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Problematic

Aircraft trajectories include several flight phases with a lot of constraints

Departure Arrival

Take off

Climb Cruise Descent

Landing

Each phase gets some constraints from :

Air traffic control

Flight enveloppe

Historical practices
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Problematic

Climb phase for a middle-haul aircraft will be considered in this study

Departure Arrival

Take off

ClimbClimb Cruise Descent

Landing

Constraints to be considered for climbing phase :

maximum speed, or limited climb rate

climb procedure to follow
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Equation of motion
Normalisation
An OCP

Aircraft dynamics :

h

d

Lift

Drag

V

P

γ

dh

dt
= V sin(γ)

dd

dt
= V cos(γ)

m
dV

dt
= εTmax (h) −

Drag
︷ ︸︸ ︷

1

2
ρ(h)SV 2CD(CL)−mg sin(γ)

dm

dt
= −εCs(V )Tmax (h)

mV
dγ

dt
=

1

2
ρ(h)SV 2CL

︸ ︷︷ ︸

Lift

−mg cos(γ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

h : altitude

d : longitudinal distance

V : air speed

m : weight

∣

∣

∣

∣

∣

∣

∣

∣

∣

γ : air slope

Cs : fuel flow

Tmax : maximal Thrust

ρ : air density

∣

∣

∣

∣

∣

∣

∣

∣

∣

CL,CD : lift,drag coefficients

ε : thrust ratio

S : wing area

g : gravitational constant
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Atmospheric model :

ISA (International Standard Atmosphere) model
{

T=T0−βh

P=P0

(
T
T0

) g
βR

→ ρ = P
RT

, R is the specific constant of air.

Aircraft data model :

BADA model

∣

∣

∣

∣

∣

∣

∣

∣

∣

Tmax=CT1

(

1− h
CT2

+CT3
h2

)

is the maximal thrust

Cs=Cs1

(

1+ V
Cs2

)

is the fuel flow

CD=CD1+CD2.C2
L

is the drag coefficient
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Equation of motion
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state : x = (h, d , v , m, γ)

control : u = (ε, CL)

parameters : ω = (S, g , CT1 , CT2 , CT3 , CD1 , CD2 , Cs1 , Cs2 , R, T0, β, P0)

auxiliary functions : θ(x , ω) = (θ1(x , ω), θ2(x , ω), θ3(x , ω), θ4(x , ω))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

h is the altitude

d is the longitudinal distance

V is the air speed

γ is the air slope

m is the weight

∣

∣

∣

∣

∣

ε is the thrust ratio

CL is the lift coefficient
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Equation of motion
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Then we write the dynamics :

dx

dt
= f (x , u, ω, θ) = f0(x , ω, θ) + u1f1(x , ω, θ) + u2f2(x , ω, θ) + u2

2f3(x , ω, θ)

With

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f0=
(

x3 sin(x5),x3 cos(x5),−ω6θ3−ω2 sin(x5),0,−
ω2
x3

cos(x5)
)T

f1=
(

0,0,
θ1
x4

,−θ1θ2,0
)T

f2=
(

0,0,0,0,
θ3
x3

)T

f3=(0,0,−ω7θ3,0,0)T
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These considerations lead us to solve an optimal control problem (OCP)
written in a Mayer’s formulation and defined by :

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

min
(tf ,x ,u)

tf

dx

dt
(t) = f (x(t), u(t)), t ∈ [0, tf ] a.e.

u(t) ∈ U =
{

u ∈ R
2, u1min 6 u1 6 u1max , u2min 6 u2 6 u2max

}

x(t) ∈ X = R × R × R
∗ × R

∗ × R → no state constraints

x(0) = x0, xf ∈ Xf = {x(tf ) ∈ X , bf (x(tf )) = 0} ⊂ X

bf =











x1f
− x1(tf )

x2f
− x2(tf )

x3f
− x3(tf )

x5f
− x5(tf )











, final weight is free
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General Principle
Application to the Climbing Phase

(OCP) :

{

min tf

dx
dt

(t)=f (x(t),u(t)), x(0)−x0=0, bf (x(tf ))=0, u∈U , t∈[0,tf ] a.e

Hamiltonian : H(p(t),x(t),u(t))= 〈p(t),f (x(t),u(t))〉

• Necessary conditions (PMP) : If (t∗
f , x∗, u∗) is optimal then

∃p∗ ∈ AC ([0, tf ], (R
n)∗), (p∗, p0) Ó= (0, 0) such as a.e :

∣

∣

∣

∣

∣

∣

∣

ẋ(t)= ∂H
∂p

(p∗(t),x∗(t),u∗(t))

ṗ(t)=− ∂H
∂x

(p∗(t),x∗(t),u∗(t))

H(p∗(t),x∗(t),u∗(t))=max
u∈U

H(p∗(t),x∗(t),u)

Besides, it exists λ = (λ1, . . . , λ4) ∈ R
4 such as :

∣

∣

∣

∣

∣

p∗(tf )=
∑4

k=1 λk

∂bfk
∂x

(x∗(tf ))

H(p∗(tf ),x
∗(tf ),u

∗(tf ))=−p0
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General Principle
Application to the Climbing Phase

Hamiltonian : H = H0 + u1H1 + u2H2 + u2
2H3 , Hi=〈p,fi 〉, for i=0,...,3

• We define the sets :
Σ1 = {H1 = 0, and H3 Ó= 0}
Σ2 = {H1 = H2 = H3 = 0}
Σ3 = {H1 = 0, H2 Ó= 0, H3 = 0}

