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Abstract. In this study we present a game-theoretic model of guilt in
relation to sensitivity to norms of fairness. We focus on a specific kind
of fairness norm à la Rawls according to which a fair society should be
organized so as to admit economic inequalities to the extent that they
are beneficial to the less advantaged agents. We analyze the impact of
the sensitivity to this fairness norm on the behavior of agents who play
a repeated Prisoner’s Dilemma and learn via fictitious play. Our results
reveal that a great sensitivity to the fairness norm is beneficial in the
long term when agents have the time to converge to mutual cooperation.

1 Introduction

Prototypical human and artificial societies (e.g., a community, an organization)
are populated by agents who have repeated encounters and can decide either to
collaborate with the others thereby acting cooperatively, or to exploit the work
of the others thereby acting selfishly. In a game-theoretic setting this kind of
situations can be represented as an iterated Prisoner’s Dilemma (PD) in which
agents in the population have repeated one-to-one interactions with others (i.e.,
at each round two agents in the population meet and play one-shot PD).

The aim of this work is to study how fairness norms tend to emerge in this
kind of societies in which agents are assumed (i) to be rational in the sense of
being expected utility maximizers, and (ii) to learn from their past experiences.
In the paper, we focus on a special kind of fairness norm à la Rawls [20] according
to which a fair society should be organized so as to admit economic inequalities
to the extent that they are beneficial to the less advantaged agents.

Our analysis is based on the general assumption that agents in the society
are heterogenous in the sense of being more or less sensitive to the fairness norm,
where an agent’s degree of norm sensitivity captures the extent to which the fair-
ness norm has been internalized by the agent. Norm internalization is a concept

Nobody argues that the art of navigation is not founded on astronomy because
sailors cannot wait to calculate the Nautical Almanac. Being rational creatures they
go to sea with it already calculated; and all rational creatures go out upon the sea
of life with their minds made up on the common questions of right and wrong, as
well as on many of the far more difficult questions of wise and foolish.
J.S. Mill, Utilitarianism [16, Chap.2]

DOI:10.1007/978-3-319-25524-8 19



that has been widely discussed in the literature in social sciences and multi-agent
systems [2,1,3,10,11]. The idea is that if a given norm is internalized by an agent
then there is no need for an external sanction, a reward or punishment to ensure
norm compliance. The agent is willing to comply with the norm because, if she
does not do this, she will feel (morally) bad. We study the conditions under
which an agent’s disposition to follow the fairness norm à la Rawls (i.e., the
agent’s sensitivity to the fairness norm) increases the agent’s individual benefit
in the long term. In other words, we aim at providing an utilitarian explanation
of the internalization of the fairness norm à la Rawls, that is to say, we aim at
explaining why rational agents with learning capabilities should become moti-
vated to follow the fairness norm à la Rawls even without external enforcement
(e.g., external sanctions, punishment).

The rest of the paper is organized as follows. In Section 2 we present a game-
theoretic model of guilt aversion which provides the static foundation of our anal-
ysis. The main idea of the model is that agents in a game are motivated both by
their personal utilities and by the goal of avoiding guilt feeling. It is assumed that
guilt feeling is triggered in case of the violation of an internalized norm. Specifi-
cally, the intensity of guilt feeling is proportional to the agent’s sensitivity to the
norm. In Section 3, we provide a dynamic extension of our model in order to for-
mally specify repeated interactions and learning in a game-theoretic setting. The
learning approach we use is the well-known fictitious play [7].1 Section 4 provides
some mathematical results about convergence for fictitious play in the case of iter-
ated PD in which agents are assumed to be more or less sensitive to the fairness
norm à la Rawls. Our mathematical analysis of convergence for fictitious play is
partial, as it only covers a subset of the set of possible values of norm sensitivity
for the agents in the population. Thus, in Section 5, we present some computa-
tional results about convergence for fictitious play which complements the analy-
sis of Section 4. Finally, in Section 6, we present some experimental results in the
case of iterated PD which highlight the relationship between an agent’s degree of
sensitivity to the fairness norm à la Rawls and her individual benefit in the long
term. Our results reveal that a great sensitivity to this fairness norm is beneficial
in the long term when agents have the time to converge to mutual cooperation.
As a side note, we would like to remark that a preliminary version of this work
by one of the authors has appeared in [9]. One limitation of this previous work is
that it was only applied to a specific instance of the Prisoner’s Dilemma and not
to the entire class. A second limitation is that, differently from the present work,
it was not supported by in-depth mathematical analysis of convergence for the fic-
titious play process. Finally, it did not contain any analysis of the way an agent’s
sensitivity to the fairness norm influences her benefit in the long term.

