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Abstract. In this paper we propose an end-to-end learnable approach
that detects static urban objects from multiple views, re-identifies in-
stances, and finally assigns a geographic position per object. Our method
relies on a Graph Neural Network (GNN) to, detect all objects and out-
put their geographic positions given images and approximate camera
poses as input. Our GNN simultaneously models relative pose and im-
age evidence, and is further able to deal with an arbitrary number of
input views. Our method is robust to occlusion, with similar appearance
of neighboring objects, and severe changes in viewpoints by jointly rea-
soning about visual image appearance and relative pose. Experimental
evaluation on two challenging, large-scale datasets and comparison with
state-of-the-art methods show significant and systematic improvements
both in accuracy and efficiency, with 2-6% gain in detection and re-ID
average precision as well as 8x reduction of training time.

Keywords: Object Detection · Re-identification · Graph Neural Net-
works · Urban Objects · Multi-view

1 Introduction

We present an end-to-end trainable multi-view object detection and re-identification
approach centered on Graph Neural Networks (GNN). Unlike images, much data
is not structured on a grid but naturally follows a graph structure. GNNs apply
directly to graphs and thus their applications vary over many disciplines like
predicting molecular properties for chemical compounds [15, 29] and proteins
[12], social influence prediction [43], object tracking [3, 13], or detection of fake
news [35]. Here, we propose to solve the problem of multi-view detection and
re-identification of static objects in urban scenes using Graph Neural Networks.
Given a set of ground-level images with coarse relative pose information, we de-
tect, re-identify and finally assign geographic coordinates to thousands of urban
objects with an end-to-end learnable approach.

Maintaining complete and accurate maps of urban objects is essential for
a wide range of applications like autonomous driving, or maintenance of in-
frastructure by local municipalities. Despite much research in this field [49, 23,
54, 38], updating maps is often still carried out via field surveys, which is a
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time-consuming and costly process. Here, we propose to accomplish this task
by leveraging publicly available imagery that comes with coarse camera pose
information.

What makes this task challenging is the relatively poor image quality of
street-level panoramas (e.g., image stitching artefacts, motion blur) or dash cam
image sequences (e.g., motion blur, narrow field of view) compared to data
acquired through dedicated mobile mapping campaigns. Basically, wide base-
lines between consecutive acquisitions, and inaccurate camera poses information
hinder establishing dense pixel-level correspondences between images. We thus
propose to integrate image evidence and pose information into a single, end-to-
end trainable neural network that uses images and coarse poses as input and
outputs the geo-location of each distinct object in the scene. In contrast to a
rigorous structure-from-motion approach, our method learns the joint distribu-
tion over different warping functions of the same object instance across multiple
views together with the relative pose information. Unlike recent research in this
domain, e.g., [49, 26, 2, 23], our method employs an end-to-end approach that
helps to jointly learn features to carry out the detection, re-identification, and
geo-localization tasks. And differently to other end-to-end works such as [38],
our approach for re-identification is based on a GNN that enables the use of
multiple views (2+) and is much more computationally efficient in comparison
to a siamese approach.

Fig. 1. Illustration of our multi-view scenario. Red circle: Camera acquisition location.
Green circle: target object to be detected. Orange line: distance between camera and
object.

As illustrated in Fig. 1, our method works as follows: using a set of street-
level images that come with coarse camera pose information as input, an object
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detector predicts several object bounding boxes for each of the views. We then
construct a fully connected graph connecting all the object instances across the
images. Next, the graph is fed through a GNN whose goal is to separate it
into multiple disconnected sub-graphs, each representing a distinct object in the
scene. The GNN has access to both image evidence and coarse pose information,
so that it can learn to merge geometric view information with the correspond-
ing object features from different viewpoints and to ensure high quality object
re-identification. Finally, once that the distinct objects are re-identified, the pro-
posed end-to-end architecture estimates their geo-location.

