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Abstract

“Work on deep learning or perish”: folklore wisdom in 2021.

During recent years, the renaissance of neural networks as the ma-
jor machine learning paradigm and more specifically, the confirmation
that deep learning techniques provide state-of-the-art results for most of
computer vision tasks has been shaking up traditional research in image
processing. The same can be said for research in communities working
on applied harmonic analysis, information geometry, variational methods,
etc. For many researchers, this is viewed as an existential threat. On
the one hand, research funding agencies privilege mainstream approaches
especially when these are unquestionably suitable for solving real prob-
lems and for making progress on artificial intelligence. On the other hand,
successful publishing of research in our communities is becoming almost
exclusively based on a quantitative improvement of the accuracy of any
benchmark task.

As most of my colleagues sharing this research field, I am confronted
with the dilemma of continuing to invest my time and intellectual effort
on mathematical morphology as my driving force for research, or simply
focussing on how to use deep learning and contributing to it. The solution
is not obvious to any of us since our research is not fundamental, it is just
oriented to solve challenging problems, which can be more or less theoret-
ical. Certainly, it would be foolish for anyone to claim that deep learning
is insignificant or to think that one’s favourite image processing domain is
productive enough to ignore the state-of-the-art. I fully understand that

*Notes for Keynote at DGMM’2021 (IAPR International Conference on Discrete Geometry
and Mathematical Morphology), Uppsala University, Sweden, May 24-27, 2020.



the labs and leading people in image processing communities have been
shifting their research to almost exclusively focus on deep learning tech-
niques. My own position is different: I do think there is room for progress
on mathematically grounded image processing branches, under the con-
dition that these are rethought in a broader sense from the deep learning
paradigm. Indeed, I firmly believe that the convergence between mathe-
matical morphology and the computation methods which gravitate around
deep learning (fully connected networks, convolutional neural networks,
residual neural networks, recurrent neural networks, etc.) is worthwhile.

The goal of this talk is to discuss my personal vision regarding these po-
tential interactions. Without any pretension of being exhaustive, I want
to address it with a series of open questions, covering a wide range of
specificities of morphological operators and representations, which could
be tackled and revisited under the paradigm of deep learning. An expected
benefit of such convergence between morphology and deep learning is a
cross-fertilization of concepts and techniques between both fields. In ad-
dition, I think the future answer to some of these questions can provide
some insight on understanding, interpreting and simplifying deep learning
networks.

1 Mathematical morphology is powerful and still
attractive despite its age

Mathematical morphology is not only a mathematical theory of shape. Its
corpus nowadays provides a vast theoretical and practical machinery to address
fundamental problems arising from the fields of computer vision and structured-
data analysis.

Unfortunately, the significant scope of morphology is overshadowed by its
widely use as mainly a post-processing tool to regularize binary images as well
as the progressive shift of interest of practitioners towards deep learning tech-
niques, which require little knowledge on image processing theory and provide
impressive results. A “win-win” game. In the case of theorists, a progressive
fading of interest has been caused by at least three possible reasons: i) the
apparent exotic mathematical formulation of morphology, ii) a theoretical ap-
paratus which is aged, or worse, already depleted it of new discoveries, iii) the
perception of morphology as a useless theory for the future of signal /image and
data processing since, once again, deep learning can solve everything and the
mathematics underlying deep learning cannot interact with the algebraic and
geometrical formulation of morphology. I challenge these three arguments. I
believe, on the contrary, that the arrival of real progress on artificial intelligence
based on deep learning provides a mind frame to push the boundaries of mor-
phology and to prove that it is one of the appropriate nonlinear machineries to
address some open issues on understanding, interpreting and simplifying deep
learning networks. But also to introduce new layers and architectures inspired
from morphological operators and representations. Let me enumerate the major



themes on mathematical morphology which are relevant in the context of this

talk:

An abstract algebraic formulation of the theory on complete lattices, which
requires very little assumptions to be instantiated into a specific lattice
structure of the space of interest.

A common representation theory for the Boolean and the semicontinuous
function cases, in which, for instance, any translation-invariant increasing,
upper semicontinuous operator can be represented exactly as a minimal
superposition of morphological erosions or dilations.

