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ABSTRACT
In this paper, we investigate and improve the use of a super-
resolution approach to benefit the detection of small objects
from aerial and satellite remote sensing images. The main
idea is to focus the super-resolution on target objects within
the training phase. Such a technique requires a reduced num-
ber of network layers depending on the desired scale factor
and the reduced size of the target objects. The learning of
our super-resolution network is performed using deep resid-
ual blocks integrated in a Wasserstein Generative adversarial
network. Then, detection task is performed by exploiting
two state-of-the-art detectors including Faster-RCNN and
YOLOv3. Experiments were conducted on small vehicle de-
tection from both aerial and satellite images from the VEDAI
and xView data sets. Results showed that object-focused
super-resolution improves the detection performance and
facilitates the transfer learning from one data set to another.

Index Terms— Small object detection, deep learning,
super-resolution, Wasserstein GANs, remote sensing imagery

1. INTRODUCTION

The detection of small objects (less than 10 × 10 pixels),
such as vehicles or animals from aerial or satellite remote
sensing images, requires specialization and adaptation of ex-
isting state-of-the-art detectors in computer vision such as
Faster-RCNN [1] (Faster Region-based Convolutional Neural
Network), SSD (Single Shot multibox Detector) or YOLOv3
(You Only Look Once version 3) [2]. The latest super-
resolution (SR) techniques based on deep neural networks
greatly improve the spatial resolution of an image compared
to a simple bi-cubic interpolation (see a recent review in [3]).
Therefore, coupling such a super-resolution framework with
an object detector should allow us to first increase the size of
objects with good quality within an image, and then improve
the detection performance.

In the literature, some recent studies have been proposed
to pursue this direction. In [4], the authors evaluated the ef-
fects of SR techniques using the VDSR (Very Deep Super-
Resolution) and the RFSR (Random Forest Super-Resolution)
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frameworks on object detection across multiple resolutions.
They proposed to quantify the gain in detection performance
with regard to the spatial resolution of satellite images and
proved that these techniques provide great improvement in
case of super-resolving 30-cm images by a factor of 2 (mean-
ing to bring to 15-cm resolution), but less beneficial at higher
factors (from 4, 6 or 8 for example). No modification regard-
ing the architectures of VDSR and RFSR, as well as SSD
and YOLT (You Only Look Twice) detector has been pro-
posed within this study. Next, the authors in [5] proposed
to associate an SR network based on Generative Adversar-
ial Network (SR-GAN) [6] to the SSD detector to improve
the performance of vehicle detection from aerial images. As
their objective, they showed that an SSD trained and pre-
dicted on super-resolved images (by a factor of 2 and 4) could
achieve great improvement compared to the case using low-
resolution (LR) images. Their experiments were conducted
on the VEDAI dataset [7] by only considering 1 class of vehi-
cle instead of the 9 classes from the original data, from which
the global influence on multiple classes has been ignored.

In this paper, the aim is to improve the exploitation of
super-resolution to assist the detection of small objects of
multiple classes from both aerial and satellite remote sens-
ing images. We propose to train the super-resolution focused
on the objects to be detected (target objects) using an exist-
ing CNN-based SR method. To do this, we modify an EDSR
(Enhanced Deep Residual SR) [8] based on residual blocks
learned in a Wasserstein GAN. We prove that training such
a network focused on image patches including target objects
rather than on the entire images could provide better detection
performance on the VEDAI dataset [7]. Moreover, we show
that our technique could benefit the transfer learning from one
high-resolution (HR) dataset to another lower-resolution (LR)
one. We provide promising results using the SR learned on
the aerial ISPRS Potsdam dataset [9] to assist the detection of
vehicles from the satellite xView dataset [10]. In the remain-
der of the paper, Section 2 describes the object-focused SR
technique and provides the improvement on vehicle detection
from the VEDAI data. In Section 3, the SR based on modified
EDSR learned in a Wasserstein GAN framework is studied in
order to improve the performance of SR to assist detection
task. Section 4 shows the advantage of the proposed tech-



nique within a multi-resolution transfer learning context and
Section 5 finally draws a conclusion of our work.