Our contributions are: i) an efficient end-to-end, multi-view detector for static
objects ii) that implements a novel method for incorporating graphs inside any
anchor-based object detector. We further iii) formulate a GNN approach that
jointly uses coarse relative camera pose information and image evidence to detect
distinct objects in the scene. We validate our method experimentally on two
different datasets of street-level panoramas and dash cam image sequences. Our
GNN formulation for multi-view object detection and instance re-identification
outperforms existing methods while being much more computationally efficient.

2 Related Work

Our proposed method is related to many different research topics in computer
vision like pose estimation, urban object detection, and instance re-identification.
A full review is beyond the scope of this paper and we rather provide here some
representative works for each different topic and highlight the differences with
our proposal.

Urban object detection from ground-level images is an application closely
related to our paper. In [49, 2], the authors propose a method to detect and geo-
locate street-trees from Google street-view panorama and aerial images with a
hierarchical workflow. Trees are first detected in all images, detections are then
projected to geographic coordinates. The detection scores are back-projected
into images and re-evaluated, finally a conditional random field integrates all
image evidence with other learned priors. In [55] a method is proposed to de-
tect and geo-locate poles in Google street-view panoramas using object detectors
along with a modified brute-force line-of-bearing approach to estimate pole loca-
tions. Authors in [23] perform a semantic segmentation of images and estimate
monocular depth before feeding both sources of evidence into a Markov random
field to geo-locate traffic signs. [54] detects road objects from ground level im-
agery and places them into the right location using semantic segmentation and
a topological binary tree. All previously mentioned methods have in common
that they propose hierarchical, multi-step workflows where pose and image evi-
dence are treated separately unlike ours, which models them jointly. The most
similar work to ours is [38], which proposes to jointly leverage relative camera
pose information and image evidence as an end-to-end trainable siamese CNN.
[19] detects trees as blobs from satellite imagery and a Digital Surface Model
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using semantic segmentation. Here, we propose to formulate the problem as a
graph neural network, which, intuitively, better represents the underlying data
structure of multi-view object detection. Our GNN provides greater flexibility
to add an arbitrary number of views (as opposed to a siamese CNN), is com-
putationally drastically less costly, and achieves significantly better quantitative
results. A large body of literature addresses urban object detection from an au-
tonomous driving perspective with various existing public benchmark datasets
like famous KITTI [14], CityScapes [6], or Mapillary [39, 33]. As opposed to our
case, in this scenario dense image sequences are acquired with minor viewpoint
changes in driving direction with forward facing cameras and often relative pose
information of good accuracy, enabling object detection and re-identification
across views [5, 24, 56]. In our setup, relative pose information is coarse and the
viewpoints among the images might be remarkably different, i.e., large baseline
between the cameras, making the correspondences matching a much harder task.

Learning to predict camera poses using deep learning was made popular
by PoseNet [20] and still motivates various studies [37, 9, 51]. Estimating a human
hand’s appearance from any viewpoint can be achieved by coupling pose with
image content [42]. Full human pose estimation is another task that benefits from
combined reasoning across pose and scene content, for instance in [32], authors
employ a multi-task CNN to estimate pose and recognize action. We rely here
on public imagery without fine-grained camera pose information, which requires
a different approach.

Multiple object tracking (MOT) and person re-identification is re-
lated to our setting, but significantly differs in that objects are moving while
cameras are usually fixed. Again, many deep learning-based solutions have been
reported, usually employing a siamese CNN [28], as it is an effective technique
to measure similarity between image patches. In [25], for instance, authors pro-
pose to learn features using a siamese CNN for multi-modal inputs (images and
optical flow maps). In [48], a siamese CNN and temporally constrained metrics
are jointly learned to create a tracklet affinity model. [44] uses a combination of
CNNs and recurrent neural networks (RNN) in order to match pairs of detec-
tions. Authors in [52], instead, solve the re-identification problem with a so-called
center loss that tries to minimize the distance between candidate boxes in the
feature space. A work that is closely related to ours is [3]. Authors formulate
their MOT for person re-identification into a graph setup. The graph is com-
posed of nodes that hold CNN features of the image crops of the persons over
time, with edges created between all these instances. A message passing network
is then used to propagate the node features throughout the graph. Similar to our
work, the edges between these nodes are then classified to re-identify the person.
This paper however focuses on a single camera setup, whereas in our case we
need to re-identify objects from different views.

