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SUMMARY 

This paper reports a preliminary investigation on the ability of Machine Learning algorithms to 

relate the morphology of third body particles to the rheology of the contact interface that created 

them. A testing campaign is performed on a pin-on-disc tribometer, followed by a 

comprehensive observation of the worn surfaces. Several Machine Learning algorithms are then 

used to establish and quantify the logical relations between the rheological and a morphological 

databases built from this campaign. Success rates and thorough analysis of their predictions are 

used to validate the general approach and to propose possible improvements. It appears that 

Machine Learning presents an interesting potential in quantitative tribological analysis if the 

morphological and rheological databases are properly enriched. 
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I. INTRODUCTION 

The tribological triplet [1-4] is a conceptual framework that was proposed as an attempt to unify 

and structure the science of dry mechanical contacts by considering as a whole the different 

scales where the relevant physics take place. The scale of the third body (i.e. the layer of solid 

matter trapped in the interface and separating the contacting bodies) is particularly challenging 

because it is both pivotal in the understanding of friction and wear and hard to model. Indeed, 

if the third body is defined as the interfacial layer within a dry contact interface, it means that 

any piece of matter ejected from the contact is a wear debris; as such it is no more considered 

as being part of the third body in the contact. Likewise, when opening a contact to observe it, 

what is to be seen on the surfaces may be quite different from the third body that initially existed 

during the contact, because of a strong modification of the environment caused by the contact 

opening (dramatic changes in normal and tangential stress, release of internal stresses, no more 

strain rate, temperature cooling, exposition to the gaseous environment, etc.). The only relevant 

place to characterize the mechanical behaviour of the third body is thus inside a contact, and 

this is precisely where the third body is the less accessible. Moreover, any quantity measured 

in a classical tribometry experiment will be collected quite far from the contact itself. Hence, 

no tribometer can claim to be directly measuring the rheology of the third body (its flow 

capacity as a function of shear strain and rate coupled with adhesion on first bodies surface) 

without any bias. 

 

Presented this way, this approach looks like an experimental dead-end. Apart from improving 

local probing of dry third body during contacts, a possible solution to circumvent this limitation 

is to employ numerical modelling of the interface. This does not come without difficulties, since 

the micrometric scale is notoriously challenging for numerical simulations: it is too large to use 

first principles simulations, and the kinematics of third body flow are too complicated and 
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poorly constrained to use fluid-like continuum approaches. The best candidates for such a task 

have been identified to be Discrete Element Modelling (DEM) [5] and its extensions and 

improvements [6-10]. Among them, the Multibody Meshfree Approach was recently proposed 

[11-12]. In this approach, the main principle is to consider the third body layer as an assembly 

of a large number of deformable grains. Each grain has its own properties in terms of size, 

shape, mechanical constitutive behaviour, and interaction laws with its neighbouring grains. 

Recent numerical results have shown that such simulations are able to describe a large variety 

of flow regimes which experimentally make sense, and to provide the corresponding frictional 

response, as shown for example in [13]. However, reproducing reality is not predicting it, and 

many open questions remain regarding the realistic character of such simulations. Yet, they 

provide both local and dynamic data, while experiments provide data that are either dynamic 

but global (e.g. friction coefficient provided by a tribometer) or local but static (e.g. post-

mortem observation of surfaces). As such, they have the potential to complement nicely 

classical tribometry if they are experimentally validated. It requires to verify that the predicted 

flow regimes are in agreement with the morphologies observed post-mortem in the contacts. 

 

From an experimental viewpoint at the local scale, the examination of third body morphology 

started as individual characterization of wear debris. Several studies tried to relate every shape 

they found to a possible source. Seven shapes have been proposed, only based on visual 

characterization, with their possible origins [14-16]. Other studies focused on giving metric 

dimensions to the feature describers when relating them to the wear type taking place in the 

contact [17-21], highlighting a wide range of size. For example, abrasive wear may lead to 

particles that have a thickness from 2 μm to 5 μm and a length from 25 µm to 100 µm. In fatigue 

wear, particles are found as spherical grains with a radius from 3 µm to 10 µm, as a group of 

small particles with a width ranging from 10 μm to 100 μm or as laminar particles with a length 
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starting from 20 µm to 50 µm [22]. The work of Kowandy et al. [23] shares some similarities 

with the present study, such as studying the morphological properties of third body particles 

created during a tribological experiment and then relating those descriptors to the wear regime 

taking place in the contact. In their work, the chosen descriptors were the length, the perimeter, 

the area and the Spike parameter (an indicator for the angularity of the particle [24]). 

