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ABSTRACT Nucleocytoplasmic large DNA viruses (NCLDVs) are highly diverse and
abundant in marine environments. However, the knowledge of their hosts is limited
because only a few NCLDVs have been isolated so far. Taking advantage of the
recent large-scale marine metagenomics census, in silico host prediction approaches
are expected to fill the gap and further expand our knowledge of virus-host relation-
ships for unknown NCLDVs. In this study, we built co-occurrence networks of
NCLDVs and eukaryotic taxa to predict virus-host interactions using Tara Oceans
sequencing data. Using the positive likelihood ratio to assess the performance of
host prediction for NCLDVs, we benchmarked several co-occurrence approaches and
demonstrated an increase in the odds ratio of predicting true positive relationships
4-fold compared to random host predictions. To further refine host predictions from
high-dimensional co-occurrence networks, we developed a phylogeny-informed fil-
tering method, Taxon Interaction Mapper, and showed it further improved the pre-
diction performance by 12-fold. Finally, we inferred virophage-NCLDV networks to
corroborate that co-occurrence approaches are effective for predicting interacting
partners of NCLDVs in marine environments.

IMPORTANCE NCLDVs can infect a wide range of eukaryotes, although their life
cycle is less dependent on hosts compared to other viruses. However, our under-
standing of NCLDV-host systems is highly limited because few of these viruses
have been isolated so far. Co-occurrence information has been assumed to be use-
ful to predict virus-host interactions. In this study, we quantitatively show the
effectiveness of co-occurrence inference for NCLDV host prediction. We also
improve the prediction performance with a phylogeny-guided method, which leads
to a concise list of candidate host lineages for three NCLDV families. Our results
underpin the usage of co-occurrence approaches for the metagenomic exploration
of the ecology of this diverse group of viruses.

KEYWORDS NCLDV, Tara Oceans, assessment, co-occurrence, host prediction

Nucleocytoplasmic large DNA viruses (NCLDVs) represent a group of double-
stranded DNA viruses that belong to the viral phylum Nucleocytoviricota (Virus

Taxonomy, 2019 release), which was previously referred to as Megavirales (1, 2).
NCLDVs usually possess diverse gene repertoires (74 to more than 2,000 proteins),
large genomes (45 kb to 2.5Mb), and outsized virions (80 nm to 1.5mm) (3–5). NCLDVs
have high functional autonomy and encode components of replication, transcription,
and translation systems (3). Recently, a virus that belongs to a new family of NCLDVs
called “Medusaviridae” was found to encode five types of histones (6). The existence of
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metabolically active viral factories and infectious virophages also indicates that the life
cycle of NCLDVs is less dependent on host cells than other viruses (7, 8). To further
understand the features of these giant viruses, a first crucial step is to identify their
hosts, i.e., “who infects whom?”

NCLDVs are known to infect a broad range of eukaryotes, from unicellular eukaryotes
and macroalgae to animals (9, 10). Amoebae are frequently used hosts in coculture to
isolate large NCLDVs (11). However, there is growing evidence, especially in marine sys-
tems, that NCLDVs can infect many phytoplankton groups, such as Pelagophyceae,
Mamiellophyceae, Dinophyceae, and Haptophyte (12–14). Several other nonphotosyn-
thetic eukaryotic lineages, such as Bicoecea and Choanoflagellatea, were also reported
as experimentally identified NCLDV hosts in marine environments (15, 16). Iridoviridae
can also infect marine organisms, from small invertebrates to large vertebrates (17, 18).
Together, these studies indicate ubiquitous infectious relationships between NCLDVs
and a wide range of marine eukaryotes. However, our understanding of NCLDV-host sys-
tems is very limited because few viruses have been isolated so far.

The number of viruses and hosts isolated in the laboratory represents a very small
fraction of existing interactions in the ocean. Indeed, NCLDVs have been found to be
highly diverse and abundant based on omics data (19, 20). In only a few liters of coastal
seawater, more than 5,000 Mimiviridae species were detected; by comparison, only 20
Mimiviridae with known hosts have been well investigated (21). Global marine metage-
nomic data have revealed that the richness and phylogenetic diversity of NCLDVs are
even higher than those of an entire prokaryotic domain (22). From biogeographical
evidence, it is clear that these viruses are prevalent in the marine environment but
have a heterogeneous community structure across sizes, depths, and biomes (23).
Marine metatranscriptomic data have also shown that NCLDVs are active everywhere
in sunlit oceans and may infect hosts from small piconanoplankton (0.8 to 5mm) to
large mesoplankton (180 to 2,000mm) (24).

Previous studies also demonstrated that NCLDVs have the potential to infect a greater
diversity of hosts than known to date through gene transfer analyses (25, 26). NCLDVs
might have started coevolving with eukaryotes even before the last eukaryotic common
ancestor (LECA) (27). A recent study supported this hypothesis by showing that some
NCLDVs encode viractins (actin-related genes in viruses), which could have been acquired
from proto-eukaryotes and possibly reintroduced in the pre-LECA eukaryotic lineage (28).
Together, these findings underline a lack of knowledge about NCLDV biology and host di-
versity. Therefore, more effort is needed to identify hosts to elucidate the poorly known
virus-host relationships and the largely unknown NCLDV world.

Substantial effort has been made to reveal interactions between NCLDVs and their
putative hosts. Apart from the coculture method, other culture-independent experi-
mental methods, such as high-throughput cell sorting, are also being used (11, 16).
Metagenomics, which is particularly useful to assess a large fraction of ecosystem di-
versity, has been increasingly used to investigate NCLDVs host range. Comparative
genomics analyses, such as the identification of horizontal gene transfer (HGT) predic-
tions, have largely expanded the host range of NCLDV (25, 26). Investigating endoge-
nous NCLDV fragments in certain eukaryotic lineages can also be useful for inferring
species-specific virus-host associations (29).