1 We preferred fictitious play over alternative ‘learning from the past’ models, since it
is i) deterministic, thus manageable to be analyzed formally, and ii) well-established
in the field.



2 Game-Theoretic Model of Guilt Aversion

In this section, we present our game-theoretic model of guilt and of its influence
on strategic decision making. We assume that guilt feeling originates from the
agent’s violation of a certain norm. Specifically, the intensity of an agent’s guilt
feeling depends on two parameters: (i) how much the agent is responsible for the
violation of the norm, and (ii) how much the agent is sensitive to the norm. As
emphasized in the introduction, in our model the agent’s sensitivity to the norm
captures the extent to which the norm is internalized by the agent.

Our model assumes that an agent has two different motivational systems:
an endogenous motivational system determined by the agent’s desires and an
exogenous motivational system determined by the agent’s internalized norms.
Internalized norms make the agent capable of discerning what from his point of
view is good (or right) from what is bad (or wrong). If an agent has internalized a
certain norm, then she thinks that its realization ought to be promoted because
it is good in itself. A similar distinction has also been made by philosophers
and by social scientists. For instance, Searle [21] has recently proposed a theory
of how an agent may want something without desiring it and on the problem
of reasons for acting based on moral values and independent from desires. In
his theory of morality [13], Harsanyi distinguishes a person’s ethical preferences
from her personal preferences and argues that a moral choice is a choice that is
based on ethical preferences.

2.1 Normative Game and Guilt-dependent Utility

Let us first introduce the standard notion of normal-form game.

Definition 1 (Normal-form game). A normal-form game is a tuple G =
(N , (Si)i∈N ,U) where:

– N = {1, . . . , n} is a finite set of agents or players;
– for every i ∈ N , Si is agent i’s finite set of strategies;
– U : N −→ (

∏

i∈N Si −→ R) is an utility function, with U(i) being agent
i’s personal utility function mapping every strategy profile to a real number
( i.e., the personal utility of the strategy profile for agent i).

For every i ∈ N , elements of Si are denoted by si, s
′
i, . . . Let 2Agt∗ = 2N \

{∅} be the set of all non-empty sets of agents (alias coalitions). For notational
convenience we write −i instead of N \ {i}. For every J ∈ 2Agt∗, we define the set
of strategies for the coalition J to be SJ =

∏

i∈J Si. Elements of SJ are denoted by
sJ , s ′

J , . . . We write S instead of SN and we denote elements of S by s, s ′, . . . Every
strategy sJ of coalition J can be seen as a tuple (si)i∈J where agent i chooses the
individual strategy si ∈ Si. For notational convenience we write Ui(s) instead of
U(i)(s). As usual a mixed strategy for agent i is a probability distribution over Si.
Agent i’s set of mixed strategies is denoted by Σi and elements of Σi are denoted
by σi, σ

′
i, . . . The set of mixed strategy profiles is defined to be Σ = Σ1 × . . .×Σn



C D

C R, R S, T

D T, S P, P

Fig. 1. Prisoner’s dilemma (with player 1 being the row player and player 2 being the
column player).

and its elements are denoted by σ, σ′, . . . The utility function Ui reflects agent i’s
endogenous motivational system, i.e., agent i’s desires.

A well-known example of normal-form game is the Prisoner’s Dilemma (PD)
in which two agents face a social dilemma. The PD is represented in Figure 2.1.

Each agent in the game can decide either to cooperate (action C) or to defect
(action D) and has an incentive to defect. Indeed, it is assumed that, if an agent
defects, she gets a reward that is higher than the reward obtained in the case of
cooperation, no matter what the other agent decides to do. In other words, coop-
eration is strongly dominated by defection. The social dilemma lies in the fact that
mutual defection, the only Nash equilibrium of the game, ensures a payoff for each
agent that is lower than the payoff obtained in the case of mutual cooperation. The
Prisoner’s Dilemma can be compactly represented as follows.

Definition 2 (Prisoner’s Dilemma). A Prisoner’s Dilemma (PD) is a
normal-form game G = (N , (Si)i∈N ,U) such that:

– N = {1, 2};
– for all i ∈ N , Si = {C,D};
– U1(C,C) = R, U1(D,D) = P , U1(C,D) = S and U1(D,C) = T ;
– U2(C,C) = R, U2(D,D) = P , U2(C,D) = T and U2(D,C) = S;

and which satisfies the following two conditions:

(C1) T > R > P > S,
(C2) S = 0.

Condition (C1) is the typical one in the definition of the Prisoner’s Dilemma.
Condition (C2) is an extra normality constraint which is not necessarily assumed
in the definition of PD. It is assumed here to simplify the analysis of the evolution
of fairness norms.

