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ABSTRACT

Detection of new infrastructures (commercial, logistics, in-
dustrial or residential) from satellite images constitutes a
proven method to investigate and follow economic and urban
growth. The level of activities or exploitation of these sites
may be hardly determined by building inspection, but could
be inferred from vehicle presence from nearby streets and
parking lots. We present in this paper two deep learning-
based models for vehicle counting from optical satellite
images coming from the Pleiades sensor at 50-cm spatial
resolution. Both segmentation (Tiramisu) and detection
(YOLO, You Only Look Once) architectures were investi-
gated. These networks were adapted, trained and validated
on a data set including 87k vehicles, annotated using an
interactive semi-automatic tool developed by the authors. Ex-
perimental results show that both segmentation and detection
models could achieve a precision rate higher than 85 % with
a recall rate also high (76.4 % and 71.9 % for Tiramisu and
YOLO respectively).

Index Terms— Vehicle counting, VHR satellite images,
object detection, deep learning

1. INTRODUCTION

Vehicle detection and counting from remote sensing images
is an active research topic applied to the surveillance of traf-
fic and transportation systems, the investigation of new com-
mercial or industrial infrastructures, as well as the study of
urbanization levels, etc. Within the last decade, this task has
attracted many researchers thanks to the development of very
high resolution (VHR) imagery technologies together with
modern object detection frameworks in the computer vision
and machine learning domains. Many studies have exploited
aerial images and proved their effectiveness to detect vehicles
from images with spatial resolution higher than 0.3 m [1, 2].
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However, exploiting satellite images with spatial resolution
from 0.5 m to 1 m would be more interesting since these im-
ages can cover large areas of different locations on the Earth
surface over a long period of time and are more affordable for
large-scale studies. In this work, we focus on the detection
and counting of vehicles from VHR images acquired by the
0.5-m Pleiades satellite from different environments includ-
ing urban, semi-urban and industrial zones.

From the literature, many methods have been proposed
to tackle vehicle detection using traditional pattern recogni-
tion approaches [3–5] as well as modern deep learning tech-
niques [6–8]. Traditional approaches usually perform binary
classification (vehicle and non-vehicle classes) based on lo-
cal features of vehicles such as spectral profiles, gradient in-
formation (HOG, SIFT), Haar-like features [3–5], etc. They
mostly focus on detecting vehicles only on streets so that GIS
road vector maps could be imported to limit the searching re-
gions. Recent deep learning methods based on convolutional
neural networks have achieved better performance thanks to
the capacity of deep models to extract and learn vehicle char-
acteristics within end-to-end frameworks. In [6], a hybrid
deep neural network was exploited to replace traditional clas-
sifiers but still based on sliding window approach. In [7],
the authors proposed a transfer learning approach which helps
to detect vehicles from satellite images by a detector trained
on higher-resolution aerial images. However, we remark that
most related studies on vehicle detection from satellite images
exploit very limited data collected from Google Earth [6–8]
and rarely deal with large amount of image data coming from
specific satellites. In this work, we tackle this task by ex-
ploiting recently acquired Pleiades images at 0.5-m resolu-
tion from different environments and not limited to roads. We
also develop a semi-automatic annotation tool to create a large
database with more than 87k vehicles. We then perform de-
tection and counting tasks by two deep learning models: one
based on a semantic segmentation framework (Tiramisu [9])
with post-processing; the other based on an adapted YOLOv3
detector [10]. Both frameworks could provide good perfor-



mance on our database (precision higher than 85%) and prove
to be exploitable for large-scale traffic and urban studies.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the satellite data and the semi-automatic an-
notation process used to create our database. In Section 3, we
present the two aforementioned deep learning models for ve-
hicle detection and counting. Section 4 performs qualitative
and quantitative evaluations of both models. Section 5 finally
draws conclusions and discusses open issues for future work.

2. DATA CREATION AND ANNOTATION

2.1. VHR Pleiades data

In this work, we exploit VHR images acquired by the Pleiades
satellites (PHR-1A and PHR-1B), launched by the French
Space Agency (CNES), Distribution Airbus DS. Our data in-
clude 20 images of 50-cm spatial resolution acquired from re-
gion of Paris, France. These images are pan-sharpened prod-
ucts obtained by the fusion of 50-cm panchromatic data (70
cm at nadir, resampled at 50 cm) and 2-m multispectral im-
ages (visible RGB and infrared bands). They cover a large
region of heterogeneous environments including rural, forest,
residential as well as industrial areas, where the appearance
of vehicles is influenced by shadow and occlusion effects.

