Chern ([Ch]) concerns a generalization of this study to the case of third-order ODE.

A path structure on a three-manifold M is a couple of two (smooth) one-dimensional
distributions (E1, E2) such that E1 ⊕ E2 is a contact distribution. See [FV] for a theory
corresponding to a complexification of this structure. There are no obstructions to the
existence of such a structure on a given compact orientable manifold, and the model space
is the flag space of all sequences {V1 ⊂ V2 ⊂ R3}, where V1 is a line and V2 is a plane. This
model space can be thought as the space of lines with a marked point in the projective plane
RP 2, or simply as the homogeneous space SL(3,R)/B where B is the Borel subgroup of
upper triangular matrices.

If, moreover, we fix a contact form θ whose kernel is the contact distribution E1 ⊕ E2,
then we refer to the triplet T = (E1, E2, θ) as a strict path structure. The flat model for
strict path geometries is the Heisenberg space Heis(3) with two left-invariant directions and
a fixed left-invariant contact form, described in the paragraph 2.1. Its automorphism group
is Heis(3) ⋊ P , where P is a group isomorphic to R∗. On the other hand, a (non-flat)

constant curvature model is given by a left-invariant structure on S̃L(2,R) (the universal

cover of SL(2,R), see section 2.2), whose automorphism group is S̃L(2,R) × Ã, Ã being a
group isomorphic to R∗. The main result of this paper is the following.

Theorem 1.1 Let T be a strict path structure on a compact connected three-dimensional
manifoldM , whose automorphism group is non-compact for the compact-open topology. Then
if T is of class C3, or if T is of class C2 and has a dense Autloc(M, T )-orbit:

1. either (M, T ) is, up to a constant multiplication of its contact form, isomorphic to

Γ\S̃L(2,R) for some discrete subgroup Γ of S̃L(2,R) × Ã acting freely, properly and

cocompactly on S̃L(2,R);

2. or (M, T ) is, up to a finite covering, isomorphic to Γ\Heis(3) for some cocompact
lattice Γ of Heis(3).

Recall that the Autloc(M, T )-orbit of a point x ∈M is the set of points y ∈M for which there
exists a local automorphism f of T , defined from a neighborhood of x to a neighborhood of
y, and such that f(x) = y.

1.2 Contact-Anosov flows

Theorem 1.1 was inspired and is a generalisation of Ghys’ theorem [Gh] classifying contact-
Anosov flows with smooth invariant distributions on compact three-manifolds (see section 2.3
for definitions and more details about Anosov flows). Indeed, the one-parameter subgroup
defined by a contact-Anosov flow is non-compact, has dense orbits, and preserves a strict
path structure on a three-manifold.

Theorem 1.2 ([Gh]) Let (φt) be an Anosov flow on a compact connected three-dimensional
manifold, whose stable and unstable distributions Es and Eu are C∞, and such that Es⊕Eu

is a contact distribution. Then, up to finite coverings, (φt) is C∞-orbitally equivalent to the
geodesic flow of a compact hyperbolic surface.
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We recall that two flows are called orbitally equivalent, if there exists a diffeomorphism
between the manifolds supporting them, sending the orbits of the first flow to the one of the
second flow.

Ghys’ Theorem was generalized in [BFL] for Anosov flows in higher dimensions, using an
adapted linear connection due to Kanai in [Ka], who obtained previous classification results
in the case of geodesic flows. Another important ingredient in this classification result is
Gromov’s theory of rigid geometric structures. On the other hand, a classification of partially
hyperbolic diffeomorphisms preserving an enhanced path structure (that is a path structure
with a fixed transverse direction to the contact distribution) on compact three manifolds
was obtained in [Mm1]. An important distinction with the results of [BFL, Mm1] is that we
don’t impose in Theorem 1.1 the existence of special types of automorphisms, as in the case
of Anosov flows or partially hyperbolic diffeomorphisms.

On another note, the simplification of our method is apparent by the fact that we don’t
need to use Gromov’s open dense orbit theorem ([Gr]). The main thrust is to use an adapted
Cartan connection to obtain the two possible local models of the structure. Indeed, the
existence of a non-compact group of automorphisms and a dense orbit easily imply that most
components of the Cartan curvature vanish and that the structure is locally homogeneous.

We think that a similar strategy could be fruitful to obtain new dynamical rigidity results,
in higher dimensions, and for enhanced path structures.

1.3 Relations to other geometric structures

Any strict path structure T = (E1, E2, θ) on a three-dimensional manifold M induces on M
a Lorentzian metric g defined as follow: the Reeb vector field of θ is a unitary vector field
for g, orthogonal to the plane E1⊕E2, the directions Ei are isotropic, and g(u, v) = dθ(u, v)
for any (u, v) ∈ E1 × E2. In other words, any strict path structure is a refinement of a
three-dimensional Lorentzian metric. As a consequence, our result follows from the more
general classification of compact Lorentzian three-manifolds having a non-compact isometry
group, done by Frances in [F2, F3] (see also Zeghib [Z]), which is a more difficult result.
Related to this theorem we should point out Fang’s work [Fa] classifying geometric (that is,
preserving a pseudo-Riemannian metric) Anosov flows in dimension five. What is surprising,
and seems interesting to us, is that in the somehow specific case of strict path structures,
the Cartan connection described in paragraph 3.2 allows us to obtain the classification more
easily.

In the case of CR-structures (see [Ca2, CM] for the construction of the appropriate Car-
tan connections), if the group of automorphisms of a CR-manifold M (with no compacity
condition) does not act properly, then M is the sphere or the Heisenberg group with the
standard CR structures ([Sc]). Therefore, for a compact manifold, the group of automor-
phism is compact except for the sphere. On the other hand for pseudo-hermitian structures
(the analog of strict path structures in the CR context, see [W]) the automorphism group
can be interpreted as the isometry group of a Riemannian metric, so that any compact
pseudo-hermitian manifold has a compact automorphism group.

Let us emphasize that in the case of path structures, the situation is more complicated.
Indeed, it is possible to construct compact flat path structures having a non-compact auto-
morphism group, but whose fundamental group is a free group. Such examples have been
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constructed in [Mm2] as compactifications of path structures defined on the unitary tangent
bundle of non-compact hyperbolic surfaces.

Organization of the paper

We organize the paper as follows. In section 2 we review the definitions of path structures,
strict path structures, and define the models we work with. We also discuss the particular
case of Anosov contact flows, and explain in paragraph 2.3.3 how Theorem 1.2 follows from
Theorem 1.1. The proof of Theorem 1.1 is given in the next two sections.

In section 3 we define a Cartan connection associated to a strict path structure which is
the main geometric tool used in the remaining section.

In the last section we prove Theorem 1.1. We first prove in paragraph 4.1 that certain
components of the curvature must vanish if the automorphism group is large. This will
imply that the manifold is locally homogeneous, and we identify in 4.2 the two possible
global models as one which is flat, and the other having constant curvature.

Acknowledgements
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2 Strict path structures in dimension 3

Path geometries are treated in detail in section 8.6 of [IL] and in [BGH] where the relation
to second order differential equations is also explained.

Le M be a real three dimensional manifold and TM be its tangent bundle.

Definition 2.1 1. A path structure L = (E1, E2) on M is a choice of two sub-bundles
E1 and E2 in TM , such that E1 ∩ E2 = {0} and E1 ⊕ E2 is a contact distribution.

2. A strict path structure T = (E1, E2, θ) on M is a path structure with a fixed contact
form θ such that ker θ = E1 ⊕ E2.