The following definition extends the definition of normal-form game with a
normative component. Specifically, we assume that every outcome in a game is
also evaluated with respect to its ideality degree, i.e., how much an outcome in
the game conforms to a certain norm. Moreover, as pointed above, we assume
that an agent in the game can be more or less sensitive to the norm, depending
on how much the norm is internalized by her.

Definition 3 (Normative game). A normative game is a tuple NG =
(N , (Si)i∈N ,U, I, κ) where:

– (N , (Si)i∈N ,U) is a normal-form game;



– I :
∏

i∈N Si −→ R is a function mapping every strategy profile in S to a real
number measuring the degree of ideality of the strategy profile;

– κ : N −→ R≥0 is a function mapping every agent in N to a non-negative
real number measuring the agent’s sensitivity to the norm.

For notational convenience we write κi instead of κ(i) to denote agent i’s sensi-
tivity to the norm.

Following current psychological theories of guilt [12], we conceive guilt as the
emotion which arises from an agent’s self-attribution of responsibility for the
violation of an internalized norm (i.e., a norm to which the agent is sensitive).
Specifically, intensity of guilt feeling is defined as the difference between the
ideality of the best alternative state that could have been achieved had the agent
chosen a different action and the ideality of the current state, — capturing the
agent’s degree of responsibility for the violation of the norm —, weighted by
the agent’s sensitivity to the norm. The general idea of our model is that the
intensity of guilt feeling is a monotonically increasing function of the agent’s
degree of responsibility for norm violation and the agent’s sensitivity to the
norm.

Definition 4 (Guilt). Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game.
Then, the guilt agent i will experience after the strategy profile s is played,
denoted by Guilt(i,s), is defined as follows:

Guilt(i,s) = κi × (max
s′

i
∈Si

I
(

s ′
i, s−i) − I(s))

The following definition describes how an agent’s utility function is trans-
formed depending on the agent’s feeling of guilt. In particular, the higher the
intensity of guilt agent i will experience after the strategy profile s is played, the
lower the (transformed) utility of the strategy profile s for agent i. Note indeed
that the value Guilt(i,s) is either positive or equal to 0. Guilt-dependent utility
reflects both agent i’s desires and agent i’s moral considerations determined by
her sensitivity to the norm.

Definition 5 (Guilt-dependent utility). Let NG = (N , (Si)i∈N ,U, I, κ) be
a normative game. Then, the guilt-dependent utility of the strategy profile s for
agent i is defined as follows:

U ∗
i (s) = Ui(s) − Guilt(i,s)

It is worth noting that the previous definition of guilt-dependent utility is sim-
ilar to the definition of regret-dependent utility proposed in regret theory [14].
Specifically, similarly to Loomes & Sugden’s regret theory, we assume that the
utility of a certain outcome for an agent should be trasformed by incorporating
the emotion that the agent will experience if the outcome occurs.

2.2 Fairness Norms

In the preceding definition of normative game an agent i’s utility function Ui

and ideality function I are taken as independent. There are different ways of
linking the two notions.



For instance, Harsanyi’s theory of morality provides support for an utilitarian
interpretation of fairness norms which allows us to reduce an agent i’s ideality
function I to the utility functions of all agents [13]. Specifically, according to
the Harsanyi’s view, a fairness norm coincides with the goal of maximizing the
collective utility represented by the weighted sum of the individual utilities.

Definition 6 (Normative game with fairness norm à la Harsanyi). A
normative game with fairness norm à la Harsanyi is a normative game NG =
(N , (Si)i∈N ,U, I, κ) such that for all s ∈ S:

I(s) =
∑

i∈N

Ui(s)

An alternative to Harsanyi’s utilitarian view of fairness norms is Rawls’ view
[20]. In response to Harsanyi, Rawls proposed the maximin criterion of making
the least happy agent as happy as possible: for all alternatives s and s ′, if the
level of well-being in the worst-off position is strictly higher in s than in s ′, then
s is better than s ′. According to this well-known criterion of distributive justice,
a fair society should be organized so as to admit economic inequalities to the
extent that they are beneficial to the less advantaged agents.Following Rawls’
interpretation, a fairness norm should coincide with the goal of maximizing the
collective utility represented by the individual utility of the less advantaged
agent.

Definition 7 (Normative game with fairness norm à la Rawls). A
normative game with fairness norm à la Rawls is a normative game NG =
(N , (Si)i∈N ,U, I, κ) such that for all s ∈ S:

I(s) = min
i∈N

Ui(s)

In this paper we focus on fairness norm à la Rawls. In particular, we are
interested in studying the relationship between the agents’ sensitivities to this
kind of norm and their behaviors in a repeated game such as the Prisoner’s
Dilemma in which the agents learn from their past experiences. To this aim, in
the next section, we provide a dynamic extension of our model of guilt aversion.

