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Asymptotic behavior of Newton-like inertial dynamics involving
the sum of potential and nonpotential terms.

Samir ADLY∗, Hedy ATTOUCH† and Van Nam VO∗

April 2, 2021

ABSTRACT. In a Hilbert space H, we study a dynamic inertial Newton method which aims to solve
additively structured monotone equations involving the sum of potential and nonpotential terms. Precisely,
we are looking for the zeros of an operator A = ∇f + B where ∇f is the gradient of a continuously
differentiable convex function f , and B is a nonpotential monotone and cocoercive operator. Besides a
viscous friction term, the dynamic involves geometric damping terms which are controlled respectively by
the Hessian of the potential f and by a Newton-type correction term attached to B. Based on a fixed point
argument, we show the well-posedness of the Cauchy problem. Then we show the weak convergence
as t → +∞ of the generated trajectories towards the zeros of ∇f + B. The convergence analysis is
based on the appropriate setting of the viscous and geometric damping parameters. The introduction of
these geometric dampings makes it possible to control and attenuate the known oscillations for the viscous
damping of inertial methods. Rewriting the second-order evolution equation as a first-order dynamical
system enables us to extend the convergence analysis to nonsmooth convex potentials. These results open
the door to the design of new first-order accelerated algorithms in optimization taking into account the
specific properties of potential and nonpotential terms. The proofs and techniques are original and differ
from the classical ones due to the presence of the nonpotential term.

Mathematics Subject Classifications:

Key words and phrases: proximal-gradient algorithms; inertial methods; Hessian driven damping; nonpo-
tential term; cocoercive operators.
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1 Introduction and preliminary results

Let H be a real Hilbert space endowed with the scalar product 〈·, ·〉 and the associated norm ‖ · ‖. Many
situations coming from physics, biology, human sciences involve equations containing both potential and
nonpotential terms. In human sciences, this comes from the presence of both cooperative and noncoopera-
tive aspects. To describe such situations we will focus on solving additively structured monotone equations
of the type

Find x ∈ H : ∇f(x) +B(x) = 0. (1.1)

In the above equation, ∇f is the gradient of a convex continuously differentiable function f : H → R
(that’s the potential part), and B : H → H is a nonpotential operator 1 which is supposed to be monotone
and cocoercive. To this end, we will consider continuous inertial dynamics whose solution trajectories
converge as t → +∞ to solutions of (1.1). Our study is part of the active research stream that studies the
close relationship between continuous dissipative dynamical systems and optimization algorithms which
are obtained by their temporal discretization. To avoid lengthening the paper, we limit our study to the
analysis of the continuous dynamic. The analysis of the algorithmic part and its link with first-order
numerical optimization will be carried out in a second companion paper. From this perspective, damped
inertial dynamics offers a natural way to accelerate these systems. As the main feature of our study, we
will introduce into the dynamic geometric dampings which are respectively driven by the Hessian for the
potential part, and by the corresponding Newton term for the nonpotential part. In addition to improving
the convergence rate, this will considerably reduce the oscillatory behavior of the trajectories. We will
pay particular attention to the minimal assumptions which guarantee convergence of the trajectories, and
which highlight the asymmetric role played by the two operators involved in the dynamic. We will see that
many results can be extended to the case where f : H → R ∪ {+∞} is a convex lower semicontinuous
proper function, which makes it possible to broaden the field of applications.

1.1 Dynamical inertial Newton method for additively structured monotone problems

Let us introduce the following second-order differential equation which will form the basis of our analysis:

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0, t ≥ t0. (DINAM)

We use (DINAM) as an abbreviation for Dynamical Inertial Newton method for Additively structured
Monotone problems. We call t0 ∈ R the origin of time. Since we are considering autonomous systems,

1i.e.B is not supposed to be equal to the gradient of a given function.
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we can take any arbitrary real number for t0. For simplicity, we set t0 = 0. When considering the
corresponding Cauchy problem, we add the initial conditions: x(0) = x0 ∈ H and ẋ(0) = x1 ∈ H.

The term B′(x(t))ẋ(t) is interpreted as
d

dt
(B(x(t))) taken in the distribution sense. Likewise the term

∇2f(x(t))ẋ(t) is interpreted as
d

dt
(∇f(x(t))) taken also in the distribution sense. Because of the as-

sumptions made below these terms are indeed mesurable functions which are bounded on the bounded
time intervals. So, we will consider strong solutions of the above equation (DINAM) .
Throughout the paper we make the following standing assumptions:

(A1) f : H → R is convex, of class C1, ∇f is Lipschitz continuous on the bounded sets;

(A2) B : H → H is a λ-cocoercive operator for some λ > 0;

(A3) γ > 0, βf ≥ 0, βb ≥ 0 are given real damping parameters.

We emphasize the fact that we do not assume the gradient of f to be globally Lipschitz continuous. De-
velopping our analysis without using any bound on the gradient of f is a key to further extend the theory
to the nonsmooth case. As a specific property, the inertial system (DINAM) combines two different types
of driving forces associated respectively with the potential operator ∇f and the nonpotential operator B.
It also involves three different types of friction:

(a) The term γẋ(t) models viscous damping with a positive coefficient γ > 0.

(b) The term βf∇2f(x(t))ẋ(t) is the so-called Hessian driven damping, which allows to attenuate the
oscillations that naturally occur with the inertial gradient dynamics.

(c) The term βbB
′(x(t))ẋ(t) is the nonpotential version of the Hessian driven damping. It can be

interpreted as a Newton-type correction term.

Note that each driving force term enters (DINAM) with its temporal derivative. In fact, we have

∇2f(x(t))ẋ(t) =
d

dt
(∇f(x(t))) and B′(x(t))ẋ(t) =

d

dt
(B(x(t))) .

This is a crucial observation which makes (DINAM) equivalent to a first order system in time and space,
and makes the corresponding Cauchy problem well posed. This will be proved later (see subsection 2.1
for more details). The cocoercivity assumption on the operator B plays an important role in the analysis
of (DINAM), not only to ensure the existence of solutions, but also to analyze their asymptotic behavior
as time t→ +∞.
Recall that the operator B : H → H is said to be λ-cocoercive for some λ > 0 if

〈By −Bx, y − x〉 ≥ λ‖By −Bx‖2, ∀x, y ∈ H.

Note that B is λ-cocoercive is equivalent to B−1 is λ- strongly monotone, i.e. cocoercivity is a dual
notion of strong monotonicity. It is easy to check that B is λ-cocoercive implies that B is 1/λ-Lipschitz
continuous. The reverse implication holds true in the case where the operator is the gradient of a convex
and differentiable function. Indeed, according to Baillon-Haddad’s Theorem [19], ∇f is L-Lipschitz
continuous implies that ∇f is a 1/L-cocoercive operator (we refer to [20, Corollary 18.16] for more
details).
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1.2 Historical aspects of the inertial systems with Hessian-driven damping

The following inertial system with Hessian-driven damping

ẍ(t) + γẋ(t) + β∇2f(x(t))ẋ(t) +∇f(x(t)) = 0,

was first considered by Alvarez-Attouch-Peypouquet-Redont in [6]. Then, according to the continuous in-
terpretation by Su-Boyd-Candès [31] of the accelerated gradient method of Nesterov, Attouch-Peypouquet-
Redont [16] replaced the fixed viscous damping parameter γ by an asymptotic vanishing damping param-
eter

α

t
, with α > 0. At first glance, the presence of the Hessian may seem to entail numerical difficulties.

However, this is not the case as the Hessian intervenes in the above ODE in the form ∇2f(x(t))ẋ(t),
which is nothing but the derivative with respect to time of ∇f(x(t)). So, the temporal discretization of
these dynamics provides first-order algorithms of the form{

yk = xk + αk(xk − xk−1)− βk (∇f(xk)−∇f(xk−1))

xk+1 = yk − s∇f(yk).

As a specific feature, and by comparison with the classical accelerated gradient methods, these algorithms
contain a correction term which is equal to the difference of the gradients at two consecutive steps. While
preserving the convergence properties of the accelerated gradient method, they provide fast convergence
to zero of the gradients, and reduce the oscillatory aspects. Several recent studies have been devoted to
this subject, see Attouch-Chbani-Fadili-Riahi [8], Boţ-Csetnek-László [22], Kim [27], Lin-Jordan [28],
Shi-Du-Jordan-Su [30], and Alesca-Lazlo-Pinta [4] for an implicit version of the Hessian driven damp-
ing. Application to deep learning has been recently developed by Castera-Bolte-Févotte-Pauwels [25]. In
[3], Adly-Attouch studied the finite convergence of proximal-gradient inertial algorithms combining dry
friction with Hessian-driven damping.