Graph neural networks (GNN) naturally adapt to non-grid structured
data like molecules, social networks, point clouds, or road networks. Graph con-
volutional networks (GCNs), as introduced by [4], originally proposed a convo-
lutional approach on spectral graphs, which was further extended in [7, 22, 27].
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Another line of research investigated GCNs in the spatial domain [1, 40, 15, 34,
11], where spatial neighborhoods of nodes inside graphs are convolved. In order
to make processing on large graphs more efficient, recent methods pool nodes
in order to perform subgraph-level classification [17, 47]. These methods are de-
scribed as fixed-pooling methods because they are based on the graph topology.
Another idea is pooling nodes into a coarser representation based on weighted
aggregations that are learned from the graph directly [53, 13, 8].In our approach,
a GNN network is used to capitalize on the data structure by classifying edges
between nodes to find the correspondence. We use the spatial convolution op-
erator GraphConv [36] since spatial-based convolutions have proven to be more
efficient, and to generalize better on other data [17, 50].

3 Method

We now describe in detail the proposed method. It is convenient to think of
our architecture as composed of three stages: object detector, a GNN object
re-identification and a geo-localization predictor, see Fig. 2. Note that, though
we can see the model as made of three stages, the training is still conducted in
an end-to-end manner, as the all the different parts support back-propagation.

3.1 Object Detection

In general, any state-of-the-art object detector could be used here. We choose
EfficientDet [46] as it can provide state-of-the-art accuracy performance with
a moderate amount of parameters and computations. The benefit of using an
anchor based detector, is that our method can be adapted to other state-of-the-
art methods [18, 31] that also use an anchor based solution. The whole pipeline
could, however, easily be adapted to work with anchor-free object detectors if
desired.

The input to the object detector is a set of multiple images, which represent
a scene, alongside with their metadata M = {C∗

lat, C
∗
lng, h

◦} where C∗
lat, C

∗
lng, h

◦

represent the cameras’s latitude, longitude and heading angle respectively, which
corresponds to the location in the 3D world of the cameras. Similar to most
object detectors, we feed the images through the backbone, which is in our case
an ImageNet-pretrained CNN, to extract features. The features maps are then
fed to both a classifier network and a regression network in order to predict the
class of the objects and regress the coordinates of its bounding box, respectively.
During the training phase we obviously have access to the bounding box ground
truth with objects IDs of the annotated instances.

We use the Focal Loss introduced in [30] to train the object detection clas-
sifier. This loss was selected as it helps to handle the class imbalance between
positive and negative samples. In order to calculate the detection losses, we mea-
sure Intersection Over Union (IoU) and select the anchors that have the best
overlap with our ground truth bounding boxes. This task is achieved by a thresh-
old that splits the anchors into positive and negative proposals; both proposal
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Fig. 2. Architecture of GeoGraph. A batch of images from multiple views and
camera metadata information M pertaining to them are passed through the backbone
network (EfficientNet) and the multi-scale feature aggregator (BiFPN) of the object
detector that provides different levels of features. Anchors are then generated across
the feature layers, and passed through two sub-networks to provide classification and
box predictions. Based on the IoU of the ground truth with the anchors we select
the positive and negative anchors. The features of these anchors are used to generate a
dense fully connected graph. The graph is then fed to a GNN to predict if the nodes are
corresponding by classifying their respective edge. In Parallel, the regressed bounding
boxes of the positive anchors are passed to the Geo-Localization Network to regress
the geo-coordinate.
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will then be used in the next stage of our architecture (see Sec. 3.2). As for the
object bounding box regression, we adopt a smooth-L1 loss [16].