3. A (local) automorphism of (M, T ) is a (local) diffeomorphism f of M that preserves
E1, E2 and α.

The condition that E1 ⊕ E2 be a contact distribution means that, locally, there exists
a one form θ on M such that ker θ = E1 ⊕ E2 and θ ∧ dθ is never zero. On the other
hand, for strict path structures we impose the existence of a globally defined contact form θ.
Therefore, strict path structures are unimodular geometries : there exists a canonical volume
form µT = θ ∧ dθ on M , preserved by the automorphism group of T (in contrast, neither
path structures nor enhanced path structures are unimodular). There exists a unique vector
field R such that dθ(R, ·) = 0 and θ(R) = 1, called the Reeb vector field of θ, that we will
also call the Reeb vector field of the strict path structure T . In particular, the distribution
E1 ⊕ E2 of a strict path structure T is thus oriented, and the manifold M supporting T is
orientable.
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Flat path structure is the geometry of real flags in R3. That is the geometry of the space
of all couples (p, l) where p ∈ RP 2 and l is a real projective line containing p. The space of
flags is identified to the quotient

SL(3,R)/BR

where BR is the Borel group of all real upper triangular matrices.

2.1 Flat strict path structure

The Heisenberg group

Heis(3) :=


1 0 0
y 1 0
z x 1

 ∣∣∣∣∣∣ (x, y, z) ∈ R3


is the model of strict path structures. We consider on Heis(3) the left-invariant structure

(RX̃,RỸ , Z̃∗), where X̃, Ỹ are the left invariant vector fields and Z̃∗ the left invariant 1-form
induced by the basis

X =
(

0 0 0
0 0 0
0 1 0

)
, Y =

(
0 0 0
1 0 0
0 0 0

)
, Z =

(
0 0 0
0 0 0
1 0 0

)
(1)

of its Lie algebra. To describe the automorphism group of this structure, we introduce the
subgroups

P =


 a 0 0

0 1
a2

0
0 0 a

 ∣∣∣∣∣∣ a ∈ R∗

 ⊂ G =


 a 0 0

y 1
a2

0
z x a

 ∣∣∣∣∣∣ a ∈ R∗, (x, y, z) ∈ R3


of SL(3,R), and we decompose G = Heis(3)P through the diffeomorphism

ψ : (h, p) ∈ Heis(3)× P 7→ hp ∈ G.

More precisely, ψ is a group isomorphism betweenG and the semi-direct productHeis(3)⋊P ,
where P acts on Heis(3) by p · h := php−1. We can thus identify G with the subgroup
Heis(3) ⋊ P of affine group automorphisms of Heis(3) of the form (h, φ) : x ∈ Heis(3) 7→
hφ(x) ∈ Heis(3), where h ∈ Heis(3) and φ ∈ P is the conjugation by an element of P . We
use this identification to define the following left action of G = Heis(3)⋊ P on Heis(3):

hp · x := h(pxp−1)

for any (h, p) ∈ Heis(3)× P and x ∈ Heis(3).
This action being transitive, it induces an identification ofHeis(3) withG/P , by choosing

the identity e for base-point. It is easy to verify that RX, RY and Z are fixed by the adjoint
action of P , so that G acts on Heis(3) by automorphisms of its strict path structure (G
is actually the whole automorphism group of this structure). If Γ is a discrete subgroup of
G acting freely, properly and cocompactly on Heis(3), we will always implicitly endow the
quotient Γ\Heis(3) with the induced strict path structure.

It is possible to construct such compact quotients admitting a non-compact automor-
phism group (for the compact-open topology). Indeed, with HeisZ(3) the cocompact lat-
tice of elements of Heis(3) having integer entries, it is easy to find a group automorphism
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φ0 of Heis(3) preserving HeisZ(3), and such that Deφ0 is diagonalizable with eigenvalues
(λ, λ−1, 1), where |λ| < 1 and RZ is the eigenline for the eigenvalue 1. Now, there exists
an automorphism Φ of Heis(3) such that φ := Φ ◦ φ0 ◦ Φ−1 ∈ P , and since φ preserves the
cocompact lattice Γ := Φ(HeisZ(3)), it induces a diffeomorphism φ̄ of the compact quotient
Γ\Heis(3). The dynamic of φ̄ is similar to the time-one of an Anosov flow, in the sense that
it contracts one of the two directions (RX̃,RỸ ) and expands the other one. In particular, φ̄
generates a non relatively compact subgroup of automorphisms of Γ\Heis(3).

The diffeomorphisms having this type of dynamics are called partially hyperbolic, and
the purpose of [Mm1] is precisely to classify those partially hyperbolic diffeomorphisms of
contact type whose invariant distributions are smooth, which is the discrete-time counterpart
of Ghys Theorem 1.2.

2.2 S̃L(2,R) as a strict path structure

Consider the universal cover π : S̃L(2,R) → PSL(2,R) of PSL(2,R). Let us use the follow-
ing usual basis for its Lie algebra sl2:

E = ( 0 1
0 0 ) , F = ( 0 0

1 0 ) , and H = ( 1 0
0 −1 ) . (2)

The Lie bracket relation [E,F ] = H shows that this basis defines a left-invariant strict path

structure (RẼ,RF̃ , H̃∗) on S̃L(2,R), where H∗ ∈ (sl2)
∗ denotes the linear form dual to H

(H∗(H) = 1, H∗(E) = H∗(F ) = 0). In order to describe the automorphism group of this
strict path structure, we define the right diagonal flow of PSL(2,R) as the flow by right
translations of the one-parameter subgroup A := {at}t∈R ⊂ PSL(2,R), where

at :=

[
et 0
0 e−t

]
. (3)

We denote by Ã the subgroup of S̃L(2,R) which projects to A on PSL(2,R), by {ãt} the one-
parameter subgroup inside Ã which projects to {at}, and we continue to call right diagonal

flow its flow by right translations on S̃L(2,R).
We define a (left) action of S̃L(2,R)× Ã on S̃L(2,R) by (g, a) ·x := gxa. Since the action

of the right diagonal flow preserves the strict path structure (because the adjoint action of

H preserves RE and RF ), S̃L(2,R)× Ã is contained in the automorphism group of S̃L(2,R)
(it is actually not difficult to verify that this is its whole automorphism group).

Let Γ0 be a cocompact lattice of S̃L(2,R), ρ : Γ0 → Ã be a morphism, and let us denote

by gr(ρ) the graph of ρ, which is a discrete subgroup of S̃L(2,R) × Ã. If gr(ρ) acts freely,

properly and cocompactly on S̃L(2,R) then following [Sa], we will say that ρ is admissible.

The subgroups Γ of S̃L(2,R)×Ã of the form gr(ρ) with ρ an admissible morphism from a co-
compact lattice, will be called admissible discrete graph-groups. Consequently, any quotient
Γ\S̃L(2,R) by an admissible discrete graph-group of S̃L(2,R)× Ã inherits of the structure

of S̃L(2,R), and we will always endow such a quotient Γ\S̃L(2,R) with this induced strict
path structure.
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2.3 Contact Anosov Flows

It happens that strict path structures T = (E1, E2, θ) naturally appear in an important
dynamical situation: the one of a compact three-manifoldM endowed with a contact Anosov
flow with smooth invariant distributions.

2.3.1 Anosov flows

We first recall the definition of an Anosov flow.

Definition 2.2 A non-singular flow (φt) of class C∞ of a compact manifold M is called
Anosov, if its differential preserves a splitting TM = Es ⊕ E0 ⊕ Eu of the tangent bundle,
where E0 = RX0 with X0 the (non-singular) vector field generating (φt), and where Es

and Eu are non-trivial distributions verifying the following estimates (with respect to any
Riemannian metric on M).

1. The stable distribution Es is uniformly contracted by (φt), i.e. there are two constants
C > 0 and 0 < λ < 1 such that for any t ∈ R and x ∈M :∥∥Dxφ

t|Es

∥∥ ≤ Cλt. (4)

2. The unstable distribution Es is uniformly expanded by (φt), i.e. uniformly contracted
by (φ−t).

The geodesic flow of a compact hyperbolic surface Σ, acting on its unitary tangent bundle
T1Σ, is an important example of three-dimensional Anosov flow (it is in fact the historical
motivation for the study of these flows, see [A]). To have a geometric image in mind,
the projections on Σ of the stable and unstable foliations of this flow are projections of
horocycles of the hyperbolic plane H2. These examples also have a natural description in
terms of homogeneous spaces. Let Σ be the quotient ofH2 by a cocompact lattice Γ0 (without
torsion) of its group of orientation-preserving isometries, identified with PSL(2,R). Since
PSL(2,R) acts simply transitively on the unitary tangent bundle of H2, one verifies that
the geodesic flow on T1Σ is smoothly conjugated to (a constant time-change of) the right
diagonal flow on the quotient Γ0\PSL(2,R), that was defined in the paragraph 2.2.