Extremals outside Σ = Σ1
⋃

Σ2
⋃

Σ3 are controled by u = (u1, u2) defined

by :























u1(t)=

{

u1max, if H1>0

u1min, if H1<0

u2(t)=−
H2
2H3

, if H3<0, else

{

u2max, if H2>0

u2min, if H2<0

• Transervality conditions : p∗
4 (tf )=0, H(p∗(tf ),x

∗(tf ),u
∗(tf ))=−p0
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General Principle
Application to the Climbing Phase

Definition : Considering F1, F2 two vector field and z = (x , p) ∈ X × (Rn)∗

Lie Bracket : F12 = [F1, F2] =
∂F1
∂x

F2(x) − ∂F2
∂x

F1(x)
Poisson Bracket :

H12 = {H1, H2}(z) = dH1(
−→
H2)(z) = H[F1,F2](z),

−→
H2 =

(

∇pH2

−∇qH2

)

Lemma : The vector family (f0, f1, f2, f3, f02) constitutes a basis of R5 for

x ∈X̄={x∈R
5,x1 Ó=

ω11
ω12

,x1 Ó=
1+

√
1−4ω2

4
ω5

2ω4ω5
,x1 Ó=

1−

√
1−4ω2

4
ω5

2ω4ω5
,x3 Ó=0,x3 Ó=

ω8
ω9

,x4 Ó=0}.
Proof idea :

det (f0, f1, f2, f3, f02) = −θ1θ2θ3

Proposition : The singular set Σ2 = {H1 = H2 = H3 = 0} cannot contain
any extremals satisfying the transversality condtions.
Proof idea :

-Extremals in Σ2 =⇒ p⊥(f0, f1, f2, f3, f02) =⇒ p = 0

=⇒ H = p0 = 0 =⇒ impossible
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General Principle
Application to the Climbing Phase

Hamiltonian : H = H0 + u1H1 + u2H2 + u2
2H3 , Hi=〈p,fi 〉, for i=0,...,3

• Considering the particular case H1 = 0, H2 Ó= 0, H3 Ó= 0 inside the set
Σ1 = {H1 = 0, and H3 Ó= 0} :

Then

∂H
∂u

= (0, H2 + u2H3) =⇒











u1 = ?

u2 = − H2

2H3
, if H3 < 0, else

{

u2max, if H2>0

u2min, if H2<0

Determine u1 :

⊲Ḣ1 = 0 = {H1, H} = H10 + u2H12 + u2
2H13 → u1 does not appear

⊲Ḧ1 = 0 = u1(H101 + u2H121 + u2
2H131) + H100 + u2(H102 + H120) +

u2
2(H103 + H130 + H122) + u3

2(H123 + H132) + u4
2H133

where H101 = {{H1, H0}, H1}
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Bocop
Results
Theoretical vs Numerical results

Bocop is a software using Direct Methods to solve Optimal Control Problem.
This software transform an OCP into a Non linear Problem which is solved by
the well known solver IPOPT.

Data :
∣

∣

∣

∣

∣

u1min = 0.3, u1max = 1

u2min = 0, u2max = 1.6
,

∣

∣

∣

∣

∣

x0 = (3480, 0, 145, 64000, 0.25)T

xf = (9144, 150 000, 191, free, 0)T

Numerical Test :

Obtained with tolerance of 10−5

Use of Gauss Implicit scheme (second order), with 500 discretised points
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Bocop
Results
Theoretical vs Numerical results

Results from the unconstrained problem :

2500

4500

6500

8500

0 200 400 600
h

20000

60000

100000

140000

0 200 400 600
d -0.25

-0.05

0.05

0.25

100 300 500 700

γ

135

195

255

0 200 400 600

V
63000

63400

63800

0 200 400 600

m

Solution is :
∣

∣

∣

∣

∣

tf = 643s

x4f
= 63039kg
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Bocop
Results
Theoretical vs Numerical results

Controls from Bocop are :
1

0 200 400 600

u1

0.5

1

0 200 400 600
u2

Computed Hamiltonian lifts are :

-3
-2
-1
0
1

100 300 500 700

H1
-3
-2
-1
0
1
2

100 300 500 700

H2

0
1
2

100 300 500 700
H3

Average error on |u2theo
−u2num |=1,52.10−3 and ||u2theo

−u2num ||∞=5,8.10−2

This confirms that control follows the law defined by :

u1(t)=

{

u1max, if H1<0

u1min, if H1>0
, u2(t)=−

H2
2H3

if H3>0, else

{

u2max, if H2<0

u2min, if H2>0



17/18

Context of the study
Dynamic

Pontryagin’s Maximum Principle
Numerical Results

Future work

Bocop
Results
Theoretical vs Numerical results

Transversality conditions give : H(p∗(tf ), x∗(tf ), u∗(tf )) = −1,p∗
4(tf ) = 0

As the system is autonomous, we have : H(p∗(t), x∗(t), u∗(t)) = Cst = −1

The Hamiltonian extracted from Bocop :

-1.5

-1

0
100 300 500 700

H

0

0.0025

0.005

100 300 500 700
p4

Numerical results confirm theoretical behavior of this climbing problem.
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This work is the preliminary part of a deeper investigation which includes :

Numerical solution of this problem using indirect method

Study of minimum time problem with saturated state constraints,
especially on x5

Study of a minimal fuel consumption trajectory : g(tf , x(tf )) = −x4(tf )