3.2 Object Re-identification

After detecting the objects across the different views, we need a method that is
able to re-identify and recover all the distinct objects that appear of the scene. In
this case both the number of input detections, and the number of distinct objects
that occur in the scene, are not fixed and vary across different scene instances.
This irregularity among the different instances poses some modelling challenges,
which, fortunately, can be overcome by using a graph representation. Indeed,
since graphs are usually used to represent irregular data, most of the graphs
algorithms are suited to deal with a non-fixed number of nodes. As a result, we
can map the object detections as nodes of a graph, and then use graph methods,
which can handle graphs of different sizes, to perform object re-identification. In
the following, we first define how the graph is created from the object detections,
and then we describe how it is used to carry out the re-identification task.

Graph Generation We generate a graph G = (V,E) where V represents the
set of N nodes, and E the set of edges connecting the nodes. From each view
in the scene, we extract as many nodes as there are features vectors located
inside the anchors proposed by the object detector. We then think of each node
v as containing the associated feature vector extracted from the feature map to
which we concatenate the coarse pose information of the image and the predicted
bounding box values. The features selected from the feature map include all the
ones contained in the positive and negative anchors predicted by the object
detector. We then connect all the nodes in the graph to each other, building
essentially an undirected fully connected graph.

During the training phase we build a second undirected graph, Ggt, which
contains the same nodes as G but with edges encoding the identification informa-
tion. Using the groundtruth annotations, we set eij = 1 if nodes i and j belong
to the same object, regardless of which images the nodes i and j are associated
to. Otherwise, we set eij = 0, meaning that the nodes are disconnected. We
basically connect each pair of nodes only if they come from the same object.
Intuitively, it is convenient to think of Ggt as made of a set of disconnected
sub-graph components, each representing a single individual object in the scene.

Graph Neural Network. At this stage we are provided with an input graph
G, which is a fully connected graph among all the feature cells of all the objects
detected in the different views. The goal here is to train a GNN that receives as
input G, and disentangles the nodes of the graph that belong to different objects,
i.e., the GNN should recover Ggt.

We compose our GNN out of 3 GraphConv [36] layers with a ReLU activa-
tion after each convolution. The GraphConv uses message passing to aggregate
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information from the neighborhood of i, denoted as Ni, to update the feature
representation H by:

H(k+1)(v) = f
W

(k)
1

1

(
H(k)(v), f

W
(k)
2

2

({
H(k)(w)|w ∈ N (v)

}))
, (1)

where k represents the layer of the GNN, W k are the trainable/learned weights,

f
W

(k)
2

2 is the aggregation function of N (v), and f
W

(k)
1

1 merges the neighborhood
features. At this point in our network, we insert a dropout [45] layer for regu-
larization. The output feature representations of the nodes are then passed to a
modified or stripped down EdgePooling layer [8] for the edge classification. This
operation consists in concatenating the features of all the neighboring nodes
in the graph, and passing them through a linear transformation followed by a
sigmoid non-linearity:

sij = σ (W · (Hi‖Hj) + b) , (2)

where σ() denotes the sigmoid function and ‖ operator denotes a concatenation
operation. sij represents the probability for the nodes i and j to belong to the
same object in the scene. In this case the groundtruth value for each edge comes
from Ggt and, as for the object detection, we train this classifier using focal loss
to accommodate for dataset imbalance.

Note that by relying on a graph formulation we are able to effortlessly deal
with a varying number of distinct objects in the scenes, focusing on “link predic-
tion” instead of “graph classification”. In fact, as we simply aim at disentangling
the graph to separate the objects, the method is oblivious of the number of dis-
tinct objects in the scene (i.e., the object number is not hard-coded), and it is
able to separate the graph into any number of disconnected components.