1.3 Inertial dynamics involving cocoercive operators

Let’s come to the transposition of these techniques to the case of maximally monotone operators. Álvarez-
Attouch [5] and Attouch-Maingé [12] studied the equation

ẍ(t) + γẋ(t) +A(x(t)) = 0, (1.2)

when A : H → H is a cocoercive (and hence maximally monotone) operator, (see also [21]). The co-
coercivity assumption plays an important role in the study of (1.2), not only to ensure the existence of
solutions, but also to analyze their long-term behavior. Assuming that the cocoercivity parameter λ and
the damping coefficient γ satisfy the inequality λγ2 > 1, Attouch-Maingé [12] showed that each trajectory
of (1.2) converges weakly to a zero of A, i.e. x(t) ⇀ x∞ ∈ A−1(0) as t→ +∞. Moreover, the condition
λγ2 > 1 is sharp.
For general maximally monotone operators this property has been further exploited by Attouch-Peypouquet
[15], and by Attouch-Laszlo [10, 11]. The key property is that for λ > 0, the Yosida approximation Aλ
of A is λ-cocoercive and A−1λ (0) = A−1(0). So the idea is to replace the operator A by its Yosida
approximation, and adjust the Yosida regularization parameter. Another related work has been done by
Attouch-Maingé [12] who first consider the asymptotic behavior of the second order dissipative evolution
equation with f : H → R convex and B : H → H cocoercive

ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) = 0, (1.3)

combining potential with nonpotential effects. Our study will therefore consist initially in introducing the
Hessian term and the Newton-type correcting term into this dynamic.
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1.4 Link with Newton-like methods for solving monotone inclusions

Let us specify the link between our study and Newton’s method for solving (1.1). To overcome the ill-
posed character of the continuous Newton method for a general maximally monotone operator A, the
following first order evolution system was studied by Attouch-Svaiter [18],{

v(t) ∈ A(x(t))

γ(t)ẋ(t) + βv̇(t) + v(t) = 0.

This system can be considered as a continuous version of the Levenberg-Marquardt method, which acts as a
regularization of the Newton method. Remarkably, under a fairly general assumption on the regularization
parameter γ(t), this system is well posed and generates trajectories that converge weakly to equilibria
(zeroes of A). Parallel results have been obtained for the associated proximal algorithms obtained by
implicit temporal discretization, see [2], [14], [17]. Formally, this system is written as

γ(t)ẋ(t) + β
d

dt
(A(x(t))) +A(x(t)) = 0.

Thus (DINAM) can be considered as an inertial version of this dynamical system for structured monotone
operator A = ∇f + B. Our study is also linked to the recent works by Attouch-Laszlo [10, 11] who
considered the general case of monotone equations. By contrast with [10, 11], according to the cocoer-
civity of B, we don’t use the Yosida regularization, and exhibit minimal assumptions involving only the
nonpotential component.

1.5 Contents

The paper is organized as follows. Section 1 introduces (DINAM) with some historical perspective. In
section 2, based on the first order equivalent formulation of (DINAM), we show that the Cauchy problem is
well-posed (in the sense of existence and uniqueness of solutions). In section 3, we analyze the asymptotic
convergence properties of the trajectories generated by (DINAM). Using appropriate Lyapunov functions,
we show that any trajectory of (DINAM) converges weakly as t→ +∞, and that its limit belongs to S =
(∇f +B)−1(0). The interplay between the damping parameters βf , βb, γ and the cocoercivity parameter
λ will play an important role in our Lyapounov analysis. In Section 4, we perform numerical experiments
showing that the well-known oscillations in the case of the heavy ball with friction, are damped with the
introduction of the geometric (Hessian-like) damping terms. An application to the LASSO problem with
a nonpotential operator as well as a coupled system in dynamical games are considered. Section 5 deals
with the extension of the study to the nonsmooth and convex case. Section 6 contains some concluding
remarks and perspectives.

2 Well posedness of the Cauchy-Lipschitz problem

We first show the existence and the uniqueness of the solution trajectory for the Cauchy problem associated
with (DINAM) for any given initial condition data (x0, x1) ∈ H ×H.

2.1 First-order in time and space equivalent formulation

The following first-order equivalent formulation of (DINAM) was first considered by Alvarez-Attouch-
Bolte-Redont [6] and Attouch-Peypouquet-Redont [16] in the framework of convex minimization. Specif-
ically, in our context, we have the following equivalence, which follows from a simple differential and
algebraic calculation.
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Proposition 2.1 Suppose that βf > 0. Then, the following problems are equivalent: (i)⇐⇒ (ii)

(i) ẍ(t) + γẋ(t) +∇f(x(t)) +B(x(t)) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) = 0.

(ii)


ẋ(t) + βf∇f(x(t)) + βbB(x(t)) +

(
γ − 1

βf

)
x(t) + y(t) = 0;

ẏ(t)−
(

1− βb
βf

)
B(x(t)) +

1

βf

(
γ − 1

βf

)
x(t) +

1

βf
y(t) = 0.

Proof. (i) =⇒ (ii). For t ≥ 0, set

y(t) := −ẋ(t)− βf∇f(x(t))− βbB(x(t))−
(
γ − 1

βf

)
x(t), (2.1)

which gives the first equation of (ii). By differentiating y(·) and using (i), we get

ẏ(t) = −ẍ(t)− βf∇2f(x(t))ẋ(t)− βbB′(x(t))ẋ(t)−
(
γ − 1

βf

)
ẋ(t)

= γẋ(t) +∇f(x(t)) +B(x(t))−
(
γ − 1

βf

)
ẋ(t)

= ∇f(x(t)) +B(x(t)) +
1

βf
ẋ(t). (2.2)

By combining (2.1) and (2.2), we obtain

ẏ(t) +
1

βf
y(t) =

(
1− βb

βf

)
B(x(t))− 1

βf

(
γ − 1

βf

)
x(t). (2.3)

This gives the second equation of (ii).

(ii) =⇒ (i). By differentiating the first equation of (ii), we obtain

ẍ(t) + βf∇2f(x(t))ẋ(t) + βbB
′(x(t))ẋ(t) +

(
γ − 1

βf

)
ẋ(t) + ẏ(t) = 0. (2.4)

Let us eliminate y from this equation to obtain an equation involving only x. For this, we successively use
the second equation in (ii), then the first equation in (ii) to obtain

ẏ(t) =

(
1− βb

βf

)
B(x(t))− 1

βf

(
γ − 1

βf

)
x(t)− 1

βf
y(t)

=

(
1− βb

βf

)
B(x(t))− 1

βf

(
γ − 1

βf

)
x(t) +

1

βf
ẋ(t)

+∇f(x(t)) +
βb
βf
B(x(t)) +

1

βf

(
γ − 1

βf

)
x(t).

Therefore,

ẏ(t) = ∇f(x(t)) +B(x(t)) +
1

βf
ẋ(t). (2.5)

From (2.4) and (2.5), we obtain (i).
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2.2 Well-posedness of the evolution equation (DINAM)

The following theorem shows the well-posedness of the Cauchy problem for the evolution equation (DI-
NAM).

Theorem 2.1 Suppose that βf > 0 and βb ≥ 0. Then, for any (x0, x1) ∈ H × H, there exists a unique
strong global solution x : [0,+∞[→ H of the continuous dynamic (DINAM) which satisfies the Cauchy
data x(0) = x0, ẋ(0) = x1.

Proof. The system (ii) in Proposition 2.1 can be written equivalently as

Ż(t) + F (Z(t)) = 0, Z(0) = (x0, y0)

where Z(t) = (x(t), y(t)) ∈ H ×H and

F (x, y) = βf (∇f(x), 0) +
(
βbB(x) +

(
γ − 1

βf

)
x+ y,−

(
1− βb

βf

)
B(x) +

1

βf

(
γ − 1

βf

)
x+

1

βf
y
)
,

y0 = −x1 − βf∇f(x0)− βbB(x0)−
(
γ − 1

βf

)
x0.