2.2. Semi-automatic annotation

As we discussed earlier, there are few studies examining the
problem of detection of vehicles from satellite images with
a resolution close to 50 cm and there is no labeled data set
available on Pleiades images. The first step of our study was
the creation of a labeled data set from the collected 20 large
images provided by the CNES. Three different strategies were
considered: semi-supervised labeling using a network trained
on a public aerial image dataset adapted to the resolution
of Pleiades sensor; constitution of training data by integrat-
ing synthesized images; and semi-automatic annotation of
Pleiades images. Visual inspection of vehicles, especially
cars, on the Pleiades images clearly shows that the first two
approaches are not well suited. Figure 1 illustrates the issues
associated with car rendering on the satellite images. We
observe on the left an aerial image coming from the public
Potsdam dataset, downscaled from 5 cm to 50 cm, and on
the right a Pleiades image. Aerial images present colorful
vehicles with sharp outlines whereas Pleiades images present
white or black vehicles with irregular outlines. Black cars
and their shadows are often indiscernible. The aspect of these
small objects is greatly affected by atmospheric and opti-
cal effects, as well as the upscale effect from pansharpening
process. A segmentation model trained on the downscaled
Potsdam aerial images was indeed unable to identify almost
any car in the Pleiades images. Concerning the creation of a
synthetic dataset, the aspect of cars obtained from 3D render-
ing models is similar to that of downscaled Potsdam images,

which is very far from that of Pleiades images. This precludes
the utilisation of the synthetic approach in our case.

(5cm aerial image downscaled to a
50cm resolution)

(Satellite image acquired by 50cm
Pleiades sensor)

Fig. 1. Illustration: even if the resolution of aerial/satellite
images are identical, vehicles in Pleiades images are too af-
fected by the up-scale effects.

Therefore, a semi-automatic annotation of Pleiades im-
ages had to be performed. To facilitate this task, a interactive
labeling tool was developed. It enables to label 60% of vehi-
cles with one click using flood-fill methods adapted for this
application. Prior to using the flood-fill, the local color of
the road is set by clicking on a part of it. The flood-fill al-
gorithm selects a connected area around a given pixel using
conditions on the distance in the HSV colorspace between the
selected pixels themselves and with respect to the road pixels.
HSV space is preferable to RGB because of the lack of color
of both cars and roads, only the S and V components are ac-
tually used by the algorithm. Some vehicles require manual
labeling using straight line/free hand tools included in the ap-
plication. The mask color is automatically changed in order to
distinguish two glued cars and extract in a second time all the
different bounding boxes. The created data set contains 87000
annotated vehicles from different environments depending on
the level of urbanization as well as the brightness and sharp-
ness of the observed zones. This diversity of the dataset is a
key point concerning the applications foreseen, as it enables
our models to be reliable on various real life environments.
Data augmentation techniques were used to increase the total
size of the dataset, and also to enhance its robustness.

3. ARCHITECTURE OF DETECTION
FRAMEWORKS

Vehicle detection from satellite images is a particular case of
object detection as objects are uniform, very small (around
5 × 8 pixels/vehicle in Pleiades images) and do not overlap.
To tackle this task, we investigated a segmentation algorithm
Tiramisu [9] with post-processing and we adapted a direct de-
tection network YOLOv3 [10]. We now provide details about
the architectures of our two models.



3.1. Tiramisu model

The Tiramisu model [9] with DenseNet-56 layers was imple-
mented and data augmentation was added to the classical ar-
chitecture at the predicting phase with padding and geometric
operations. Consequently to this augmentation, there are in
average 20 predictions per pixel that are processed by a vot-
ing system. For later applications, we developed an indicator
of the number of cars in an image. An estimation of the num-
ber of vehicles is computed based on the size and shape of
the predictions within the segmentation mask. The number of
pixels associated to a block of multiple cars is divided by the
mean number of pixels observed either in lined cars or in side
by side cars.

3.2. YOLO model

One-stage object detector YOLO is currently one of the
most powerful models in the literature to detect visual objects
within many real-time applications. The YOLOv3 model [10]
with Darknet-53 base network and three detection levels has
been proved to be able to detect objects at different sizes, thus
small objects from general computer vision tasks. However,
our experiments showed that it failed to detect vehicles of
approximately 5 × 8 pixels from satellite Pleiades images.
To deal with this challenge, we adapted this model by re-
moving two detection levels related to large objects (with a
sub-sampling factor called stride of 32 and 16) that we are
not interested in and replacing them with two new prediction
levels with strides of 4 and 2. This allows our YOLO model
to work on finer cells in order to search and detect very small
objects in the image. Also, new anchor sizes were computed
from our training data for parameter setting, which allows the
network to learn spatial shapes of annotated vehicles from the
data set. Regarding the implementation, the input image size
was set to 512 × 512 pixels and the model mostly converged
after 10k training iterations with a learning rate of 10−3 with
decay of 5× 10−4 (based on this code1).