Abundance-based analyses have been used for host prediction and are supposed
to be effective because viruses can only thrive in an environment where their hosts
exist (19, 30). In addition to virus-host relationships, this strategy has also been used to
predict the association between NCLDVs and their “parasites” (virophages) (31).
However, the correlation-based prediction is also controversial for viral host prediction
since the abundance dynamics of viruses and their hosts (e.g., Emiliania huxleyi and
Heterosigma akashiwo viruses) are sometimes not concordant (32, 33). Usually, valida-
tion with known virus-host relationships or corroboration with genomic evidence (e.g.,
HGT) is used to assess network-based predictions (19, 30). However, the effectiveness
of previous and novel co-occurrence network methods has never been quantitatively
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tested for NCLDV host prediction. The current lack of quantitative assessment hin-
ders the widespread use of this approach. Therefore, dedicated methods are needed
to test the accuracy of NCLDV host prediction with co-occurrence networks and to
improve the performance of co-occurrence-based predictions.

The Tara Oceans expedition is a global-scale survey on marine ecosystems that
expands our knowledge of microbial diversity, organismal interactions, and ecologi-
cal drivers of community structure (34). The present study used Tara Oceans meta-
genomic and metabarcoding data sets to predict virus-host relationships between
NCLDVs and eukaryotes by constructing co-occurrence networks using different
methods. To quantitatively assess the performance of network-based host predic-
tion, we employed the positive likelihood ratio (LR1) using reference data for
known NCLDV-host relationships. We developed a phylogeny-based enrichment
analysis approach, Taxon Interaction Mapper (TIM), to enhance the performance in
detecting positive signals in the intricate inferred networks. TIM has previously been
used for viruses with high importance in predicting the carbon export efficiency
(35), but without a quantitative assessment of its effectiveness. In this study, we
assessed the performance of TIM as a filter of co-occurrence networks. We examined
NCLDV-virophage networks, which further justify the use of co-occurrence and filter-
ing approaches to identify NCLDV interaction partners.

RESULTS
NCLDV-eukaryote co-occurrence networks. From the data sets that corresponded

to five size fractions (see Fig. S1 in the supplemental material), we generated five co-
occurrence networks on a global scale (Fig. 1; see also Fig. S2A). Altogether, these net-
works were composed of 20,148 V9 and 5,234 polB operational taxonomic units (OTUs)

FIG 1 Overall workflow for inferring co-occurrence networks and quantitative assessment. This figure shows how the input data
(Tara Oceans metagenomics and metabarcoding data) were used in this study. The definition of the confusion matrix for quantitative
assessment is shown in the table. The LR1 and FDR equations are given at the lower right corner of the plot.
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(nodes) connected by 47,978 polB-V9 associations (edges). A total of 47,296 associa-
tions had positive weights, and 682 associations had negative weights (Fig. 2A). The
associations that involved the family Mimiviridae were numerically dominant
(n=36,830). Marseilleviridae, forming the least associations in the networks, had 132
edges with eukaryotes. Taxonomic annotation of eukaryotic OTUs indicated that

FIG 2 polB-V9 co-occurrence network. (A) We performed co-occurrence analysis at the OTU level and
constructed the network with pooled polB-V9 associations from five size fraction networks. To better display
co-occurrence patterns, PolB OTUs were grouped at the family or family-like level, and V9 OTUs were grouped
using annotation at high taxonomic ranks. The size of each node indicates the number of OTUs that belong to
the group, and the width of each edge indicates the number of associations between two connected groups.
Associations with positive weight are shown in red and negative associations are shown in blue. (B) Number of
associations connected to NCLDVs for each major eukaryotic lineage in five size fractions. The top 10 lineages
were retained, and other lineages were omitted and shown as “others.” Size fractions are presented in mm.
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Alveolata, Opisthokonta, Rhizaria, and Stramenopiles were the major four eukaryotic
groups connected to NCLDVs (with 21,167, 9,179, 6,521, and 5,327 edges, respectively).
Three of these eukaryotic groups belong to the SAR supergroup (i.e., Stramenopiles,
Alveolata, and Rhizaria), which represented 68.81% of the total associations. Regarding
the pairs between viral families and eukaryotic lineages, Mimiviridae and Alveolata
showed the largest number of edges (n=16,548). Besides NCLDV-eukaryote associa-
tions, we detected 57,495 polB-polB associations and 234,448 V9-V9 associations (see
Fig. S2B). We also included environmental parameters in the network inference and
identified 25 pairs of associations between environmental parameters and polB OTUs
(see Table S1 in the supplemental material).

The number of NCLDV-eukaryote associations generally decreased with enlarging
size fraction (see Fig. S2A). The largest number of polB-V9 associations were found in
the 0.8- to 5-mm fraction (n=10,647). Correspondingly, the eukaryotic community in
the 0.8- to 5-mm fraction had the greatest diversity (see Fig. S1D and E). However, the
$0.8mm (referred to here as 0.8–inf mm) size fraction network was the largest
(n=10,477) for edges with positive weights. With the annotation of major lineages, the
eukaryotic community compositions in the networks varied across different size frac-
tions (Fig. 2B). In the smallest size fraction (0.8 to 5mm) and the large range size frac-
tion (0.8–inf mm), Marine Alveolate Group II was the eukaryotic lineage with the largest
number of associations with NCLDVs (21.39 and 19.98%, respectively). Dinophyceae
was the second largest group connected to NCLDVs in these two size fractions and
showed the largest number of connections with NCLDVs in the 5- to 20-mm network
(22.22% of total interactions). The viral associations with Metazoa and Collodaria
increased with increasing size fractions. In the largest 180- to 2,000-mm size fraction
network, Metazoa contributed 39.31% of the total polB-V9 edges.

We calculated the degree of nodes (number of connected edges) for each NCLDV
polB OTU (Fig. 3A and B). Naturally, the average degree of positive associations per
polB was higher than negative edges in all size fractions and decreased along with
increasing size fractions (2.69, 2.40, 2.25, and 2.10 from 0.8 to 5mm to 180 to 2,000mm
and 2.76 for 0.8–inf). Most of the polB nodes had more than one positive association
(Fig. 3A). Together with the taxonomic annotation of nodes, polB-V9 associations in the
networks generated with the Tara Oceans data revealed their high dimensionality and
complexity.