Therefore, F = ∇Φ +G where Φ : H×H → R is the convex differentiable function

Φ(x, y) := βff(x)

and G : H×H → H×H

G(x, y) :=
(
βbB(x) +

(
γ − 1

βf

)
x+ y,−

(
1− βb

βf

)
B(x) +

1

βf

(
γ − 1

βf

)
x+

1

βf
y
)

is a Lipschitz continuous map. Indeed, the Lipschitz continuity of G is a direct consequence of the Lips-
chitz continuity of B. The existence of a classical solution to

Ż(t) +∇Φ(Z(t)) +G(Z(t)) = 0, Z(0) = (x0, y0)

follows from Brézis [23, Proposition 3.12]. In fact, the proof of this result relies on a fixed point argument.
It consists in finding a fixed point of the mapping u ∈ C([0, T ],H) 7→ K(u) ∈ C([0, T ],H) where
K(u) = w is the solution of

ẇ(t) +∇Φ(w(t)) = −G(u(t)), w(0) = (x0, y0).

It is proved that the sequence of iterates (wn) generated by the corresponding Picard iteration

ẇn+1(t) +∇Φ(wn+1(t)) = −G(wn(t)), wn+1(0) = (x0, y0),

converges uniformly on [0, T ] to a fixed point of K. When returning to (DINAM), that’s equation (i) of
Proposition 2.1, we recover a strong solution. Precisely, ẋ is Lipschitz continuous on the bounded time
intervals, and ẍ taken in the distribution sense is locally essentially bounded.

Remark 2.1 Note that when ∇f is supposed to be globally Lipschitz continuous, the above proof can be
notably simplified, by just applying the classical Cauchy-Lipschitz theorem.
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3 Asymptotic convergence properties of (DINAM)

In this section, we study the asymptotic behavior of the solution trajectories of (DINAM). For each solution
trajectory t 7→ x(t) of (DINAM) we show that the weak limit, w- lim

t→+∞
x(t) = x∞ exists, and satisfies

x∞ ∈ S, where
S := {p ∈ H : ∇f(p) +B(p) = 0}.

Before stating our main result, notice that B(p) is uniquely defined for p ∈ S.

Lemma 3.1 B(p) is uniquely defined for p ∈ S, i.e.

p1 ∈ S, p2 ∈ S =⇒ B(p1) = B(p2).

Proof. Since p1 ∈ S, p2 ∈ S we have

∇f(p1) +B(p1) = ∇f(p2) +B(p2) = 0.

By monotonicity of∇f we have

〈∇f(p2)−∇f(p1), p2 − p1〉 ≥ 0.

Replacing∇f(p1) by −B(p1) and ∇f(p2) by −B(p2), we get

〈B(p2)−B(p1), p2 − p1〉 ≤ 0,

which by cocoercivity of B gives λ‖B(p2)−B(p1)‖2 ≤ 0, and hence B(p2) = B(p1).

3.1 General case

The general line of the demonstration is close to one given by Attouch-Laszlo in [10, 11]. A first ma-
jor difference with the approach developed in [10, 11] is that in our context thanks to the hypothesis of
cocoercivity on the nonpotential part, we do not need to go through the Yosida regularization of the oper-
ators. A second difference is that we treat the potential and nonpotential operators in a differentiated way.
These points are crucial for applications to numerical algorithms, because the computation of the Yosida
regularization of the sum of the two operators is often out of reach numerically.

The following Theorem states the asymptotic convergence properties of (DINAM).

Theorem 3.1 Let B : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function whose
gradient is Lipschitz continuous on the bounded sets. Suppose that S = (∇f + B)−1(0) 6= ∅. Consider
the evolution equation (DINAM) where the involved parameters satisfy the following conditions: βf > 0
and

4λγ >
(βb − βf )2

βf
+ 2

(
βb +

1

γ

)
+ 2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Then, for any solution trajectory x : [0,+∞[→ H of (DINAM) the following properties are satisfied:

(i) (convergence) x(t) converges weakly, as t→ +∞, to an element of S.
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(ii) (integral estimates) Set A := B +∇f and p ∈ S. Then,∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖ẍ(t)‖2dt < +∞,∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞,

∫ +∞

0

∥∥∥∥ ddtB(x(t))

∥∥∥∥2 dt < +∞,∫ +∞

0
‖A(x(t))‖2dt < +∞, and

∫ +∞

0

∥∥∥∥ ddtA(x(t))

∥∥∥∥2 dt < +∞.

(iii) (pointwise estimates)

lim
t→+∞

‖ẋ(t)‖ = 0, lim
t→+∞

‖B(x(t))−B(p)‖ = 0, lim
t→+∞

‖A(x(t))‖ = 0,

where B(p) is uniquely defined for p ∈ S.

Proof. Lyapunov analysis. Set A := B +∇f and Aβ := βbB + βf∇f . Take p ∈ S. Consider the
function t ∈ [0,+∞[7→ Vp(t) ∈ R+ defined by

Vp(t) :=
1

2
‖x(t)− p+ c

(
ẋ(t) +Aβ(x(t))−Aβ(p)

)
‖2 +

δ

2
‖x(t)− p‖2, (3.1)

where c and δ are coefficients to adjust. Using the derivation chain rule for absolutely continuous functions
(see [24, Corollary VIII.10]) and (DINAM), we get

V̇p(t) =
〈
ẋ(t)− c(γẋ+A(x(t)), x(t)− p+ c

(
ẋ(t) +Aβ(x(t))−Aβ(p)

)〉
+ δ〈ẋ(t), x(t)−p〉. (3.2)

Setting δ := cγ − 1 > 0, from (3.2) we obtain

V̇p(t) = 〈−cA(x(t)), x(t)− p〉+ c〈(1− cγ)ẋ(t)− cA(x(t)), ẋ(t) +Aβ(x(t))−Aβ(p)〉. (3.3)

We have

c〈(1− cγ)ẋ(t)− cA(x(t)), ẋ(t) +Aβ(x(t))−Aβ(p)〉
= c(1− cγ)‖ẋ(t)‖2 + c(1− cγ)〈ẋ(t), Aβ(x(t))−Aβ(p)〉
−c2〈A(x(t)), ẋ(t)〉 − c2〈A(x(t)), Aβ(x(t))−Aβ(p)〉,

= c(1− cγ)‖ẋ(t)‖2 − c2βb‖B(x(t))−B(p)‖2 − c2βf‖∇f(x(t))−∇f(p)‖2

+[c(1− cγ)βb − c2]〈ẋ(t), B(x(t))−B(p)〉+ [c(1− cγ)βf − c2]〈ẋ(t),∇f(x(t))−∇f(p)〉
−c2(βb + βf )〈B(x(t))−B(p),∇f(x(t))−∇f(p)〉. (3.4)

Using the fact that p ∈ S, ∇f is monotone, and B is λ-cocoercive, we have

−c〈A(x(t)), x(t)− p〉 = −c〈A(x(t))−A(p), x(t)− p〉
= −c〈∇f(x(t))−∇f(p), x(t)− p〉 − c〈B(x(t))−B(p), x(t)− p〉
≤ −cλ‖B(x(t))−B(p)‖2. (3.5)

From (3.3)-(3.5), we deduce that

V̇p(t) ≤ −cδ‖ẋ(t)‖2 − [c2βb + cλ]‖B(x(t))−B(p)‖2 − c2βf‖∇f(x(t))−∇f(p)‖2

−[cδβb + c2]〈ẋ(t), B(x(t))−B(p)〉 − [cδβf + c2]〈ẋ(t),∇f(x(t))−∇f(p)〉
−c2(βb + βf ) 〈B(x(t))−B(p),∇f(x(t))−∇f(p)〉 . (3.6)
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Let Γ : [0,+∞[→ R be the function defined by

Γ(t) := f(x(t))− f(p)− 〈∇f(p), x(t)− p〉 ,

and Ep : [0,+∞[→ R be the energy function given by

Ep(t) := Vp(t) + [cδβf + c2]Γ(t).

Since f is convex, we have Γ(t) ≥ 0, for all t ≥ 0. This implies Ep(t) ≥ 0 for all t ≥ 0 as well.
We have,

Γ̇(t) = 〈ẋ(t),∇f(x(t))−∇f(p)〉, (3.7)

Ėp(t) = V̇p(t) + [cδβf + c2]Γ̇(t). (3.8)

By using (3.7) and (3.8), the equation (3.6) can be rewritten as

Ėp(t) + cδ‖ẋ(t)‖2 + [c2βb + cλ]‖B(x(t))−B(p)‖2 + c2βf‖∇f(x(t))−∇f(p)‖2 (3.9)

+[cδβb + c2]〈ẋ(t), B(x(t))−B(p)〉+ c2(βb + βf ) 〈B(x(t))−B(p),∇f(x(t))−∇f(p)〉 ≤ 0.

