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ABSTRACT:

Tree degradation in National Parks poses a serious risk to the birds and animals and to a larger extent the general ecosystem. The
essence of Forest degradation mapping is to detect the extent of damage on the trees over time, hence providing stakeholders with
a basis for forest rehabilitation and intervention. The study proposes a workflow for detection and classification of degrading acacia
vegetation along Lake Nakuru riparian reserve. Inspired by previous research on the use of Dual Polarized Sentinel 1 Ground Range
Detected (GRD) data for vegetation detection, a set of six Sentinel 1 GRD and Sentinel 2 MSI of corresponding dates (2018-2019) were
used. Our study confirms the existing correlation between vegetation indices derived from optical sensors and the backscatter indices
from S1 SAR image of the same land cover classes. Factors that were used in validating the results include some comparisons between
pixelwise and object-based classification, with a focus on the underlying segmentation and classification algorithms, the polarimetric
attributes (VV+VH intensity bands) and the reflectance bands (NIR, SWIR & GREEN), the Haralick features (GLCM) vs. some
geometric attributes (area & moment of inertia). Classification carried out on the temporal datasets considering geometric attributes
and the Random Forest classifier yielded the highest Overall Accuracy (OA) with 94.25 %, and a Kappa coefficient of 0.90.

1. INTRODUCTION

Wetlands are the most productive ecosystems hosting different
types of insects, birds, and large mammals. Lake Nakuru being
amongst the Kenya Rift valley Lakes listed amongst wetlands of
International Importance hence needs to be preserved. On the
shores of Lake Nakuru thrives Acacia Xanthophloea whose oc-
currence is associated with the high water table. Recently, the
lake has been flooding its banks (Onywere et al., 2013) (Fig. 1),
thus destroying the yellow barked Acacia whose leaves provide
fodder for the Rothschild giraffe and it’s pod important feed for
the Vervet monkeys in the Park. Since the acacia provides a
buffer against siltation in the lake, their degradation could be one
amongst other reasons behind the flooding lake.

In order to monitor degrading wetlands, microwave sensors us-
ing Radar Technology are appealing since they capture ground
information during the day and night independent of changing
weather conditions (Woodhouse, 2006), conversely to the opti-
cal based sensors. Quantifying the physical characteristics of the
backscatter mechanism and relating it to the biophysical proper-
ties of vegetation canopies in relation to the radar signals can give
leads to the health and structural condition of the riparian vegeta-
tion. The capability of backscatter σ°coefficient correlated to the
angle of inclination at the time of capture have been used to give
qualitative information about terrain features. Although wetland
classification falls under land cover mapping, classes related to
riparian reserve and their product utility for various applications
still remain uncertain (Krankina et al., 2010). SAR-C polarimet-
ric intensity bands (VV+VH) have been used in previous studies
to map land use and land cover, and further in conjunction with
Haralick features (Haralick et al., 1973) to map sea-ice-type (Liu
et al., 2015) and in ice water discrimination (Zakhvatkina et al.,
2017).

The main purpose of this study is to explore the capability of Sen-
tinel 1 SAR-C polarimetric features in discriminating flooded ri-
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Figure 1: Illustration of the deforestation problem around the
Nakuru lake.

parian vegetation. We hypothesized that SAR-C band of Sentinel-
1 time series stacks analyzed through their Haralick features
could be a reliable solution for discriminating flooded vegetation
along the degrading Lake Nakuru riparian reserve. Furthermore,
following a recent study (Pham et al., 2018a) demonstrating the
relevance of attribute profiles w.r.t. Haralick features on opti-
cal images, we also hypothesized that these profiles can be used
for SAR-C backscatter intensity bands to help discriminating the
flooded vegetation classes. Finally, we also hypothesized that
the OBIA framework could be successfully applied on temporal
stack of Haralick features extracted from Sentinel-1 images in
order to increase wetland classification accuracy.
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Figure 2: Study Area, located in Nakuru County within Nakuru Municipality (0◦18’S→ 0◦27’S, 36◦1.5’E→ 39◦9.25’E), Kenya.

