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Context of the study

Problematic

Aircraft trajectories include several flight phases with a lot of constraints

Take off Landing

Climb Cruise Descent

Departure Arrival

Each phase gets some constraints from :
@ Air traffic control
@ Flight enveloppe

@ Historical practices



Context of the study

Problematic

Climb phase for a middle-haul aircraft will be considered in this study

Take off Landing

Climb Cruise
Departure Arrival

Descent

Constraints to be considered for climbing phase :
@ maximum speed, or limited climb rate

@ climb procedure to follow



Dynamic Equation of motion

: : dh _
Aircraft dynamics : 4 = Vsin(v)
h dd
N — = V cos
. (7)
Drag
av 1 A |
m-— = € Tmax(h) — 5p(h)5V2 Cp(Cr) —mgsin(~y)
dm
E — —€C5(V) Tmax(h)
d 1
mV =L = Z p(h)SV2C, —mg cos()
dt 2 )
Lift
h : altitude ~ : air slope C.,Cp : lift,drag coefficients
d : longitudinal distance Cs : fuel flow g : thrust ratio
V : air speed Tmax : maximal Thrust S : wing area
m : weight p : air density g : gravitational constant




Dynamic Equation of motion

Atmospheric model

ISA (International Standard Atmosphere) model

T=To—fBh
& —p= R—PT, R is the specific constant of air.
ok

Aircraft data model

TmaX:CT1 (1—%+CT3 h2> is the maximal thrust

BADA model Cs=Cs, <1+L> is the fuel flow

CD:CDH—CDQ.CE is the drag coefficient




Dynamic

Normalisation

@ state : x = (h,d, v, m,~)

@ control : u= (g, ;)

@ parameters : w = (S,g,Cr,,CT,,Cr;, Cp,, Cp,, G5, Cs,, R, To, B, Po)
@ auxiliary functions : 0(x,w) = (01(x,w), Oa2(x,w), O3(x,w), O4(x, w))

h is the altitude

d is the longitudinal distance
g is the thrust ratio
V is the air speed

C, is the lift coefficient
v is the air slope

m is the weight




Dynamic

Normalisation

Then we write the dynamics :

d
d_j = f(x,u,w,0) = fo(x,w,0) + u1f1(x,w,0) + urfr(x,w,0) + u%fg,(x,w, 0)
fo= (X3 sin(xs ),x3 cos(xs),—web3—wo sin(xs),0,— U;—32 COS(X5))
9 T
Wlth flz(oaoax_i-7_0192ao)

0 T
f2: (07070707 %)

,=(0,0,—w763,0,0)"



Dynamic

These considerations lead us to solve an optimal control problem (OCP)

written

on
LS
|

in a Mayer’s formulation and defined by :
min t

(tr,x,u) '

dx

E(t) = f(x(t),u(t)), t €[0,tf] a.e.

U(t) cU = {U ~ RZ) Ulmin < U1 < Ulmaxs W2min < U2 < U2max}
x(t) e X =R xR x R* x R* x R — no state constraints
X(O) = Xp, Xf € Xfr = {X(tf) c X, bf(X(tf)) = 0} C X

(X1f - Xl(tf)\

Xy, — Xolt
°f 2(t) , final weight is free




Pontryagin's Maximum Principle General Principle

min tr

(OCP) {

%(t):f(x(t),u(t)), x(0)—x0=0, br(x(tr))=0, uel, t€[0,tr] a.e

Hamiltonian : H(p(t),x(t),u(t))= (p(t),f(x(t),u(t)))

e Necessary conditions (PMP) : If (t7, x*, u*) is optimal then
dp* € AC ([0, t¢], (RM)), (p*, p°) # (0,0) such as a.e :

x(t)= "5 (p*(t),x*(t),u*(t))
p(t)=—Fr (p*(t).x*(t),u*(t))

H(p* (£),x" (£), 0 (1)) =max H(p* (£),x"(£),0)

Besides, it exists A\ = (\1,..., ) € R* such as :

y by
P*(tr)=2>"ke1 Mg (X* (7))