Let us emphasize that in the definition of Anosov flows, no regularity is requested on the
stable and unstable distributions. Even if they are automatically Hölder continuous (thanks
to the estimates (4)), Es and Eu have in general no reason to be differentiable (even if the
flow is C∞). This “lack of regularity” is in fact much more than a detail, as it is in a sense
responsible for the abundance of Anosov flows. For instance, the use of surgery methods
allowed Handel and Thurston to prove in [HT] the existence of non-algebraic Anosov flows,
which are not conjugated to any Anosov flow with smooth distributions.

From that perspective, geodesic flows of compact hyperbolic surfaces are very specific:
their stable and unstable distributions both are C∞ (because they arise from left-invariant
distributions on the Lie group PSL(2,R)). Their sum Es ⊕Eu is moreover a contact distri-
bution, and Anosov flows verifying this last property are called contact-Anosov. If (φt) is a
contact-Anosov flow with smooth invariant distributions, and X0 its infinitesimal generator,
then we define the canonical one-form θ of (φt) by θ|Es⊕Eu= 0 and θ(X0) = 1. This is a
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contact form of kernel Es⊕Eu, and by construction, (φt) preserves the strict path structure
T = (Es, Eu, θ) that we will call its canonical structure. Note that the structures obtained
in this way have a purely geometrical specificity: the Reeb flow of their contact form is a flow
of automorphisms of the structure T (which has no reason to be true in general). Indeed, the
Reeb vector field of the canonical structure of (φt) is its generator X0, so that the Anosov
flow itself is encoded in the structure T .

2.3.2 Deformations of geodesic flows

We now use the structures described in the paragraph 2.2 to obtain finite coverings and time
changes of geodesic flows of compact hyperbolic surfaces.

Let Γ0 be a cocompact lattice of S̃L(2,R). The finiteness of the level proved by Salein
in [Sa, Théorème 3.3.2.3] (see also [KR]) shows that its projection Γ̄0 = π(Γ0) in PSL(2,R)
is a cocompact lattice of PSL(2,R), and that the projection Γ0\S̃L(2,R) → Γ̄0\PSL(2,R)
induced by π is a finite covering. According to Selberg’s Lemma, Γ̄0 moreover contains
a finite index subgroup Γ′

0 ⊂ PSL(2,R) without torsion, and the right diagonal flow on

Γ0\S̃L(2,R) is finally a finite covering of the geodesic flow of the hyperbolic surface Γ′
0\H2.

As such, it is in particular an Anosov flow.
Now if ρ : Γ0 → Ã is an admissible morphism and Γ = gr(ρ) ⊂ S̃L(2,R) × Ã its graph-

group, the right diagonal flow of S̃L(2,R) induces a flow on the compact quotient Γ\S̃L(2,R)
(because Ã is abelian), and this flow remains Anosov.1 In fact, it is possible to prove that

Γ\S̃L(2,R) is diffeomorphic to Γ0\S̃L(2,R), and that we can choose a diffeomorphism send-
ing orbits of the right diagonal flow to orbits of the right diagonal flow (this is a consequence
of a result of Haefliger in [H], and the reader can find more details about this in [Gh,
Théorème 6.5]).

We have described a family of contact-Anosov flows that are orbit-equivalent to finite
covers of geodesic flows, and whose invariant distributions are smooth (since they arise from

left-invariant distributions of S̃L(2,R)).

2.3.3 Classification in dimension three

On the other hand, flows on the Heisenberg group are more restricted. One can ask if it is
possible for the Reeb flow of a compact quotient Γ\Heis(3) to be Anosov ? The following
result answers by the negative. This statement is probably already known, but we did not
find it in the literature, so we suggest a proof in the appendix A.

Proposition 2.3 Let Γ be a discrete subgroup of G acting freely, properly and cocompactly
on Heis(3). Then on the quotient Γ\Heis(3), the central flow of Heis(3) acts periodically.

Let us emphasize that the flow by left translations of the center of Heis(3), that we call its
central flow, induces a flow on any quotient Γ\Heis(3), which is precisely its Reeb flow.

With the help of Proposition 2.3, Theorem 1.1 implies that the contact Anosov flows
with smooth invariant distributions previously described in the paragraph 2.2 are in fact the
only possible examples, which implies in particular Ghys Theorem 1.2.

1This is non-trivial, at least for us, and can be explained as follows: [Z, Prop. 4.2] shows that this flow
is quasi-Anosov, and in dimension three, quasi-Anosov flows are Anosov according to [Ma, Theorem A].
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Corollary 2.4 ([Gh]) Let (φt) be a contact-Anosov flow with smooth invariant distributions
on a compact connected three-dimensional manifold. Then (φt) is smoothly conjugated to a

constant time-change of the right diagonal flow on a compact quotient Γ\S̃L(2,R), with Γ

an admissible discrete graph-group of S̃L(2,R)× Ã.

Proof. We apply Theorem 1.1 to the canonical strict path structure T of a contact-Anosov
flow (φt) with smooth invariant distributions. Since (φt) preserves a contact form and hence
a volume, it has no wandering points and is thus topologically transitive (see [Pu]). In par-
ticular, the automorphism group of T has a dense orbit. therefore, T verifies the hypotheses
of Theorem 1.1, and since (φt) is the Reeb flow of T and is not periodic, Proposition 2.3

says that T is isomorphic to Γ\S̃L(2,R) with Γ a discrete subgroup of S̃L(2,R)× Ã acting

freely, properly and cocompactly on S̃L(2,R). According to the work of Kulkarni-Raymond
in [KR] and Salein in [Sa, Theorem 3.3.2.3] (see also Tholozan, [Tho, Lemma 4.3.1]), such a

group Γ is the graph of an admissible morphism ρ from a cocompact lattice Γ0 of S̃L(2,R)
(details can be found in [Mm1, Fact 8.1]). This concludes the proof of Corollary 2.4. 2

3 A Cartan connection for strict path structures

Cartan connections were used by Cartan in his numerous studies and classifications of ge-
ometric structures. The main idea is to approximate a geometric structure by the model
space G/P , using a P -principal bundle with a Cartan connection (see the definition below)
which mimics the Maurer-Cartan form of G in the case of the model. The construction of
the appropriate Cartan connection associated to a geometric structure can sometimes be
difficult.

A Cartan connection for path structures was first obtained by Cartan in [Ca1]. One
can refer to [IL, BGH] for a modern treatment. In this section we will describe a Cartan
connection for strict path structures. In this reduction of the structure, the construction of
a Cartan connection is much easier. It was previously used in [FV] in a slightly more general
context of complexified tangent spaces of real three dimensional manifolds. In that case we
named a path structure with a fixed contact form a pseudo flag structure, in analogy to
pseudo-hermitian structures.

3.1 Preliminaries on Cartan geometries

We first define the main notions that we will use about Cartan geometries, and recall general
facts. The reader will find more details, and proofs of all the claims given concerning Cartan
geometries, in [Sh] for instance.

One starts with a model space X = G/P where P is a closed subgroup of a Lie group
G. We see then G as a right P -principal bundle over X, and the Maurer-Cartan form
ϖ : TG → g can be viewed as an identification of the tangent bundle of G with its Lie
algebra g, through left invariant vector fields. Denoting by Rp the right action of an element
p ∈ P , ϖ satisfies the equivariance property R∗

hϖ = Adh−1ϖ.
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The approximation by the model space of a geometric structure is described using a
Cartan connection on an appropriate principal bundle:

Definition 3.1 A Cartan geometry C = (M̂,ϖ) modelled on X over a manifold M is a
right P -principal bundle equipped with a form ϖ : TM̂ → g (called a Cartan connection)
satisfying the following properties.