2. MATERIAL AND METHODS

2.1 The study area

The study area is located in Nakuru County within Nakuru
Municipality between 0◦18’S and 0◦27’S, and 36◦1.5’E and
39◦9.25’E, within the Kenyan Rift valley (see Fig. 2). The al-
titude ranges from 1760-2080m above sea level. Mean annual
rainfall ranges between 876mm and 1050mm and has an inher-
ent bimodal pattern. The long rains start in March and end in
June while the short rains occur between October and Decem-
ber. Mean daily minimum and maximum temperatures fluctuate
between 8.2◦C and 25.6◦C. Rivers that drain their waters into
the lake through the park are rivers Lamuriak, Makalia, Naishi,
Nderit and Njoro. Classes of vegetation observed in the park were
different types of grass species which form the dominant occur-
rence inside the park. The wetland vegetation includes the yel-
low barked Acacia Xanthophloea existing along lake’s riparian
reserve. Most of the vegetation in the park has their peak grow-
ing season in the middle of the long wet season (May) and their
lowest growing period at the end of February. However, due to
the recent effects emanating from climate change dynamics, the
dates have been fluctuating.

In another study (Osio et al., 2018), we have confirmed that
Lake Nakuru wetland vegetation has been affected by the grad-
ual flooding of the lake in recent times. It revealed that some
of the wetland classes such as Acacia xanthophloea forest, chlo-
ris gayana grasslands, Cynodon-chloris-Themada grasslands,
sporobolus spicatus grasslands, cynodon-niemfluensis-wooded-
acacia grasslands, sand and mudflats, sedges and marshes had
been affected by the flooding lake. NDVI values of the park veg-
etation had drastically decreased from +0.63 in 2011 to +0.16 in
2016. The difficulty of mapping wetland classes lies with the fact
that some of the land cover classes outside Lake Nakuru National
Park adapt to the same spectral reflectance signatures as those on
the wetland zone along the shores of the lake.

2.2 Data Pre-processing

In this study, we consider both SAR and optical images pro-
vided by S1 and S2 missions respectively, considering the fol-
lowing acquisition dates: 26/05/2018, 25/07/2018, 10/11/2018,
12/12/2018, 02/02/2019, 05/05/2019 and 13/08/2019 for S1;
27/05/2018, 16/07/2018, 23/11/2018, 12/01/2019, 02/05/2019
and 10/08/2019 for S2. All the data were in the same datum and
projection i.e. WGS 84 / UTM Zone 36N.

2.2.1 Sentinel-1 Pre-processing Raw S1 time series data ac-
quired in different seasons (i.e., both rainy and dry seasons) in the
years 2018 and 2019 were imported into the ESA open-source
software SNAP, with the following pre-processing steps: appli-
cation of the orbit file on each image, thermal noise removal,
radiometric calibration, speckle filtering, terrain correction, ROI
clipping with land-sea masking and Haralick feature extraction.
Modelling SAR backscatter indices for their use on riparian vege-
tation requires conversion of VV and VH bands into decibel units,
i.e. σdb = 10 log10(σ°), where σ° and σdb are respectively the
digital number values and the backscattered values (in dB).

Extraction of Attribute profiles Among a great number of
spatial-spectral feature extraction techniques applied to pixel-
level classification of remote sensing data, morphological at-
tribute profiles (APs) have been widely exploited thanks to their
capacity to model multilevel spatial information of the image
content (Dalla Mura et al., 2010, Pham et al., 2018b). By well
preserving significant spatial properties of regions and objects
such as contours, shape, etc., APs become effective to charac-
terize the contextual information of the observed scene, hence
relevant for a classification purpose. Following the recent sugges-
tion from (Pham et al., 2018a) for optical imagery, we replace the
extraction of GLCM textural features with AP extraction for bet-
ter characterization of structural and textural information within
the observed zones from S1 intensity images after the above pre-
processing step. The generation of APs from an image can be
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summarized as a four-step process: 1) construct a morphological
hierarchy (a.k.a. tree) from the image; 2) compute some rele-
vant attributes (area, moment of inertia, standard deviation, and
so on) from each region associated with each node of the tree; 3)
filter the tree by keeping/removing nodes according to their at-
tribute values; and 4) reconstruct the image from the filtered tree.
Steps 3) and 4) can be done for different attributes (with different
threshold values) to finally produce a set of filtered images (by
stacking them) to form APs.