 

The next step for relating wear particles to tribological scenarios was to use Machine Learning 

as an automatized expert system. Based on first attempts to extract data from wear particle 

images [25-26], several automated statistical approaches were proposed for wear particles 

classification such as Artificial Neural Networks (ANN) [27-29], Support Vector Machines 

(SVM) [30-31, or Classification and Regression Trees (CART) [32]. More recently, a coupled 

approach using both conventional ANN and Deep Learning was applied to the same problem 

with promising results [33]. For all these studies, wear particles were first extracted from the 

contact and isolated by techniques such as ferrography, in order to acquire the microscopic 

images and to build relevant databases. This is a limitation, because (i) this operation involves 

a large amount of human work and expertise and (ii) the displacement of the particles may have 

caused the modification of their morphology due to their fragility. For these reasons, the number 

of particles analysed was typically pretty low. However, this research proved the efficiency of 

using wear debris morphology to understand the wear that takes place in the contact. 

 

As a continuation of these pioneering works, a preliminary methodological study is proposed 

in this paper, which aims to further explore the experimental gap between two classes of 

experimental results regarding third body: Rheology and Morphology. Both terms deserve to 

be well-defined in that context. For the present framework rheology means any quantitative 

information that describes the flow of the third body. Since no such direct measurement exist, 
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it is necessary to rely on indirect measurements such as the friction coefficient measured by a 

tribometer. Hence, the term rheology in the context of this study does not follow the 

conventional practice (where “rheology” often means “rheological law”) but is to be understood 

in a much broader sense. It could also include any evolution or transformation of the third body 

during the sliding contact, may it be from micromechanical or physico-chemical points of view, 

for example (although, as detailed in the next section, the reported rheological data is currently 

purely mechanical, in the form of a friction coefficient). Morphology, on the other hand, will 

describe any information regarding the shape and the aspect of the third body as observed after 

opening the contact and observing it at the micrometric scale. Following the classification 

proposed in the previous paragraph, rheological data is “global and dynamic” while 

morphological data is “local and static”. To build this link, the following methodology is 

employed: a tribological rig (described in Section II) is used to run an experimental campaign 

while systematically varying several key parameters, and a structured rheological database is 

built from these results (Section III). The worn surfaces of the first bodies are then 

systematically submitted to microscopic observation in order to extract morphological 

properties of the created third bodies, and to build a morphological database (Section IV). 

Machine learning techniques are then applied to determine to what extent these two databases 

can be logically related (Section V). Finally, the limitations and the potential of this 

methodology are discussed and the lessons learned when applying it for the first time are 

detailed (Section VI). 
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II. EXPERIMENTS 

This study does not seek to recreate a specific industrial contact but to investigate a concept. To 

do so, a dedicated tribological test bench is set up (a pin-on-disk tribometer shown in Fig. 1) in 

order to have control on the majority of the parameters. The tribometer consists in an arm 

holding the pin in contact with the disk surface, and a motor to keep the disk in a continuous 

rotational motion. The counterweights are used to oppose to the weight of the pin, of its 

supporting arms and of the different components of the arm itself (force sensor, fixing screws, 

etc.). When applying 0 N, the system is in a state of equilibrium and the normal force detected 

at the tip of the pin is very close to zero. Once the pin is secured on its supporting arm, this arm 

keeps two rotational degrees of freedom. The axis system in Fig. 1 is used as reference. The 

pin’s supporting arm can rotate around the Y-axis so that the pin can go up and down. It is only 

stopped by the disk’s surface. In addition, the arm has approximately ±2° of rotational freedom 

angle to turn around the Z-axis. This freedom is used by a force sensor mounted on the 

supporting arm to follow the tangential force. The sensor used is the SIKA FTCA50. It is a S-

type sensor that can measure compression and tension. Its measuring range goes from 1 to 50 

N. The sensor sends its signal through a conditioner to an acquisition system (OROS35) to 

analyse it. The sensor needs to be calibrated because its response varies depending on the way 

it is fixed on the tribometer arm. This process consists in applying a set of known static loads 

and analysing the response of the sensor. It is performed just before and just after each test in 

order to ensure its linear response and the absence of drift during the test. 
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Fig. 1. Experimental apparatus 

 

For the pin and the disc, a low-carbon alloy steel (NF 35���16 steel, or 35������16 steel 

according to the DIN) is employed. Its hardness is close to 50 HRC. It is highly used in the 

manufacturing of highly stressed parts regardless of their dimensions across different industrial 

fields, thanks to its high hardenability and important impact strength level. In the present case, 

it was chosen for its ability to generate a sufficient amount of wear debris. The dimensions of 

both the pin and the disk are imposed by the tribometer. The disk has a 109 mm diameter and a 

10 mm height, allowing it to be scanned in the Scanning Electron Microscope (SEM 

Thermofischer Quanta 600) without cutting it. Whereas the pin is a cylinder that has a 5 mm 

radius and a 25 mm height, with a hemisphere-like tip that measures 5 mm of radius. Both the 
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pin and the disk have a surface roughness equal to 	
=0.2 µm. For each test, a new pin and a 

new track on a given disc are used. Before the test, the surfaces of both the pin and disk are 

cleaned (brushing, water bath, drying, acetone ultrasonic bath, drying, ethanol ultrasonic bath, 

drying) in order to remove any oil-like residue or particles resulting from the manufacturing 

process or the handling that may have an effect on the sliding test. 