1. At each point x̂ ∈ M̂ , ϖx̂ : Tx̂M̂ → g is an isomorphism.

2. If X ∈ p, and if X∗ : x̂ ∈ M̂ 7→ d
dt
|t=0x̂ · exp(tX) denotes the fundamental vector field

associated to X, then ϖ(X∗) = X.

3. If p ∈ P then R∗
pϖ = Adp−1ϖ.

A (local) automorphism f :M →M of the Cartan geometry C is a (local) diffeomorphism
f of M that lifts to a P -equivariant (local) diffeomorphism f̂ : M̂ → M̂ such that f̂ ∗ϖ = ϖ.
Such a lift to M̂ of an automorphism f is unique, and will always be denoted by f̂ .

The curvature form of a Cartan geometry (M̂,ϖ) overM is the g-valued two-form defined
on M̂ by

Ω(X, Y ) = dϖ(X, Y ) + [ϖ(X), ϖ(Y )].

Observe that in the flat case G → G/P , the Maurer-Cartan equation implies that Ω = 0.
Also, due to its construction, the curvature form vanishes on vertical vectors. One may use
the connection form to define the curvature map K : M̂ → L(Λ2g, g) by

K(x̂)(u, v) = Ωx̂(ϖ
−1
x̂ (u), ϖ−1

x̂ (u)). (5)

The vanishing of Ω on vertical vectors implies that the curvature map induces a map
K : M̂ → L(Λ2(g/p), g) which we denote by the same symbol. Observe also that an auto-
morphism of M preserves K, that is K ◦ f̂ = K.

The curvature form satisfies the following equivariance property

R∗
pΩ = Adp−1Ω.

This equivariance translates into an equivariance of the curvature map under the action of
P , where the right action of P on L(Λ2(g/p), g) is given by

(K.p)(u, v) = Adp−1(K(Adpu,Adpv)).

3.2 Normal Cartan geometry of a strict path structure

We now go back to strict path structures, by considering the specific case of Cartan geome-
tries modelled on Heis(3), the flat model of strict path structures introduced in paragraph
2.1. So G denotes from now on the subgroup of SL(3,R) defined by

G =


 a 0 0

y 1
a2

0
z x a

 ∣∣∣∣∣∣ a ∈ R∗, (x, y, z) ∈ R3
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and P ⊂ G the subgroup of G defined by

P =


 a 0 0

0 1
a2

0
0 0 a

 .

Writing the Maurer-Cartan form of G as the matrix w 0 0
ω2 −2w 0
ω ω1 w


one obtains the Maurer-Cartan equations:

dω − ω2 ∧ ω1 = 0

dω1 + 3w ∧ ω1 = 0

dω2 − 3w ∧ ω2 = 0

dw = 0.

We saw in the paragraph 2.1 that G is the automorphism group of the canonical left-
invariant strict path structure of Heis(3), and that its action induces an identification of
Heis(3) with the homogeneous space X = G/P .

LetM be a three-manifold equipped with a strict path structure T = (E1, E2, θ) of Reeb
vector field R. Now let X1 ∈ E1, X2 ∈ E2 be such that dθ(X1, X2) = 1. The dual coframe
of (X1, X2, R) is (θ1, θ2, θ), for two 1-forms θ1 and θ2 verifying dθ = θ1 ∧ θ2.

At any point x ∈M , one can look at the coframes of the form

ω1 =
1

a
θ1(x), ω2 = aθ2(x), ω = θ(x)

for a ∈ R∗.

Definition 3.2 We denote by π : M̂ → M the P -coframe bundle over M given by the set
of coframes (ω, ω1, ω2) of the above form. The structure group P acts on M̂ as follows

(ω′, ω′1, ω′2) = (ω, ω1, ω2)

 1 0 0
0 1

a
0

0 0 a


where a ∈ R∗.

We will denote the tautological forms defined by ω1, ω2, ω using the same letters. That
is, we write ωi at the coframe (ω1, ω2, ω) to be π∗(ωi).

Proposition 3.3 There exist unique forms w, τ 1 and τ 2 on M̂ such that

dω1 = 3ω1 ∧ w + ω ∧ τ 1, (6)

dω2 = −3ω2 ∧ w + ω ∧ τ 2, (7)

and τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0. (8)

Moreover, w = da
3a

mod ω1, ω2, ω.

11



Observe that the condition τ 1 ∧ ω2 = τ 2 ∧ ω1 = 0 implies that we may write τ 1 = τ 12ω
2

and τ 2 = τ 21ω
1.

Proof. First observe that, writing dθ1 = A1
10θ

1∧θ+A1
20θ

2∧θ+A1
12θ

1∧θ2 and dθ2 = A2
10θ

1∧
θ+A2

20θ
2∧θ+A2

12θ
1∧θ2, we obtain, differentiating dθ = −θ1∧θ2, that is 0 = dθ1∧θ2−θ1∧dθ2,

that A1
10 = −A2

20.
We differentiate the tautological forms ω1 = 1

a
θ1 and ω2 = aθ2 (by abuse of notation we

write θi = π∗(θi)). We have

dω1 = d(
1

a
) ∧ θ1 + 1

a
dθ1 = −da

a
∧ ω1 +

1

a
(A1

10θ
1 ∧ θ + A1

20θ
2 ∧ θ + A1

12θ
1 ∧ θ2)

= (−da
a

− A1
10ω − aA1

12ω
2) ∧ ω1 +

1

a2
A1

20ω
2 ∧ ω

which can be written
dω1 = −3w ∧ ω1 + ω ∧ τ 1,

for a horizontal form τ 1. We can choose τ 1 therefore satisfying τ 1 ∧ ω2 = 0. Analogously,

dω2 = da ∧ θ2 + adθ2 =
da

a
∧ ω2 + a(A2

10θ
1 ∧ θ + A2

20θ
2 ∧ θ + A2

12θ
1 ∧ θ2)

= (
da

a
− A2

20ω +
1

a
A2

12ω
1) ∧ ω2 + a2A2

10ω
1 ∧ ω

We write therefore
dω2 = 3w ∧ ω2 + ω ∧ τ 2,

for a horizontal form τ 2 satisfying τ 2∧ω1 = 0. Remark that w = da
a
−A2

20ω+
1
a
A2

12ω
1+aA1

12ω
2

(because A1
10 = −A2

20).
If other forms w′, τ ′1, τ ′2 with the condition τ ′1∧ω2 = τ ′2∧ω1 = 0 satisfy these equations

we obtain
3(w − w′) ∧ ω1 + ω ∧ (τ 1 − τ ′1) = 0

and
3(w − w′) ∧ ω2 + ω ∧ (τ 2 − τ ′2) = 0

It is clear then that these equations imply that w = w′, τ 1 = τ ′1 and τ 2 = τ ′2. 2

The Cartan connection can then be written as

ϖ =

 w 0 0
ω2 −2w 0
ω ω1 w


satisfying for an element

p =

 a 0 0
0 1

a2
0

0 0 a

 ∈ P,

R∗
pϖ = Adp−1ϖ =

 w 0 0
a3ω2 −2w 0
ω a−3ω1 w

 .
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The two other properties defining a Cartan connection being easily verified, C = (M̂,ϖ) is
finally a Cartan geometry modelled on G/P overM , which will be called the normal Cartan
geometry of (M, T ). Note that the strict path structure T = (E1, E2, θ) of Reeb vector
field R is determined by its normal Cartan geometry C through the following relations:

E1 = Dπ ◦ϖ−1(RX), E2 = Dπ ◦ϖ−1(RY ), R = Dπ ◦ϖ−1(Z). (9)

The fundamental property of the normal Cartan geometry, is that it has the same local
automorphisms as T .