2.2.2 Sentinel-2 Pre-processing Beyond S1 data, we also
rely on Sentinel-2 Multispectral Imagery for the purpose of train-
ing polygon extraction (Gordana and Ugur, 2018) to be used in
the corresponding S1 classification. The SNAP toolbox is also
exploited to pre-process raw S2 data, that were atmospherically
corrected independently using Sen2cor Processor, before we ap-
ply cloud masking. All bands of interest in this study, i.e. band
3 (green), band 8A (NIR), band 11 (SWIR) and band 12 (SWIR)
were resampled at 10m spatial resolution using nearest neighbour
re-sampling in SNAP.

2.3 Data Analysis

Once both S1 and S1 image time series are pre-processed, we
conduct a data analysis procedure that makes use of both sources
as follows.

2.3.1 Sentinel-1 Data Analysis From the pre-processed S1
products were derived eight bands per date: σ(VV), σ(VH),
σ(VV) mean, σ(VV) contrast, σ(VV) variance, σ(VH) mean,
σ(VH) contrast and σ(VH) variance. Stack averaging was then
performed for each band, allowing to project all temporal infor-
mation into a single, representative image.

We then apply a supervised Random Forest algorithm to classify
the wetland classes on the NW part of Lake Nakuru wetland. Due
to the dynamism of the lake riparian reserve, training polygons
to be used for the classification were derived from S2 data of the
corresponding S1 image of the same month (see next subsection).
The reference images used for validation come from some high
spatial resolution aerial images captured in 2015 on which visual
mapping was achieved.

2.3.2 Sentinel-2 Data Analysis For the S2 images, we extract
training polygons by relying on color composition (RGB band
combination: 8A,11,12) as suggested by (Gordana and Ugur,
2018). Furthermore, to ease visual assessment, we also derive
Normalized Burnt Ratio Index (NBR) and Normalized Difference
Water Index (NDWI) values, since the study area is a wetland.
These additional bands allow us to get a clear map or image of
the study site (see Fig. 3) which can be subsequently used as a
reference image for each corresponding classified S1 image. We
recall that NBR and NDWI are computed as follows:

NBR =
B8A−B12
B8A +B12

(1)

NDWI =
B3−B8A
B3 +B8A

(2)

The main reason for using NBR and NDWI indices was to dis-
tinguish between the dry-land and the flooded areas. In or-
der to investigate the correlations between S1 reflectance values
(σdb) in dB and the NBR reflectance values on the various wet-
land classes, a correlation analysis was conducted. The cross-
correlation analysis derived from the time series data on Table1
and results of inter-class correlations measured with Pearson’s
correlation coefficient are shown on Table 2 where relationships
between the backscatter index σdb(VH) from Sentinel-1 and the

NBR reflectance from Sentinel-2 are emphasized. The NBR val-
ues for each corresponding date and land-cover class were de-
rived from the SNAP toolbox during image post-processing. Veg-
etation reflects more in the Near Infrared (NIR) section of the
electromagnetic spectrum but less in the Short Wave Infrared
(SWIR) region and thus the NBR mostly used for pre-fire and
post-fire studies can also be used to measure the health of the
trees or vegetation in general. According to previous studies,
higher NBR values indicate healthy vegetation while low NBR
values indicate degraded one.

3. RESULTS AND DISCUSSIONS

Our study exploited S1 and S2 data to characterize the condition
of the degrading Acacia Forest along Lake Nakuru National park
and further used SAR backscatter coefficient σdb to map the ef-
fect of SAR returns on the Acacia xanthophloea spp. To the best
of our knowledge, no research studies have used SAR backscatter
indices in discriminating the condition of tree degradation along
Lake Nakuru riparian reserve. Our research aims at addressing
the following knowledge gaps:

1. Identify a robust and reliable method that can be used in tree
condition and health detection especially on Acacia Xan-
thophloea strands along Lake Nakuru riparian reserve.

2. Produce clear and reliable mapping products validated using
up-to-date temporal reference maps and machine learning
approaches.

3. Explore the capability of σdb(VV) and σdb(VH) backscatter
and their Haralick features in detection of the condition of
Acacia trees along Lake Nakuru riparian reserve.

4. Explore the capability of the morphological attribute profiles
in the discrimination of wetland classes along Lake Nakuru
riparian reserve.

In the sequel, we address these questions in some dedicated sub-
sections.