An intimate relationship with the random set theory via the notion of
Choquet capacity from stochastic geometry.

Strong connections with idempotent mathematics (max-plus and max-min
algebra and calculus) and tropical geometry.

Continuous models which correspond to Hamilton—Jacobi PDEs, relevant
also in optics and optimal control.

A powerful extension to the case of morphology on groups, which bring a
proper dealing with space symmetries and provide equivariant operators
to the groups of transforms relevant in computer vision.

Multiscale operators and semigroups formulated in Riemannian, metric
and ultrametric spaces.

Multiple morphological representations that provide a rich family of shape-
based and geometrical descriptions and decompositions: skeletons, pattern
spectra and size distributions, topological description of functions using
maxima-minima extinction values, etc.

A privileged mathematical tool for Lipschitz characterization and regular-
ization.

A counterpart of the perceptron which yields to the scope of morphological
neural networks, morphological associative memories.

The previous list is not exhaustive and of course, it is based on my personal
research interests. Nevertheless, I do believe it illustrates which I mean by a
central position on the field of nonlinear mathematics for visual computing.

2

A selection of themes where morphology and
deep learning can meet

I discuss now in a rather informal way a few fields of potential interaction
between deep learning and mathematical morphology and the questions which



arise from. The bibliography is not exhaustive since I am covering a large scope
of topics. Some of the subjects that I mention below are already the object
of current research. Due to prospective nature of these reflections, this should
be considered more like a personal roadmap than a systematic review of the
state-of-the-art.

2.1 Lattice theory and algebraic models for deep learning

Current mathematical models for deep learning networks are based on approxi-
mation theory and harmonic analysis [76, 26]. Other approaches explore the rel-
evance of tropical geometry [50] to describe networks with Rectified Linear Units
(ReLUs) [84, 8]. The Matheron-Maragos-Banon-Barrera (MMBB) [48, 49, 10]
representation theorems provide an astonishing general formulation for any non-
linear operator between complete lattices, based on combinations of infimum of
dilations and supremum of erosions. The theory is relevant when the basis
(minimal kernel) of the operators can be learnt. In the case of non-increasing
or non-translation-invariant operators the constructive decomposition of oper-
ators become more complex but still it would based on basic morphological
dilation, erosion, anti-dilation and anti-erosion which can be the minimal bricks
to construct architectures of networks which mimic the MMBB representations.

How effective MMBB networks would be to learn the minimal basis
of structuring functions approximating any nonlinear image trans-
form? How the idea of hierarchical architectures from deep learning
can be used in the case of MMBB networks?

Can MMBB networks be combined with standard layers in deep
learning pipelines, providing relevant learnable models?

Any network architecture combining convolution, down/up-sampling, Re-
LUs, etc. could be seen at first sight as incompatible with lattice theory for-
mulation. In fact, as it was shown by Keshet [40, 41], low-pass filters, dec-
imation/interpolation, Gaussian/Laplacian pyramids and other typical image
processing operators, admit an interpretation as erosions and adjunctions in
the framework of (semi)-lattices. In addition, max-pooling and ReLUs are just
dilation operators. The notion of deepness or recurrence in a network can be
seen as the iteration of basic operators, which yields to questions on the conver-
gence to idempotency or, at least, to study order stability in the corresponding
lattice [34].

What kind of unified algebraic models, integrating standard layers
and morphological layers can be used to mathematically study deep
learning architectures? Is there any information on order continuity,
on invariance and fixed points, on decomposition and simplification,
etc., which can be inferred from these unified algebraic models?

What is the expressiveness of deep MMBB networks and the hybrid
deep networks?



This last question is related to study of the capacity of neural networks to
be universal approximators for smooth functions. For instance, both maxout
networks [27] and max-plus networks [85] can approximate arbitrarily well any
continuous function on a compact domain. The proofs are based on the fact
that [75] continuous piecewise linear (PWL) functions can be expressed as a
difference of two convex PWL functions, and each convex PWL can be seen as
maximum of affine terms. Alternative theory by Ovchinnikov [56, 57] shows that
a PWL (or a smooth) function can be represented as a max-min polynomial of
its linear components, and the theory is also valid in a Boolean representation.
The representation formulas by Ovchinnikov are equivalent to MMBB theorems
which justify the potential interest of the latter. Tropical formulation of ReLU
networks has shown that a deeper network is exponentially more expressive than
a shallow network [84]. To explore the expressiveness of complex morphological
networks with respect to the deepness is therefore a fundamental relevant topic.