3.3 Geo-localization

We estimate the geo-coordinates of the identified objects similarly to [49, 38].
The regressed bounding boxes values are projected to real world geographic
coordinates by taking advantage of the camera information that is coupled with
the image. In order to perform this operation we further assume that the terrain
is locally flat. By using the projection equations Eq. (3)-(4) we are able to map
the object bounding box pixel locations x and y in East, North, Up (ENU)
coordinates ex, ey, ez and secondly recover the position of the object in the real
world Olat, Olng.

(ex, ey, ez) =
(
R cos[Clat] sin[Olng − Clat], R sin[Olat − Clat],−h◦ ) (3)

x = (π + arctan(ex, ey)− h◦)W/2π

y = (π/2− arctan(Ch, z))H/π
(4)

where R denotes the Earth’s radius, W and H are the image’s width and

height, Ch denotes camera’s height and z =
√
e2x + e2y is an estimate of the
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object’s distance from the camera. In order to improve the geo-localization ac-
curacy we refine the predictions by feeding the geo-coordinates computed using
Eq. (3)-(4) through a neural network. The geo-localization network is trained
using the groundtruth through regression to obtain the object’s geo-coordinate
using a Mean Square Error (MSE) loss.

3.4 Inference operations

At inference time, the operations carried out in the whole pipeline are slightly
different. First, the object detector generates the proposals for the anchors with
classification confidences and bounding boxes. A threshold is then applied to the
classification score to select only the detection proposals with a high classifica-
tion confidence. Afterwards, Non Maximum Suppression (NMS) is used to filter
further proposals and reduce redundancy.

With the remaining proposals, we create a fully connected graph as described
before, with each node representing a feature vector contained inside the pro-
posals, at which we concatenate the image’s camera metadata information. The
generated graph is then fed to the GNN network for edge classification. Finally,
we classify the edges scores by applying a threshold on them with a decision
boundary of 0.5. At this point, the obtained graph is supposed to be made of
several disconnected components, one for each of the distinct objects in the
scene. We remove sequentially each set of connected components until no nodes
are left.

We finally compute the geo-location of the identified objects by utilizing
the camera metadata information and the location of the bounding box in the
image for all the views where the identified object appears. All the objects geo-
coordinates computed from each different view are then separately refined with
the geo-localization network and, finally, averaged to obtain the final prediction.

4 Experiments

4.1 Datasets

Pasadena Multi-View ReID. Instance labeled trees are ignored in most urban
object datasets where they are rather labeled as vegetation. We consider the
Pasadena Multi-View ReID [38] dataset that provides labeled instances of dif-
ferent trees acquired in Pasadena, California. The dataset offers approximately
4 Google Street View panoramic views for each tree instance. A scene of 4 views
could contain multiple labeled instances, averaging 2 instances per scene, and
other trees that are not instance labeled. There is a total of 6,020 individual tree
instances.

The dataset consists of 6,141 panorama images of size 2048 x 1024 px. In
total, there are around 25,061 annotated objects in the dataset. Each annota-
tion includes the object’s bounding box values, image geo-coordinates, camera
heading, estimate of object distance from camera, ID and geo-coordinate of ob-
ject. In our experiments, we follow the same data split introduced in [38], and
allocate 4,298 images for training, 921 for validation, and 922 for testing.
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Mapillary. The second dataset we consider is a crowdsourced one provided by
Mapillary 1, that is different from the image segmentation dataset, Mapillary
Vistas [39]. Normally, the dataset contains different types of objects, but this
subset contains traffic signs only in an area of 2km2 London, England. In com-
parison to the Pasadena Multi-View ReID, the images acquired in this dataset
are dominantly captured consecutively by forward-faced cameras mounted on
vehicles with the object mostly facing change in scale with the same viewpoint,
with the other instances being from pedestrians’ smartphone cameras.