3.1 Characterization of condition and health of Acacia Xan-
thophloea using Sentinel 1 time series datasets

The NBR values emanating from SITS captured between May,
2018 (0.76) and May, 2019 (0.42) revealed that the yellow barked
Acacia have been degrading. To characterize the health of the
riparian vegetation, S1 SAR time series with the C-band were
used as inspired by previous studies.

Tree condition and health were characterized by generating the
spectral signatures and the backscatter indices σdb(VV) and
σdb(VH). Figure 5 shows the capability of the backscatter indices
for detecting the condition and health of riparian vegetation along
the flooding lake. The land-cover backscatter returns from the
highest to the lowest were captured as urban, non-degraded for-
est, degraded forest, degraded submerged forest, and lastly Lake
Nakuru. High backscatter response from the urban class was due
to double bounce scattering inherent in built up areas. Specular
reflectance from Lake Nakuru caused low backscatter response as
inspired by previous research (Hess et al., 1995). The backscat-
ter indices σdb(VV) and σdb(VH) had the capability of detecting
four classes: degraded submerged forest, degraded forest, non
degraded forest and urban. Tree strands consist of crown and the
bark. Ground observation revealed massive destruction involving
the degrading trees, where some of the trees have dried up and
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Figure 3: Spectral indices on Sentinel-2 (10/08/2019): Left (from left to right): NBR, NBR−NDWI, NDWI, and color scale. Right: S2
MSI natural image (with spectral bands 12, 11 and 8A).

Table 1: Time series backscatter response from Sentinel-1 (σdbVH) and spectral values from Sentinel-2 (NBR).
Date S1 Lake S1 Forest non deg S1 Deg sub forest S1 Deg forest S1 Urban S2 (NBR)

July, 2018 -14 -15 -25 -14 -13 0.69
Nov, 2018 -12 -26 -26 -22 -19 0.60
Feb, 2019 24 10 6 13 18 0.5
May, 2019 24 12 3 13 21 0.42
Aug, 2019 -13 -25 -27 -25 -18 0.66
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Figure 4: Time series of Sentinel-1 backscatter coefficient
σdb(VV) and σdb(VH) on Lake Riparian classes.
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Figure 5: Average backscatter σdb response on Lake Nakuru Ri-
parian classes.
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Figure 6: Time series of the backscatter response (db) on riparian
land cover classes

standing while others have fallen off the ground. The backscatter
response of tree trumps which falls under degraded submerged
forest class were captured both in σdb(VV) and σdb(VH) polar-
ization modes. According to previous studies (Richards et al.,
1987), the backscatter response emanating from the water surface
undergoes double bounce phenomena to and from the flooded
vegetation which in this case consists of dead tree trunks in water.
Finally the backscatter signals are relayed back to the antennae
of the SAR instrument. The degraded forest and urban classes
were captured in VV polarization mode, non-degraded forest was
best captured in VH polarization mode since healthy tree strands
experience volume scattering on the crown and double bounce
from their bark. It is known that the backscatter response can be
captured from vegetation only in the early phenological stages.
Acacia xanthophloea strands on the riparian reserve are mature
trees that have been in existence for many years. The backscat-
ter response patterns as observed in (Kasischke et al., 2009) were
evident in this study where the increase in backscatter response
signals was observed at growing levels for the open water (OW),
dry land (DL) and flooded vegetation (FV). However, according
to (White et al., 2015), the patterns are influenced by several fac-
tors such as radar wavelength, polarization, angle of incidence,
open water surface roughness, topography, vegetation type and
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Table 2: Synergy between Sentinel-1 (σdbVH) and Sentinel-2 (NBR).
Correlations S1 Lake S1 Forest non deg S1 Deg sub forest S1 Deg forest S1 Urban S2(NBR)

S1 Lake 1.0
S1 Forest non deg 0.964 1.0
S1 Deg sub forest 0.996 0.975 1.0

S1 Deg forest 0.971 0.996 0.983 1.0
S1 Urban 0.988 0.993 0.990 0.991 1.0

S2(NBR) -0.933 -0.854 -0.901 -0.868 -0.902 1.0

phenology.