2.2 Lipschitz regularity in neural networks

Lipschitz regularity has been proven to be a fundamental property to deal with
robustness of the predictions made by deep neural networks when their input
is subject to an adversarial perturbation [29]. This mathematical topic of Lip-
schitz regularity is quite important in deep learning since adversarial attacks
against machine learning models are a proof of their limited resilience to small
perturbations. Training neural networks under a strict Lipschitz constraint is
useful also for generalization bounds and interpretable gradients [72]. By the
composition property of Lipschitz functions, it suffices to ensure that each in-
dividual affine transformation or nonlinear activation is 1-Lipschitz. That can
be achieved by constraining the spectral norm of the weights in the layers: for
instance, maintaining during the training weight matrices of linear and convolu-
tional layers to be approximately Parseval tight frames (extensions of orthogonal
matrices to non-square matrices) [20]. This approach satisfies the Lipschitz con-
straint, but comes at a cost in expressive power [32]. Other techniques replace
the ReLU layers by more elaborated functions based of ordering the inputs and
computing max-min operations (GroupSort activation function) [7]. Morpho-
logical operators using multiscale convex structuring functions are a powerful
tool to deal with Lipschitz extension of functions [3], which is connected to
Lasry-Lions regularization [43].

What kind of Lipschitz morphological layers can be introduced into
deep networks to control their Lipschitz constant and therefore their
regularity? Can these morphological regularizing layers replace the
standard nonlinearities like pooling+ReLU without degrading their
expressiveness?

The later question is also the object of related work [23], where it has been
proven that Lipschitz constraint models using FullSort activation functions are
universal Lipschitz function approximators.



2.3 Group equivariance and integration of data symme-
tries and topology

Motivated by the Gestalt pattern theory, some studies investigated by synthetic
experiments the ability of deep learning to infer simple (at least for human)
visual concepts, such as shape or symmetry, from examples [80]. Humans can
often infer a semantic geometric/morphological concept quickly after looking
at only a very small number of examples; on the contrary, deep convolutional
neural networks approximate some concepts statistically, but only after seeing
many (thousands or millions) more examples. It seems reasonable that the use
of morphological layers which deal more naturally with the notion of shape could
improve some visual taks.

Are networks integrating morphological layers more “intelligent” (i.e.,
requires less training samples) than standard deep learning architec-
tures to learn tasks inspired from Gestalt pattern theory?

I think in particular about the potential role to be played by the theory of
group morphology [61], which extends the construction of morphological opera-
tors to be invariant under, for instance, the motion group, the roto-translation
group, the affine group, the projective group, etc. Indeed, the notion of group
equivariance of networks [22] is central nowadays in the field of deep learning. It
provides a sound approach to deal with the explicit introduction of the desired
symmetries into the network, without the need to approach them by means of
costly techniques such as data augmentation.

A combinatorial shape problem called generalized Tailor problem [60], which
is connected to the one of finding the decomposition of any shape according to
a set of templates, can be relevant to assess the interest of group morphology
in deep learning based part-based decomposition.

How efficiently can the generalized tailor problem be solved using
networks inspired from the morphological iterative algorithm?

Another interesting problem is to design models for machine learning tasks
defined on sets [83]. In contrast to traditional approaches, which operate on
fixed dimensional vectors, the idea is to consider objective functions on sets
that are invariant to permutations. The issue is also relevant on graphs. This
equivariance to the permutation of the elements of the input requires specific
pooling strategies across set-members. In mathematical morphology and dis-
crete geometry, there are compact representations of sets by a minimal number
of points, typically based on the notion of skeleton, maxima/minima of the
signed distance function, etc. Other shape morphological representations such
as shape-size distribution from granulometries, provided set descriptors which
are invariant to many transforms of the sets. It was proved in the past the in-
terest of skeletons and shape-size representations when they are combined with
neural networks [81].