Let us eliminate the term∇f(x(t))−∇f(p) from this relation by using the elementary algebraic inequality

c2βf‖∇f(x(t))−∇f(p)‖2 + c2(βb + βf ) 〈B(x(t))−B(p),∇f(x(t))−∇f(p)〉

≥ −
c2(βb + βf )2

4βf
‖B(x(t))−B(p)‖2.

We obtain

Ėp(t) + cδ‖ẋ(t)‖2 + [c2βb + cλ−
c2(βb + βf )2

4βf
]‖B(x(t))−B(p)‖2

+[cδβb + c2]〈ẋ(t), B(x(t))−B(p)〉 ≤ 0.

Equivalently

Ėp(t) + cS(t) ≤ 0, (3.10)

where

S(t) := δ‖ẋ(t)‖2 + [δβb + c]〈ẋ(t), B(x(t))−B(p)〉

+ [cβb + λ−
c(βb + βf )2

4βf
]‖B(x(t))−B(p)‖2.

Set X(t) = ẋ(t) and Y (t) = B(x(t))− B(p). We have S(t) = q(X(t), Y (t)) where q : H×H → R is
the quadratic form

q(X,Y ) := a‖X‖2 + b〈X,Y 〉+ g‖Y ‖2

with a = δ, b = δβb + c, and g = cβb + λ−
c(βb + βf )2

4βf
= λ−

c(βb − βf )2

4βf
.

According to Lemma 7.3, and since a = δ = cγ − 1 > 0, we have that q is positive definite if and only if
4ag − b2 > 0. Equivalently

4δ

(
λ−

c(βb − βf )2

4βf

)
− [δβb + c]2 > 0. (3.11)
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Our aim is to find c such that cγ − 1 > 0 and such that (3.11) is satisfied. Take δ := cγ − 1 > 0 as a new
variable. Equivalently, we must find δ > 0 such that

4δ

(
λ− δ + 1

γ
.
(βb − βf )2

4βf

)
−
(
δβb +

δ + 1

γ

)2

> 0.

After development and simplification we obtain

4λ >
[(βb − βf )2

γβf
+

2

γ

(
βb +

1

γ

)]
+

1

γ2δ
+
[(

βb +
1

γ

)2

+
(βb − βf )2

γβf

]
δ.

Therefore, we just need to assume that

4λ >
[(βb − βf )2

γβf
+

2

γ

(
βb +

1

γ

)]
+ inf
δ>0

( 1

γ2δ
+
[(

βb +
1

γ

)2

+
(βb − βf )2

γβf

]
δ
)
.

Elementary optimization argument gives that

inf
δ>0

(C
δ

+Dδ
)

= 2
√
CD.

Therefore we end up with the condition

4λ >
[(βb − βf )2

γβf
+

2

γ

(
βb +

1

γ

)]
+

2

γ

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
.

Equivalently

4λγ >
[(βb − βf )2

βf
+ 2

(
βb +

1

γ

)]
+ 2

√(
βb +

1

γ

)2

+
(βb − βf )2

γβf
. (3.12)

When βb = βf = β we recover the condition

λγ > β +
1

γ
.

Note that cγ = 1 + δ and δ > 0 implies c > 0. Therefore, there exist positive real numbers c, µ such that

Ėp(t) + cµ‖ẋ(t)‖2 + cµ‖B(x(t))−B(p)‖2 ≤ 0. (3.13)

Estimates. We have shown that there exist positive real numbers c, µ such that, for all t ≥ 0

Ėp(t) + cµ‖ẋ(t)‖2 + cµ‖B(x(t))−B(p)‖2 ≤ 0. (3.14)

By integrating (3.14) on an interval [0, t], we obtain that for all t ≥ 0,

Ep(t) + cµ

∫ t

0
‖ẋ(s)‖2ds+ cµ

∫ t

0
‖B(x(s))−B(p)‖2ds ≤ Ep(0). (3.15)

From (3.15) and the definition of Ep we immediately deduce

sup
t≥0
‖x(t)− p‖ < +∞, (3.16)

sup
t≥0
‖x(t)− p+ c(ẋ(t) +Aβ(x(t))−Aβ(p))‖ < +∞, (3.17)∫ +∞

0
‖ẋ(t)‖2dt < +∞, (3.18)∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞. (3.19)
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Let us return to (3.9). We recall that

Ėp(t) + cδ‖ẋ(t)‖2 + [c2βb + cλ]‖B(x(t))−B(p)‖2 + c2βf‖∇f(x(t))−∇f(p)‖2 (3.20)

+[cδβb + c2]〈ẋ(t), B(x(t))−B(p)〉+ c2(βb + βf ) 〈B(x(t))−B(p),∇f(x(t))−∇f(p)〉 ≤ 0.

After integration on [0, t], and by using the integral estimates
∫ +∞

0
‖ẋ(t)‖2dt < +∞, and

∫ +∞

0
‖B(x(t))−

B(p)‖2dt < +∞, we obtain the existence of a constant C > 0 such that

c2βf

∫ t

0
‖∇f(x(s))−∇f(p)‖2ds ≤ C + c2(βb + βf )

∫ t

0
‖B(x(s))−B(p)‖‖∇f(x(s))−∇f(p)‖ds.

Therefore, for any ε > 0, we have

c2βf

∫ t

0
‖∇f(x(s))−∇f(p)‖2ds

≤ C + c2(βb + βf )

∫ t

0

(
1

4ε
‖B(x(s))−B(p)‖2 + ε‖∇f(x(s))−∇f(p)‖2

)
ds.

By taking ε > 0 such that βf > ε(βb + βf ) which is always possible since βf > 0, we conclude∫ +∞

0
‖∇f(x(t))−∇f(p)‖2dt < +∞.

Combining this with
∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞, it follows immediately

∫ +∞

0
‖A(x(t))−A(p)‖2dt < +∞. (3.21)

Moreover, we also have∫ +∞

0
‖Aβ(x(t))−Aβ(p)‖2dt =

∫ +∞

0
‖βf (∇f(x(t))−∇f(p)) + βb(B(x(t))−B(p))‖2dt

≤ (β2f + β2b )

∫ +∞

0
‖∇f(x(t))−∇f(p)‖2 + ‖B(x(t))−B(p)‖2dt < +∞. (3.22)

According to (3.16) the trajectory x(·) is bounded. Set R := sup
t≥0
‖x(t)‖. By assumption, ∇f is Lipschitz

continuous on the bounded sets. Let LR < +∞ be the Lipschitz constant of ∇f on B(0, R). Since B is

λ-cocoercive, it is
1

λ
-Lipschitz continuous. Therefore A is L-Lipschitz continuous on the trajectory with

L := LR +
1

λ
. Therefore

d

dt
‖A(x(t))‖ ≤

∥∥∥∥ ddtA(x(t))

∥∥∥∥ ≤ L‖ẋ(t)‖, for all t ≥ 0. (3.23)

Using (3.21) and (3.23) we deduce that u(t) := ‖A(x(t))‖ satisfies the condition of Lemma 7.2 (with
p = 2 and r = 2). Therefore,

lim
t→+∞

‖A(x(t))‖ = 0. (3.24)
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Likewise, according to (3.22) we have

lim
t→+∞

‖Aβ(x(t))−Aβ(p)‖ = 0. (3.25)

Returning to (3.17)-(3.18), we deduce that ẋ(·) is bounded and lim
t→+∞

‖ẋ(t)‖ = 0. By using the same

argument as in (3.23), we obtain that
d

dt
Aβ(x(t)) is bounded. From (3.23) we also get that

∫ +∞

0

∥∥∥∥ ddtA(x(t))

∥∥∥∥2 dt < +∞.

Similarly, we also have ∫ +∞

0

∥∥∥∥ ddtB(x(t))

∥∥∥∥2 dt < +∞.

By using (DINAM) we have

ẍ(t) = −γẋ(t)−A(x(t))− d

dt
Aβ(x(t))

= −γẋ(t)−A(x(t))− βf
d

dt
A(x(t))− (βb − βf )

d

dt
B(x(t)).