4. EXPERIMENTAL RESULTS

Experimental results show that Pleiades satellite images are
exploitable for vehicle detection and counting applications.
Performances obtained on several images are quite similar,
which validates the consistency of the predictions. On the
segmentation prediction, we identify true cars found (TP),
false alarms (FP) and missed cars (FN) based on the over-
lap between the predicted mask and the target mask for each
target vehicle, in order to evaluate the model as a detection
one. A car is considered found when at least 8 pixels of it
were segmented. We approximate the number of cars present
in each block of ’vehicle’ pixels given its size and we sum
them to get the total count of cars. The results presented in

1https://github.com/AlexeyAB/darknet

Table 1 are based on a validation set of 2673 vehicles belong-
ing to an image including both urban and industrial zones,
where vehicles appear not only on streets but on parking lots
as well. As observed from the table, Tiramisu leads in terms
of recall and precision rates, but model comparison is not triv-
ial since Tiramisu is a segmentation model which requires
post-processing to count vehicles while YOLO is a detection
model which can directly and reliably provide the number of
detected objects. Therefore both strategies have their benefits.

Tiramisu YOLO
Counted vehicles 2334 2258

True Positive 2042 1922
False Positive 325 336
False Negative 631 751

Recall 76.4% 71.9 %
Precision 86.2 % 85.1%

Table 1. Detection results yielded by Tiramisu and YOLO
models from a validation set including 2673 vehicles.

Figure 2 shows some detection results from two selected
zones including streets and parking lots. As we can see from
the figure, both models are able to detect cars on parking lots
as well as on streets, while previous literature research mostly
focused on streets [2, 4, 5, 7]. Undetected cars are usually the
ones that are difficult to identify even for a human eyes, as ob-
served at the bottom of Figure 2-a. In some cases, it is unclear
whether the model predicted a false positive or not, since the
human labeling might include a few omissions due to the lack
of visibility. Another remark is that false positives in YOLO
predictions often come from the fact that two detected bound-
ing boxes were predicted for a single vehicle, and only one of
them can be considered as correct.

Comparing the results of each model, we notice that there
are vehicles detected by YOLO but not by Tiramisu and vice
versa. Therefore, a mixed model based on both predictions
may increase the number of detected vehicles. We have de-
veloped a first version of a mixed model whose predictions
are formed by the union of cars detected by YOLO with a
high confidence score and cars detected by both models us-
ing a lower threshold for YOLO’s confidence score. On the
same validation set, recall is 80.3% and precision is 81.8%.
Another interesting aspect of this mixed model is that it pro-
vides a better counting of vehicles since recall and precision
are more balanced: this mixed model detects 2623 vehicles
on the validation set while the labeling indicates 2673.

5. CONCLUSION AND OPENED ISSUES

Both segmentation and detection models investigated in this
work have proved to be able to achieve good performance for
vehicle detection and counting from satellite images. Even
the Tiramisu model has showed superior recall/precision



(a)
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Fig. 2. Detection results using Tiramisu (middle) and YOLO model (right). Color codes: green for good detection, blue for
missed detection and red for false alarms.

rates on the studied data set, the performance of an adapted
YOLOv3 model, a one-stage object detector which is not
designed to detect small objects, is particularly remarkable.
We note that the rendering quality of vehicles, especially dark
ones on some areas of the images makes them hardly dis-
cernible to the human eyes, and small errors on the validation
set can not be excluded. Because of this, the precision of
both models could actually be slightly better. For the reso-
lution available in commercial satellites (up to 30 cm), cars
are likely the smallest objects which can be detected. At
this spatial scale, the aspect of objects strongly depends on
the satellite optics and post-processing of the raw images.
Because of this, the application of the trained models to im-
ages coming from other satellites than Pleiades, even when
keeping the resolution, constitutes an open issue.

Current results are good enough for some applications
expected using this technology, such as the detection of ghost
neighborhoods and industrial sites. Its application for track-
ing the activity levels in commercial and industrial zones
could require a better quantification of the estimated accuracy
dedicated to a given environment and image’s acquisition
conditions, to avoid biases when comparing images taken at
different times or regions.
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