Are morphological compact representations of sets more efficient to
deal with permutation invariance in machine learning? Can we in-
troduce loss functions based on morphological descriptions which are
inherently permutation-invariant and scale-invariant?

In a similar way, considering that an image is a function whose relevant infor-
mation is associated to its topology, namely the location of the maxima/minima
and the features associated to them, provides a representation which is invariant
to many isometries. Dealing with maxima and minima can be addressed using
morphological representations based on residues of morphological reconstruc-
tion (and iterative algorithm) and the appropriate markers [74]. The idea of
topology-preserving has been considered for the problem of deep image segmen-
tation [31], basically to learn continuous-valued loss functions that enforces a
segmentation to have the same topology as the ground truth. That is done using
the notion of persistence diagrams from computational topology [24]. However,
the integration of computational topology and deep learning is not natural.

Can we learn persistence (extinction values) features to be used
in topological image classification and segmentation using morpho-
logical operators based on reconstruction? Which architecture to
be used for the iterative-based reconstruction (residual, recurrent,
other)?

2.4 Interpretability and “small” parametric models

Due to the black-box nature of deep learning, it is inherently difficult to un-
derstand which aspects of the input data are contributing to the decisions on
a complex network. It is also difficult to identify which combinations of data
features are appropriate in the context of the deployment of networks as a deci-
sion support system in critical domains. Understating better by humans why a
deep neural network is taking a particular decision is the object of the so-called
explainable deep learning [79].

A way to move towards explainable networks is to have layers which are
easy to interpret. For instance, if a part of the network is learning patterns,
as in a template matching problem, and those patterns are easy to visualize,
this part of the networks can be explainable. One of the most studied and
rather simple morphological operator (i.e., the intersection of an erosion and
an anti-dilation), the hit-or-miss transform, can be seen as a powerful template
matching approach.

The use of the hit-or-miss transform as part of a neural network for object
recognition was pioneered in [77] and some recent attempts of extending its
use in the context of deep neural networks are promising [36]. However, to
have robust to noise template detection [13] or the multiple ways to extend the
hit-or-miss transform to grey-scale images [42, 54], as well as the fact that the
patterns to be matched can appear at different scales or at different rotations,
yield interesting topics to be explored.



What is the best formulation for the hit-or-miss transform to provide
easy learnable and robust template extraction layers? How efficient
is the integration of hit-or-miss layers into a complex architecture of
deep learning? Only as the first layers?

How to deal with equivariance in pattern detection by means of
group morphology-based hit-or-miss transforms?

What other morphological template extraction operators [62] are
relevant as interpretable layers in deep learning?

An alternative in the quest for a better interpretability of deep learning is
to replace regular convolutional neural networks filters by parametric families
of canonical or well-known filters and scales spaces. That reduces significantly
the number of parameters and make them more interpretable. These hybrid
approaches are constructed by coupling parameterized scale-space operations in
cascade [44], or circular harmonics banks of filters [78] or Gabor filters [46], etc.
with other neural networks layers.

In the case of morphological operators, we can also consider the use of para-
metric models. For instance, by defining an architecture mimicking the notion
of granulometry: a series of multiscale openings followed by a global integral
pooling operator, such that the parameters to be learn would be the structuring
function, which would shared by all the openings, and the scale parameter for
each opening. We can also consider the interest of learning parametric struc-
turing functions (typically quadratic ones) or to consider pipelines of multiscale
dilations/erosions used to predict quantitative parameters like the fractal di-
mension or the Holder exponent [6].

Are there architectures based on parametric families of morphologi-
cal multiscale operators which can be efficiently learned and provide
a better interpretation on tasks of shape or texture recognition?

What parametric families of structuring functions are the most fruit-
ful in deep learning: quadratic ones defined by a shape covariance
matrix? Convex ones defined by Minkowski addition of oriented
segments?