Theorem 3.4 Let (M, T ) be a three-dimensional strict path structure, and C be the normal
Cartan geometry of T . For f a local diffeomorphism of M , f is an automorphism of T if,
and only if it is an automorphism of C.

Note that any automorphism f of T acts on M̂ by the following relation: for x̂ = (ω, ω1, ω2) ∈
π−1(x), f̂(x̂) is the coframe (ω, ω1, ω2) ◦Df(x)f

−1 at f(x). In other words, if s : U → M̂ is a
local section, s(x) = (θ, θ1, θ2)x with (θ, θ1, θ2) a local coframe field, then:

f̂(s(x)) = (f−1∗s)f(x). (10)

The curvature form of the normal Cartan geometry of T is given by

Ω =

 dw 0 0
τ 21ω ∧ ω1 −2dw 0

0 τ 12ω ∧ ω2 dw

 .

Using the notation (1) for the basis (X, Y, Z) of heis(3), this means that the curvature map
K of C has values in the following subspace of L(Λ2(g/p), g):

W =

{
K

∣∣∣∣ K(Z̄, X̄) =

(
W 1 0 0
τ21 −2W 1 0

0 0 W 1

)
, K(Z̄, Ȳ ) =

(
W 2 0 0
0 −2W 2 0
0 τ12 W 2

)
, K(X̄, Ȳ ) =

(
R 0 0
0 −2R 0
0 0 R

)}
.

(11)

Lemma 3.5 If W 1, W 2, τ 21 and τ 12 identically vanish, then the Reeb vector field is a Killing
field of the strict path structure.

Proof. Indeed in this case, denoting Z̃ := ϖ−1(Z) we have for any u ∈ TM̂ : dϖ(Z̃, u) =
K(Z,ϖ(u)) − [Z,ϖ(u)] = 0 since Z is in the center of g, and thus: LZ̃ϖ = d(ϖ(Z̃)) +
dϖ(Z̃, ·) = 0, which shows that Z̃ is the lift of a Killing vector field of C. The projection of
Z̃ being the Reeb vector field, this proves the claim. 2

A direct calculation shows that W is P -invariant, and if the components of K ∈ W are
denoted by W 1, τ 21 ,W

2, τ 12 , R with the above notations, and

p =

a 0 0
0 a−2 0
0 0 a

 ,
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then K · p has coordinates (W̃ 1, τ̃ 21 , W̃
2, τ̃ 12 , R̃) with

W̃ 1 = a3W 1, τ̃ 21 = a6τ 21 , W̃
2 = a−3W 2, τ̃ 12 = a−6τ 12 , R̃ = R. (12)

Example: Let SU(2) with its left invariant vector fields defined by a Lie algebra basis
(X1, X2, Y ) with [X1, X2] = Y and cyclic permutation of this commutation relation. The
Maurer-Cartan equations, for a dual basis θ1, θ2, θ, are:

dθ + θ1 ∧ θ2 = 0,

dθ1 + θ2 ∧ θ = 0,

dθ2 + θ ∧ θ1 = 0.

Consider now the strict path structure defined by (RX1,RX2, Y ). Defining the tauto-
logical forms ω1 = 1

a
θ1 and ω2 = aθ2, computng derivatives and comparing with Proposition

3.3 we obtain that,
dω1 = 3ω1 ∧ w + ω ∧ τ 1,

with 3w = da
a
and τ 1 = − 1

a2
ω2. Analogously

dω2 = −3ω2 ∧ w + ω ∧ τ 2,

with τ 2 = a2ω1.
The curvature form of the connection is given by

Ω =

 0 0 0
a2ω ∧ ω1 0 0

0 − 1
a2
ω ∧ ω2 0

 .

The fact that the terms τ i do not vanish reflects the fact that this strict path structure
does not appear in our theorem (see Lemma 4.1). Indeed one can easily show that its
automorphism group coincides with SU(2).

Example: Let SL(2,R) with its left invariant vector fields defined by a Lie algebra basis
(E,F,H) with [E,F ] = H as in section 2.2 . The Maurer-Cartan equations, for a dual basis
ω1, ω2, ω, are:

dω + ω1 ∧ ω2 = 0,

dω1 + 2ω1 ∧ ω = 0,

dω2 − 2ω ∧ ω2 = 0.

Comparing with Proposition 3.3 again we obtain that, for the strict path structure defined
by (RE,RF,H), τ 1 = τ 2 = 0 and locally, the pull-back by a section of the component w of
the connection is w = 2

3
ω. The curvature form of the connection is then given by

Ω =

 2
3
ω2 ∧ ω1 0 0

0 −4
3
ω2 ∧ ω1 0

0 0 2
3
ω2 ∧ ω1

 .
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One can think of SL(2,R) with the above strict path structure as a constant curvature
model. Observe that one can vary the curvature by choosing different multiples of H. The
curvature sign corresponds then to different choices of orientation.

Bianchi identities are obtained differentiating the structure equations. They are described
in the following equations:

dw = Rω1 ∧ ω2 +W 1ω ∧ ω1 +W 2ω ∧ ω2 (13)

dτ 1 + 3τ 1 ∧ w = 3W 2ω1 ∧ ω2 + S1
1ω ∧ ω1 + S1

2ω ∧ ω2 (14)

dτ 2 − 3τ 2 ∧ w = 3W 1ω1 ∧ ω2 + S2
1ω ∧ ω1 + S2

2ω ∧ ω2 (15)

Moreover, we have the relation

S1
1 = S2

2 = τ 12 τ
2
1 .

Remark 3.6 If τ 1 = 0 (respectively τ 2 = 0) on an open set, then the Bianchi identities
imply that W 2 = 0 (W 1 = 0) on this open set. More precisely, equations (14) and (15)
shows that W 1 (respectively W 2) is determined by τ 2 (resp. τ 1).

4 Proof of Theorem 1.1

From now on and in all this section, we consider a strict path structure T = (E1, E2, θ) on
a compact three-dimensional manifold M , and we denote by C = (M̂,ϖ) its normal Cartan
geometry constructed in the previous paragraph, where π : M̂ →M is a P -principal bundle
overM and ϖ : M̂ → g a g-valued Cartan connection on M̂ . We also denote by K : M̂ → W
the curvature map of C (see (11)).

4.1 Curvature types

With the notations of (11), we introduce the P -invariant line

D :=
{
K ∈ W

∣∣ W 1 = τ 21 = W 2 = τ 12 = 0
}

of the space W , and we say that a strict path structure (M,L) is of type D if its curvature
has values in D.

Lemma 4.1 Let (M, T ) be a compact connected strict path structure of class C2 having a
non-compact automorphism group.

1. (M, T ) is of type D.

2. Moreover if T is of class C3 or has a dense Autloc-orbit, then its curvature map is
constant.
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Proof. We recall that the automorphism group Aut(T ) of T preserves a volume form µT =
θ ∧ dθ on M . We will say that a point x ∈M is recurrent for the action of Aut(T ), if there
exists a sequence (fk) in Aut(T ), going to infinity in the sense that (fk) eventually leaves
every compact set (of Aut(T ) for the compact-open topology) once and for all (which will
be denoted by fk → ∞), and such that (fk(x)) converges to x. As M is compact, µT (M) is
finite and Poincarré recurrence Theorem applies: since Aut(T ) is non-compact, µT -almost
every point ofM is recurrent for the action of Aut(T ) (see for instance [FK, Theorem 2.2.6]).
In particular, the set of recurrent points is dense in M .
1) Let x ∈ M be a recurrent point for the action of Aut(T ), and fk → ∞ in Aut(T ) such
that fk(x) → x. Let us assume by contradiction that T is not of type D at x, i.e. that
for some x̂0 ∈ π−1(x), one of the components of K(x̂0) different from R is non-zero. To fix
the ideas, we assume that τ 12 (x̂0) ̸= 0 (the proof being the same in the other cases, mutatis
mutandis). Introducing

