Numerical Analysis in Optimal Control Problem for Aircraft Trajectories

D. Goubinat
PhD student, in collaboration with O.Cots, J.Gergaud
British-French-German Conference on Optimisation

15-17 June 2015, London UK

証

Summary

(1) Context of the study
(2) Dynamic
(3) Pontryagin's Maximum Principle
(4) Numerical Results
(5) Future work

Aircraft trajectories include several flight phases with a lot of constraints

Each phase gets some constraints from :

- Air traffic control
- Flight enveloppe
- Historical practices

Climb phase for a middle-haul aircraft will be considered in this study

Constraints to be considered for climbing phase :

- maximum speed, or limited climb rate
- climb procedure to follow

Aircraft dynamics :

h

$|$| $\mathrm{h}:$ altitude |
| :--- |
| d : longitudinal distance |
| V : air speed |
| $\mathrm{m}:$ weight |

C_{L}, C_{D} : lift,drag coefficients
ε : thrust ratio
S : wing area
g : gravitational constant

Atmospheric model :
ISA (International Standard Atmosphere) model

$$
\left\{\begin{array}{l}
T=T_{0}-\beta h \\
P=P_{0}\left(\frac{T}{T_{0}}\right)^{\frac{g}{\beta R}} \rightarrow \rho=\frac{P}{R T}, R \text { is the specific constant of air. }
\end{array}\right.
$$

Aircraft data model :

$$
T_{\max }=C_{T_{1}}\left(1-\frac{h}{C_{T_{2}}}+C_{T_{3}} h^{2}\right) \text { is the maximal thrust }
$$

BADA model

$$
\begin{aligned}
& C_{s}=C_{s_{1}}\left(1+\frac{V}{C_{s_{2}}}\right) \text { is the fuel flow } \\
& C_{D}=C_{D 1}+C_{D 2} \cdot C_{L}^{2} \text { is the drag coefficient }
\end{aligned}
$$

- state : $x=(h, d, v, m, \gamma)$
- control : $u=\left(\varepsilon, C_{L}\right)$
- parameters : $\omega=\left(S, g, C_{T_{1}}, C_{T_{2}}, C_{T_{3}}, C_{D_{1}}, C_{D_{2}}, C_{s_{1}}, C_{s_{2}}, R, T_{0}, \beta, P_{0}\right)$
- auxiliary functions: $\theta(x, \omega)=\left(\theta_{1}(x, \omega), \theta_{2}(x, \omega), \theta_{3}(x, \omega), \theta_{4}(x, \omega)\right)$

h is the altitude	
d is the longitudinal distance	ε is the thrust ratio
V is the air speed	C_{L} is the lift coefficient
γ is the air slope	
m is the weight	

Then we write the dynamics:
$\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, u, \omega, \theta)=f_{0}(x, \omega, \theta)+u_{1} f_{1}(x, \omega, \theta)+u_{2} f_{2}(x, \omega, \theta)+u_{2}^{2} f_{3}(x, \omega, \theta)$
$f_{0}=\left(x_{3} \sin \left(x_{5}\right), x_{3} \cos \left(x_{5}\right),-\omega_{6} \theta_{3}-\omega_{2} \sin \left(x_{5}\right), 0,-\frac{\omega_{2}}{x_{3}} \cos \left(x_{5}\right)\right)^{\top}$
With
$f_{1}=\left(0,0, \frac{\theta_{1}}{x_{4}},-\theta_{1} \theta_{2}, 0\right)^{T}$
$f_{2}=\left(0,0,0,0, \frac{\theta_{3}}{x_{3}}\right)^{T}$
$f_{3}=\left(0,0,-\omega_{7} \theta_{3}, 0,0\right)^{T}$

These considerations lead us to solve an optimal control problem (OCP) written in a Mayer's formulation and defined by :