2.5 Image generation and simulation of microstructures

Morphological operators are the fundamental computational tool for the char-
acterization and simulation of random sets (for instance, the binary images as-
sociated to a random microstructure) in the theory developed by Matheron [48].
The notion of Choquet capacity of a random set relies on computing how the in-
tegral of the set changes when it is dilated or eroded by a particular structuring
element. By considering specific families of structuring elements (i.e., pairs or
triplets of points, segments, disks, etc.), the random set is characterized and, by



working on well-studied stochastic models of random sets, the corresponding pa-
rameters of the model are fit thanks to the morphological measurements. Then,
it is possible to simulate new images following the model and test if the new
images have the prescribed morphological measurements. This theory has been
of significant success in the characterisation and simulation of microstructure
images in material sciences [38].

In the field of deep learning, Generative Adversarial Networks (GANs) are
an approach to generate images from an illustrative dataset [28, 65]. GANs
involve automatically discovering and learning the regularities or patterns in
the input data, then the model is used to generate new examples that plausibly
could have been drawn from the initial dataset. GANs consider the problem
as a supervised learning framework with two sub-models: the generator model
that one trains to generate new examples, and the discriminator model that
tries to classify examples as either real (from the domain) or fake (generated).
The two models are trained together until the discriminator model is fooled
about half the time, meaning the generator model is producing plausible fake
examples. The generator is typically a deconvolutional neural network, and the
discriminator is a convolutional neural network.

GANs are nowadays used in many domains, where image simulation or im-
age synthesis is required, with impressive visual results. GANs are also being
explored in the field of virtual material simulation in physics [82, 21]. The addi-
tional dimension in material science is the fact that the generated image should
satisfy some physical or mathematical constraints. For instance, the model can
explicitly enforces known physical invariances by replacing the traditional dis-
criminator in a GAN with an invariance checker [68].

Can the notion of Choquet capacity play a role in the GAN discrim-
inators to explicitly impose morphological constraints learned from
the empirical data? Can one incorporate a “deconvolution” image
simulation closer to the morphological random set models into the
GAN generators, thanks to the use of morphological layers?

2.6 Ultrametric convolutional neural networks

Many scientific fields work on data with an underlying mathematical structure
modelled as a non-Euclidean space. Some examples include social networks,
sensor networks, biological networks (functional networks in brain imaging or
regulatory networks in genetics), and meshed surfaces in computer vision. Ge-
ometric deep learning is a generic term for techniques attempting to generalize
structured deep neural models to non-Euclidean domains such as graphs and
manifolds [14]. The area of deep learning on graphs is particularly active [86, 9],
with many alternative approaches seeking to generalize to graphs fundamental
deep learinng notions as convolution, pooling, coding/decoding, loss functions,
etc. Research topics for instance deal with the role played by the nodes/edges,
the use of graph spectral techniques or kernel methods, etc.

Another discrete powerful setting for structured data (or unstructured data



which can be first embedded into a graph) are the hierarchical representations
associated to dendrograms (rooted trees). In that case, the mathematical struc-
ture corresponds to an ultrametric space. Ultrametric spaces are ubiquitous
in mathematical morphology, ranging from watershed segmentation (minimum
spanning tree [52, 55]) to connected-components preserving filtering (notion of
max/min-tree [64]). When an image, or any other element in a dataset embed-
ded into an edge-weighted graph, is represented by a dendrogram, the use of
deep learning techniques and in particular of ultrametric convolutional neural
networks requires to be have a specific definition of the typical layers for dendro-
grams: their structure is very different from metric graphs. Classical image/data
processing opeartors and transforms, including Gaussian and Laplacian oper-
ators, convolution, morphological semigroups, etc., have been formulated on
ultrametric spaces [4, 5], and the basic ingredients are the ultrametric distance
and the distribution of diameters of the ultrametric balls.

How to efficiently learn the convolution operation on ultrametric
convolutional neural networks? How to define the max-pooling and
unpooling-layers on ultrametric convolutional neural networks? Are
there specific layers useful in this kind of neural networks?

Note that this is different from the problem of learning an ultrametric dis-
tance from a dissimilarity graph, an optimization problem that can be now
efficiently solved by gradient descent methods [19], useful in learning water-
shed image segmentation or in other hierarchical clustering methods. Both ap-
proaches could be potentially integrated into end-to-end learnable frameworks,
where graphs can be embedded into dendrograms and then, ultrametric deep
learning techniques could be used for classification or prediction.