M̂0 :=
{
x̂ ∈ M̂

∣∣∣ τ 12 (x̂) = τ 12 (x̂0)
}
,

the action (12) of P on W shows that for any x̂ ∈ M̂ , if τ 12 (x̂) ̸= 0 then the fiber of x̂
meets M̂0. Consequently, M0 := π(M̂0) is open and M̂0 is a reduction of the restriction of
π : M̂ → M to M0, whose structural group is finite according to (12) (of cardinal 1 or 2
depending on which component is non-zero). Since (fk(x)) converges to x ∈M0, there exists
x̂k ∈ M̂0 ∩ π−1(fk(x)) converging to x̂0. But the fk being automorphisms of C, their lifts
f̂k in M̂ preserve K, and thus M̂0. Hence for any k, f̂k(x̂0) and x̂k are in the same fiber of
the finite principal bundle M̂0. Since (x̂k) converges in M̂0, this forces some subsequence of
(f̂k(x̂)) to do the same. But M is connected and the f̂k preserve the parallelism ϖ, so the
corresponding subsequence of (fk) is convergent, which contradicts fk → ∞. Finally, K has
values in D above any recurrent point for Aut(T ), and thus everywhere by density of the
recurrent points in M , and continuity of K.
2) The curvature of T is thus reduced to the continuous real-valued function R, which is
constant on each fiber of M̂ according to the equation (12), and preserved by local auto-
morphisms of (M, T ). If T has a dense Autloc-orbit, then the claim immediately follows.
We now assume that T is of class C3, and we still denote by R : M → R the map induced
by the only remaining curvature component on M , which is of class C1. By the density of
recurrent points for Aut(M, T ) [FK, Theorem 2.2.6], it is thus sufficient to show that the
differential of R vanishes at recurrent points to ensure that R is constant, finishing the proof
of the Lemma. Let x ∈ M be recurrent, i.e. there exists a sequence fk of automorphisms
such that fk → ∞ and lim fk(x) = x. Let s = (θ, θ1, θ2) : U → M̂ be a local section of π
around x, and let denote dR = R0θ + R1θ

1 + R2θ
2 in this local coframe field. According to

Lemma 3.5, we already know that R is a Killing vector field and thus that R0 ≡ 0. There
exists ak ∈ R∗ such that

(f ∗
k (θ, θ

1, θ2))x = (θ, akθ
1, a−1

k θ2)x, (16)

which is equivalent to f̂k(s(x)) = s(fk(x)) · ak. Since R ◦ fk = R, (16) implies (dR)x =
d(R◦fk)x = (f ∗

kdR)x = R0(fk(x))θx+R1(fk(x))akθ
1
x+R2(fk(x))a

−1
k θ2x, and thus R1(fk(x)) =

R1(x)a
−1
k and R2(fk(x)) = R2(x)ak. Now if R1(x) ̸= 0 or R2(x) ̸= 0, this implies lim ak = 1

since lim fk(x) = x, hence that the sequence fk is convergent which contradicts the assump-
tion. Finally R1(x) = R2(x) = 0. 2
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Remark 4.1 Note that according to the remark 3.6, it actually suffices to prove that τ 21 =
τ 12 = 0 to obtain this Lemma.

4.2 Constant curvature models and mutations

The goal of this section is to describe the local geometry of T , by proving the following
result.

Proposition 4.2 Let (M, T ) be a compact connected strict path structure having a non-
compact automorphism group and a dense Autloc-orbit. Then:

1. either T is, up to a constant multiplication of its contact form, induced by a (SL(2,R)×
A,SL(2,R))-structure on M ,

2. or T is induced by a (Heis(3)⋊ P,Heis(3))-structure on M .

In this statement, we denote by A the subgroup of diagonal matrices of SL(2,R) and we
use the definitions of paragraphs 2.1 and 2.2 for the respective actions of SL(2,R) × A on
SL(2,R) and Heis(3)⋊ P on Heis(3).

Remark 4.3 One should note that Lemma 4.1 immediately implies that the only local models
are the constant curvature ones in Example 3.2, together with the flat one. Indeed, if the
curvatures are constant the structures are determined. But, in the following, we also give an
exposition of the constant curvature models using mutations (see [Sh] Section 6).

Let us briefly recall the notion of (G,X)-structure. Let G be a group of diffeomorphisms
of a manifold X, verifying the following condition: for any g, h in G, if the action of g and
h coincide on some non-empty open subset of X, then g = h (this is clearly verified for the
models of Proposition 4.2, the action of G on X being real analytic). A (G,X)-structure
on M is the data of a maximal atlas of charts from M to X whose transition maps are
restrictions of left translations by elements of G. If G preserves on X a strict path structure
TX , then any (G,X)-structure S on a manifold M induces on M a strict path structure
TS , by saying that the (G,X)-charts of S are local isomorphisms from TS to TX . In the
proposition 4.2, Heis(3) (respectively SL(2,R)) is implicitly endowed with its Heis(3)⋊P -
invariant (resp. SL(2,R) × A-invariant) strict path structure, described in paragraph 2.1
(resp. 2.2).

Now, we assume that X is the model of a Cartan geometry, i.e. that X = G/H with
H a closed subgroup of a Lie group G, such that X is connected and the action of G on X
is faithful. This is satisfied for the models of Proposition 4.2, with G/H being respectively
(Heis(3) ⋊ P )/P , or (SL(2,R) × A)/∆ with ∆ = {(a, a) | a ∈ A}. Let us denote by CX
the Cartan geometry defined on X by the canonical projection G → G/H = X and the
Maurer-cartan connection on G. Any (G,X)-structure S on a manifold M induces a flat
Cartan geometry CS on M (unique up to isomorphism), by saying that its (G,X)-charts
are local isomorphisms of Cartan geometries from (M, CS) to (X, CX).2 One of the principal

2The transition maps of the maximal (G,X)-atlas defining the transition maps of the Cartan bundle.
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interests of Cartan geometries lies in the converse of this statement: any flat Cartan geom-
etry modelled on G/H is induced by a (unique) (G,X)-structure. This claim is proved for
instance in [Sh, Chapter 5 Theorems 5.1 and 5.2].

From now on and until the end of paragraph 4, we prove the Proposition 4.2. According
to Lemma 4.1, the curvature of the normal Cartan geometry C = (M̂,ϖ) of T is constant
equal to some K ∈ D, whose coordinate is denoted by R ∈ R with the notations (11). If
R = 0, C is flat and we saw previously that T is then induced by a (Heis(3)⋊ P,Heis(3))-
structure on M . We assume from now on that R ̸= 0, and we prove that T is induced by a
(SL(2,R)× A,SL(2,R)) structure on M .

The Lie algebra of G = Heis(3)⋊ P is the semi-direct product g = heis(3)⋊ p where p
is the Lie algebra of P , whose adjoint action on heis(3) is described by

[D,X] = X, [D, Y ] = −Y, [D,Z] = 0, (17)

with D the generator of p verifying

exp(tD) =

e t
3 0 0

0 e−2 t
3 0

0 0 e
t
3

 .