3 Dynamic Extension

In the dynamic version of our model, we assume that every agent in a given
normative game has probabilistic expectations about the choices of the other
agents. These expectations evolve over time. The following concept of history
captures this idea.

Definition 8 (History). Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game.
A history (for NG) is a tuple H = ((ωi,j)i,j∈N , (ci)i∈N ) such that, for all i, j ∈
N :



– ωi,j : N −→ ∆(Sj) is a function assigning to every time t ∈ N a probability
distribution on Sj,

– ci : N −→ Si is a choice function specifying the choice of agent i at each
time point t ∈ N.

For every t ∈ N and sj ∈ Sj , ωi,j(t)(sj) denotes agent i’s subjective probability
at time t about the fact that agent j will choose action sj ∈ Sj . For notational
convenience, we write ωt

i,j(sj) instead of ωi,j(t)(sj). For all i, j ∈ N , t ∈ N and
s−i ∈ S−i we moreover define:

ωt
i(s−i) =

∏

j∈N\{i}

ωt
i,j(sj)

ωt
i(s−i) denotes agent i’s subjective probability at time t about the fact that the

other agents will choose the joint action s−i.
The following definition introduces the concept of agent i’s expected utility at

time t. Notice that the concept of utility used in the definition is the one of guilt-
dependent utility of Definition 5. Indeed, we assume a rational agent is an agent
who maximizes her expected guilt-dependent utility reflecting both the agent’s
desires and the agent’s moral considerations determined by her sensitivity to the
norm.

Definition 9 (Expected utility at time t). Let NG = (N , (Si)i∈N ,U, I, κ)
be a normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG and
let t ∈ N. Then, the expected utility of action si ∈ Si for the agent i at time t,
denoted by EU t

i(si), is defined as follows:

EU t
i(si) =

∑

s′

−i
∈S−i

ωt
i(s

′
−i) × U ∗

i (si, s
′
−i)

As the following definition highlights, an agent is rational at a given time
point t, if and only if her choice at time t maximizes expected utility.

Definition 10 (Rationality at time t). Let NG = (N , (Si)i∈N ,U, I, κ) be a
normative game, let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG and let t ∈ N.
Then, agent i is rational at time t if and only if EU t

i(ci(t)) ≥ EU t
i(si) for all si ∈ Si.

We assume that agents learn via fictitious play [7], a learning algorithm
introduced in the area of game theory and widely used in the area of multi-
agent systems (see, e.g., [22]). The idea of fictitious play is that each agent best
responds to the empirical frequency of play of her opponents. The assumption
underlying fictitious play is that each agent believes that her opponents are
playing stationary strategies that do not depend from external factors such as
the other agents’ last moves.

Definition 11 (Learning via fictitious play). Let NG = (N , (Si)i∈N ,U, I, κ)
be a normative game and let H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG. Then,



agent i learns according to fictitious play (FP) along H , if and only if for all j ∈
N \ {i}, for all sj ∈ Sj and for all t > 0 we have:

ωt
i,j(sj) =

obst
i,j(sj)

∑

s′

j
∈Sj

obst
i,j(s

′
j)

where obs0
i,j(sj) = 0 and for all t > 0:

obst
i,j(sj) =

{

obst−1
i,j (sj) + 1 if cj(t − 1) = sj

obst−1
i,j (sj) if cj(t − 1) �= sj

Note that obst
i,j(sj) in the previous definition denotes the number of agent

i’s past observations at time t of agent j’s strategy sj .
Two notions of convergence for fictitious play are given in the literature, one

for pure strategies and one for mixed strategies. Let H = ((ωi,j)i,j∈N , (ci)i∈N )
be a history. Then, H converges in the pure strategy sense if and only if there
exists a pure strategy s ∈ S and t̄ ∈ N such that for all i ∈ N :

ci(t) = si for all t ≥ t̄

On the contrary, H converges in the mixed strategy sense if and only if there
exists a mixed strategy σ ∈ Σ such that for all i ∈ N and for all si ∈ Si:

lim
t̄→∞

|{t ≤ t̄ : ci(t) = si}|

t̄ + 1
= σi(si)

Clearly, convergence in the pure strategy sense is a special case of convergence
in the mixed strategy sense.