2.7 The difficulty of training morphological neural net-
works

The training of morphological neural networks has been, and still is, the object
of active research. The dendrite morphological neurons have been trained using
geometrical-based algorithms (enclosing patterns in hyper- boxes) [59, 71]. The
non-differentiability of the lattice-based operations makes training morphologi-
cal neural networks more difficult for gradient-based algorithms, but the back-
propagation can be achieved without difficulty [85]: in fact, maxpooling and
ReLU are just examples of morphological layers widely used in deep learning.
More recently, inspired from the tropical mathematics framework, training
algorithms not rooted in stochastic optimization but rather on Difference-of-
Convex Programming have been used for training dilation and erosion lay-
ers [18]. These techniques have been also adapted to train other generalized
dilation-erosion perceptrons combined with linear transformations [73]. Addi-
tional progress have been made the use of tropical geometry tools for neural net-
work pruning [70]. The property of sparsity induced by max-plus layers [85, 70]
seems of great potential, however to integrate morphological layers into complex
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deep learning architectures is not always straightforward from the viewpoint of
the optimization.

Is there any efficient network learning technique which can com-
bine the optimization techniques inspired from tropical geometry
and stochastic gradient descent?

What are the best gradient-descent optimizers in the case of hybrid
networks including morphological layers? Is there any strategy of
alternate optimization between the convolution layers and the mor-
phological layers?

An alternative is to use smooth approximations of the max-min based mor-
phological operators, either using counter-harmonic means [47] or Log-Sum-Exp
terms [17] (related to the Maslov dequantization [45, 2]). In these differentiable
frameworks, the morphological ones are the limit cases and it allows, if the non-
linearity parameter is learned too, to provide layers which after training can
behave as standard convolutions or as morphological ones.

Which smooth approximation to morphological operators is more
relevant for training deep learning hybrid networks?

Discrete geometry focusses on the mathematically sound definitions and ef-
ficient algorithms to study binary discrete objects, like lines, circles, convex
shapes, etc., as well as to work on discrete functions. Discrete convolution and
its equations have been also studied [39]. Deep Learning with limited numerical
precision [30] and in particular with integer-arithmetic-only [37] is relevant in
the field of resource-efficient AI, especially for its deployment in embedded sys-
tems. The issue of neural network training with constrained integer weights was
considered also in the past [58]. The limit case of discrete representation and
computation corresponds to the binary or ternary neural networks [25, 1, 87].
Efficiently training these systems uses rounding off, and other numerical tricks,
which do not always guarantees some properties related to discrete or binary
convolution, down /up-sampling, etc.

Is it possible to incorporate genuine discrete layers and to train them
using gradient-descent approaches? Are there other approaches from
discrete optimization better adapted to these networks?

Connections between convolution, non-linear operators and PDEs have been
the object of major research in image processing during many years. Image
data is interpreted as the discretization of multivariate functions and the out-
put of image processing algorithms as solutions to some PDEs. A few works
have considered network layers as a set of PDE solvers, where the geometri-
cally significant coefficients of the equation become the trainable weights of the
layer [63, 67]. The well-established theory of PDEs allows the introduction
of neural network layers with good approximation properties (relevant for the
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problem of equivariance, for instance). The potential interest of the interpreta-
tion of some non-linear layers from the viewpoint of morphological PDEs has
been considered in [69], even if the formulated PDEs are solved using the viscos-
ity solutions, which correspond to the morphological convolutions. It would be
interesting to explore the interest of the numerical solvers for Hamilton-Jacobi
PDEs which can be plugged into a deep learning pipelines to learn non-linearities
and morphological layers.

What numerical schemes for morphological PDEs are relevant in
order to learn morphological operators or another non-linear layer?
How to deal with the iterative nature of the approximations?

I think about the case of deep learning for positive definite matrices (SPD) [35].
Riemannian geometry-based tools are used to formulate neural network layers
which allow computing and learning in that setting. The non-linearity layers,
like ReLLU and max-pooling, are not well formulated in the SPD case. There is a
well-established theory of numerical solution schemes of PDE-based morphology
for matrix fields [15, 16].

Can the numerical schemes for morphological PDEs of matrix fields
be used to learn non-linearities for SPD, or other matrices, in Rie-
mannian deep learning?