Since the second member of the above equality belongs to L2(0,+∞;H), we finally get∫ +∞

0
‖ẍ(t)‖2 dt < +∞.

The limit. To prove the existence of the weak limit of x(t), we use Opial’s lemma (see [29] for more

details). Given p ∈ S, let us consider the anchor function defined by, for every t ∈ [0,+∞[

qp(t) :=
1

2
‖x(t)− p‖2.

From q̇p(t) = 〈ẋ(t), x(t)− p〉 and q̈p(t) = ‖ẋ(t)‖2 + 〈ẍ(t), x(t)− p〉, we obtain

q̈p(t) + γq̇p(t) = ‖ẋ(t)‖2 + 〈ẍ(t) + γẋ(t), x(t)− p〉

= ‖ẋ(t)‖2 − 〈A(x(t)) +
d

dt
Aβ(x(t)), x(t)− p〉

≤ ‖ẋ(t)‖2 − 〈 d
dt
Aβ(x(t)), x(t)− p〉.

Equivalently,

q̈p(t) + γq̇p(t) + 〈 d
dt
Aβ(x(t)), x(t)− p〉 ≤ ‖ẋ(t)‖2. (3.26)

According to the derivation formula for a product, we can rewrite (3.26) as follows

q̈p(t) + γq̇p(t) +
d

dt
〈Aβ(x(t))−Aβ(p), x(t)− p〉 ≤ ‖ẋ(t)‖2 + 〈Aβ(x(t))−Aβ(p), ẋ(t)〉 .

By Cauchy-Lipschitz inequality we get

q̈p(t) + γq̇p(t) +
d

dt
〈Aβ(x(t))−Aβ(p), x(t)− p〉 ≤ ‖ẋ(t)‖2 + ‖Aβ(x(t))−Aβ(p)‖‖ẋ(t)‖. (3.27)
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Then note that the second member of (3.27)

g(t) := ‖ẋ(t)‖2 + ‖Aβ(x(t))−Aβ(p)‖‖ẋ(t)‖

is nonnegative and belongs to L1(0,+∞). Indeed, we have∫ +∞

0
‖Aβ(x(t))−Aβ(p)‖‖ẋ(t)‖dt ≤ 1

2

∫ +∞

0
‖Aβ(x(t))−Aβ(p)‖2dt+

1

2

∫ +∞

0
‖ẋ(t)‖2dt.

Using (3.18) and (3.22), we deduce that ∫ +∞

0
g(t)dt < +∞.

Note that the left member of (3.27) can be rewritten as a derivative of a function, precisely

q̈p(t) + γq̇p(t) +
d

dt
〈Aβ(x(t))−Aβ(p), x(t)− p〉 = ḣ(t)

with
h(t) = q̇p(t) + γqp(t) + 〈Aβ(x(t))−Aβ(p), x(t)− p〉 . (3.28)

So we have
ḣ(t) ≤ g(t), for every t ≥ 0.

Let us prove that the function h given in (3.28) is bounded below by some constant. Indeed, since the
terms qp(t) and 〈Aβ(x(t))−Aβ(p), x(t)− p〉 are nonnegative, we have

h(t) ≥ q̇p(t) ≥ −‖ẋ(t)‖ ‖x(t)− p‖.

Using (3.16) and the fact that ẋ(·) is bounded, we deduce that there exists some m ∈ R such that

h(t) ≥ m for every t ≥ 0.

Let us introduce the real-valued function ϕ : R+ → R, t 7→ ϕ(t) defined by

ϕ(t) = h(t)−
∫ t

0
g(s)ds.

We have ϕ′(t) = ḣ(t) − g(t) ≤ 0. Hence, the function ϕ is nonincreasing on [0,+∞[. This classically
implies that the limit of ϕ exists as t→ +∞. Since g ∈ L1(0,+∞), we deduce that lim

t→+∞
h(t) exists.

Using the fact that 〈Aβ(x(t))−Aβ(p), x(t)− p〉 tends to zero as t → +∞ (a consequence of (3.25) and
x(·) bounded), we obtain

q̇p(t) + γqp(t) = θ(t)

with limit of θ(t) exists as t→ +∞. The existence of the limit of qp then follows from a classical general
result concerning the convergence of evolution equations governed by strongly monotone operators (here
γ Id, see Theorem 3.9 page 88 in [23]). This means that for all p ∈ S

lim
t→+∞

‖x(t)− p‖ exists.

To complete the proof via the Opial’s lemma, we need to show that every weak sequential cluster point of
x(t) belongs to S. Let tn → +∞ such that x(tn) ⇀ x∗, n→ +∞. We have

A(x(tn))→ 0 strongly inH and x(tn) ⇀ x∗ weakly inH.

From the closedness property of the graph of the maximally monotone operator A in w −H× s−H, we
deduce that A(x∗) = 0, that is x∗ ∈ S.
Consequently, x(t) converges weakly to an element of S as t goes to +∞. The proof of Theorem 3.1 is
thereby completed.
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3.2 Case βb = βf

Let us specialize the previous results in the case βb = βf . We set βb = βf := β > 0, and A := ∇f + B.
We thus consider the evolution system

(DINAM) ẍ(t) + γẋ(t) +A(x(t)) + β
d

dt
(A(x(t))) = 0, t ≥ 0.

The existence of strong global solutions to this system is guaranteed by Theorem 2.1. The convergence
properties as t → +∞ of the solution trajectories generated by this system is a consequence of Theorem
3.1 and are given below.

Corollary 3.1 LetB : H → H be a λ-cocoercive operator and f : H → R be a C1 convex function whose
gradient is Lipschitz continuous on the bounded sets. Suppose that the solution set S = (∇f+B)−1(0) 6=
∅. Consider the evolution equation (DINAM) where A = ∇f + B, βb = βf := β > 0 and where the
involved parameters satisfy the following conditions

γ > 0, β > 0, and λγ > β +
1

γ
. (3.29)

Then, for any trajectory solution x : [0,+∞[→ H of (DINAM) the following properties are satisfied:

(i) (convergence) The trajectory x(·) is bounded, and x(t) converges weakly, as t → +∞, to an
element x∗ ∈ S.

(ii) (integral estimate)∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖ẍ(t)‖2dt < +∞,∫ +∞

0
‖A(x(t))‖2dt < +∞, and

∫ +∞

0

∥∥∥∥ ddtA(x(t))

∥∥∥∥2 dt < +∞.

(iii) (pointwise estimate)

lim
t→+∞

‖ẋ(t)‖ = 0, and lim
t→+∞

‖A(x(t))‖ = 0.

Remark 3.1 It is worth stating the result of Corollary 3.1 apart because this is an important case. This also
makes it possible to highlight this result compared to the existing literature for second-order dissipative
evolution systems involving cocoercive operators. Indeed, letting β go to zero in (3.29) gives the condition

λγ2 > 1, (3.30)

introduced by Attouch-Maingé in [12] to study the second order dynamic (1.3) without geometric damping.
With respect to [12], the introduction of the geometric damping, i.e., taking β > 0, provides some useful
additional estimates.

4 Numerical illustrations

In this section, we give some numerical illustrations by using a temporal discretization of the dynamic
(DINAM). Let us recall the condensed formulation of (DINAM)

ẍ(t) + γẋ(t) +A(x(t)) +
d

dt
(Aβ(x(t))) = 0, (DINAM)
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where A := ∇f + B and Aβ := βbB + βf∇f . Take a fixed time step h > 0, and consider the following
implicit finite-difference scheme for (DINAM):

1

h2
(xk+1 − 2xk + xk−1) +

γ

h
(xk+1 − xk) +

1

h
(Aβ(xk+1)−Aβ(xk)) +A(xk+1) = 0. (4.1)

After expanding (4.1), we obtain

xk+1 +
h2

1 + γh
A(xk+1) +

h

1 + γh
Aβ(xk+1) = xk +

1

1 + γh
(xk − xk−1) +

h

1 + γh
Aβ(xk). (4.2)

Set s :=
h

1 + γh
and α :=

1

1 + γh
. So we have

xk+1 + sAh(xk+1) = yk, (4.3)

where

Ah = (h+ βb)B + (h+ βf )∇f, (4.4)

yk = xk + α(xk − xk−1) + sAβ(xk). (4.5)

From (4.3) we get
xk+1 = (Id +sAh)−1(yk). (4.6)

Combining (4.3) and (4.6), we obtain the following algorithm

(DINAAM):

Initialize: x0 ∈ H, x1 ∈ H

α =
1

1 + γh
,

s =
h

1 + γh
,

yk = xk + α(xk − xk−1) + sAβ(xk) ,

xk+1 = (Id +sAh)−1(yk).