Network validation. We quantitatively assessed the performance of predicting
polB-V9 associations using the positive likelihood ratio (LR1) (Fig. 1 and 4; see also
Fig. S4). By defining groups of metagenomic PolBs as described in Materials and
Methods, 932 OTUs were recruited in the validation, and these sequences contributed
6191 polB-V9 associations in the FlashWeave networks (see Fig. S3). To obtain an over-
all performance, we assessed the pooled associations (4,069 associations after remov-
ing redundancy; see Fig. S4D) from the five co-occurrence networks. LR1 was sepa-
rately calculated for edges with positive and negative weights because they may
represent different infectious patterns. As shown in Fig. 4A, the LR1 of host prediction
for positive associations was higher than 1 (LR1 = 1 indicates no change in the likeli-
hood of the condition), and generally increased with the cutoff for FlashWeave
weights. In high-weight regions: (i) weight. 0.6, the LR1 of associations was higher
than 10; and (ii) weight. 0.4, the LR1 was roughly higher than 4. Nonetheless, the
false discovery rate (FDR) was high (see Fig. S4A, true- and false-positive rates are given
in Fig. S4C), which indicated that the predictions contained numerous virus-host edges
that were not considered condition positive. The FDRs were 91.67 and 96.34% when
the weight cutoffs were 0.6 and 0.4, respectively. There were no known NCLDV-host
pairs found in the negative networks (see Fig. S4B). The analysis of the remaining part
of our study was thus conducted for positive associations.

Comparing the performance between different size fractions indicated that the net-
works of small size fractions (including the 0.8–inf-mm size fraction) performed better
in predicting the NCLDV-host relationships (Fig. 4B; see also Fig. S5). The 0.8–inf-mm

NCLDV-Host Prediction Based on Co-occurrence Analyses

March/April 2021 Volume 6 Issue 2 e01298-20 msphere.asm.org 5

 on A
pril 30, 2021 at 92631150

http://m
sphere.asm

.org/
D

ow
nloaded from

 

https://msphere.asm.org
http://msphere.asm.org/


size fraction had the highest average LR1 out of the five size fractions (LR1 = 4.97).
The LR1 of small size fractions was generally higher than that of large size fractions,
but there were exceptions between 180 to 2,000mm and 20 to 180mm. The LR1 of
the associations in the 0.8–inf-mm, 0.8- to 5-mm, and 5- to 20-mm fractions was greater
than 1. Different from the average results, when the weight is greater than 0.8, the
associations of the 5- to 20-mm size fraction had the best performance in terms of both
LR1 and FDR (see Fig. S5A and B).

We also compared abundance filtration strategies using FlashWeave-S (sensitive
model) and FlashWeave-HE (heterogeneous model) but did not find a consistent pat-
tern in prediction performance (see Fig. S6A and B). The networks from the Q1 filtra-
tion strategy performed best using FlashWeave-S, but Q1 (lower quartile) filtration was
not better than Q2 (middle quartile) for FlashWeave-HE inferred networks.
FlashWeave-S had a better performance than HE model with any filtration strategy.
Finally, we compared the performance of networks inferred by all three methods:
FlashWeave-S, FastSpar, and Spearman. Three methods generated a comparable num-
ber of positive associations, but FlashWeave-S made the largest number of true posi-
tive predictions (see Fig. S6C D).

FIG 3 Density plots for the degree of NCLDV nodes in co-occurrence networks. The degree of an
NCLDV node is given by the associations between this node and eukaryotes in the networks. The
numbers of NCLDV nodes are given at the top of the density values. (A) Positive degree (number of
positive associations per node) for NCLDV nodes in five size fraction networks. (B) Negative degree
(number of negative associations per node) for NCLDV nodes in five size fraction networks. Size
fractions are presented in mm. NCLDV nodes with degree = 1 and degree. 1 are separated using a
vertical line, and the number of nodes is given.
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Assessment of host prediction improvement. Then we used a phylogeny-guided
host prediction tool, TIM, to filter polB-V9 associations, which is based on the assump-
tion that evolutionarily related viruses tend to infect evolutionarily related hosts (see
Materials and Methods). We identified 24 eukaryotic taxonomic groups specifically
associated with NCLDVs (see Fig. S7). To compare the performance of the TIM results
with the raw FlashWeave results presented above, we converted the three primary eu-
karyotic taxonomic ranks to their associated major lineages (see Fig. S7B), and the asso-
ciations were plotted as a network (Fig. 5A). This network showed that three out of
nine NCLDV families (Mimiviridae, Phycodnaviridae, and Iridoviridae) had enriched con-
nections in specific eukaryotic lineages. Among the network edges, known virus-host
pairs were found, such as Haptophyta-Mimiviridae, Mamiellophyceae-Phycodnaviridae,
and Metazoa-Iridoviridae. The associations in the TIM-filtered results showed a sharp
improvement in performance from the original result with and without an edge weight
cutoff. The average LR1 of TIM-enriched associations was 42.22, which was higher
than the raw FlashWeave associations without a weight cutoff (3.43), with a weight cut-
off 0.4 (5.20), and with a cutoff at 0.668 (14.23) (Fig. 5B; see also Fig. S7A). The FDR
dropped from 0.97 (no cutoff) and 0.95 (weight cutoff 0.4) to 0.74 (Fig. 5C).

FIG 4 Positive likelihood ratios (LR1) in the NCLDV virus-host validation. (A) General performance of
co-occurrence networks is shown with the LR1 calculated with associations pooled from five size
fractions networks. To show the relationship between LR1 and FlashWeave association weight, the
LR1 values are plotted by dots and connected by a dashed line along with the association weight.
(B) Performance of each size fraction network is shown with the violin plot by ggplot2 with a
bandwidth of 2. Size fractions are presented in mm.
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From the network, diverse putative hosts (13 lineages) emerged for Mimiviridae,
including algae, protozoans, and metazoans. Metazoa had the most enriched nodes
connected to Mimiviridae; additionally, MAST-3,12, Cryptophyta, Foraminifera, and
Ciliophora had strong relationships with Mimiviridae. For Phycodnaviridae, there were
six eukaryotic lineages retained after TIM filtration. Among these, Bacillariophyta,
“other filosan (part of filosan Cercozoa),” and Mamiellophyceae had comparatively
strong associations. Moreover, Rhodophyta, Ciliophora, and Dictyochophyceae had
links to both Mimiviridae and Phycodnaviridae. There was also a connection between
Iridoviridae and Metazoa.