 

The utility of using in situ real time visualization of the tribological test has been proven in the 

observation and the quantification of the wear debris [34-36], especially with cameras evolving 

and their specifications getting better. Primarily, those recordings can help deduce the 

rheological properties of the third body particles, such as the ductility and the cohesion of those 

particles [37]. In addition, the in situ recordings can help explain the micro events that may 

appear in the friction signals since they follow the contact in real time. The test bench is 

therefore equipped with two high-speed cameras (GO 5000) with CMOS sensors, a 2560*2048 

resolution, and a frame rate up to 62 fps. The cameras are equipped with a 35mm lens and a 

variety of extension tubes to enhance the focal distance and to get the best recordings possible. 

Additional light sources are important in order to reduce the exposure time and to pick up sharp 

details of the object. The lightings mounted are two XL2150 from Spectrum Illumination. They 

are ultra-high power LEDs producing 559 lm per LED of pure white light. The lights can be 

moved and their angle can be changed to ensure that the coverage area is the same as the contact 

area. The cameras can be placed to follow different spots with the help of their supporting fixing 

arms. The inlet of the contact, the outlet, and the sliding track (away from the contact) can be 

followed, as well as the contact perpendicularly when using a transparent first body. In the 

present study, it was decided to supervise only the outlet of the contact between the pin and the 

disk in order to follow the behaviour of the third body particles. 
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The applied force is kept constant equal to 10 N, which means applying a static weight of 600 

g, in order not to reach the tangential force sensor limits. The shape of the first bodies and the 

normal load ensure a point contact in the initial state of the experiment with an initial Hertzian 

maximum pressure equal to 977 MPa at the contact point. The initial average Hertzian pressure 

in the contact area is equal to 651 MPa. Rotational speed values are in the range 5-6 rpm. The 

linear speed can have a wider range since it depends also on the radius of the sliding track. 

 

It has been proven that interactions take place between the materials in contact and the 

environment of the experiment. In fact, many studies confirm that chemical reactions due to gas 

consumption can change the way materials behave when submitted to tribological loadings [38-

41]. Therefore, the environment is considered as an additional variable to be changed in order 

to vary the morphological measurements and the rheological data. Due to the location of the pin 

and the disk, it is impossible to change the gaseous environment of the contact without covering 

the entire top part of the tribometer (the supporting arm for the pin, the weights for applying the 

normal load, the force sensor and the counterweights). The designed solution is a cube to cover 

those parts. It is made of Poly (Methyl Methacrylate), i.e. PMMA, to maintain the possibility 

of filming the contact with the cameras being out. The gas chosen for this project are ambient 

air and dry argon (<2% relative humidity). The latter is wildly used with low-alloyed steel, 

especially in welding applications. It was chosen here for its chemical neutrality when exposed 

to steel. A low gas flow is maintained throughout the test to compensate for the leaks. The 

advantage of working with argon is that it is heavier than air so the contact is guaranteed to be 

immersed in the gas since it is at the bottom of the cabin. The temperature and humidity are not 

imposed in this project but they are recorded during each test. In this work, nine different tests 

were conducted to compare the effect of changing the different controllable conditions on the 

morphological and rheological measurements. The aim of the study is not to build a method to 
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automatically build a tribological scenario based solely on post-mortem views of the third body 

layer (although this can be considered as a long-term purpose of this preliminary work). As 

such, the nine different tests are chosen in order to generate a sufficiently large database of 

rheological and morphological information, but no conclusion is expected at that stage on the 

effect of the varied parameters (slip velocity, gaseous environment, slip distance) on the 

tribological scenario. Table 1 summarizes the different tests that were carried out. 

 

Set Test F(N) R(mm) ω(rpm) V(mm/s) Gas L(m) T(°C) H(%) 

Set 1 
Influence 

of V 

1 10 20 6 12.57 Air 25 22 51 

2 10 15 6 9.42 Air 24 20 49 

3 10 10 6 6.28 Air 25 23 50 

Set 2 
Influence 

of gas 

4 10 20 5 10.47 Air 18 22 44 

5 10 20 5 10.47 Argon 15 20 50 

6 10 20 5 10.47 Argon 17 23 50 

Set 3 
Influence 

of L 

7 10 10 6 6.28 Air 25 27 42 

8 10 10 6 6.28 Air 22 23 49 

9 10 10 6 6.28 Air 15 21 51 

 

Table 1. List of the experimental tests. F is the normal force, R is the distance of the contact to the 

center of the disc, ω is the angular speed, V is the sliding velocity, L is the final sliding distance, T is 

the temperature, H is the relative humidity. 
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III. RHEOLOGICAL DATABASE 

In Fig. 2, illustrative experimental results obtained during test 4 are gathered. Fig. 2A shows 

the friction signal as well as discrete values of the average friction for each disc revolution. 