It has been proved [18] that for every non-degenerate 2 × 2 game (i.e., two-
player game where each player has two strategies available) and for every history
H for this game, if all agents are rational and learn according to fictitious play
along H , then H converges in the mixed strategy sense. The fact that the game
is non-degenerate just means that, for every strategy of the second player there
are no different strategies of the first player which guarantee the same payoff to
the first player, and for every strategy of the first player there are no different
strategies of the second player which guarantee the same payoff to the second
player.2 A generalization of this result to 2 × n games has been given by [5].

4 Mathematical Analysis in the PD with Fairness Norm

à la Rawls

In this section, we provide convergence results for fictitious play in the case of
iterated Prisoner’s Dilemma in which players are more or less sensitive to the
fairness norm à la Rawls.
2 Miyazawa [17] assumed a particular tie-breaking rule to prove convergence of ficti-

tious play in 2 × 2 games.
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C R, R −κ1P, T − κ2R

D T − κ1R, −κ2P P, P

Fig. 2. Prisoner’s Dilemma with transformed utilities according to fairness norm à la
Rawls.

The first thing we can observe is that for any possible combination of norm
sensitivity values for the two players, the behaviors of both players will converge
to mixed strategies. In particular:

Theorem 1. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness
norm à la Rawls such that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let
H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG. Moreover, assume that every
agent in N learns according to fictitious play along H and is rational for all
t ≥ 0. Then, H converges in the mixed strategy sense.

Proof. For all possible values of κ1 and κ2, the transformed PD in which the
utility function Ui is replaced by U ∗

i for all i ∈ {1, 2} is non-degenerate. The
transformed PD is represented in Figure 2. Hence, the theorem follows from the
fact that, as observed in the previous section, fictitious play is guaranteed to
converge in the class of non-degenerate 2 × 2 games. ⊓⊔

Our second result is the following theorem about convergence in the pure
strategy sense. The theorem highlights that if at the beginning of the learning
process every player has a uniform probability distribution over the strategies
of the other player and the value of norm sensitivity is lower than the following
threshold for cooperativeness

θtc =
P + T − R

R − P

for both players, then the two players will always play mutual defection. On the
contrary, if at the beginning of the learning process every player has a uniform
probability distribution over the strategies of the other player and the value of
norm sensitivity is higher than the threshold θtc for both players, then the two
players will always play mutual cooperation.

Theorem 2. Let NG = (N , (Si)i∈N ,U, I, κ) be a normative game with fairness
norm à la Rawls such that (N , (Si)i∈N ,U) is the Prisoner’s Dilemma and let
H = ((ωi,j)i,j∈N , (ci)i∈N ) be a history for NG. Moreover, assume that every
agent in N learns according to fictitious play along H and is rational for all
t ≥ 0, and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for all sj ∈ {C,D}. Then:

– if κ1 < θtc and κ2 < θtc then c1(t) = c2(t) = D for all t ≥ 0,
– if κ1 > θtc and κ2 > θtc then c1(t) = c2(t) = C for all t ≥ 0.



Proof. Assume that every agent in N learns according to fictitious play along H
and is rational for all t ≥ 0, and that ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2} and for

all sj ∈ {C,D}. We are going to prove that, for all i, j ∈ {1, 2}, if κi > P+T−R
R−P

then EU 0
i (C) > EU 0

i (D) and that if κi < P+T−R
R−P

then EU 0
i (D) > EU 0

i (C).

First of all, let us compute the values of EU 0
i (D) and EU 0

i (C):

EU 0
i (D) = 0.5 × P + 0.5 × (T − κi × (R − S))

= 0.5 × P + 0.5 × (T − κi × R)

= 0.5 × (P + T − κi × R)

EU 0
i (C) = 0.5 × R + 0.5 × (S − κi × (P − S))

= 0.5 × R + 0.5 × (−κi × P )

= 0.5 × (R − κi × P )

It follows that EU 0
i (D) > EU 0

i (C) if and only if P +T −κi ×R > R−κi ×P .
The latter is equivalent to κi < P+T−R

R−P
. Therefore, we have EU 0

i (D) > EU 0
i (C)

if and only if κi < P+T−R
R−P

. By analogous argument, we can prove that EU 0
i (C) >

EU 0
i (D) if and only if κi > P+T−R

R−P
.

It is routine task to verify that, for all possible values of κ1 and κ2 in the
original normative game NG , the strategy profile (D,D) is a strict Nash equilib-
rium in the transformed PD depicted in Figure 2 in which the utility function
Ui is replaced by U ∗

i for all i ∈ {1, 2}. Hence, by Proposition 2.1 in [8] and the
fact that every agent is rational for all t ≥ 0, it follows that if κ1 < P+T−R

R−P
and

κ2 < P+T−R
R−P

then c1(t) = c2(t) = D for all t ≥ 0.