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\min _{\left(t_{f}, x, u\right)} t_{f} \\
\frac{d x}{\mathrm{~d} t}(t)=f(x(t), u(t)), t \in\left[0, t_{f}\right] \text { a.e. } \\
u(t) \in \mathcal{U}=\left\{u \in \mathbb{R}^{2}, u_{1 \text { min }} \leqslant u_{1} \leqslant u_{1 \text { max }}, u_{2 \text { min }} \leqslant u_{2} \leqslant u_{2 \max }\right\} \\
x(t) \in \mathcal{X}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}^{*} \times \mathbb{R}^{*} \times \mathbb{R} \rightarrow \text { no state constraints } \\
x(0)=x_{0}, x_{f} \in \mathcal{X}_{f}=\left\{x\left(t_{f}\right) \in \mathcal{X}, b_{f}\left(x\left(t_{f}\right)\right)=0\right\} \subset \mathcal{X} \\
b_{f}
\end{array}\right. \\
& b=\left(\begin{array}{l}
x_{1_{f}}-x_{1}\left(t_{f}\right) \\
x_{2_{f}}-x_{2}\left(t_{f}\right) \\
x_{3_{f}}-x_{3}\left(t_{f}\right) \\
x_{5_{f}}-x_{5}\left(t_{f}\right)
\end{array}\right), \text { final weight is free }
\end{aligned}
$$

$(O C P):\left\{\begin{array}{c}\min t_{f} \\ \frac{\mathrm{~d} x}{\mathrm{dt}}(t)=f(x(t), u(t)), x(0)-x_{0}=0, b_{f}\left(x\left(t_{f}\right)\right)=0, u \in \mathcal{U}, t \in\left[0, t_{f}\right] \text { a.e }\end{array}\right.$
Hamiltonian: $\mathrm{H}(\mathrm{p}(\mathrm{t}), \mathrm{x}(\mathrm{t}), \mathrm{u}(\mathrm{t}))=\langle p(t), f(x(t), u(t))\rangle$

- Necessary conditions (PMP) : If $\left(t_{f}^{*}, x^{*}, u^{*}\right)$ is optimal then $\exists p^{*} \in \mathrm{AC}\left(\left[0, t_{f}\right],\left(\mathbb{R}^{n}\right)^{*}\right),\left(p^{*}, p^{0}\right) \neq(0,0)$ such as a.e :

$$
\begin{aligned}
\dot{x}(t) & =\frac{\partial H}{\partial p}\left(p^{*}(t), x^{*}(t), u^{*}(t)\right) \\
\dot{p}(t) & =-\frac{\partial H}{\partial x}\left(p^{*}(t), x^{*}(t), u^{*}(t)\right) \\
H\left(p^{*}(t), x^{*}(t), u^{*}(t)\right) & =\max _{u \in \mathcal{U}} H\left(p^{*}(t), x^{*}(t), u\right)
\end{aligned}
$$

Besides, it exists $\lambda=\left(\lambda_{1}, \ldots, \lambda_{4}\right) \in \mathbb{R}^{4}$ such as :

$$
\left\lvert\, \begin{aligned}
& p^{*}\left(t_{f}\right)=\sum_{k=1}^{4} \lambda_{k} \frac{\partial b_{f_{k}}}{\partial x}\left(x^{*}\left(t_{f}\right)\right) \\
& H\left(p^{*}\left(t_{f}\right), x^{*}\left(t_{f}\right), u^{*}\left(t_{f}\right)\right)=-p^{0}
\end{aligned}\right.
$$

Hamiltonian : $H=H_{0}+u_{1} H_{1}+u_{2} H_{2}+u_{2}^{2} H_{3}, H_{i}=\left\langle p, f_{i}\right\rangle$, for $i=0, \ldots, 3$

- We define the sets :

$$
\begin{aligned}
& \Sigma_{1}=\left\{H_{1}=0, \text { and } H_{3} \neq 0\right\} \\
& \Sigma_{2}=\left\{H_{1}=H_{2}=H_{3}=0\right\} \\
& \Sigma_{3}=\left\{H_{1}=0, H_{2} \neq 0, H_{3}=0\right\}
\end{aligned}
$$