Three main stages can be inferred from this curve. For a sliding distance of 0-1 m, a rapid rise 

of the friction takes place, followed by a slower friction increase in a second stage (From 1 m 

to 10 m of sliding), accompanied by intense friction fluctuations and sharp peaks of tangential 

resistance to sliding. In a third stage (from 10 m to 18 m of sliding distance), friction appears 

to reach a plateau, with a continuously decreasing variability, and it can be considered that the 

contact has reached a steady state at the end of the test. These three stages are observed in the 

9 tests reported here, with minor differences. Fig. 2B shows a zoomed view of the friction signal 

in the last meter of sliding, and exhibits a certain amount of periodicity at each lap, confirming 

that the local value of the friction coefficient at each location of the disc has reached a stable 

value. In the remainder of this paper, the transient stages (before 10 m of sliding) are not 

considered for the acquisition of morphological or rheological data, and the focus is put only 

on the steady state of sliding. No attempt is made on explaining in detail the tribological 

scenario during these transient states, because of the lack of sufficient data and because this is 

not the purpose of this study.  

 

Figs. 2C-E show snapshots of the outlet of the contact taken by one of the cameras during the 

test 4, at three different times of the test. Fig. 2C is shot at the end of the first stage of the friction 

curve, and does not show any apparent degradation of the disc, while Fig. 2D (shot during the 

second stage of the friction curve) shows the appearance of a clear wear track. In Fig. 2E (taken 

in friction stage 3), the wear track is clearly established and has reached a mature state. This is 

confirmed by the SEM views taken at the end of the test and provided in Figs. 2F and 2G, for 

the pin and the disc respectively. The pin exhibits a central roughly-circular contact area with 
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elongated lighter and darker areas oriented in the sliding direction. Inlet and outlet areas are 

located just before and after the contact area, and the three areas are surrounded by a broad 

ejection zone full of wear debris. In several cases, a large third body agglomerate (called third 

body prow, Fig. 2F) is observed just before the inlet zone. The wear track on the disc is 

structured in a central contact area (usually about 1mm wide), two transition zones around it, 

and two ejection zones around them. Those main visual post-mortem attributes are observed for 

all the nine tests performed in this project. 

 

A close observation of the videos acquired during the test reveals that the significant friction 

peaks observed in Fig. 2A correlate with large (i.e. several tenth of micrometers) off-track and 

vertical motion of the pin, indicating a temporary disturbance of the local contact conditions. 

The most likely explanation for this observation (which holds true for all the performed tests) 

is that the third body accumulates in front of the pin (in the so-called third body prow), and that 

this agglomerate eventually breaks down and passes under the pin. The disturbance created by 

this sudden large amount of third body spread on the wear track lasts long enough to be 

measurable on the cycle-averaged friction signal (blue squares in Fig. 2A), and sometimes 

during several cycles (green square). It is interesting to note (i) that such peaks seem to follow 

a certain periodicity, maybe related to a critical failure size of the third body prow, and (ii) that 

after the peaks the friction signal seems to return to its previous state, indicating that a certain 

memory of the contact conditions is kept despite this temporary disturbance. However, provided 

that the prow is located outside of the main contact area (Fig. 2F), it does not carry any 

significant load and is not responsible for any significant part of the friction force. It will thus 

be disregarded in the morphological database reported in the next section. 
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From these raw data, several descriptors are extracted in order to build the rheological database 

for further use in a Machine Learning context: Average friction coefficient, Standard deviation 

of friction coefficient, size of the contact area on the pin, width of the wear track, etc. However, 

for the sake of simplicity, only results related to the first one will be reported here. This choice 

is made because similar qualitative results are obtained for all descriptors, as will be elaborated 

later in the present paper. For the computation of the average friction, the third stage of the 

friction curve (taken after a sliding distance of 10 m) is considered for all tests. Results are 

reported in Table 2. They show a large variability in the quantitative results but do not seem to 

follow any clear trend, possibly revealing an important experimental variability. 

 

Test 1 2 3 4 5 6 7 8 9 

F 0.44 0.54 0.49 0.26 0.43 0.35 0.29 0.38 0.20 
 

Table 2. Rheological database (restricted to one descriptor in this report); F stands for the average 

friction coefficient measured during steady state sliding (Stage 3) 
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Fig. 2. Tribological measurements and observations for test 4. A. Friction signal; B. Zoom on 

the friction signal; C.-E. Snapshots of the wear track at the contact outlet during test; F. Post-

mortem SEM view of the worn pin; G. Post-mortem SEM view of the worn disc 
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IV. MORPHOLOGICAL DATABASE 

Conventional analysis of the third body particles has traditionally been performed based on the 

judgment of tribology experts. However, even though such interpretations are precise and 

accurate, it is not an effective method when having a large quantitative data set. Besides, the 

knowledge extracted from such a non-quantitative post-test analysis is difficult to transmit to 

non-experts, and consequently to use in other fields of the scientific or industrial community. 