Associations between virophages and NCLDVs. Using 6,818 NCLDV polB OTUs
and 195 virophage major capsid proteins (MCPs), we identified 535 FlashWeave associ-
ations (196 and 339 for pico- and femto-size fractions, respectively) (Fig. 6A). Most of
the associations had positive weights (n=490), whereas some had negative weights
(n=45). The average number of associations per virophage MCP was 3.2 in femto- and

FIG 5 Prediction of NCLDV virus-host relationships with TIM. (A) Undirected network that shows the relationships
between NCLDVs and eukaryotes after TIM filtration. The size of each node indicates the number of predicted
interactions of this group. The weight of network edges as defined by the number of tree nodes enriched in each
viral family subtree to specific eukaryotic major lineages in the TIM analysis. Known virus-host relationships are
highlighted in red, and the pairs found to have horizontal gene transfer are highlighted in yellow (1). (B)
Performance of networks on NCLDV host prediction for original FlashWeave results without a weight cutoff, weight
cutoff. 0.4, and TIM filtration, plotted by ggplot2 with a bandwidth of 2. (C) FDR of networks for NCLDV host
prediction with the original FlashWeave results without a weight cutoff, weight cutoff. 0.4, and TIM filtration.
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FIG 6 Associations between virophages and NCLDVs. (A) Number of associations with virophages is shown for seven NCLDV families and two
unclassified groups, “Medusaviruses” and “Pithoviruses.” Associations in the femto-size fraction network are shown in yellow and in the pico-size

(Continued on next page)
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5.6 in pico-size fractions. The network revealed that Mimiviridae had the largest num-
ber of virophage associations in both size fractions. We also detected 84 positive asso-
ciations between virophages and Phycodnaviridae.

The phylogenetic tree defined three main virophage clades that have many connec-
tions to NCLDVs. To investigate significant relationships, a Fisher exact test was per-
formed between virophage clades and NCLDV families. Individual families other than
Phycodnaviridae and Mimiviridae did not show significance. Therefore, we used “Other
NCLDVs” to include all families except Phycodnaviridae and Mimiviridae. First, we only
used FlashWeave results with a weight. 0.4, as previous results showed that a
FlashWeave weight of 0.4 is a suitable cutoff that produced moderate performance
(Fig. 3A). From the femto-size fraction network, we found two significantly enriched
connections (Fig. 6B): one was between virophage clade C and Mimiviridae (P =
0.0022), and the other was between clade A and “Other NCLDVs” (P = 0.0439). Another
significantly enriched relationship between virophage clade B and Phycodnaviridae (P =
0.0410) was found in pico-size fractions when we used all associations without edge
weight cutoff.

Finally, we examined HGTs of virophage MCPs in NCLDV genomes. We found a can-
didate HGT, that is, the presence of an MCP gene from virophage clade A in a metage-
nome-assembled genome belonging to Iridoviridae. This result was consistent with the
Fisher exact test result, which revealed a connection between virophage clade A and
the group “Other NCLDVs,” including Iridoviridae.

DISCUSSION

NCLDVs can infect a wide range of eukaryotes, from unicellular to multicellular
organisms (36). However, we are still far from a comprehensive knowledge of their
hosts because few have been isolated so far. Therefore, better host prediction algo-
rithms are needed to understand the ecological functions and evolutionary signifi-
cance of NCLDVs. To make these predictions, we constructed global ocean co-occur-
rence networks based on the marine metagenome and metabarcoding data sets from
85 stations of the Tara Oceans expedition, which cover all major oceanic provinces
across an extensive latitudinal gradient from pole to pole. The edges (associations)
between polB and V9 nodes (OTUs) in the networks were generated using FlashWeave.
The networks were particularly dense (Fig. 2A; see also Fig. S2A), thus suggesting that
NCLDVs interact with numerous eukaryotes in the ocean. This was expected given the
high abundance and diversity of NCLDVs in marine environments (19, 22) and the identi-
fication of HGT between these viruses and diverse eukaryotic lineages (25). The networks
were dominated by the Mimiviridae nodes, which is consistent with previous reports that
Mimiviridae is the most abundant and has the widest array of transcribed genes out of
NCLDV families in marine environments (23, 24). Mimiviridae was known to infect amoe-
bae, algae, and stramenopiles (3). In our study, these three eukaryotic groups were all
found to have numerous associations with Mimiviridae. Phycodnaviridae has been known
to infect many species of aquatic organisms, such as Emiliania huxleyi (Haptophyta),
Ectocarpus siliculosus (Phaeophyceae), Chlorella heliozoae (Trebouxiophyceae), and
Ostreococcus tauri (Mamiellophyceae) (37–39). Correspondingly, plenty of associations of
Phycodnaviridae were found in the co-occurrence networks. For the eukaryotic nodes, all
high taxonomic rank groups, including the SAR supergroup (i.e., Stramenopiles,
Alveolata, and Rhizaria), Opisthokonta, Archaeplastida, Amoebozoa, Excavata, and other
eukaryotes, have associations with NCLDVs. Among these groups, the SAR supergroup
contributed the most (;68%) polB-V9 associations. However, this is still lower than in
other microbial co-occurrence analyses; for example, a previous study showed SAR

FIG 6 Legend (Continued)
fraction network are shown in green. The number of positive associations is above the zero axis, and the number of negative associations is below the
zero axis. (B) Phylogenetic tree was constructed from 195 environmental virophages and 47 reference MCP sequences. The outside layer indicates
three major virophage clades. The inner two layers indicate that the virophage OTUs have at least one association with NCLDVs in femto- or pico-size
fraction networks.