Extremals outside $\Sigma=\Sigma_{1} \bigcup \Sigma_{2} \bigcup \Sigma_{3}$ are controled by $u=\left(u_{1}, u_{2}\right)$ defined
by : $\left\{\begin{array}{l}u_{1}(t)=\left\{\begin{array}{l}u_{1 \text { max }}, \\ u_{1 \text { min }}, \\ \text { if } H_{1}>0\end{array}\right. \\ u_{1}(t)=-\frac{H_{2}}{2 H_{3}}, \text { if } H_{3}<0, \text { else } \begin{cases}u_{2 \text { max }}, & \text { if } H_{2}>0 \\ u_{2 \text { min }}, & \text { if } H_{2}<0\end{cases} \end{array}\right.$

- Transervality conditions : $p_{4}^{*}\left(t_{f}\right)=0, H\left(p^{*}\left(t_{f}\right), \chi^{*}\left(t_{f}\right), u^{*}\left(t_{f}\right)\right)=-p^{0}$

Definition : Considering F_{1}, F_{2} two vector field and $z=(x, p) \in \mathcal{X} \times\left(\mathbb{R}^{n}\right)^{*}$ Lie Bracket: $F_{12}=\left[F_{1}, F_{2}\right]=\frac{\partial F_{1}}{\partial x} F_{2}(x)-\frac{\partial F_{2}}{\partial x} F_{1}(x)$ Poisson Bracket :

$$
H_{12}=\left\{H_{1}, H_{2}\right\}(z)=\mathrm{d} H_{1}\left(\overrightarrow{H_{2}}\right)(z)=H_{\left[F_{1}, F_{2}\right]}(z), \overrightarrow{H_{2}}=\binom{\nabla_{p} H_{2}}{-\nabla_{q} H_{2}}
$$

Lemma : The vector family ($f_{0}, f_{1}, f_{2}, f_{3}, f_{02}$) constitutes a basis of \mathbb{R}^{5} for $x \in \overline{\mathcal{X}}=\left\{x \in \mathbb{R}^{5}, x_{1} \neq \frac{\omega_{11}}{\omega_{12}}, x_{1} \neq \frac{1+\sqrt{1-4 \omega_{4}^{2} \omega_{5}}}{2 \omega_{4} \omega_{5}}, x_{1} \neq \frac{1-\sqrt{1-4 \omega_{4}^{2} \omega_{5}}}{2 \omega_{4} \omega_{5}}, x_{3} \neq 0, x_{3} \neq \frac{\omega_{8}}{\omega_{9}}, x_{4} \neq 0\right\}$.
Proof idea :

$$
\operatorname{det}\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{02}\right)=-\theta_{1} \theta_{2} \theta_{3}
$$

Proposition : The singular set $\Sigma_{2}=\left\{H_{1}=H_{2}=H_{3}=0\right\}$ cannot contain any extremals satisfying the transversality condtions.
Proof idea :

$$
\begin{aligned}
\text {-Extremals in } \Sigma_{2} \Longrightarrow p \perp\left(f_{0}, f_{1}, f_{2}, f_{3}, f_{02}\right) & \Longrightarrow p=0 \\
& \Longrightarrow H=p^{0}=0 \Longrightarrow \text { impossible }
\end{aligned}
$$

Hamiltonian : $H=H_{0}+u_{1} H_{1}+u_{2} H_{2}+u_{2}^{2} H_{3}, H_{i}=\left\langle p, f_{i}\right\rangle$, for $i=0, \ldots, 3$

- Considering the particular case $H_{1}=0, H_{2} \neq 0, H_{3} \neq 0$ inside the set $\Sigma_{1}=\left\{H_{1}=0\right.$, and $\left.H_{3} \neq 0\right\}$:

Then

$$
\frac{\partial H}{\partial u}=\left(0, H_{2}+u_{2} H_{3}\right) \Longrightarrow\left\{\begin{array}{l}
u_{1}=? \\
u_{2}=-\frac{H_{2}}{2 H_{3}}, \text { if } H_{3}<0, \text { else }\left\{\begin{array}{l}
u_{2 \max }, \text { if } H_{2}>0 \\
u_{2 \min }, \text { if } H_{2}<0
\end{array}\right.
\end{array}\right.
$$

Determine u_{1} :

$$
\begin{aligned}
& \quad \triangleright \dot{H}_{1}=0=\left\{H_{1}, H\right\}=H_{10}+u_{2} H_{12}+u_{2}^{2} H_{13} \rightarrow u_{1} \text { does not appear } \\
& \quad \triangleright \ddot{H}_{1}=0=u_{1}\left(H_{101}+u_{2} H_{121}+u_{2}^{2} H_{131}\right)+H_{100}+u_{2}\left(H_{102}+H_{120}\right)+ \\
& u_{2}^{2}\left(H_{103}+H_{130}+H_{122}\right)+u_{2}^{3}\left(H_{123}+H_{132}\right)+u_{2}^{4} H_{133} \\
& \text { where } H_{101}=\left\{\left\{H_{1}, H_{0}\right\}, H_{1}\right\}
\end{aligned}
$$

Bocop is a software using Direct Methods to solve Optimal Control Problem. This software transform an OCP into a Non linear Problem which is solved by the well known solver IPOPT.

Data :

$$
\left\lvert\, \begin{array}{lc|l}
u_{1 \min }=0.3, & u_{1 \max }=1 \\
u_{2 \min }=0, & u_{2 \max }=1.6
\end{array}\right., \begin{aligned}
& x_{0}=(3480,0,145,64000,0.25)^{T} \\
& x_{f}=(9144,150000,191, \text { free }, 0)^{T}
\end{aligned}
$$

Numerical Test :

- Obtained with tolerance of 10^{-5}
- Use of Gauss Implicit scheme (second order), with 500 discretised points

Results from the unconstrained problem :

Solution is :
$t_{f}=643 s$
$x_{4_{f}}=63039 \mathrm{~kg}$

Controls from Bocop are $\stackrel{1}{ } \stackrel{1}{ }$

Computed Hamiltonian lifts are :

Average error on $\left|u_{2_{\text {theo }}}-u_{2_{\text {num }}}\right|=1,52 \cdot 10^{-3}$ and $\left\|u_{2_{\text {theo }}}-u_{2_{\text {num }}}\right\|_{\infty}=5,8 \cdot 10^{-2}$
This confirms that control follows the law defined by :
$u_{1}(t)=\left\{\begin{array}{l}u_{1 \text { max }}, \text { if } H_{1}<0 \\ u_{1 \text { min }}, \text { if } H_{1}>0\end{array}, u_{2}(t)=-\frac{H_{2}}{2 H_{3}}\right.$ if $H_{3}>0$, else $\left\{\begin{array}{l}u_{2 \text { max }}, \text { if } H_{2}<0 \\ u_{2 \text { min }}, \text { if } H_{2}>0\end{array}\right.$

Transversality conditions give : $H\left(p^{*}\left(t_{f}\right), x^{*}\left(t_{f}\right), u^{*}\left(t_{f}\right)\right)=-1, p_{4}^{*}\left(t_{f}\right)=0$ As the system is autonomous, we have : $H\left(p^{*}(t), x^{*}(t), u^{*}(t)\right)=\mathrm{Cst}=-1$

The Hamiltonian extracted from Bocop :

Numerical results confirm theoretical behavior of this climbing problem.

This work is the preliminary part of a deeper investigation which includes :

- Numerical solution of this problem using indirect method
- Study of minimum time problem with saturated state constraints, especially on x_{5}
- Study of a minimal fuel consumption trajectory : $g\left(t_{f}, x\left(t_{f}\right)\right)=-x_{4}\left(t_{f}\right)$