Therefore it was decided to develop an image-processing algorithm that describes the third body 

particles created during a tribological test, using their microscopic images. This is performed 

by calculating a number of selected morphological descriptors. Using this method, the issue 

subjective to expert knowledge is expected to be reduced and the repeatability of the tribological 

analysis is expected to be improved. To limit as much as possible the disturbance of the third 

body particles at the end of the test, in order not to influence their shape and spatial organization 

(distribution and localization), the third body particles are left on the surface samples after 

contact opening. During the visualization procedure, the entirety of the sliding track on the disk 

and the contact surface on the pin is covered, in order to gather a maximum number of particles. 

This strategy does not take into account whether a considered particle was active (on the sliding 

track on the disk or on the contact zone on the pin) or passive (ejected) in the contact. In the 

case of an ejected particle, no information is available about the ejection time in relation with 

the contact’s lifespan. In order to ensure a good reproducibility, the SEM settings (voltage, 

working distance, scanning velocity, resolution) are kept constant from one scan to the other, 

apart from contrast and brightness. 

 

The morphology of an object refers to a description of its appearance, which may include its 

shape and texture. This study only focuses on shapes but does not take into consideration the 

texture aspects, although they represent a promising idea for future work. In order to be able to 
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calculate the morphological descriptors of each particle, a semi-automatic image-processing 

tool was developed in a Matlab environment. Such an algorithm has two intermediate steps that 

need to pass by. First, it must differentiate between the different particles present in the image 

and its background that is, in our case, either one of the surfaces of the pin or the disk or some 

other much larger particles. This separation is grey-level based. In all the microscopic images 

acquired during the study, the background is darker than the particles on it as can be seen in 

Fig. 3. Secondly, the physical edges of each particle (i.e. its geometrical contour) must be 

detected individually. In order to reach this goal the watershed segmentation method is applied, 

which is wildly used when studying medical [42-43] and material science [44-46] images. A 

region-based segmentation separates the entire area into disjoint portions. When reading an 

image it considers the values of the pixels as heights and transforms it into a topographical 

image. In a topographical image, there are three types of points:  

- Points of minima: if a drop of water is placed on it, it will not move.  

- Basins: If a drop of water is placed on it, it will fall to one single and known minima.  

- Watershed lines: if a drop of water is placed on it, it can head to more than one minima. 

Such lines are the borders between two regions that are looked for.  

 

This procedure is already programmed in Matlab. However, it is left to the user to prepare the 

proper matrix for its input. The raw SEM image needs to be treated before starting the watershed 

processing. The input image for the watershed function needs to be a grey-level image from 

where it can detect the appropriate minima for each particle. Fig. 3 illustrates the different 

transformations that the raw image (A.) goes through and the result of the watershed algorithm. 

After manual section of a given region of interest (B.), a filter is applied to clean the background 

noise and remove all the elements that are connected to the borders of the images (C.). Then, 

the image’s histogram is adjusted to increase its contrast (D.). This filter saturates the bottom 
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1% and the top 1% of all the pixels values. A user-defined grey-level threshold value is used to 

make the image binary (E.). The resulting image may still contain some defaults referred to as 

‘holes’. A hole is a region of pixels that does not match its surroundings. A filter is used to 

correct those defaults (F.). At this point, a binary image is obtained, where the particles are in 

white and the background is in black. Only now can the watershed segmentation function be 

applied based on the Distance Transform Approach. This approach is regularly used along the 

watershed function [47-48]. It calculates simply the distance from any pixel to its nearest 

nonzero valued pixel. In a binary picture, the distance transform calculates the distance of every 

black pixel to its nearest white pixel. A white pixel will be replaced in the distance transform 

result by a zero valued pixel since its nearest white pixel is itself. The distance transform will 

result into transforming the binary image into a grey-level image (G.). The algorithm can then 

proceed to apply the watershed segmentation function (H.). 

 

After these 7 steps three outcomes are possible: a correct segmentation, an over-segmentation 

(several regions are detected in a given particle) and an under-segmentation (several particles 

are merged in a given region). Human intervention is generally necessary at this stage, either to 

change the grey-level threshold and restart the segmentation (in the case of under-segmentation) 

or to merge several regions in order to form a single particle (in case of over-segmentation). 

This process leads to a correct labelling of several particles with clearly-defined contours (I.). 