Meng et al.

March/April 2021 Volume 6 Issue 2 e01298-20 msphere.asm.org 10

 on A
pril 30, 2021 at 92631150

http://m
sphere.asm

.org/
D

ow
nloaded from

 

https://msphere.asm.org
http://msphere.asm.org/


supergroup dominated ;92% of the total aquatic microbial associations (40). A sub-
stantial proportion (;32%) of NCLDV-eukaryote interactions were from non-SAR
groups, which covered the known NCLDV host range, such as Archaeplastida and
Haptophyta.

However, it is difficult to accurately predict NCLDV hosts from constructed networks
because of the high degree of associations per polB OTU (Fig. 3A). It is known that the
abundance dynamics of some NCLDVs and their hosts (e.g., Emiliania huxleyi and
Heterosigma akashiwo viruses) are sometimes not concordant (32, 33). Due to this non-
linear mechanism of virus-host interactions (e.g., viral lysis), as well as the complexity
of microbial communities and external environmental drivers, many noisy signals exist
in co-occurrence networks (41). In order to overcome the limitations, additional proc-
essing was usually performed in previous studies to filter the high dimensional associa-
tions to predict the meaningful interactions, such as weight cutoff or a combination of
different inference methods (19, 31). Qualitatively identifying known pairs and detect-
ing HGTs (without validation by isolation) have been commonly used to assess predic-
tion reliability (19, 30). However, no previous study quantitatively assessed the per-
formance of co-occurrence networks when predicting NCLDV-host relationships.
Therefore, we aimed to (i) quantitatively assess the performance of co-occurrence-
based host prediction for NCLDVs and (ii) improve the prediction results using filtering
methods.

In a previous study of bacteriophage host prediction, ROC curves were used as an
assessment metric to compare different prediction methods (42). However, the num-
ber of known virus-host pairs of NCLDVs is not sufficient to generate a data set for ROC
assessment. Therefore, in this study, we carried out an alternative method, the LR1, to
assess the performance. LR1 is calculated with two relative values, sensitivity and
specificity (Fig. 1). The LR1 of co-occurrence-based host predictions for positive associ-
ations was higher than 1 and increased along with increasing cutoff values for the
edge weights (Fig. 4A). These LR1 values indicate that FlashWeave can increase the
probability of predicting true positives (43). Our result demonstrated that the co-occur-
rence-based host prediction of NCLDVs outperformed random prediction (i.e., random
inference of virus-host pairs).

We also found that true positive predictions only existed in positive weight associa-
tions, whereas negative weight associations did not contribute to NCLDV-host detec-
tion (see Fig. S4B). This result indicates that the abundance dynamics of NCLDVs and
their potential hosts were positively correlated with each other in the analyzed sam-
ples, which were collected at a global scale; this might be because NCLDVs detected in
the data set were active viruses that replicate locally in their hosts. Similar results were
obtained in other co-occurrence-based host prediction studies (30, 44). However, sev-
eral experimental studies showed that the abundance dynamics of NCLDVs and hosts
showed a delay in time (32, 33). It is possible that the global-scale samples did not
have sufficiently high resolution to detect negative correlations (or correlations with a
time delay) due to lack of time-resolution (45). Therefore, further studies, especially
those that focus on a high temporal resolution, are needed to better understand the
detailed dynamics of virus-host associations and the capacity of co-occurrence-based
methods for host prediction.

The networks of different size fractions showed different performance patterns in
predicting NCLDV-host relationships (Fig. 4B). This pattern is not dependent on the di-
versity of eukaryotic communities (see Fig. S1D and E). Generally, small-sized fractions
(0.8- to 5-mm and 5- to 20-mm) networks performed better than large-sized fractions
(20- to 180-mm and 180- to 2,000-mm) networks. To date, most of the known NCLDV
hosts are small, such as the genera Micromonas, Aureococcus, and Prymnesium.
Because of this, our assessment method might be biased toward small size fractions as
smaller organisms tend to be more abundant in the environment (46). However, it is
also possible that NCLDV infections are more prevalent in smaller size fractions. This
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could be the reason that large-sized networks do not have LR1 ratios as great as
small-sized networks.

NCLDVs also infect large organisms and can be detected as being transcriptionally
active in large-sized marine samples (24). However, the relationships between
Mimiviridae and Metazoa, the pair that have the most associations in large-sized (20- to
180-mm and 180- to 2,000-mm) networks, are still little known. Only one reference
sequence was used in our assessment (47). Thus, whether the associations between
free NCLDV particles and large-sized organisms are false, indirect, or true is hard to
assess currently. Notably, the 0.8–inf-mm size fraction network, which covered all four
individual size fractions, performed best. This might be because NCLDVs can infect not
only small hosts but also hosts from a broad size range.

Trimming of low-abundance OTUs was recommended to improve the prediction of
true interactions and was often used in co-occurrence studies (48, 49). In our study, how-
ever, we did not achieve such performance improvement by treating input abundance
data with a rigorous filtration (upper quartile) (see Fig. S6A). This result might be because
the true-positive and false-positive rates defined in this study were too low; therefore, the
validation may not be sufficiently sensitive to reflect the change between different abun-
dance trimming strategies. However, it is also possible that low-abundance NCLDV OTUs
are indeed network participants, as was demonstrated in a study showing that rare cya-
nobacterial species might play fundamental roles in blooming (50). Our result also
revealed that FlashWeave-S was better than FlashWeave-HE at predicting NCLDV-host
interactions (see Fig. S6C). The difference between FlashWeave-HE and FlashWeave-S is
that HE mode can remove structural zeros during network inference. Structural zero is a
typical property of heterogeneous data sets, like Tara Oceans data sets, and may lead to
false-positive edges (51). Conversely, our results suggested that retaining structural zeros
did not negatively influence the result, which indicates that the “presence-absence” pat-
tern is as informative as the “more-less” pattern when identifying NCLDV-host relation-
ships. This result is consistent with a previous “K-r-strategist” hypothesis: some NCLDVs,
like mimiviruses, are K-strategists that decay slowly and can form stable associations with
their hosts (52, 53). A recent report supported these non-“boom and bust” dynamics of
prasinoviruses and their hosts with an experiment-based mathematical model (54).
Overall, our results support co-occurrence networks as a useful method for predicting
NCLDV-host interactions in marine metagenomes and likelihood ratios as useful quantita-
tive metrics for assessing the performance of co-occurrence analysis for viral host
predictions.