It is also a routine to verify that, if κi > T−R
R−S

for all i ∈ {1, 2}, then the strat-
egy profile (C,C) is a strict Nash equilibrium in the transformed PD depicted in
Figure 2. Hence, by Proposition 2.1 in [8], the fact that every agent is rational
for all t ≥ 0 and the fact that P+T−R

R−P
> T−R

R−S
, it follows that if κ1 > P+T−R

R−P

and κ2 > P+T−R
R−P

then c1(t) = c2(t) = C for all t ≥ 0. ⊓⊔

5 Computational Results in the PD with Fairness Norm

à la Rawls

Theorem 2 shows that if both κ-values are smaller than the threshold for coopera-
tiveness θtc, both players converge to mutual defection, whereas if both κ-values
are greater than this threshold, both players converge to mutual cooperation.
Note that this does not cover the whole space of tuples of κ-values, c.f. how do
agents operate, if one value is smaller and the other value is greater that θtc? In
these terms we are faced with the more general question: for which combination
of κ-values do agents converge to mutual cooperation or to mutual defection
under fictitious play?



To examine the convergence behavior of players under fictitious play for
different κ-values, we conducted multiple computations of repeated interactions,
for different game parameters and a large subset of the κ2-space. We recorded the
results and we managed to deduce the conditions determining the convergence
behavior that pertain perfectly with the data. These conditions are as follows.

For all normative gameswith fairness norm à laRawlsNG = (N , (Si)i∈N ,U, I, κ)

and history H = ((ωi,j)i,j∈N , (ci)i∈N ) for NG that we computed such that
(N , (Si)i∈N ,U) is the Prisoner’s Dilemma, every agent in N learns according to fic-
titious play along H , is rational for all t ≥ 0, and ω0

i,j(sj) = 0.5 for all i, j ∈ {1, 2}
and for all sj ∈ {C,D}, the following three conditions were satisfied:

1. if (κ1 − limmx) × (κ2 − limmx) < curvmx then ∃t′ ∈ N : c1(t) = c2(t) = D

for all t ≥ t′,
2. if (κ1 − limmx) × (κ2 − limmx) > curvmx then ∃t′ ∈ N : c1(t) = c2(t) = C

for all t ≥ t′,
3. if (κ1 − limmx) × (κ2 − limmx) = curvmx then both players converge to a

mixed strategy,

whereby:

curvmx =

(

PT

(R + P )(R − P )

)2

limmx =
P 2 + R(T − R)

(R + P )(R − P )

Note that the equation (κ1 − limmx) × (κ2 − limmx) = curvmx defines a
separating curve between the convergence to mutual cooperation and mutual
defection: for at least one of both κ-values being less than given, the first condi-
tion holds and fictitious play converges to mutual defection, whereas for at least
one of both κ-values being greater than given, the second condition holds and
fictitious play converges to mutual cooperation. For each pair of κ-values that
fulfills the equation, the third condition holds and fictitious play converges to a
mixed strategy for each player. This curve can be defined as a function for the
convergence to a mixed strategy fmx over κ1-values3:

fmx(κ1) =
curvmx

κ1 − limmx

+ limmx

The function fmx is depicted in Figure 3. A necessary condition of function
fmx to be correct is that it has an intersection point for κ1 = κ2 = θtc, as proved
in Theorem 3. An implication of function fmx to be correct is the fact that the
value limmx is the asymptote of the function fmx, as proved in Theorem 4, and
therefore determines a lower bound for κ-values that enable the convergence to
mutual cooperation. Finally, note that the value curvmx determines the curva-
ture of the function. Since limmx and curvmx both depend on the parameters of

3 Note that the function forms an anallagmatic curve, c.f. it inverts into itself.



κ1

κ2
fmx(κ1)

θtc

θtc

limmx

limmx

Fig. 3. The dark gray/light gray area shows in accordance with Theorem 2 that if both
κ-values are smaller than the threshold for cooperativeness θtc = P+T−R

R−P
, both players

behave according to mutual defection (dark gray area), whereas if both κ-values are
greater than this threshold, both players behave according to mutual cooperation (light
gray area). The curve represents the function for non-convergence fmx and defines for
which combination of κ-values players converge to mutual cooperation (right of/above
the curve), converge to mutual defection (left of/below the curve) or converge to a com-
bination of mixed strategies (points of the curve). Note that i) limmx is the asymptote
of the function fmx, thus it defines a lower bound for mutual cooperation, and ii)
κ1 = κ2 = θtc is an intersection point of the curve.

the PD game, the asymptote and curvature of a function fmx can strongly differ
among different games. Figure 4 shows the different curves of function fmx for
different game parameters.