3.2 Production of reliable mapping products validated us-
ing up-to-date temporal reference maps and machine
learning approaches

In this section, the Sentinel-1 capability in the classification of
riparian vegetation classes was tested. In order to determine the
effect of Haralick features on classification accuracy, the inclu-
sion of the Haralick features in VV and VH SAR intensity bands
was embraced. Object-based and pixelwise supervised classifica-
tion were carried out on the different datasets as follows:

1. The test dataset was a Very High Resolution imagery (VHR)
at 10-cm spatial resolution captured in the year 2015 when
the lake was already flooding its banks (Figure 1). Sample
based classification was carried out to produce four classes
namely degraded acacia, degraded submerged acacia, non
degraded acacia, and Lake Nakuru. Multi-resolution seg-
mentation was appended, setting scale parameters at scale
73, shape 0.6 and compactness 0.8. In order to promote class
separation, four Haralick features were appended namely
GLCM-Mean, GLCM-Contrast, GLCM-Homogeneity and
GLCM-Correlation. The user-defined test dataset was pro-
cessed using Random forest yielding 99.7%, Multi-Layer
perceptron 91.6%, and Binary Support Vector (SMO) at
75% accuracy respectively.

2. The second test dataset was made of 8 pre-processed S1
Ground Range detected (GRD) imagery and their corre-
sponding Haralick features captured between May 2018 and
August 2019. The images of different temporal dates were
combined to form a single stack image consisting of 32 mas-
ter and slave images. Stack averaging was performed giving
rise to an image with eight features. Superpixel segmenta-
tion (SLICO) with minimum region size of 25 was used. For
further class refinement, a spectral difference segmentation
at scale 10 was applied in order to create distinct bound-
aries between classes. Classification accuracy yielded the
following results: Random Forest 82.3%, Multilayer per-
ceptron 80.3%, and binary Support vector (SMO) 76.6% re-
spectively.

3. Pixel-wise supervised classification was carried out on three
datasets which consist of Sentinel-1 Level-1 Ground range
(GRD) detected of VV and VH intensity bands. The Har-
alick features included in the classification were GLCM-
mean, GLCM-contrast and GLCM-variance hence giving
rise to a total of 8 bands per each image. Random forest
(500 trees) classification was used with 5000 samples used
for training and 500 samples for validation. This procedure
was carried out in ESA SNAP environment. The Overall
Accuracy (OA) achieved from the classified image of the
study area captured on July 2018 was 96%, November 2018
94%, and May 2019 95% respectively.

4. Supervised object-based classification on lake riparian
classes was done using a different approach. Since the ri-
parian classes were dynamic due to the persistent flood-
ing, S2 images of the corresponding S1 SAR images were
used in collection of training sets as demonstrated from re-
cent studies by (Gordana and Ugur, 2018) while the in-situ
dataset was a VHR aerial imagery of 10cm ground reso-
lution (Figure 1). Random forest classification appended
on three S1 datasets captured in February 2019, May 2019
and August 2019 yielded overall classification accuracy of
89.2%, 87.9%, and 94% respectively (Table 3).

3.3 Exploring the capability of σ VV+VH polarimetric in-
dices and their Haralick features in the detection of con-
dition and health of Acacia xanthophloea along Lake
Nakuru riparian reserve

S1 polarimetric features are suitable for the detection of riparian
vegetation classes along Lake Nakuru riparian reserve. This can
be observed in Table 3 with Random Forest classification results
of 87.7%, 84.93% and 92.45% for the 3 dates. Furthermore, in-
corporating the Haralick features improved by 1% to 3% the clas-
sification result. This improvement is consistent for all images,
leading even to a 93.95% overall accuracy.

3.4 Exploring the capability of Attribute Profiles in the dis-
crimination of wetland classes along Lake Nakuru ri-
parian reserve