We define a bilinear g-valued application [·, ·]′ on g by the following relation for u, v ∈ g×g:

[u, v]′ := [u, v]−K(u, v). (18)

While it is clear that [·, ·]′ is skew-symmetric, it is proved in [Sh, Chapter 5 Proposition 6.8]
(using the Bianchi identity verified by the Cartan curvature) that [·, ·]′ actually verifies the
Jacobi identity, i.e. is a new Lie bracket on g. We denote by g′ the Lie algebra defined by
the vector space g endowed with the Lie bracket [·, ·]′. Denoting r := 3R

2
̸= 0, g′ is described

by the following relations:

[X, Y ]′ = Z − 2rD, [D,X]′ = X, [D, Y ]′ = −Y, [Z,X]′ = [Z, Y ]′ = [D,Z]′ = 0. (19)

The Lie algebra of SL(2,R) × A is the direct sum sl2 ⊕ a, and the copy of H = ( 1 0
0 −1 )

in the right factor of sl2 ⊕ a is denoted by T . Note that [T, ·] = 0 on sl2 ⊕ a. We define a
group isomorphism Λ: P → ∆ by

Λ

a 1
3 0 0

0 a−
2
3 0

0 0 a
1
3

 =

((
a

1
2 0

0 a−
1
2

)(
a

1
2 0

0 a−
1
2

))
. (20)

Denoting by ε ∈ {±1} the sign of r, we define a vector space isomorphism λ : heis(3)⋊ p →
sl2 ⊕ a by:

λ(X) =
√

|r|E, λ(Y ) = −ε
√
|r|F, λ(Z) = rT, λ(D) =

1

2
(H + T ). (21)
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Lemma 4.2 1. λ is a Lie algebra isomorphism from g′ to sl2 ⊕ a.

2. The differential of Λ at the identity coincide with λ|p : p → a.

3. For any u, v ∈ g: [λ(u), λ(v)] = λ([u, v]) modulo a (the brackets being respectively in
sl2 ⊕ a and heis(3)⋊ p).

4. For any p ∈ P : λ ◦Adp = AdΛ(p)) ◦ λ (the adjoint actions being respectively within the
Lie groups Heis(3)⋊ P and SL(2,R)× A).

Proof. 1. This a straightforward verification from the Lie brackets relations (19).
2. This directly follows from the definitions of Λ and λ.
3. In fact for u, v ∈ g, K(u, v) ∈ p and [λ(u), λ(v)] = λ([u, v]′) = λ([u, v])− λ(K(u, v)), the
first equality using the first claim of the Lemma.
4. For p ∈ P written as in (20), the matrix of Adp in the basis (X, Y, Z,D) is the diagonal
matrix [a, a−1, 1, 0], and the matrix of AdΛ(p) in the basis (E,F,H, T ) is the diagonal matrix
[a, a−1, 1, 1]. The claim directly follows from the definition of λ. 2

We emphasize that in order to define a Cartan geometry modeled on G/P , the global
model G/P is in fact not necessary: the triplet (g, p, P ) along with a morphism Ad : P →
Aut(g) extending the adjoint representation Adp : P → Aut(p) of P , are in fact sufficient to
define Cartan geometries and study all their properties (see [Sh, Chapter 5 Definitions 1.1
and 3.1]). Denoting by d the Lie algebra of ∆, we consider on M the Cartan geometry C ′

modeled on (sl2 ⊕ a, d,∆), whose ∆-principal bundle is simply M̂ endowed with the action
of ∆ given by Λ−1, and whose Cartan connection is ϖ′ := λ ◦ϖ. It is not difficult to verify,
from the properties of Lemma 4.2, that C ′ is indeed a Cartan geometry. The reader will
find details in [Sh, Chapter 5 Proposition 6.3], where Sharpe calls a map λ verifying the
properties of Lemma 4.2, a model mutation from (heis(3)⋊ p, p, P ) to (sl2 ⊕ a, d,∆).

Moreover, the Lie bracket [·, ·]′ was precisely defined so that the curvature map K ′ : M̂ →
L(Λ2(sl2 ⊕ a), sl2 ⊕ a) of C ′ vanishes. In fact, for u′, v′ ∈ sl2 ⊕ a, let introduce the ϖ′-
constant vector fields U and V on M̂ , defined by ϖ′(U) ≡ u′ and ϖ′(V ) ≡ v′. Note
that, with u = λ−1(u′) and v = λ−1(v′), U and V are also the ϖ-constant vector fields
associated to u′ and v′: ϖ(U) ≡ u and ϖ(V ) ≡ v. The definition of K ′ and the Cartan
formula for dϖ′ give K ′(u′, v′) = [u′, v′]−ϖ′([U, V ]), and also K(u, v) = [u, v]g −ϖ([U, V ]).
Therefore, since λ is a Lie algebra isomorphism from g′ to sl2⊕a, the definition of [·, ·]′ gives
K ′(u, v) = λ([u, v]g′)− λ ◦ϖ([U, V ]) = λ([u, v]g −K(u, v)−ϖ([U, V ])) = 0.

The Cartan geometry C ′ being flat, it is induced by a (SL(2,R)×A,SL(2,R))-structure
onM (see for instance [Sh, Chapter 5 Theorems 5.1 and 5.2]). This (SL(2,R)×A,SL(2,R))-
structure induces on M a path structure U = (F 1, F 2, θ′) whose Reeb vector field is denoted
by R′, which is characterized by

Dπ ◦ϖ′−1(RE) = F 1,Dπ ◦ϖ′−1(RF ) = F 2,Dπ ◦ϖ′−1(H) = R′.

Sinceϖ′ = λ◦ϖ, and λ−1(H) = 2D− 1
r
Z, we thus have Dπ◦ϖ−1(RX) = F 1, Dπ◦ϖ−1(RY ) =

F 2, Dπ ◦ϖ−1(Z) = −rR′ (because Dπ ◦ϖ−1(D) = 0). According to the link (9) between the
normal Cartan geometry C and its induced strict path structure T = (E1, E2, θ), (F 1, F 2, θ′)
is thus equal to (E1, E2,−rθ). In other words, the (SL(2,R)×A,SL(2,R))-structure of M
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is associated with the original strict path structure T , up to a constant multiplication of its
contact form, which concludes the proof of Proposition 4.2.

4.3 Completeness of the structure

A classical fact about (G,X)-structures is the existence of a developping map δ : M̃ →
X̃ between the respective universal covers of M and X, which is a local diffeomorphism
extending the (G,X)-charts of the atlas. In our case, δ is a local isomorphism of strict path

structures, and X̃ is either Heis(3) or S̃L(2,R). Denoting by G̃ the group Heis(3)⋊P in the

first case and S̃L(2,R) × Ã in the second one, δ is equivariant with respect to a morphism
ρ : π1(M) → G̃ called the holonomy morphism. If δ is a covering map, then the (G,X)-
structure is said to be complete and δ is a diffeomorphism. In this case Γ := ρ(π1(M)) acts
freely, properly and cocompactly on X̃, yielding an isomorphism of (G,X)-structures (and
thus of strict path structures) betweenM and Γ\X̃ (for more details about (G,X)-structures,
see for instance [Thu]).

To conclude the proof of Theorem 1.1, we are thus left to understand that the (G,X)-
structure of the compact manifold M is complete. This completeness follows from previous
works about Lorentzian metrics in [DZ] and [Kl], that we now present. We then give an
independent argument, in a specific dynamical situation.

End of the proof of Theorem 1.1 If G preserves on X a Lorentzian metric g0, the (G,X)
structure of M induces a metric g for which δ is locally isometric. If g is complete, then δ is
a covering map (and if g0 is complete, the converse is true).

The group Heis(3) ⋊ P preserves on Heis(3) the (non-flat) left-invariant Lorentzian
metric g0 called Lorentz-Heisenberg and described as follows on its Lie algebra heis(3): Z has
norm 1, Vect(X, Y ) is orthogonal to X, X and Y are isotropic vectors, and g0(X, Y ) = 1.
It is shown in [DZ, §8.1] that any compact Lorentzian manifold locally isometric to the
Lorentz-Heisenberg metric is complete, and that if a quotient Γ\Heis(3) is compact with
Γ ⊂ Heis(3)⋊P , then Λ := Γ∩Heis(3) has finite index in Γ. In other words, any compact
(Heis(3)⋊P,Heis(3))-structure is, up to a finite covering of M , a quotient Γ\Heis(3) with
Γ a cocompact lattice of Heis(3), which concludes the proof in the case of Heis(3).