Theorem 3. κ1 = κ2 = θtc is an intersection point of function fmx.

Proof. We are going to show that fmx(θtc) = θtc:

fmx(θtc) =
curvmx

θtc − limmx

+ limmx

=

(

P T
(R+P )(R−P )

)2

P+T −R
R−P

−
P2+R(T −R)
(R+P )(R−P )

+ limmx

=

(

P T
(R+P )(R−P )

)2

(R+P )(P+T −R)
(R+P )(R−P )

−
P2+R(T −R)
(R+P )(R−P )

+ limmx



=

(

P T
(R+P )(R−P )

)2

(R+P )(P+T −R)−(P2+R(T −R))
(R+P )(R−P )

+ limmx

=

(

PT

(R + P )(R − P )

)2

×
(R + P )(R − P )

(R + P )(P + T − R) − (P 2 + R(T − R))
+ limmx

=

(

PT

(R + P )(R − P )

)2

×
(R + P )(R − P )

PT
+ limmx

=
PT

(R + P )(R − P )
+ limmx

=
PT

(R + P )(R − P )
+

P 2 + R(T − R)

(R + P )(R − P )

=
PT + P 2 + R(T − R)

(R + P )(R − P )

=
PT + P 2 + RT − R2

(R + P )(R − P )

=
(P + T − R)(R + P )

(R + P )(R − P )

=
P + T − R

R − P
= θtc

⊓⊔

Theorem 4. limmx is the asymptote of function fmx.

Proof. We are going to show that lim
κ→+∞

fmx(κ) = limmx:

lim
κ→+∞

fmx(κ) = lim
κ→+∞

(

curvmx

κ − limmx

+ limmx

)

= lim
κ→+∞

(

curvmx

κ − limmx

)

+ limmx

= limmx

⊓⊔

6 Tournaments and Experimental Results

Let’s assume we have a mixed population in terms of sensitivity to fairness norm
κ. There might be individuals with high κ-values, with low κ-values or with no
sensitivity to that norm at all. In such a setup it is reasonable to ask how
beneficial fairness norm sensitivity might be. Is a low, middle or high sensitivity
rather detrimental or profitable - especially in comparison with the outcome of
the other individuals of the population?

To get a general idea of how beneficial a particular degree of sensitivity to
the fairness norm might be, we tested the performance of agents with differ-
ent κ-values in a tournament. Such a tournament was inspired by Axelrod’s
tournament of the repeated Prisoner’s Dilemma [4]. In Axelrod’s tournament a
number of agents play the repeated Prisoner’s Dilemma - pairwise each agent
against every other agent - for a particular number of repetitions. Each agent
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Game G1 G2 G3

T 3 4 7

R 2 3 6

P 1 2 2

θtc 2 3 .75

limmx 1 1.4 .125

curvmx 1 2.56 ≈ .2

Fig. 4. Exemplary Prisoner’s Dilemma games G1 (T = 3, R = 2, P = 1), G2 (T =
4, R = 3, P = 2) and G3 (T = 7, R = 6, P = 2) and their corresponding values θtc,
limmx and curvmx (right table). The graph shows the corresponding curves of the
function fmx for each game. Note that the value curvmx behaves anti-proportional to
the curvature of the function.

updates her behavior according to a rule defined by its creator. The score of
each encounter is recorded, and the agent with the highest average utility over
all encounters wins the tournament.

In our tournament we also define a number of n agents 0, 1, 2, ..., n − 1,
where each agent plays against each other agent for a number of repetitions
tmax. In distinction from Axelrod’s tournament, all agents i) play the Prisoner’s
Dilemma as a normative game with fairness norm à la Rawls, and ii) have the
same update rule: fictitious play. Although the agents have the same update
rule, they differ in another crucial aspect: their sensitivity to the fairness norm.
To keep things simple, we predefine that their sensitivity is i) bounded above
by a value κmax ∈ R>0, and ii) equally distributes among the n agents, just by
ascribing sensitivity to the fairness norm κi = i×κmax

n−1 to agent i.4 A tournament
works as follows: for each pair of agents i, j we conducted a normative game with
fairness norm à la Rawls based on the Prisoner’s Dilemma for a number of tmax

repetitions, whereby agents i and j learn according to fictitious play along their
common history. For each agent i her average utility TUi - called tournament

4 Note that to ascribe a value of fairness norm sensitivity κ = i×κmax

n−1
to agent i

ensures that agent 0 has a sensitivity to the fairness norm of 0, agent n − 1 has one
of κmax, and all other agents’ sensitivity to the fairness norm are equally distributed
between these boundaries.
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10 0.0
20 2.02
50 3.82
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Fig. 5. The resulting tournament utilities of four different tournaments with 200 agents
each, pairwise playing a normative game with fairness norm à la Rawls based on a
Prisoners Dilemma game with T = 3, R = 2, P = 1 and S = 0. The right table shows
for each tmax parameter the appropriate optimal sensitivity to the fairness norm κ∗ of
the tournament’s winner.

utility - is computed, which is the average utility value an agent scored over all
interactions.