H(p*(tr),x*(tr),u* (tr))=—p°




Pontryagin's Maximum Principle

Application to the Climbing Phase

Hamiltonian : H = Hy + u1Hy + up Hy + U§H3 , Hi={(p,f;), for i=0,...,3

e \We define the sets :
Zl — {Hl = 0, and H3 75 O}
Yo ={Hy = H, = H3 =0}
Y3 ={H;=0,Hy#0,Hs =0}

Extremals outside ¥ = ¥ 1 |J X, | J X3 are controled by u = (uz, up) defined

( Ulmax, if H1>0
up(t)=
Uimin, iIf H1<0
by : <
H U2max if H2>O
up(t)=— 57, if H3<0, else
\ 3 Upmin, if Ha<O

e Transervality conditions : pi(tr)=0, H(p*(tr),x* (tr),u* (tr))=—p°



Pontryagin's Maximum Principle

Application to the Climbing Phase

Definition : Considering F;, F» two vector field and z = (x, p) € X x (R")"

Lie Bracket : Fip = [F1, F2] = 91 Fa(x) — 92 F1(x)
Poisson Bracket :

V,H
Hi2 = {H1, Ho}(z) = dHi(F:)(z) = FiF,, ) (2). By = (—qu§>

Lemma : The vector family (fo, f1, f>, f3, foo) constitutes a basis of R> for

_ w 1+ 1—4w2w5 1—y/1— 4w2w W
X EX:{XEIR@,XHEQ,—E,XHE 2w4w54 X1 vogen P37 0XFE 2 8 X470}
Proof idea :

det (ﬁ)? f17 f27 f37 fb2) — _919293

Proposition : The singular set ¥» = {H; = H, = H3 = 0} cannot contain
any extremals satisfying the transversality condtions.

Proof idea :
-Extremals in ¥, = pl(fy,f1,fH,f,fon) = p=0

— H=p’ =0 = impossible



Pontryagin's Maximum Principle

Application to the Climbing Phase

Hamiltonian : H = Hy + u1H1 + up H> + u§H3 , Hi=(p,£;), for i=0,...,3

e Considering the particular case H; = 0, Hy # 0, H3 # 0 inside the set
21:{H1:0, and H37£0}:

Then
( up — ?

%—Ij = (0, Hy 4+ upH3) = < H-

. U2max s If H2>O
u = ———, if H3 <0, else {

2H3’

\ U2min if Hr<0
Determine uq :
>Hy =0={Hi,H} = Hio + uoHi2 + u§H13 — 17 does not appear

>Hy = 0 = uy(Hio1 + uaHio1 + u3His1) + Higo + uz(Hio2 + Hizo) +
us(Hio3 + Hizo + Hi22) + u3(Hi23 + Hi3z2) + ujHiss
where H101 = {{Hl, Ho}, Hl}



Numerical Results

Bocop is a software using Direct Methods to solve Optimal Control Problem.
This software transform an OCP into a Non linear Problem which is solved by

the well known solver IPOPT.

Data
Uimin = 0.3, t1max =1 | x0 = (3480, 0,145, 64000,0.25)"
Uomin =0,  tomax = 1.6 |x; = (9144, 150 000, 191, free,0) "

Numerical Test :

e Obtained with tolerance of 107>
@ Use of Gauss Implicit scheme (second order), with 500 discretised points



Results

Numerical Results

Results from the unconstrained problem
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Numerical Results Theoretical vs Numerical results

(iontrols from Bocop are Computed Hamiltonian lifts are
2.
1. 1
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Average error on |up, —u2,,,|=1,52.1073 and ||u,, —uz,mlcc=5,8.10"2

This confirms that control follows the law defined by :

Ulmax; if H1<0 H U2max if Hy<0
up(t)= . UQ(t):—# if H3>0, else
Ulmin, if H;>0 3 U2min if Hy>0



Numerical Results Theoretical vs Numerical results

Transversality conditions give : H(p*(tr), x*(tr), u*(tr)) = —1,p;(tr) =0
As the system is autonomous, we have : H(p*(t), x*(t), u*(t)) = Cst = —1

The Hamiltonian extracted from Bocop
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Numerical results confirm theoretical behavior of this climbing problem.



Future work

This work is the preliminary part of a deeper investigation which includes

@ Numerical solution of this problem using indirect method

@ Study of minimum time problem with saturated state constraints,

especially on xg
@ Study of a minimal fuel consumption trajectory : g(tf, x(tf)) = —xa(tr)