The left-invariant Lorentzian metric of S̃L(2,R) defined by the Killing form on sl(2) is
the universal cover of the Anti-de-Sitter space (local model of curvature −1 of Lorentzian

metrics) and is preserved by the action of S̃L(2,R) × Ã. Klingler showed in [Kl] that any
compact Lorentzian manifold locally isometric to Anti-de-Sitter is complete, which concludes
the proof in the case of S̃L(2,R), and hence the proof of Theorem 1.1. 2

Let us give an alternative and easier argument for the completeness of the structure,
independent from [DZ] and [Kl], under the following stronger dynamical hypothesis.

(H) For any x ∈M and i ∈ {1, 2}, there exists a sequence (fk) of automorphisms of
T = (E1, E2, θ) such that ∥Dxfk|Ei∥ converges to 0 (for some Riemannian metric on M).

We saw previously that the (G,X)-structure of M induces a Lorentzian metric invariant by
the automorphism group of T , and we denote by ∇ its Levi-Civita connection. Note that
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any geodesic tangent to one the three directions E1, E2 or R (the Reeb vector field of θ)
stays tangent to this direction (because this is the case in the model X). In particular, R
being complete since M is compact, this shows that the geodesics of ∇ tangent to R are
complete. The following Lemma already appears in [BFL].

Lemma 4.3 The geodesics of ∇ tangent to the direction E1 and to the direction E2 are
complete.

Proof. We endow M with a Riemannian metric. By compacity of M , there exists a ε > 0
such that for any x ∈M and u a unit vector in E1(x) or E2(x), the geodesic starting from x
with speed u is defined until time ε. For x ∈M , i ∈ {1, 2} and u ∈ Ei(x) \ {0}, there exists
by hypothesis a sequence (fk) of automorphisms of T such that ∥Dxfk(u)∥ converges to 0,
and there exists thus k such that ∥Dxfk(u)∥ < ε. The geodesic at fk(x) with speed Dxfk(u)
is thus defined until time 1, and its image by f−1

k also, because fk is an affine application.
But this is the geodesic starting from x with speed u, which concludes the proof. 2

Thanks to this result, we now prove the completeness of the (G,X)-structure under the
hypothesis (H). We will say that a path γ : [0 ; 1] → X starting at x = γ(0) lifts to M̃ from
x̃ ∈ δ−1(x), if there exists γ̃ : [0 ; 1] → M̃ (called the lift of γ from x̃) such that γ̃(0) = x̃
and δ ◦ γ̃ = γ. Let us denote by TX̃ = E1

0 ⊕ E2
0 ⊕ RR0 the smooth splitting defined by the

strict path structure of X̃, R0 being its Reeb vector field. For x ∈ δ(M̃), x̃ ∈ δ−1(x) and
i ∈ {1, 2}, since the geodesic tangent to Ei starting from x̃ is complete, any path starting
from x and tangent to Ei

0 lifts from x̃. According to [Mm1, Lemma 7.2], this implies that δ
satisfies the path-lifting property, and is thus a covering from M̃ to X̃.

A Proof of Proposition 2.3

Let Γ ⊂ G = Heis(3) ⋊ P be a discrete subgroup, acting freely, properly and cocompactly
on Heis(3) by the action described in paragraph 2.1, and let us assume by contradiction
that the central flow acting on Γ\Heis(3) is not periodic. We will denote by Z = {zt}t∈R
the one-parameter center of Heis(3).

Our hypothesis implies that Γ∩Z = {e}, otherwise if zt0 ∈ Γ∩Z with t0 ̸= 0, then for any
n ∈ N and x ∈ Heis(3) we would have znt0Γx = Γx, i.e. the central flow acts periodically.
On the other hand, Λ := Γ ∩ Heis(3) is the kernel of the restriction to Γ of the second
projection π2 : hp ∈ Heis(3) ⋊ P 7→ p ∈ P . Let us assume by contradiction that Λ = {e}.
Then Γ is isomorphic to π2(Γ) ⊂ A and is thus abelian. Since algebraic subgroups have a

finite number of connected components, the identity component (Γ
Z
)0 of the Zariski closure

of Γ in G has finite index in Γ
Z
, and Γ′ := Γ ∩ (Γ

Z
)0 is thus a finite index subgroup of Γ.

But (Γ
Z
)0 is a (non-trivial) closed connected abelian subgroup of G, and as such, one easily

verifies that it is isomorphic to R or R2. Indeed, abelian Lie subalgebras of g of dimension
strictly greater than one, are either contained in heis(3) and therefore isomorphic to R2, or
conjugated to a1⊕ z(heis(3)) by the adjoint action of G. Consequently, Γ′ is isomorphic to Z
or Z2. But Γ′ having finite index in Γ, its action on Heis(3) remains proper and cocompact,
implying that Γ′ has cohomological dimension equal to 3 since Heis(3) is contractible (see
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[Br, Prop. 8.1 p.210]). This contradicts the fact that Γ′ is isomorphic to Z or Z2 (that
have respective cohomological dimensions equal to 1 and 2), and finally shows that Λ is a
non-trivial discrete subgroup of Heis(3) whose intersection with Z is trivial.

Since the commutator subgroup ofHeis(3) is contained in its center, [Λ,Λ] ⊂ Γ∩Z = {e},
i.e. Λ is abelian. We introduce as before Λ′ := Λ ∩ (Λ

Z
)0, and we emphasize that this is

a finite index subgroup of Λ, as well as a normal subgroup of Γ (indeed Λ is normal in Γ,

and so are its Zariski closure Λ and its identity component (Λ
Z
)0). Since (Λ

Z
)0 is a closed

connected abelian subgroup of Heis(3), there are two possibilities:

1. either (Λ
Z
)0 is a one-parameter subgroup, and Λ′ is isomorphic to Z,

2. or the Lie algebra of (Λ
Z
)0 is, up to conjugation in Heis(3), equal to Vect(X,Z) or

Vect(Y, Z), and Λ′ is then isomorphic to Z or Z2.

This already shows that Λ ⊊ Γ, because Z and Z2 cannot act freely, properly, cocompactly
on the contractible manifold Heis(3). So if Λ′ was not isomorphic to Z, we would be in the
second case, and there would be some γ ∈ Λ′ and g ∈ Γ of the form

γ = [x, 0, z] :=

1 0 0
0 1 0
z x 1

 and g =

a 0 0
y′ a−2 0
z′ x′ a

 , (22)

with z ̸= 0 and a ̸= 1 (we assume Lie((Λ
Z
)0) = Vect(X,Z), the second case being treated

in the same way). Then we have gnγg−n = [a3nx, 0, z − na3nxy′] ∈ Γ, converging to [0, 0, z]
at +∞ or −∞ since a ̸= 1. But Γ is discrete and hence closed, so [0, 0, z] ∈ Γ ∩ Z \ {e},
which is a contradiction.

Finally, Λ′ is isomorphic to Z. With γ = [x, y, z] a generator of Λ′ and g ∈ Γ as in (22),
a direct calculation gives gγg−1 = [a3x, a−3y, z + a−3yx′ − a3xy′]. Consequently, gγg−1 = γ
implies a = 1 i.e. g ∈ Heis(3) (note that x or y is non-zero by hypothesis), and the centralizer
of Λ′ in Γ is thus equal to Γ ∩Heis(3) = Λ. Since Λ′ is normal in Γ and isomorphic to Z,
this forces Λ, and hence Λ′, to have finite index in Γ. Therefore, Γ′ acts freely, properly and
cocompactly on Heis(3), which contradicts the fact that Λ′ is isomorphic to Z and concludes
the proof of Proposition 2.3. Indeed, the centralizer of Λ′ in Γ is the kernel of the morphism
Φ: g ∈ Γ 7→ {h 7→ ghg−1} ∈ Aut(Λ′). But since Λ′ ≃ Z, Aut(Λ′) = {± id}, and hence
Λ\Γ = (KerΦ)\Γ ≃ Φ(Γ) has cardinal at most 2.
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7 rue René Descartes F-67000 Strabourg, France
martin.mionmouton@math.unistra.fr

J. M. Veloso
Faculdade de Matemática - ICEN
Universidade Federal do Pará
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