Although the results generated by FlashWeave were shown to improve the accu-
racy of predictions, the FDR of co-occurrence was at a high level regardless of the
weight cutoff (see Fig. S4A). Such a high FDR in co-occurrence networks demonstrates
that condition positive connections (i.e., known interactions) are embedded in an
immense pool of condition negative connections. To further refine the raw networks
using FlashWeave, we developed TIM to reduce the noisy associations and improve
NCLDV host prediction (35). The results showed that NCLDVs had enriched connections
with 15 major eukaryotic lineages, which included 24 taxonomic groups in three differ-
ent ranks (order, class, and phylum) (Fig. 5A; see also Fig. S7). Using the LR1 as a pre-
diction diagnostic metric, NCLDV host prediction improved 12-fold with TIM filtration
(Fig. 5B). FDR dropped below 23% after TIM treatment (Fig. 5C). Taken together, our
results suggest the phylogeny-guided filtering method can improve the performance
of co-occurrence networks in predicting the hosts of NCLDVs.

In TIM-enriched connections, some are known NCLDV-host pairs, such as
Phycodnaviridae and Mamiellophyceae, Mimiviridae and Haptophyta, and Iridoviridae
and Metazoa. Some other studies revealed that Mimiviridae could exclusively infect
diverse putative hosts (25, 55). Our results support the assumption that Mimiviridae
has connections with 13 eukaryotic lineages out of 15 total lineages. Among these
lineages, Mimiviridae had the most numerous links to Metazoa. Some mimiviruses
(namaoviruses) are known to infect freshwater sturgeon, Acipenser fulvescens (47).
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Metazoans are presumed to be susceptible to mimiviruses, because the choanofla-
gellates, a group of eukaryotes that is phylogenetically close to metazoans, were
recently identified to be the host of a species of Mimiviridae (16). Moreover, the TIM
result revealed that Phycodnaviridae is closely connected to Bacillariophyta, which consists
of three NCBI taxonomic groups: Thalassiophysales, Cymbellales, and Bacillariophyceae.
Thalassiophysales was shown to have many HGT candidates with a large range of
NCLDVs, and Bacillariophyceae also has a significant HGT candidate with phaeoviruses
(25). Although Dictyochophyceae itself has not been proven to be a phycodnavirus host,
its sister group Pelagophyceae was experimentally identified as an AaV host (56). In addi-
tion, it is interesting to note the connection between Metazoa (Calanoida) and Iridoviridae.
Calanoida is an order of arthropods commonly found as zooplankton; most of the sizes
are 500 to 2,000mm. The viruses of the family Iridoviridae infect many Arthropod species,
including insects and crustaceans (18).

Furthermore, we also inferred associations between virophages and NCLDVs. To
date, all isolated virophages are only known to infect Mimiviridae (57). As expected,
Mimiviridae was the family with dominant connections to virophages (Fig. 6A), demon-
strating the effectiveness of our approach. Recently, in silico evidence demonstrated
that virophages can infect Phycodnaviridae, which indicated that the virophage host
range might be larger than we know (58). In support of this hypothesis, a relatively
large number of virophage OTUs were found to be associated with Phycodnaviridae in
our study. The enrichment analysis also revealed significant connections between
three virophage clades and NCLDV families (Fig. 6B). To support the enrichment analy-
sis, we conducted an HGT analysis because gene transfers have previously been found
between Sputnik virophages and giant viruses (59). Although it is difficult to com-
pletely exclude the possibility of contamination in MAGs (i.e., contamination of a viro-
phage genome in a NCLDV MAG), our result implied a previously undescribed infec-
tious relationship between virophage clade A and Iridoviridae. Overall, the results of
virophage-NCLDV associations support our previous statement that co-occurrence net-
works inference and analysis are appropriate for investigating NCLDV interactions in
marine metagenomic data.

Currently, abundance-based predictions have many limitations, including the com-
plexity of ecological interactions (e.g., predator-prey, parasitic, and symbiotic), environ-
mental drivers, and measurement noise (41). The limitations were shown by a high
FDR in our work. Also, the high FDR comes from the scarcity of reference knowledge
on virus-host interactions, which led to a small number of condition positive connec-
tions (i.e., known interactions) embedded in an immense pool of condition negative
connections. Of note, these condition negative connections can correspond to either
unidentified (i.e., currently unknown true interactions), indirect (e.g., through interac-
tions between hosts and other eukaryotes), or false relationships. This unassessed part
will be one of our future study directions. Apart from experiment-based approaches,
homology search effectively expands the host range of NCLDVs (25, 42). The discovery
of widespread insertions (endogenous viral elements) demonstrates the evolutionary
impacts of viral insertions in host genomes and sheds light on identifying the species-
specific NCLDV-host relationships (29, 60, 61). Our study demonstrated that
FlashWeave co-occurrence inference is better than random predictions for NCLDVs
and was further improved by introducing a new concept of TIM. Therefore, co-occur-
rence-based approaches can be used for the generation of hypotheses to be validated
experimentally. The combination of co-occurrence and other approaches will lead to a
better understating of the mysterious NCLDV world.