(4.7)

Remark 4.1 (i) The convergence analysis of the algorithm (DINAAM) will be postponed to an other re-
search investigation. In the current version, we focus only on the continuous dynamic (DINAM) and its
asymptotic convergence. The numerical experiments below are given for illustrative purposes.
(ii) A general method to generate monotone cocoercive operators which are not gradients of convex func-
tions is to start from a linear skew symmetric operator A and then take its Yosida approximation Aλ. As a
model situation, takeH = R2 and start from A equal to the rotation of angle

π

2
. We have

A =

(
0 −1
1 0

)
.

An elementary computation gives that, for any λ > 0

Aλ =
1

1 + λ2

(
λ −1
1 λ

)
,
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which is therefore λ-cocoercive. As a consequence, for λ = 1 we obtain that the matrix

B =

(
1 −1
1 1

)

is
1

2
-cocoercive. With these basic blocks, one can easily construct many other cocoercive operators which

are not potential operators. For that, use Lemma 7.1 which gives that the sum of two cocoercive operators
is still cocoercive, and therefore the set of cocoercive operators is a convex cone.

Example 4.1 Let us start this section by a simple illustrative example in R2. We take H = R2 equipped
with the usual Euclidean structure. Let us consider B as a linear operator whose matrix in the canonical
basis of R2 is defined by B = Aλ for λ = 5. According to Remark 4.1, we can check that B is λ-
cocoercive with λ = 5 and that B is a nonpotential operator. To observe the classical oscillations, in the
heavy ball with friction, we take f : R2 → R defined by

f(x1, x2) = 50x22.

We set γ = 0.9. It is clear that f is convex but not strongly convex. We study 3 cases: (1) βb = 1, βf = 0.5,
(2) βb = 0.5, βf = 1 and (3) βb = βf = 0.5. As a straight application of Theorem 3.1, we obtain that the
trajectory x(t) generated by (DINAM) converges to x∞, where x∞ ∈ S = (B +∇f)−1(0) = {0}. The
trajectory obtained by using Matlab is depicted in Figure 1, where we represent the components x1(t) and
x2(t) in red and blue respectively.
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(a) Case βb = 1, βf = 0.5.
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(b) Case βb = 0.5, βf = 1.
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(c) Case βb = 0.5, βf = 0.5.

Figure 1: Trajectories of (DINAM) for different values of the parameters βb, βf .

Now we study the behaviour of the trajectories by considering more different values of βb and βf . We
study four cases in Figures 2. The plots of the second variable of the solutions have been depicted in
Figure 2(a) while in Figure 2(b) is plotted the number of iterations k versus ‖B(xk) +∇f(xk)‖. Through
Figures 1 and 2, we can conclude that by introducing the Hessian damping (βf > 0), the oscillations of
the trajectories in Fig. 2 are attenuated. The oscillations of the solutions appear whenever βf goes to 0.
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Figure 2: Oscillation of the trajectories of (DINAM) for different values of βb, βf .
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Example 4.2 Now we are looking at another higher dimensional example. Let us consider f : Rn → R
given by f(x) =

1

2
‖Mx− b‖2, where M ∈ Rm×n and b ∈ Rm. We have

∇f(x) = M>(Mx− b), ∇2f(x) = M>M.

Since M>M is positive semidefinite for any matrix M , the quadratic function f is convex. Furthermore,
if M has full column rank, i.e. rank(M) = n, then M>M is positive definite. Therefore f is strongly
convex. Take B defined as below

B =



1 −1 0 · · · 0

1 1 0 · · ·
...

0 0 1 · · ·
...

...
...

. . .
...

0 . . . . . . . . . 1


∈ Rn×n.

Then, B is cocoercive. Indeed, for any x, y ∈ Rn, we have

〈Bx−By, x− y〉 = ‖x1 − y1‖2 + ‖x2 − y2‖2 + · · ·+ ‖xn − yn‖2

≥ 1

2

[
2(‖x1 − y1‖2 + ‖x2 − y2‖2) + ‖x3 − y3‖2 + · · ·+ ‖xn − yn‖2

]
=

1

2
‖Bx−By‖2.

If the matrix M has not full column rank with M>M +B nonsingular, then

B(x) +∇f(x) = 0 if and only if x = (M>M +B)−1M>b.

In our experiment, we pick M a random 10× 100 matrix which has not full column rank. Set γ = 3, βb =
1, βf = 1 and the operator B as presented above. Thanks to Corollary 3.1, we conclude that the trajectory
x(t) generated by the system (DINAM) converges to x∞ = (M>M + B)−1M>b. Implementing the
algorithm (DINAAM) in Matlab, we obtain the plot of k versus the norm of B(xk) +∇f(xk). Similarly,
we study several cases by changing the parameters βb, βf . This is depicted in Fig 3.

0 50 100 150 200 250 300 350 400 450 500

Interation k

-8

-6

-4

-2

0

2

4

6

lo
g
(‖
B
(x

k
)
+
∇
f
(x

k
)‖
)

βb = 1,βf = 0.5
βb = 0.5,βf = 1
βb = 0.5,βf = 0.5
βb = 0.5,βf = 0.05
βb = 0,βf = 0

Figure 3: The behaviour of (DINAAM) for high dimension problem.

Before ending this part, we discuss an application of our model to dynamical games.
The following example is taken from Attouch-Maingé [12] and adapted to our context.
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Example 4.3 We make the following standing assumptions:

(i) H = X1×X2 is the Cartesian product of two Hilbert spaces equipped with norms ‖ · ‖X1 and ‖ · ‖X2

respectively. In which, x = (x1, x2), with x1 ∈ X1 and x2 ∈ X2, stands for an element inH;

(ii) f : X1 ×X2 → R is convex function whose gradient is Lipschitz continuous on bounded sets;

(iii) B = (∇x1L,−∇x2L) is the maximally monotone operator which is attached to a smooth convex-
concave function L : X1 ×X2 → R. The operator B is assumed to be λ-cocoercive with λ > 0.

In our setting, with x(t) = (x1(t), x2(t)) the system (DINAM) is written

ẍ1(t) + γẋ1(t) +∇x1f(x1(t), x2(t)) +∇x1L(x1(t), x2(t))

+ βf
d

dt
(∇x1f(x1(t), x2(t))) + βb

d

dt
(∇x1L(x1(t), x2(t))) = 0

ẍ2(t) + γẋ2(t) +∇x2f(x1(t), x2(t))−∇x2L(x1(t), x2(t))

+ βf
d

dt
(∇x2f(x1(t), x2(t)))− βb

d

dt
(∇x2L(x1(t), x2(t))) = 0.

(4.8)

According to Theorem 3.1, x(t) ⇀ x∞ = (x1,∞, x2,∞) weakly inH, where (x1,∞, x2,∞) is solution of{
∇x1f(x1(t), x2(t)) +∇x1L(x1(t), x2(t)) = 0

∇x2f(x1(t), x2(t))−∇x2L(x1(t), x2(t)) = 0.
(4.9)

Structured systems such as (4.9) contain both potential and nonpotential terms which are often present in
decision sciences and physics. In game theory, (4.9) describles Nash equilibria of the normal form game
with two players 1, 2 whose static loss functions are respectively given by{

F1 : (x1, x2) ∈ X1 ×X2 → F1(x1, x2) = f(x1, x2) + L(x1, x2)

F2 : (x1, x2) ∈ X1 ×X2 → F2(x1, x2) = f(x1, x2)− L(x1, x2).
(4.10)

f(·, ·) is their joint convex payoff, and L is a convex-concave payoff with zero-sum rule. For more details,

we refer the reader to [12]. As an example, take X1 = X2 = R, and L : R2 → R given by L(x) =
1

2
(x21−

2x1x2−x22). ThenB = (∇x1L,−∇x2L) =

(
1 −1
1 1

)
. Pick f(x) =

1

2
(3x21−2x1x2+x22)−x1−2x2. The

Nash equilibria described in (4.9) can be solved by using (DINAAM). Take γ = 3, βb = 0.5, βf = 0.5 and
x0 = (1,−1), ẋ0 = (−10, 10) as initial conditions, then the numerical solution for (DINAM) converges
to x∞ = (34 , 1) which is the solution of (4.9) as well. The numerical trajectories and phase portrait of our
model applied to dynamical games are depicted in Figure 4.
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Figure 4: An application of (DINAAM) to dynamical games: trajectories (a) and phase portrait (b).
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5 The nonsmooth case

The equivalence obtained in Proposition 2.1 between (DINAM) and a first-order evolution system in time
and space allows a natural extension of both our theoretical and numerical results to the case of a convex,
lower semicontinuous and proper function f : H → R∪ {+∞}. It suffices to replace the gradient of f by
the convex subdifferential ∂f . We recall that the subdifferential of f at x ∈ H is defined by

∂f(x) = {z ∈ H : 〈z, ξ − x〉 ≤ f(ξ)− f(x) for every ξ ∈ H},

and the domain of f is equal to domf = {x ∈ H : f(x) < +∞}. This leads to consider the system

(g-DINAM)


ẋ(t) + βf∂f(x(t)) + βbB(x(t)) +

(
γ − 1

βf

)
x(t) + y(t) 3 0;

ẏ(t)−
(

1− βb
βf

)
B(x(t)) +

1

βf

(
γ − 1

βf

)
x(t) +

1

βf
y(t) = 0.