Since the particles are not to be moved from where they lay at the end of the tests, the particles 

may set on each other or overlap. In this case, those particles are not taken into account. 
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Fig. 3. Morphological extraction. A.-I. Image processing workflow; J. Extraction of 

morphological descriptors; S and L are the small and large dimensions of a rectangular 

enclosing box (S being minimized with respect to an angle θ), Rinsc and Rcirc are the inscribed 

and circumscribed radii of the particle, the scalars Rc are the radii of a number nc of discs 

fitted on the particle contour, and P and Pconv are its perimeter and convex perimeter. 
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Many studies were conducted to determine the best descriptors to characterize the shapes of 

particles, especially in geological contexts (see for example a review in [49] and references 

therein). However, the number of selected descriptors should not overcomplicate the study and 

yet still give an acceptable idea about the shape of the particles. Five important aspects of the 

shape are considered crucial to judge the form of a particle, i.e., the projected surface area, the 

elongation, the circularity, the roundness, and the regularity [50]. They characterize 

morphological properties of the particle in a hierarchical way, focusing successively on several 

scales (from the largest to the smallest). These descriptors are shown in Fig. 3J: 

-Area: this is the value of the apparent 2D surface. Mathematically, this descriptor is calculated 

by multiplying the area of a single pixel by the number of pixels contained within the detected 

contour. The surface area which is measured can be comparable to the real surface projected on 

a 2D plane orthogonal to the SEM electron beam axis. It does not provide a complete view of 

the 3D shape of the particle [51]. 

- Elongation: this descriptor defines the aspect ratio of the particle. The width of the particle in 

this study is calculated by minimization of an enclosing box with respect to an angle of rotation 

�. The closer the elongation measurement is to one, the less elongated the particle is.  

- Circularity: It calculates how similar the shape of the particle is to a circle by dividing the 

radius of the largest inscribed circle 	���� by the radius of the circumscribed circle 	����. The 

closer the particle is to a circle, the closer to one the circularity factor.  

- Roundness: It refers to the presence or the absence of sharpness in the particles edges. In the 

equation, the numbers 	c are the radii of a large number of circles that fit inside the particles 

and touch its outline at the same time (�c is their number).  

- Regularity: This term indicates the presence of either projections or indentations on the 

particle’s surface. In this equation, � is the perimeter of the particle and ����� is its convex 

perimeter. The more regular the particle, the larger the value of the regularity descriptor.  
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This procedure is applied on 1318 particles taken from the 9 tribological tests, and the results 

are summarized in Fig. 4. This figure shows the average value and the standard deviation of 

each of the five morphological descriptors for each of the 9 tests. It appears that elongation and 

circularity do not exhibit a large variability between the tests compared to the inter-particle 

variability, which is considerable. In contrast, surface area, roundness and regularity show more 

clear differences between the tests. Illustrative particles are provided in each case and indicate 

the meaning of each descriptor. It is evident that some descriptors are redundant in some way 

(for example, particles with large roundness are likely to have a large regularity, and particles 

with a small elongation are likely to have a small circularity), but still keep some intrinsic 

differences. There is also a clear correlation between the particle size, on one hand, and its 

roundness and its regularity, on the other hand. Small particles are more likely to be detected as 

regular and round when compared to large ones. It appears that, among those that were varied, 

the gaseous environment is the experimental parameter which is the most influential on the 

morphological properties of the particles. Argon (tests 5 and 6) leads to smaller, more rounded 

and more regular particles than room air (test 4). A more subtle trend can be observed on tests 

7 to 9, where an increased duration of the test seems to have a similar effect (i.e. to reduce the 

size and to increase the roundness and the regularity of the particles). This trend is small when 

compared to the error bars, but could be interpreted as an evolution of the third body during the 

test. 
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Fig. 4. Morphological database. Average value and standard deviation of the five 

morphological descriptors for each test (each bar corresponds to the statistics of particles 

taken from a given test, as detailed in the provided colour bar). Illustrative particles are 

provided in each case for high and low values of the descriptors, with the corresponding 

descriptor ranges. The small numbers near each illustrative particle indicate the test from 

which it originates, and the relative scales of the particles on their respective SEM images are 

preserved. 
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V. MACHINE LEARNING 

1. Principles 

Establishing a logical link between the rheology of the third body and its morphology would 

enable to enrich and strengthen existing tribological methods, and is therefore highly desirable. 

However, the size and the complexity of the databases make it almost impossible to achieve 

this goal manually, and an automated methodology is necessary. This is where machine learning 

comes into play.  