2. OBJECT-FOCUSED SUPER-RESOLUTION

The main motivation in our approach is to create a specific
super-resolution network for the detection of small objects
(here, vehicles in aerial or satellite images). Instead of learn-
ing the super-resolution on the entire images from a data set,
we will focus the learning only on the target objects. To
do this, we split the images into a set of patches each con-
taining at least one object. For illustration, we perform the
SR-IR [11] on the VEDAI database [7]. The resolution of
VEDAI images is 12.5cm/pixel and the database contains ap-
proximately 3500 vehicles divided into 9 classes. To focus the
learning of SR on target vehicles, we create image patches of
size 64 × 64 pixels. Due to the small size of these patches,
only a 5-layer network SR-IR is sufficient here for learning
the SR by a factor of 4. Figure 1 shows the result of the object-
focused SR (64×64 patch) compared to the same SR learned
on the full 1024× 1024 VEDAI images.

Fig. 1. Qualitative performance of object-focused SR. Left to
right: LR, SR on the full image, object-focused SR, HR.

For quantitative evaluation, we now compare the effect of
super-resolution on a detection task by running SR-IR trained
on the full VEDAI images or on image patches containing
the vehicles. For the detection task, we exploit YOLOv3 [2]
which is one of the best one-stage detectors in the litera-
ture. Figure 2 shows the performance gain of the detection
on super-resolved images (YOLOv3Sr4Full and YOLOv3Sr4
green points) over the detection on low-resolution images
without SR (YOLOv3 green point). The YOLOv3 red point
represents the reference which is the detection performance
of YOLOv3 on VEDAI images with high spatial resolution
of 12.5cm/pixel. In our experiment, the SR was achieved
with a factor 4. The low-resolution images had a resolution
of 50cm/pixel, which are the results of a bi-cubic down-
sampling from the original images. For YOLOv3 detection,
the class confidence threshold is fixed to 0.25 and the IoU
(Intersection over Union) threshold is set to 0.1.

In this figure, the two green points YOLOv3Sr4Full and
YOLOv3Sr4 show the result of detection on super-resolved
images trained on whole images and on sub-images focused
on vehicles, respectively. We observe that with the object-
focused SR, YOLOv3 achieved a better performance in both
precision and recall than when the SR is performed on whole
images. Although these two green points do not approach the

reference red point because of the simple technique for super-
resolution (SR-IR) in use, this experiment shows us a good
practice when using SR to assist object detection task: per-
forming super-resolution focused on objects to be detected.

Fig. 2. Detection performance on the VEDAI data us-
ing the YOLOv3 detector associated with SR by a factor
of 4. VEDAI images with different resolutions: red for
12.5cm/pixel and green for 50cm/pixel. Here, YOLOv3 is
combined with SR trained on full images (YOLOv3Sr4Full)
and SR focused on target objects (YOLOv3Sr4).

3. SUPER-RESOLUTION BASED ON RESIDUAL
BLOCKS AND WASSERSTEIN GAN

In order to improve the performance of super-resolution, a
usual approach is to increase the number of network layers.
As proposed in the EDSR (Enhanced Deep Residual Super-
resolution) [8], we exploit residual block layers but we dis-
tribute here the uploading layers (pixel shuffle) by a factor of
2 on the network. The advantage of such a technique is to
reduce the number of layers in the network according to the
SR scale factor. For example, for sets of 2 residual blocks, we
use 2 blocks for a factor of 2, 4 blocks for a factor of 4 and 6
blocks for a factor of 8. Figure 3 shows the network architec-
ture: in yellow the uploading layers (pixel shuffle) interposed
between sets of residual blocks, here with a SR by a factor
of 4 and sets of 2 residual blocks. Since the object sizes are
small, there is no need to use a large subset of residual blocks
(4 residual blocks for an object-focused SR here against 16 in
the standard SR over full images). Table 1 shows the network
size (number of parameters) according to the SR factor.

factor 2 4 8
parameters 480k 780k 1070k

Table 1. Network size according to the SR factor.

To learn the SR network, an adversarial network based
on the Wasserstein distance (WGAN) as proposed in [12] is



Fig. 3. Modification of the EDSR architecture ( blue: con-
volution layer, green: batch normalisation layer, red: ReLU
layer and orange: pixel shuffle layer)

exploited. For more details about the functionality of WGAN
compared to a standard GAN, readers are referred to [12].
This Wasserstein GAN version adds of a gradient penalty

min
θ

max
φ

∑
x∼P̂r

[Dφ(x)]−
∑
z∼P̂z

[Dφ(Gsrθ(z))]

+
∑
x̂∼P̂x̂

[(‖∇Dφ(x̂)‖2 − 1)2]

where x is an HR version, z is the LR version associated with
x, Gsrθ the super-resolution part, Dφ the discriminator part,
∇Dφ(x̂) the gradient of the discriminator and x̂ a random
element constructed with Gsrθ(z) and x.