2.8 Morphological Al

More than thirty year ago, Schmitt [66] showed the possibility of creating an
automatic programming system of artificial intelligence morphology for image
processing, in a rule-based paradigm of geometric reasoning. The starting point
is the obvious fact that complex morphological transforms are just based on a
few bricks. Those primitives can be seen as the words of morphological lan-
guage and the possible combinations making sense as the grammar of the lan-
guage. Typical primitives in [66] are dilations, erosions, hit-or-mis transforms,
thinnings and thickennigs, with their corresponding structuring elements. The
appropiate constructive combinations provide the grammar. The solution for
a given problem is solved using combinational optimization. Other paradigms
producing successful automatic design of morphological operators were based
on genetic algorithms [33] or on PAC (Probably Approximately Correct) learn-
ing [12]. All these approaches are based on learning the transformations by
collections of observed-ideal pairs of images and the result of the desirable oper-
ators from these data, which fit with training from datasets as it is done nowa-
days in deep learning. In the field of deep learning, the first tentative of learning
pipelines of morphological operators was [47]. Using the counter-harmonic mean
as an asymptotic approximation to both dilation and erosion, it was proved that
stochastic gradient descent-based convolutional neural networks can learn both
the structuring element and the composition of operators, including composi-
tions of openings and closings which approximate TV-regularization. However,
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this kind of approach does not exploit the vast complexity of morphological
language.

An alternative would be to use natural language processing (NLP) deep
learning techniques. In that context, the training dataset will be composed
of examples of morphological programs, considered as a morphological text,
written by experts to solve specific tasks, illustrated with input-output images
too. Supervised NLP tasks are based on building pretrained representations
of the distribution of words (called word embeddings), such word2vec or con-
text2vect [53, 51].

What is the most appropiate coding of the morphological language
to be use with NLP techniques? Is it efficient to use a word for the
operator and a declination for the structuring element? Or to use
different words for operator and structuring element?

What is the optimal granularity on the decomposition of the opera-
tors to obtain a language with a high enough semantic interpretation
and which can be still learnt?

In general NLP, training the word embeddings required a (relatively) large
amount of data, which reduced the amount of labeled data necessary for training
on the supervised tasks.

Do we have a large enough corpus of morphological programs avail-
able to learn the operator2vect embeddings? How to extract and
parse morphological programs available in multiple repositories to
train the algorithms?

Another source of inspiration for developing morphological Al is the field of
deep coding [11]. This time, the perspective from the computational morphol-
ogy viewpoint is to start from a toolbox of programmed morphological functions
and the goal would be to learn to write programs using that basic functions.
Solving automatic programming problems from input-output examples using
deep learning is quite challenge and works only on domain specific languages,
which is the case of a morphological language toolbox. It requires to find con-
sistent programs by searching over a suitable set of possible ones, and a ranking
of them if there are multiple programs consistent with the input-output exam-
ples. The current paradigm provides only limited and short programs. These
techniques can be more efficiently use eventually to rewrite programs and to
decompose them into subprograms which can be learn and optimize separately.

How can one introduce syntactical transformations to simplify and
rewrite a morphological program?

How to integrate combinatorial and deep learning techniques to ex-
plore large enough program spaces which can provide an efficient
morphological AI?

13



3 My conclusion: invest yourself in studying the
theory

I anticipate that the main reaction of the reader may be that of frustration.
I have not provided many more reasons for the choice of the previous topics
than my own intuition. I concede that the answer to my open questions will
not always lead to any methodological or algorithmic breakthroughs. However,
working on the program I discussed above, or on alternative problems, will
definitely advance our discipline and keep it flourishing.

I am open to collaborate and discuss with anyone interested in some of these
topics. Joining efforts to work on challenging problems is fundamental in a
research field quickly moving forward and in multiple directions.

A last take-home message. Successful interaction between morphology and
deep learning is not only related to computational based aspects. It requires,
about all, an intimate understating of the theoretical aspects of both fields.
My main advice for young researchers starting a PhD thesis on exploring these
interactions is the following: invest part of your time in studying the theoretical
papers, read your classics, enlarge the scope of your theoretical interests. It will
be worthwhile.
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