MATERIALS ANDMETHODS
Metagenomic and metabarcoding data. The microbial metagenomic and eukaryotic metabarcod-

ing data used in this study were previously generated from plankton samples collected by the Tara
Oceans expedition from 2008 to 2013 (62, 63). Because our research requires paired metagenomic and
metabarcoding data sets, we used data derived from the euphotic zone samples, namely, those from
the surface (SRF) and Deep Chlorophyll Maximum (DCM) layers (64). Type B DNA polymerase (polB) was
used as the marker gene for NCLDVs. A total of 6,818 NCLDV polB OTUs were extracted from the
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metagenomic data sets (i.e., the second version of the Ocean Microbial Reference Gene catalog, OM-
RGC.v2) using the pplacer phylogenetic placement method (ML tree) (23, 65, 66). These polB sequences
were classified into seven NCLDV families (Mimiviridae, Phycodnaviridae, Marseilleviridae, Ascoviridae,
Iridoviridae, Asfarviridae, and Poxviridae) and two other giant virus groups (“Medusaviridae” and
“Pithoviridae”). For eukaryotes, we used the metabarcoding data for eukaryotes, which target the 18S
rRNA gene hypervariable V9 region (V9) (64). Taxonomic annotation of the eukaryotic metabarcoding
data were previously performed by the Tara Oceans consortium using an extensive V9_PR2 reference
database (64), which was derived from the original Protist Ribosomal Reference (PR2) database (67). The
diversity index of eukaryotic communities was calculated using the package “vegan” (68).

Data processing. A relative abundance matrix for the NCLDV polB OTUs was extracted from OM-
RGC.v2 for the samples derived from the pico-size fractions (0.22 to 1.6mm or 0.22 to 3.0mm). We con-
verted the relative abundances of polB OTUs back to absolute read counts based on gene length and
read length (assumed to be 100 nucleotides). This process was required because small decimal numbers
cannot be used by FlashWeave and because relative abundance data suffer from apparent correlations,
which reduce the specificity of co-occurrence networks in revealing microbial interactions (48). To build
comprehensive interaction networks involving eukaryotes of different sizes, we extracted the V9 read
count matrices from the metabarcoding data set for the following five size fractions: 0.8 to 5mm; 5 to
20mm and 3 to 20mm (here referred to as “5 to 20mm” for simplicity); 20 to 180mm; 180 to 2,000mm;
and $0.8mm (here referred to as “0.8–inf mm”). To create the input files for network inference, the polB
matrix was combined with each of the V9 matrices (corresponding to different size fractions), and only
the samples represented by both polB and V9 files were placed in new files. In total, samples from 84
Tara Oceans stations (a total of 560 samples for two depths and five size fractions) widely distributed
across oceans were used in this study (see Fig. S1A). Depending on the individual size fractions, 84 to
127 samples were retained and included in the co-occurrence analysis (see Fig. S1B). Read counts in the
newly generated matrices were normalized using centered log-ratio (clr) transformation after adding a
pseudo count of one to all matrix elements because zero cannot be transformed in clr. Following clr nor-
malization, we filtered out low-abundance OTUs with a lower quartile (Q1) filtering approach.
Specifically, OTUs were retained in the matrices when their clr-normalized abundance was higher than
Q1 (among the non-zero counts in the original count matrix prior to the addition of a pseudo count of
one) in at least five samples. Normalization and filtering were separately applied to polB and V9. The
numbers of OTUs in the final matrices are provided in Fig. S1C.

Co-occurrence-based network inference. Network inference was performed using FlashWeave
(v0.15.0 [51]). FlashWeave is a fast and compositionally robust tool for ecological network inference.
FlashWeave starts by performing a locally optimal Markov blanket search in order to infer all direct asso-
ciations between OTUs, then connects these individual neighborhoods to form a “global” network
through a combinator rule. Meta-variables (such as environmental parameters) can be included in the
FlashWeave network to remove potential indirect associations. We used temperature, salinity, nitrate,
phosphate, and silicate concentrations as meta-variables in our network inferences to determine their
correlations with polB OTUs. FlashWeave provides a heterogeneous mode (FlashWeave-HE), which helps
overcome sample heterogeneity. However, FlashWeave-HE may not be appropriate for the Tara Oceans
data because it was shown to predict an insufficient number of known planktonic interactions (51).
Therefore, we mainly used FlashWeave-S with default settings except for the FlashWeave normalization
step and comparison between FlashWeave-S and FlashWeave-HE. A threshold to determine the statisti-
cal significance was set to alpha, 0.01. All detected pairwise associations were assigned a value called
“weight” that ranged between 21 and 11. Edges with weights. 0 or, 0 were referred to as positive
and negative associations, respectively. To compare the performance of FlashWeave-S to other co-occur-
rence methods, we used FlashWeave-HE, Spearman, and FastSpar (69). The FlashWeave-HE settings
were the same as FlashWeave-S but with a command “heterogeneous.” For Spearman, we used stats.
spearmanr in package “Scipy” (70). In FastSpar, we used 50 iterations, 20 excluded iterations, and a
threshold of 0.1 to generate associations. To reduce the high dimensionality of the data sets, upper
quartile (Q3) filtered matrices were used for comparison among FlashWeave-S, Spearman, and FastSpar.

Network validation.We validated the virus-host associations in inferred networks based on a confu-
sion matrix defined by the known NCLDV-host information (Fig. 1). Briefly, we manually compiled 69
known virus-host relationships for NCLDVs (see Table S2). In the validation process, eukaryotic taxo-
nomic groups were annotated at the level of the “Major lineages” in the extensive PR2 database
(updated after publication) (64). The “Major lineages” were used in the present study because (i) the
deficiency of known virus-host relationships limited the use of lower eukaryotic taxonomy ranks, such as
genus, for assessment and (ii) these lineages adequately represented marine eukaryotes by covering the
full spectrum of cataloged eukaryotic V9 diversity at a comparable phylogenetic depth (64). We then
performed BLASTp (2.10.1 [71]) searches from the Tara Oceans PolB sequences against the NCLDV refer-
ence database to define groups of metagenomic PolBs with a threshold of 65% sequence identity by
retaining only the best hit for each environmental PolB sequence. This threshold was determined
because, by using reference PolB sequences and RefSeq protein sequence databases, we found that 60
to 70% of sequence identity could distinguish whether the NCLDVs infected hosts of the same major lin-
eages; this was mainly tested for Phycodnaviridae because of the lack of host information for closely
related viruses in other NCLDV families (see Table S3). Then, 65% was chosen because it could provide a
better LR1 (as described below) than 60 and 70%.