The prefix g in front of (DINAM) stands for generalized. Note that the first equation of (g-DINAM) is now
a differential inclusion, because of the possiblity for ∂f(x(t)) to be multivalued. By taking f = f0 + δC ,
where δC is the indicator function of a constraint set C, the system (g-DINAM) allows to model damped
inelastic shocks in mechanics and decision sciences, see [13]. The original aspect comes from the fact
that (g-DINAM) now involves both potential driven forces (attached to f0) and nonpotential driven forces
(attached to B). As we will see, taking into account shocks created by nonpotential driving forces is a
source of difficulties.

Let us first establish the existence and uniqueness of the solution trajectory of the Cauchy problem.

Theorem 5.1 Let f : H → R ∪ {+∞} be a convex, lower semicontinuous and proper function. Suppose
that βf > 0 and βb ≥ 0. Then, for any (x0, x1) ∈ domf ×H, there exists a unique strong global solution
x : [0,+∞[→ H of (g-DINAM) which satisfies the Cauchy data x(0) = x0, ẋ(0) = x1.

Proof. The proof is parallel to that of Theorem 2.1. The system (g-DINAM) can be equivalently
written as

Ż(t) + ∂Φ(Z(t)) +G(Z(t)) 3 0, Z(0) = (x0, y0), (5.1)

where the function Φ(Z) = Φ(x, y) = βff(x) is now convex lower semicontinuous proper on H × H.
The operator G is unchanged, and is globally Lipschitz continuous. The above equation falls under the
setting of the Lipschitz perturbation of an evolution system governed by the subdifferential of a convex
function. The existence and uniqueness of the strong solution to (5.1) follows from Brézis [23, Proposition
3.12], and the fact that (x0, y0) ∈ domΦ.

The solution set S is defined by

S := {p ∈ H : ∂f(p) +B(p) 3 0}.

Before stating our main result, notice that B(p) is uniquely defined for p ∈ S.

Lemma 5.1 B(p) is uniquely defined for p ∈ S, i.e.

p1 ∈ S, p2 ∈ S =⇒ B(p1) = B(p2).

Proof. The proof is similar to that of Lemma 3.1. It is based on the monotonicity of the subdifferential
of f and the cocoercivity of the operator B.



21

For sake of simplicity, we give a detailed proof in the case βf = βb = β > 0. The system (g-DINAM)
takes the simpler form:

(g-DINAM)


ẋ(t) + β∂f(x(t)) + βB(x(t)) +

(
γ − 1

β

)
x(t) + y(t) 3 0;

ẏ(t) +
1

βf

(
γ − 1

β

)
x(t) +

1

β
y(t) = 0.

To formulate the convergence results and the corresponding estimates, we write the first equation of (g-
DINAM) as follows

ẋ(t) + βξ(t) + βB(x(t)) +

(
γ − 1

β

)
x(t) + y(t) = 0, (5.2)

where ξ(t) ∈ ∂f(x(t)) and we set A(x(t)) = ξ(t) +B(x(t)).

Theorem 5.2 Let B : H → H be a λ-cocoercive operator. Let f : H → R ∪ {+∞} be a convex, lower
semicontinuous, proper function. Suppose that S = {p ∈ H : 0 ∈ ∂f(p) + B(p)} 6= ∅. Consider the
evolution equation (g-DINAM) where the parameters satisfy the conditions: βf = βb = β > 0 and

γ > 0, β > 0 and λγ > β +
1

γ
. (5.3)

Then, for any solution trajectory x : [0,+∞[→ H of (g-DINAM) the following properties are satisfied:

(i) (integral estimates) Set A(x(t)) := ξ(t) + B(x(t)), with ξ(t) ∈ ∂f(x(t)) as defined in (5.2) and
p ∈ S. Then, ∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞,∫ +∞

0
‖A(x(t))‖2dt < +∞,

∫ ∞
0
〈A(x(t)), x(t)− p〉 dt < +∞.

(ii) (convergence) For any p ∈ S,

1. lim
t→+∞

‖x(t)− p‖ exists.

2. lim
t→+∞

‖B(x(t))−B(p)‖ = 0, where B(p) is uniquely defined for p ∈ S.

Proof. Let us adapt the Lyapunov analysis developed in the previous sections to the case where f is
nonsmooth. We have to pay attention to the following points. First, we must invoke the (generalized) chain
rule for derivatives over curves (see [23, Lemme 3.3]), that is, for a.e t ≥ 0

d

dt
f(x(t)) = 〈ξ(t), ẋ(t)〉 .

The second ingredient is the validity of the subdifferential inequality for convex functions. So, let us
consider the function t ∈ [0,+∞[7→ Ep(t) ∈ R+ defined by

Ep(t) :=
1

2
‖x(t)− p+ c

(
ẋ(t) +A(x(t))

)
‖2 +

δ

2
‖x(t)− p‖2 + [cδβf + c2]Γ(t). (5.4)
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When derivating Ep(t), we use the formulation (g-DINAM) which gives

ẋ(t) + βA(x(t)) = −
(
γ − 1

β

)
x(t)− y(t)

which allows to derivate ẋ(t) +βA(x(t)), and obtain similar formulas as in the smooth case. Then a close
examination of the Lyapunov analysis shows that we can obtain the additional estimate∫ ∞

0
〈A(x(t)), x(t)− p〉 dt < +∞. (5.5)

Set 0 ∈ ∂f(p) + B(p). To obtain (5.5), we return to (3.5), and consider the following minorization that
we split into a sum with coefficients ε′ and 1− ε′ (where ε′ > 0 will be taken small enough)

c〈A(x(t)), x(t)− p〉 = cε′〈A(x(t)), x(t)− p〉+ c(1− ε′)〈A(x(t))−Ap, x(t)− p〉
≥ cε′〈A(x(t)), x(t)− p〉+ c(1− ε′)〈B(x(t))−B(p), x(t)− p〉
≥ cε′〈A(x(t)), x(t)− p〉+ c(1− ε′)λ‖B(x(t))−B(p)‖2. (5.6)

Note that in the second above inequality we have used the monotonicity of ∂f . So the proof continues with
λ replaced by (1− ε′)λ. This does not change the conditions on the parameters since in our assumptions,

the inequality λγ > β+
1

γ
is strict, it is still satisfied by (1− ε′)λ when ε′ is taken small enough. So, after

integrating the resulting strict Lyapunov inequality, we obtain the supplementary property (5.5). Until
(3.22) the proof is essentially the same as in the case of a smooth function f . We obtain the integral
estimates∫ +∞

0
‖ẋ(t)‖2dt < +∞,

∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞,

∫ +∞

0
‖A(x(t))‖2dt < +∞.

But then we can no longer invoke the Lipschitz continuity on the bounded sets of ∇f . To overcome this
difficulty, we modify the end of the proof as follows. Recall that given p ∈ S, the anchor function is
defined by, for every t ∈ [0,+∞[

qp(t) :=
1

2
‖x(t)− p‖2,

and that we need to prove that the limit of the anchor functions exists, as t → +∞. The idea is to play
on the fact that we have in hand a whole collection of Lyapunov functions, parametrized by the coefficient
c. Recall that we have obtained that the limit of Ep(t) exists as t → +∞, and this is satisfied for a whole

interval of values of c. So, for such c, the limit of Wc(t) :=
1

cδβ + c2
Ep(t) as t→ +∞ exists, where

Wc(t) =
1

2(cδβ + c2)
‖x(t)− p+ c

(
ẋ(t) + βA(x(t))

)
‖2 +

δ

2(cδβ + c2)
‖x(t)− p‖2 + Γ(t).