The final objective of this study was to investigate the capa-
bility of engaging attribute profiles derived from the 8 bands
coming from Sentinel-1 SAR imagery and compare the results
with different datasets and different attributes. The eight bands
included σdb(VV), σdb(VH), σdb(VV) GLCM-mean, σdb(VV)
GLCM-variance, σdb(VV) GLCM-contrast, σdb(VH) GLCM-
mean, σdb(VH) GLCM-variance, and σdb(VH) GLCM-contrast.
Attribute profiles were derived from these 8 bands and used in
the classification of Lake Nakuru riparian reserve, mainly on
the North Western part where flooding has caused tree degra-
dation. Visual comparison between Haralick features and AP is
given in Figure 8. The results of the classification using Ran-
dom Forest algorithm are shown in Table 3. The overall ac-
curacy (OA) reached 90.88%, 90.48% and 94.25% for the 3
dates. It was obtained using the self-dual APs with two geo-
metric attributes including area and moment of inertia. Manual
setting of attribute thresholds has been done based on the spa-
tial resolution of Sentinel-1 images. Four thresholds were set
for each attribute: λa = {100, 500, 1000, 5000} for area and
λi = {0.2, 0.3, 0.4, 0.5} for moment of inertia, following the
parameter setting guide provided in (Pham et al., 2017, Pham et
al., 2018b). The generation of APs was performed on each band
of V V and V H , then all profiles were stacked to form the AP
feature vector and perform Random Forest classification.
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Table 3: Comparative results.

Approach 02/02/2019 05/05/2019 13/08/2019
OA AA kappa OA AA kappa OA AA kappa

Intensity 87.76% 72.77% 0.7917 84.93% 69.17% 0.7918 92.45% 76.97% 0.8699
GLCM 89.22% 75.42 % 0.8159 87.89 % 73.58 % 0.7958 93.95% 82.55% 0.8962

AP 90.88% 78.18% 0.8435 90.48% 76.98% 0.8362 94.25% 85.40% 0.9019

4. DISCUSSIONS

The study demonstrates how Sentinel-1 backscatter coefficient
σdb(VV) and σdb(VH) can be used to characterize wetland degra-
dation. While it is well-known that SAR polarimetric analysis of
electromagnetic waves enables discrimination of different scat-
tering mechanisms emanating from the ground, we have found
σdb(VV) and σdb(VH) to be less sensitive to the scattering mech-
anisms (+0.9 db) emanating from Lake Nakuru riparian mainly
because Acacia xanthophloea are mature trees that have been in
existence on the riparian reserve for a long time. It was worth not-
ing that the SAR C-band response in the σdb(VH) was sensitive to
moisture content in the leaves of the healthy trees as captured in
the peak season (June, 2019) when average rainfall distribution
was at its peak in the study area (Figure 5) as captured in pre-
vious research (Koppe et al., 2013). The backscatter σdb(VH)
had the lowest average response on class Lake Nakuru (+0.3)
in σdb(VV). This was confirmed by existing studies (Muster et
al., 2013) that report small lakes reduce the backscatter response
due to their smooth surfaces. The degraded submerged forest
had equal average backscatter response (+1.9 db) in σdb(VV) and
σdb(VH), as shown on Figure 6. This part of the wetland consists
of dead and semi-dead biomass lying on the mudflats on the ri-
parian reserve. SAR-C polarimetric electromagnetic waves have
short wavelengths i.e. 3.75cm to 7.5 cm and hence are unlikely
to penetrate through the biomass and only represent a few cen-
timetres of signals emanating from the surface of the degrading
biomass thus excluding the response from the wet soils beneath
the mass. Another aspect which could contribute to the higher
average backscatter was the presence of biomass in open water
(Lake Nakuru), meaning that the response was a mixture of spec-
ular reflectance from the open water and double bounce from the
biomass in water (degraded-submerged forest) as confirmed by
previous studies (Kasischke et al., 2009). From the class forest
degraded, the highest average backscatter response (+1.6) was
achieved by σdb(VV). Most of the biomass was in class degraded
submerged, hence the difference in backscatter response between
the class degraded submerged and forest degraded. This report
corroborates previous studies stating that low biomass presence
on wetlands caused low backscatter response while higher vol-
umes of biomass caused higher backscatter response. Forest
non-degraded forest class which consisted of healthy acacia xan-
thophloea had the highest average backscatter response σdb(VH)
of value +2.3db which was higher than the previous classes i.e.
forest degraded and degraded submerged hence confirming re-
ports that the dynamic range of the cross-polarized VH compo-
nent renders it suitable for measuring the backscatter mechanisms
of vegetation. Due to the short wavelength inherent in Sentinel-
1 SAR C (3.75–7.5 cm), volume scattering occurs on the tree
crowns without penetrating the under storey vegetation (Mcnairn
and Brisco, 2004).