Several studies have used machine learning in a tribological framework for various purposes, 

like for example to optimize metal composites for a better tribological behaviour of their 

surfaces [52] and to diagnose mechanical defaults through the vibration signal of a machine 

[53].  Decost and co-workers [54] worked on classifying materials from their microstructural 

features. However, the attempts to relate the morphological descriptors of the third body to its 

rheological parameters are not as numerous. Research reported in [55] aimed to diagnose the 

state of the mechanical contacts from the third body’s morphological state. But the classification 

put in place did not take into consideration the rheological conditions of the creation of the third 

body and, as for morphological analysis of wear particles [20-21], the particles were transported 

away from the contact by a lubricant behaving as a carrier fluid. In a topic close to tribology, 

machine learning has also been proposed as a way to predict laboratory earthquakes from 

acquired seismic signals [56]. 

There are many methods to teach machines how to learn from their experiences. One of the 

main differences between those techniques is the feedback. The type of the feedback determines 

the learning mode. In the supervised learning, the feedback matches the action the agent chooses 

to apply depending on the set of percepts it receives. Therefore, the environment becomes the 

supervisor of the agent that corrects its errors [57]. However, in the unsupervised learning, the 
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agent does not receive any feedback. The agent starts with a collection of unidentified data and 

it builds its own strategy to describe this data by detecting similarities on its own without any 

interference from the outside world [58]. This study is restricted to supervised learning. The 

basis of supervised learning is the idea of learning from examples. In this type of machine 

learning, two main sets of data are used: � and �∗, with � the training set and �∗ the test set of 

respectively � and �∗ elements of input-output pairs. The supervised learning algorithms take 

the training set �={(X1;Y1),(X2;Y2),… ,(Xn;Yn)}, where Y�=�(X�) and the function � is the 

unknown process to be predicted, and discover a resemblance function � to predict the unknown 

function �. The learning process is a constant search for all the possible improvement 

implemented to the resemblance function �. The efficiency of h is judged on the basis of its 

good performance on the test set �∗. The function �, also called the hypothesis function, is said 

to generalize well if it predicts Y with the smallest error possible for the X in the test set. It is 

thus a very elaborate and multi-dimensional curve-fitting technique. There are two different 

types of problems in the supervised learning; Classification and Regression. When the output 

set Y is a number, the problem is called regression. However, the problem is called classification 

if the output set is a restricted series of values. 

 

2. Classification problem 

As a first step, the ability of a Machine Learning Algorithm to perform a classification task is 

investigated. The aim is to study the relationship between the shape of the particles and the 

rheological conditions of the tribological tests. The algorithm is therefore asked to associate the 

particle (input) to a test (output) where it might have been created. Hence, the focus is put on 

two typical classification algorithms (known also as classifiers): logistic regression and neural 

networks.  
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The logistic regression was developed as a statistical model in the late 1960s to study binary 

data (its units take only two possible values) especially in the medical field [59]. In spite of its 

label, logistic regression is used to solve classification problem [60-61] such as the text 

classification [62] and co-reference resolution [63]. By calculating probabilities using logistic 

(Sigmoid) equation, it measures the relationship between an output class and one or more 

independent input variables. Given a set of input parameters � = ���, … , �!" and a set of 

weights � = ���, … , �!", the hypothesis function for a logistic regression classifier is as follows: 

ℎ$%�& = �%� ∙ �& =
1

1 − *+$∙, (1) 

In the presented study, the input parameters �- are the five morphological descriptors of a given 

grain, and ℎ!$%�& is the estimated probability for this grain to originate from a given 

tribological test Yi. The dot ∙ denotes scalar product. The weights �-  are chosen to minimize a 

cost function expressed by: 

.%�& = − 1/0123 ∙ 4�56ℎ$%�3&7 + %1 − 23& ∙ 4�561 − ℎ$%�3&79
:

3;�
+ < ∙ 1�01�-=9

!

-;�
 (2) 

The first term of this expression is called a cross-entropy function, and it evaluates the error 

made by the function ℎ$ when trying to predict a given output 23 from a given input �3, averaged 

on the / elements composing the database. The second term is called a Tikhonov regularization 

term [64], and aims at limiting the risk of over-fitting (i.e. perfect results of the algorithm on 

the database, but failure to generalize it to new cases). This minimization is performed by a 

Gradient Descent Algorithm [65], performed during a number of � descent steps. The whole 

approach hence depends on two purely numerical parameters: the regularization parameter <, 

and the number of iterations �3. 
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The artificial neural network (ANN) is a system of interconnected ‘neurons’. Those connections 

have weights that are adjusted during the training phase of the learning. Usually the network 

has multiple layers of interconnected neurons. Each layer responds to a different combination 

of inputs that is the output of the layer before it. ANN are implemented in different domains 

such as handwritten digits recognition, the diagnosis of disease conditions [66], and face 

detection algorithms. The Input vector (the morphological descriptors in our case) goes through 

hidden layers, each of which being a set of values calculated the same way as the hypothesis 

function in the logistic regression. The last layer contains only one node, which is the output of 

the network. The analytical expression of the hypothesis function can thus be cumbersome in 

the case of a large number of layers and of nodes per layer. The number of hidden layers has 

been a subject of many researches to enhance the efficiency of the neural network algorithms. 