Given its crowdsourced nature, this dataset presents interesting challenges
such as images being acquired at different times of the day, various camera
sensors as well as image sizes. There are 31,442 different instances of traffic signs
labeled in 74,320 images. An object instance appears on average in 4 images, and
there are approximately 2 object instances in each image. Almost entirely, all
instances of signs in the image are annotated. Each object instance in the dataset
comes with its bounding box values, object ID, image geo-coordinates, instance
geo-coordinates, heading of camera, in which images the object appears, and its
height. It is important to note that the object geo-coordinate is attained through
3D Structure From Motion techniques (SFM). In contrast to the Pasadena Multi-
View ReID, the objects are much smaller in comparison to trees, and much
difficult to capture sideways due to the physical property of signs being thin. On
the other hand, the dataset is much larger, thus easing the training process.

4.2 Implementation Details

We implemented GeoGraph using PyTorch [41]. For the object detector, a Py-
Torch implementation of EfficientDet was used. The backbone chosen for the
EfficientDet was “EfficientNet-B5”. As for the GNN component, we relied on
the PyTorch Geometric package [10]. The Dropout [45] layers are used with a
drop probability of 0.2. The learning rate is set to 0.001 initially with ADAM
[21] as the optimizer. Each epoch takes approximately 45 minutes during train-
ing time on a NVIDIA 1080 Ti GPU ([38] needs 270 minutes). Our network uses
34.75M parameters while [38] uses 50M. We significantly reduce inference time
per image from 0.78ms [38] to 0.32ms.

4.3 Object Detection & Re-identification

In Tab. 1 we report the results achieved by our method in the different datasets
as well as state-of-the-art performance. The effectiveness of our approach is eval-
uated by correctly identifying an instance of an object across multiple views, as
also visually illustrated in Fig. 3 and Fig. 4. Typically, the object detection
method influences the re-identification process as a better mean Average Preci-
sion (mAP) ensures that the object is fed to the next stage of the pipeline for
the re-identification. Moreover, note that the object detection scores for the pro-
posed method does not change between the 2 and 2+ views, this is because the

1 www.mapillary.com
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object detection is always carried out on a single image at the time. Our method
outperforms SSD-ReID-Geo [38] for detection mAP by 2.2% with the Pasadena
dataset, and 1.7% with the Mapillary dataset. GeoGraph improvement can be
attributed to the superiority of EfficientDet over SSD.

Our experiments for re-identification aim at validating whether using graphs
with coarse pose information would assist in identifying the same object instance
across views. The performance of the GNN component is based on whether
the detections of the same object across different views have connecting edges.
Therefore to calculate our mAP, we consider as true positives correctly predicted
edges between a pair of detections with no other edge connections to different
objects in the scene. Otherwise we consider them as false positives. In order to
ensure a fair comparison with other methods, we perform experiments with a
similar number of views. As shown in Tab. 1, increasing the views leads to higher
re-identification mAP, with an improvement of 3.2% for Pasadena and 4.2% for
Mapillary.

4.4 Geolocalization

The geo-localization component is evaluated in terms of a Mean Absolute Er-
ror (MAE) of the distance, measured in meters, between the predicted geo-
coordinate averaged over the different views and the ground truth as shown in
Fig. 5. The metric chosen to measure the distance is the Haversine distance
which is defined as:

d = 2R arcsin

((
sin2

(Olat −Glat

2

)
+ cos(Glat) cos(Olat) sin2

(Olng −Glng

2

))0.5
)
, (5)

where Olat, Olng represent the detection’s predicted geo-coordinates, and
Glat, Glng represent the object’s ground truth. As reported in Tab. 1, for the
Pasadena dataset, the geo-localization error decreases as the number of views
increases (12% improvement). As for Mapillary, we report again lower error with
our GeoGraph and 6 views w.r.t. SSD-ReID-Geo [38] (3.4% improvement). How-
ever, we surprisingly did not outperform GeoGraph results achieved with only
2 views. This is probably be due to the way the ground truth of the Mapillary
dataset is acquired (see Sec. 4.1), and adding more views brings a lot of noise in
the representation of a scene and of the objects it contains.