Fig. 4. Super-resolution results obtained by the WGAN com-
pared to SR-IR methods. From left to right: LR image, SR-IR
result, SR-WGAN result and HR image.

Figure 4 provides some examples of SR results using the
SR-IR and SR-WGAN methods on vehicles from the VEDAI
database. We can observe that the quality of the objects is
clearly improved. The SR-WGAN is learned on images from
the ISPRS Potsdam dataset [9] with images in TIFF format
and high spatial resolution of 5cm/pixel. The quality of the
images obtained by SR-WGAN focused on the target objects
is sufficient for the latter detection task. No specific training
is required since the quality of the super-resolved image is
quite close to the high-resolution version. We show in Table
2 the computational time according to the SR factor.

SR factor 2 4 8
Time (ms) 4.35 4.75 5.17

Table 2. Computational time on GPU NVidia RTX 2080ti

We now experiment the super-resolution yielded by SR-
WGAN coupled with the Faster-RCNN detector [1]. Our
motivation is to show the impact of object-focused super-
resolution on any detector used, as YOLOv3 has been exper-
imented in the previous section. For a comparative study, the

super-resolution was performed by SR-IR and then by SR-
WGAN. The results obtained for the VEDAI database are
shown in Figure 5. It is now observed that the precision/recall
curves from the super-resolved images approach the refer-
ence curve (purple), especially with the SR-WGAN method.
The purple HR curve is the reference curve in high resolu-
tion i.e. 12.5cm/pixel, the LR (green) curve is the detector
on 50cm/pixel images after bi-cubic interpolation. The blue
curve is the result of Faster-RCNN on super-resolved images
with SR-IR by a factor of 4, the detector was learned on HR
images. The black curve is the detection on super-resolved
images with SR-IR, the detector was also learned on super-
resolved images. The red curve is the result of Faster-RCNN
on super-resolved images with SR-WGAN by a factor of 4,
the detector was learned on HR images. The figure shows
that in the case of SR-WGAN a specific training is not nec-
essary. These results also show that object-focused SR is rel-
evant regardless of the detector used, at least with YOLOv3
and Faster-RCNN as shown in our experiments.

Fig. 5. Detection performance using object-focused super-
resolution by SR-IR and SR-WGAN jointly with the Faster-
RCNN detector (VEDAI dataset).

4. TRANSFER LEARNING

In this section, we show that object-focused super-resolution
could be useful within a transfer learning context. We exploit
here the SR-WGAN learned from the high-resolution ISPRS
Potsdam images [9] to detect vehicles in the xView satellite
images [10] with lower resolution. Figure 6 shows the re-
sults of SR-WGAN super-resolution on a sample xView im-
age. The super-resolution adds details to the vehicles, which
were learned from the high-resolution Potsdam images. We
can see that since this SR is focused on the objects, it does not
necessarily improve the background of the image.

We now seek to evaluate the performance of the super-
resolution influencing the detection task, not the detector it-
self. Figure 7 shows the recall/precision curves obtained from
the xView data set. The super-resolution provides a gain in



Fig. 6. Example of object reconstruction with super-
resolution (factor of 4) of an xView satellite image by SR-
WGAN learned from HR aerial images of the Potsdam data.

detection compared to the baseline standard images. From

Fig. 7. Detection performance using Faster-RCNN detector
on both standard and super-resolved images using SR-WGAN
(xView dataset).

Figure 8, we can observe and compare the detection perfor-
mance (with a confidence threshold of 0.5) on the same part
of an xView image by using the original and super-resolved
images: the false positives detected in red as well as the cars
not detected in blue on the right original image but well de-
tected on the super-resolved image. The original image is
here zoomed in for better viewing.

Fig. 8. Detection results from super-resolved image by SR-
WGAN (left) and from original image (right).

5. CONCLUSIONS

We have shown that super-resolution improves the detection
of small objects on aerial or satellite images using state-of-
the-art detectors such as YOLOv3 and Faster-RCNN. The
improvement of this detection is more significant with super-
resolution focusing on the objects to be detected. Such a tech-
nique requires only a reduced number of network layers and
depends on the desired scale factor as well as the target ob-
ject sizes. The proposed network architecture, derived from
EDSR learned in a WGAN model, is here well adapted to this
scale factor. Our future work should couple more strongly the
super-resolution with detectors by ensuring a joint learning of
the two neural networks (super-resolution and detector).
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