The positive likelihood ratio was used in for assessment to estimate the predictions accuracy. This
approach is commonly used in diagnostic testing to assess whether a test (host prediction in this study)
usefully changes the probability of the existence of condition positive (true positive). In this study, the
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LR1 was used because host prediction is a test to discover condition positive states (72). LR1 is calcu-
lated by dividing the true-positive rate (sensitivity) by the false-positive rate (1 –specificity). If LR1 is
close to 1, the performance of the prediction is comparable to a random prediction. If LR1 � 1, a posi-
tive prediction result is more likely to be a true positive than that based on random prediction. From the
set of detected associations between a given polB OTU and V9 OTUs that belong to a given major eu-
karyotic lineage, we only kept the best positive or negative associations (i.e., the edges with the highest
absolute weights) to simplify the prediction scheme. As an auxiliary assessment, the FDR was also calcu-
lated by dividing the number of false positives by the number of positive predictions (Fig. 1). For the
comparison among five size fractions, we only used the abundance in the overlap samples of 0.8- to 5-
mm, 5- to 20-mm, 20- to 180-mm, and 180- to 2,000-mm sizes. So, the numbers of samples in five size
fractions are comparable (n = 84, 88, 88, 88, and 88), which could reduce the bias that may influence the
topology of networks (73).

Phylogeny-guided filtering of host predictions and its assessment. We developed Taxon
Interaction Mapper (TIM) to improve host predictions by co-occurrence approaches (35). TIM assumes
that evolutionarily related viruses tend to infect evolutionarily related hosts (18, 74) and extract the
most likely virus-host associations from the co-occurrence networks. In the case that multiple and dis-
tantly related viruses infect one host (10), TIM can map the associations of one eukaryotic group to
many viral branches. TIM requires a phylogenetic tree of viruses (based on marker genes) and a set of
connections between viruses and eukaryotes (co-occurrence edges), and then tests whether leaves (i.e.,
viral OTUs) under a node of the virus tree is enriched with a specific predicted host group compared to
the rest of the tree using the Fisher exact test and Benjamini-Hochberg adjustment (see Fig. S7A) (35).
TIM is available from https://github.com/RomainBlancMathieu/TIM.

We pooled network associations using FlashWeave analysis for five size fractions. To build a concise
and credible viral phylogenetic tree, we removed all of the PolB sequences that were absent in the
FlashWeave network associations, and the remaining sequences were filtered by the amino acid
sequence length ($500 amino acids). Protein alignment was conducted using MAFFT-linsi (version 7.471
[75]), and 18 sequences were manually removed because they were not well aligned with other PolB
sequences. A total of 501 PolB sequences were used to make a maximum likelihood phylogenetic tree
with FastTree (version 2.1.11 [76]). Then, the PolB-V9 associations were mapped on the tree to calculate
the significance of the enrichment of specific associations using TIM. TIM provides a list of nodes in the
viral tree and associated NCBI taxonomies (order, class, and phylum) of eukaryotes that show significant
enrichment in the leaves under the nodes. The TIM result was visualized with iTOL (version 5 [77]). The
TIM result was converted to a network, in which nodes correspond to the major eukaryotic lineages. The
network edge weight was defined by the number of tree nodes in each viral family subtree enriched
with a specific major eukaryotic lineage. The network was visualized with Cytoscape [version 3.7.1] using
prefuse force directed layout (78). To assess the effectiveness of TIM in improving prediction, we
extracted all the associations predicted by TIM and compared their performance with the raw and
weight cutoff results.

Virophage-NCLDV associations. We inferred the networks between NCLDVs and virophages using
mcp as the marker gene for virophages. First, 47 reference MCP amino acid sequences were collected
from public databases and used to build an HMM profile. The HMM profile was used to search against
the amino acid sequences of OM-RGC v2 using HMMER hmmsearch [version 3.3.1] with the threshold of
E value, 1E290 (79). This threshold was determined by searching reference sequences against the
GenomeNet nr-aa database. The search detected 195 Tara Oceans virophage MCP sequences in the OM-
RGC database. Together with 47 reference MCPs, a phylogenetic tree of MCP amino acid sequences was
built using MAFFT and FastTree.

We extracted the abundance profiles for the 195 MCP sequences from the pico-size (0.22- to 1.6-mm
or 0.22- to 3.0-mm) and femto-size (,0.22-mm) fractions. We used samples from the SRF and DCM
depths. PolB and MCP abundance profiles were merged into two matrices corresponding to the two
virophage size fractions. Then, network inference was conducted using the FlashWeave default settings
after Q1 filtration. We did not apply a quantitative assessment of NCLDV-virophage associations due to
the limitation of the known NCLDV-virophage pairs and reference genomes of isolated virophages. In
the MCP phylogenetic tree, three virophage clades contributed most of the NCLDV connections. Thus,
an NCLDV enrichment analysis for the three clades was carried out using a Fisher exact test, and the P
value was adjusted by the Benjamin-Hochberg method. This approach was the same as TIM, but we did
not use the TIM software because the current version of TIM requires inputs of eukaryotic nodes with
NCBI taxonomy annotations.

We used another approach, HGT, to predict the virophage-NCLDV interactions. First, we generated
an NCLDV genome database, which includes 56 reference NCLDV genomes corresponding to our polB
data set and 2,074 metagenome-assembled genomes from a previous study (25). A total of 827,548 cod-
ing sequences were included in this database. Then, 195 virophage MCPs from the metagenomic data
were BLASTp searched against this database using an E value cutoff of 1E210 (with a minimum query
coverage of 50% and a minimum sequence identity of 50%). If a virophage MCP obtained a hit in the
NCLDV genome database with a lower E value compared to hits in the MCP database (the hit to itself
was removed), the hit in the NCLDV genome database was considered an HGT candidate.

Data availability. Processed frequency data and associations used in assessment are available from
GenomeNet (https://www.genome.jp/ftp/db/community/tara/Cooccurrence/).
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