4.5 Ablation Studies

Since the graphs are generated during training are created online, we assess this
component separately to be able to evaluate its effect. In these experiments, we
build the graph from our ground-truth by generating CNN features from the
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Table 1. Quantitative assessment of our GeoGraph framework and related work on
object detection, re-identification, and geo-localization tasks.

Method # Views Dataset Detection Re-ID Geo-localization
mAP mAP error (m)

MRF [23] 4 Pasadena 0.742 - 3.83
SSD-ReID-Geo [38] 2 Pasadena 0.682 0.731 3.13

Our GeoGraph 2 Pasadena }
0.742

0.754 2.94
Our GeoGraph 4 Pasadena 0.763 2.75

MRF [23] 4 Mapillary 0.919 - 4.62
SSD-ReID-Geo [38] 2 Mapillary 0.902 0.882 4.36

Our GeoGraph 2 Mapillary }
0.919

0.902 3.88
Our GeoGraph 6 Mapillary 0.924 4.21

image crops of multi-view images, which served as our node features. Using the
labeled instances, edges were associated between the different instances of image
crops across the different views. Throughout this experiment, the same settings
of the GNN were used as mentioned in Sec. 3.2. We compare our method to
a siamese CNN with a ResNet50 backbone trained with a contrastive loss that
classified whether the two crops of the object are similar or not. We can observe

Table 2. Results for our graph matching method component evaluated with bypassing
the object detector, and using image crops. We show a comparison between a Siamese
CNN, a GNN based on CNN features and a GNN based on CNN features and camera
metadata information to classify if pairs of objects are the same or not.

Method Dataset F1-Score

Siamese CNN Pasadena 0.509
GNN Pasadena 0.601
GNN-Geo Pasadena 0.640

Siamese CNN Mapillary 0.721
GNN Mapillary 0.823
GNN-Geo Mapillary 0.873

from results reported in Tab. 2 that adding geometric cues consistently helped
to improve re-identification. Through different examination with different forms
of the graph construction, we have found out that creating edges between nodes
across multiple views but also within the same image in a fully connected dense
manner led to better results than in the case where edges between nodes of
the same image (i.e. detections within same image) are ignored. This can be
explained by the fact that node aggregation performs better with fully connected
graphs.
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5 Conclusion

In this paper we have tackled the problems of object detection, re-identification
across multiple views and geo-localization with a unified, end-to-end learnable
framework. We propose a method that integrates both image and pose informa-
tion and use a GNN to perform object re-identification. The advantage of the
our GNN over standard Siamese CNN is the ability to deal with any number
of views and be computational efficient. Experiments conducted on two public
datasets have shown the relevance of our GeoGraph framework, which achieves
high detection accuracy together with low geo-localization error. Furthermore,
our approach is robust to occlusion, neighboring objects of similar appearance,
and severe changes in viewpoints.

The proposed framework could be improved if based on a better geo-localization
component. Furthermore, using the proposals generated from each view could
improve the quality of the object detection step. Finally, while only street view
images were used in our paper, our GeoGraph framework is compatible with
other types of images. We thus would like to combine these ground-level views
with aerial views in order to improve the overall performance and to make the
best of multiple viewpoints following [26].

Acknowledgment: This project was supported by funding provided by the
Hasler Foundation. We thank Mapillary for providing the dataset.

Fig. 3. Sample results obtained on the Pasadena dataset for multi-view object detection
and re-identification. Trees were correctly detected (green) and further accurately re-
identified across different views (cyan) when possible.
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Fig. 4. Sample results obtained on the Mapillary dataset for multi-view object de-
tection and re-identification. Here all detected objects (signs) were both detected and
further re-identified (cyan) due to the higher similarity between views.

Fig. 5. Sample of geo-localization results for Pasadena comparing different methods.
Green, blue, yellow and red circles represent the ground-truth, GeoGraph, SSD-ReID-
Geo and MRF respectively. The orange bounding box exhibits how ground level im-
agery can be helpful to detect object obscured by buildings from aerial view.
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