Take two such values of c, let c1 and c2, and make the difference (recall that δ = cγ − 1). We obtain

Wc1(t)−Wc2(t) =
[ 1

(c1γ − 1)β + c1
− 1

(c2γ − 1)β + c2

]
W (t)

where
W (t) :=

γ

2
‖x(t)− p‖2 +

1

2
‖ẋ(t) + βA(x(t))‖2 + 〈ẋ(t) + βA(x(t)), x(t)− p〉 .

So, we obtain the existence of the limit as t → +∞ of W (t). Then note that W (t) = γqp(t) +
d

dt
w(t)

where

w(t) := qp(t) + β

∫ t

0
〈A(x(s), x(s)− p〉 ds+

1

2

∫ t

0
‖ẋ(s) + βA(x(s))‖2ds.
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Reformulate W (t) in terms of w(t) as follows

W (t) = γw(t) +
d

dt
w(t)−

(
γβ

∫ t

0
〈A(x(s), x(s)− p〉 ds+

γ

2

∫ t

0
‖ẋ(s) +A(x(s))‖2ds

)
.

As a consequence of (5.5) and of the previous estimates, we have that the limit of the two above integrals
exists as t→ +∞. Therefore, according to the convergence of W (t) we obtain that

lim
t→+∞

(
γw(t) +

d

dt
w(t)

)
exists.

The existence of the limit of w follows from a classical general result concerning the convergence of
evolution equations governed by strongly monotone operators (here γ Id, see Theorem 3.9 page 88 in
[23]). In turn, using the same argument as above, we obtain that for all p ∈ S

lim
t→+∞

‖x(t)− p‖ exists.

As in the smooth case, the strong convergence of B(x(t)) to B(p) is a direct consequence of the integral

estimates
∫ +∞

0
‖B(x(t))−B(p)‖2dt < +∞,

∫ +∞

0
‖ẋ(t)‖2dt < +∞ and of the fact that B is Lipschitz

continuous. The proof of Theorem 3.1 is thereby completed.

Remark 5.1 (i) A natural question is to know if the weak limit of the trajectory exists. Indeed we are not

far from this result since
∫ +∞

0
‖A(x(t))‖2dt < +∞, which implies that A(x(t)) converges strongly to

zero in an ”essential” way. According to Opial’s lemma, this allows to complete the convergence proof as
in the smooth case. This is a seemingly difficult question to examine in the future.

(ii) A particular situation is the case γ =
1

β
, in wich case the system (g-DINAM) can be written in an

equivalent way
u̇(t) + γu(t) = 0

where
ẋ(t) + βA(x(t)) 3 u(t).

The convergence of the trajectory t 7→ x(t) is then a consequence of the convergence of the semigroup
generated by the sum of a cocoercive operator with the subdifferential of a convex lower semicontinuous
and proper function, see Abbas-Attouch [1]. Note that is this case the condition for the convergence of the
trajectories generated by (g-DINAM) does not depend any more on the cocoercivity parameter λ.

6 Conclusion, perspectives

In this paper, in a general real Hilbert space setting, we investigated a dynamic inertial Newton method
for solving additively structured monotone problems. The dynamic is driven by the sum of two monotone
operators with distinct properties: the potential component is the gradient of a continuously differentiable
convex function f , and the nonpotential is a monotone and cocoercive operatorB. The geometric damping
is controlled by the Hessian of the potential f and by a Newton-type correction term attached to B. The
well-posedness of the Cauchy problem is shown as well as the asymptotic convergence properties of the
trajectories generated by the continuous dynamic. The convergence analysis is carried out through the
parameters βf and βb attached to the geometric dampings as well as the parameters γ and λ (the viscous
damping and the coefficient of cocoercivity respectively). The introduction of geometric damping makes it
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possible to control and attenuate the oscillations known for viscous damping of inertial systems, giving rise
to faster numerical methods. It would be interesting to extend the analysis for both the continuous dynamic
and its discretization to the case of an asymptotic vanishing damping γ(t) =

α

t
, with α > 0 as in [31].

This is a decisive step towards proposing faster algorithms for solving structured monotone inclusions,
which are connected to the accelerated gradient method of Nesterov. The study of the corresponding
splitting methods is also an important topic which needs further investigations. In fact, replacing ∇f
by a general maximally monotone operator A, whose resolvent can be computed easily, would be an
interesting problem to study an inertial forward-backward algorithm with Hessian-driven damping for
solving structured monotone inclusions of the form: Ax+Bx 3 0. This is beyond the scope of the current
manuscript and will be the subject of a future separate work.

7 Appendix

7.1 Technical lemmas

Let us show that the sum of two cocercive operators is still cocoercive. For further properties concerning
cocoercive operators see [20].

Lemma 7.1 Let T1, T2 : H → H be two cocoercive operators with respective cocoercivity coefficients
λ1, λ2 > 0. Then, T := T1 + T2 : H → H is λ−cocoercive with λ = λ1λ2

λ1+λ2
.

Proof. According to the cocoercivity assumptions of T1 and T2, we have

〈T1y − T1x, y − x〉 ≥ λ1‖T1y − T1x‖2, ∀x, y ∈ H,

〈T2y − T2x, y − x〉 ≥ λ2‖T2y − T2x‖2, ∀x, y ∈ H.

Let us show that the sum T = T1 +T2 is still cocoercive. Using elementary computation in Hilbert spaces,
for all x, y ∈ H, we have

‖Ty − Tx‖2 = ‖T1y − T1x+ T2y − T2x‖2

= ‖T1y − T1x‖2 + ‖T2y − T2x‖2 + 2〈T1y − T1x, T2y − T2x〉

≤ ‖T1y − T1x‖2 + ‖T2y − T2x‖2 +
λ1
λ2
‖T1y − T1x‖2 +

λ2
λ1
‖T2y − T2x‖2

=
(
λ−11 + λ−12

) (
λ1‖T1y − T1x‖2 + λ2‖T2y − T2x‖2

)
.

Since T1, T2 are cocoercive, we deduce that

‖Ty − Tx‖2 ≤
(
λ−11 + λ−12

)
(〈T1y − T1x, y − x〉+ 〈T2y − T2x, y − x〉)

=
(
λ−11 + λ−12

)
〈Ty − Tx, y − x〉.

Equivalently,

〈Ty − Tx, y − x〉 ≥ λ1λ2
λ1 + λ2

‖Ty − Tx‖2, ∀x, y ∈ H.

So, T is still λ−cocoercive with λ = λ1λ2
λ1+λ2

> 0.
Let us show that this estimate is sharp. Take T1 : H → H, x 7→ λ−11 x and T2 : H → H, x 7→ λ−12 x. It is
easy to check that T1, T2 are two cocoercive operators with cocoercivity coefficients λ1, λ2 respectively.
Then their sum operator is equal to Tx =

(
λ−11 + λ−12

)
x = λ−1x with λ = λ1λ2

λ1+λ2
, and hence is λ

cocoercive. This shows that we cannot obtain a better estimate.
The next lemma is a classical result in integration theory.
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Lemma 7.2 Let 1 ≤ p < ∞ and 1 ≤ r ≤ ∞. Suppose u ∈ Lp([0,∞[;R) is a locally absolutely
continuous nonnegative function, g ∈ Lr([0,∞[;R) and

u̇(t) ≤ g(t)

for almost every t > 0. Then lim
t→∞

u(t) = 0.

In the proof of Theorem 3.1, we use the following elementary result concerning positive quadratic
forms.

Lemma 7.3 Let a, b, c be three real numbers. The quadratic form q : H×H → R

q(X,Y ) := a‖X‖2 + 2b〈X,Y 〉+ c‖Y ‖2

is positive definite if and only if ac− b2 > 0 and a > 0. Moreover

q(X,Y ) ≥ µ(‖X‖2 + ‖Y ‖2) for all X,Y ∈ H

where the positive real number µ :=
1

2

(
a+ c−

√
(a− c)2 + 4b2

)
is the smallest eigenvalue of the

positive symetric matrix associated with q.
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