For a given set of agents A that participate in such a tournament, the winner
is the agent i ∈ A who obtains the maximal tournament utility TUi. We refer to
the winner’s κi value as the optimal fairness norm sensitivity κ∗, with respect
to her tournament utility:

κ∗ = κi with i = arg max
j∈A

TUj

We computed 4 tournaments, each with 200 agents playing a normative game
NG with fairness norm à la Rawls based on a Prisoner’s Dilemma with T = 3,
R = 2, P = 1 and S = 0. For such a game θtc is 2, and to ensure an equal
portion of cooperative and non-cooperative agents, we set κmax = 2 × θtc = 4.
The tournaments differed in the parameter for tmax, here we chose the values 10,
20, 50 and 200. Figure 5 shows the performance of each agent in the appropriate
tournament and the appended table shows the κ∗ value of each tournament’s
winner.

The results of the tournaments indicate that the optimal sensitivity to the
fairness norm is by any means dependent of tmax and θtc. To verify this indication
we computed a great number of further tournaments with different tmax and
κmax values. The results support de facto - without any exception - the following
two observations:



1. For two tournaments that differ solely in the parameters tmax and t′max,
whereby the tournaments’ optimal values of sensitivity to the fairness norm
are κ∗ and κ′∗, respectively, the following fact holds:

if tmax > t′max then κ∗ ≥ κ′∗

2. For every tournament it holds that:

κ∗ = 0 or κ∗ > θtc

The first observation unveils one condition for which a high sensitivity to
the fairness norm à la Rawls is beneficial. It tells us that κ∗ is monotonically
increasing in dependence of tmax, i.o.w. the value of the optimal sensitivity to
the fairness norm increases with the number of repetitions of a repeated game in
such a tournament. This result is in line with former insights, since i) we showed
in Section 4 that a high value of fairness norm sensitivity supports cooperative
behavior, and ii) we know from studies of repeated Prisoner’s Dilemma that
cooperative behavior is especially beneficial in combination with reputation [19],
a virtue that needs repetition to be established.

The second observation says that it is optimal either to have no sensitivity
to the fairness norm at all, or to have a sensitivity to the fairness norm that
ensures preliminary cooperativeness5. Which of both cases holds depends inter
alia on the number of repetitions tmax. By all means, it is never the case that
0 < κ∗ ≤ θtc. This stresses the fact that a great fairness norm sensitivity is only
beneficial if it not only enables a line of mutual cooperation, but it also implies
preliminary willingness to start it.

7 Conclusion and Perspectives

Our study presents a game-theoretic model of guilt in relation to sensitivity to
the norm of fairness à la Rawls. We i) employed this model on the Prisoner’s
Dilemma, and ii) worked out the convergence behavior under fictitious play for
any combination of the fairness norm sensitivity of both players. We found out
that a particular threshold for cooperation θtc plays a crucial role: it defines
for which combinations both agents cooperate of defect from the beginning,
and for which combinations they might learn to cooperate or to defect. In a
final experimental setup, we analyzed the performance of multiple agents with
different values of sensitivity to the fairness norm involved in a tournament of
repeated games. We revealed that i) a great sensitivity to the fairness norm is
the more beneficial, the higher the number of repetitions of the repeated game
is, and ii) the threshold for cooperation θtc defines a lower bound for a great
sensitivity to the fairness norm to be beneficial at all.

5 As we have shown in Theorem 2, if agents have a sensitivity to fairness κ > θtc, their
first move is to cooperate. This behavioral characteristic can be seen as preliminary
cooperativeness.



A further observation - that was not elaborated here - was the fact that a
great sensitivity to a fairness norm is the more beneficial in a population, the
more other agents have a great sensitivity to that norm. This fact let us presume
that fairness norm sensitivity i) is a reasonable value for explaining multiple
cooperation in multi-player games like the public goods game, and ii) is a good
candidate to be analyzed under stability aspects of population dynamics, e.g. as
an evolutionary stable strategy [15], a standard concept in evolutionary game
theory. Such analyses are currently in progress and will be part of subsequent
studies. This line of future work will allow us to relate our analysis with existing
naturalistic theories of fairness according to which sensitivity to fairness norm
might be the product of evolution (see, e.g., [6]).
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