The highest mean backscatter σdb(VH) (+2.4db) emanated from
the urban class that has double bounce response due to the
buildings in the neighboring Nakuru Town. Limitations on the
backscatter response can be pointed out on the fact that the val-
ues were obtained from user-defined polygons from each class,
meaning that the values vary across different sites on each class.
Future research should engage collection of backscatter values

across each class. However, accessibility to different parts of the
affected areas is difficult and thus in-situ data from a Very High
Resolution aerial imagery at 10cm (Figure 1) ground distant res-
olution was used. The baseline aerial image at GRD of 10cm
was used as input of a multiresolution segmentation with sub-
sequent classification with Random Forest, yielding 99.7% ac-
curacy. This was due to the the fact that VHR imageries have
distinct class boundaries. The averaged stack of 32 master and
slave imageries yielded 82.3% overall accuracy. These results
could have been influenced by the number of training instances,
as well as the number of trees used in the parameterization; 100
trees yielded 100% overall accuracy on the dataset and hence the
number of trees that was set was 30 with the main aim of deal-
ing with overestimation issues. The effect of SAR-C polarimet-
ric intensity bands on classification accuracy was tested. It was
worth noting that pixelwise Random Forest classification of Sen-
tinel 1 SAR-C dataset considering VV, VH, and ratio yielded a
high overall accuracy of 92.45% on the August 2019 image of
the study area. Stacking Haralick features on the intensity bands
namely GLCM-mean, GLCM-contrast and GLCM-variance im-
proved the classification on the same image by 1.5% meaning that
engaging the GLCM-Haralick feature bands contributed slightly
to the improvement of classification accuracy. A further slight
improvement of classification accuracy at 1.8 % was noted when
Attribute profiles were extracted from the Sentinel 1 bands. The
highest commission error was noted with class degraded forest
considering both the Haralick and attribute profile based classi-
fication. This could have been due to the fact that the degraded
forest class lies in the middle of classes degraded submerged for-
est and the non degraded forest, thus causing confusion between
class boundaries. Pixel-wise Random Forest on the single date (8
bands, VH, VV and their respective 3 Haralick features) yielded
higher 94.0% overall accuracy. Attribute profile based classifi-
cation by Random Forest working on 62,067 instances and 200
trees yielded 94.25% overall accuracy.

5. CONCLUSION

This study demonstrates how Sentinel-1 Synthetic Aperture
Radar (SAR-C) imagery, Ground Range Detected (GRD) with
a wavelength of 3.75-7.5cm can be incorporated with Haralick
features to discriminate wetland classes along the North West-
ern part of Lake Nakuru riparian reserve. Identifying the various
classes and confirming their different backscatter response across
different polarimetry opens up new perspectives on their response
to vegetation health and structures. The Sentinel-2 datasets cor-
responding to the Sentinel-1 datasets were helpful in providing
training polygons used for the Haralick and Attribute Profile-
based feature extraction and classification, hence avoiding errors
due to the dynamism of the flooding Lake over time. The highest
classification accuracy received from the different datasets came
from the attribute profiles at 94.25%. However, there was no sig-
nificant difference between the Haralick features (93.95%) and
the outcome of the Attribute profiles. Haralick features embed-
ded on the Synthetic Aperture Radar SAR-C bands could have
some limitations due to the short wavelength associated with the
electromagnetic spectrum (EMS). Future research should explore
the capability of radar imagery with longer wavelengths such
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Figure 7: Sentinel-1 VV and VH images (13/08/2019) on the
studied area (filtered by 7 × 7 Lee filter) together with the train
and validation sets (shown on the corresponding Sentinel-2 im-
age). Color codes: Green: healthy forest; Cyan: damaged forest;
Magenta: submerged trees; Blue: water.

as the L-band to collect the backscatter response values from
the wetland classes. Application of OBIA on Attribute profiles
should also be tested in future. Decomposition of quad-polarized
Synthetic Aperture Radar polarimetric bands could give leads to
structure of the biomass along Lake Nakuru riparian. Given the
heterogeneous nature of the study area in comparison with the
level of accuracy achieved in this study, we can conclude that the
procedures and attributes used in this study could be also used
elsewhere where the landscapes are similar.
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Figure 8: Illustration of Haralick textural features (top line) produced by GLCM method and multilevel AP features (bottom line).
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