It was proven that a single hidden layer network with a finite number of nodes is capable of 

approximating “any function that maps one finite space to another” [67-68]. Therefore, the 

number of hidden layers is fixed to 1 in this preliminary study. The cost function has the same 

structure as that used in logistic regression. Its minimization is based on the classical 

backpropagation technique [69], with a number of 500 iterations. There are two numerical 

parameters: the regularization parameter <, and the number of nodes in the hidden layer �!. A 

scheme of the Neural Network is proposed in Fig. 5. 

 

 

Fig. 5. Neural Network used for the classification problem 
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The results are presented for both classifiers. The morphological database is randomly divided 

into two parts: a training database (composed by 75% of the third body particles, and used to 

calibrate the weights of the Machine Learning algorithms), and a test database (composed by 

the remaining 25%, and used to evaluate the ability of the calibrated algorithms to predict 

accurately unknown data). In each case, a success rate is established, defined as the proportion 

of the third body particles that were successfully attributed to the test from which they actually 

originate. The results are gathered in Fig. 6, and show that increasing < parameter does not 

always mean having better performing algorithms. 

 

 
 

Fig. 6. Success rates of the classification algorithms. A. Logistic regression; B. Artificial 

Neural Network 
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In the case of the logistic regression, the success rate functions hit a plateau when the number 

of iterations Ni increases. The combination [<=0.01; Ni=500] guarantees the best success rates 

during both the training phase (44%) and the test phase (35%). When using Artificial Neural 

Networks, increasing < makes the algorithm better until a certain threshold is reached. For <=1 

or <=100 the success rate of the algorithm is much lower than when < is smaller. However, 

when changing the size of the hidden layer, the success rate of the algorithm hits a plateau at a 

number of 5 nodes. For the combination that ensures the highest success rate on the test 

database, which is [<=0.01; Nn=5], the network results into having 39 % and 38 % as success 

rates when applied on the training and the test databases respectively.  

 

Fig.7 shows the plot of the tests attributed by the logistic regression algorithm to the particles 

in the training database. More specifically, each column corresponds to the particles originating 

from a given test, and the colours in this column indicate what test is attributed to these particles 

by the machine-learning algorithm. Results obtained for the test database and results obtained 

for both databases by the neural network algorithm are very similar and are not shown here. It 

is evident from this figure that the machine learning predictions are not equally good for all the 

tests. Tests 2, 3, and 6 lead to rather good predictions (more than 50% of success), tests 1 and 

7 lead to mildly satisfactory predictions (between 30% and 50% of success), and tests 4, 5, 8 

and 9 are very poorly predicted (less than 10% of success). It is interesting to note that a majority 

of particles from test 1 are labelled as belonging to test 3, indicating that the algorithm has 

difficulties to discriminate properly between these two tests. Likewise, particles from test 5, 8, 

and 9 are in majority labelled as originating from test 6. 
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Fig. 7. Predictions of the Logistic Regression Algorithm in the case λ=0.01 and Ni=500, as a 

function of the actual test of origin of the particles (training dataset only); Percentages in 

white indicate the success rate per test of origin  

 

A more detailed view is provided in Fig.8, which gives the detailed score attributed to each 

particle for it originating from each test. This information is hidden in Fig.7 since only the best 

score is retained for each particle in order to label it with a predicted test of origin. In Fig.8, the 

particles (on the vertical axis) are first binned by test of origin, and then sorted in each bin by 

the score that is attributed to them for their actual test of origin. This graph is very instructive, 

because it shows that particles with a good score in test 1 also have a good score in test 3. Tests 

5 and 6 are also very well correlated (which makes sense, since they share the same 

experimental conditions, i.e. argon atmosphere), as well as tests 2, 4 and 7. Particles from tests 

8 and 9 have low scores for all tests. The second column of Fig.8 provides the corresponding 

morphological descriptors for all particles. The typical “profile” of the particles of some tests 

appear clearly. For example, particles with high scores in tests 5 and 6 are characterized by a 

low surface area, a high roundness and a very high regularity. However, particles with high 
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scores in tests 2, 4 and 7 are characterized by a large surface area, a small roundness and a small 

regularity. Particles well-identified from tests 1 and 3 tend to have a low surface area, a high 

roundness, and a low regularity. For all the particles, the values of elongation and circularity do 

not show any identifiable pattern, and do not seem to discriminate at all between the different 

tests. This is confirmed by Table 3, which provides the success rates obtained when removing 

a morphological descriptor from the database. The most discriminating descriptor is, by far, the 

regularity. 
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Fig. 8. Score attributed to each particle by the Logistic Regression Algorithm in the case 

λ=0.01 and Ni=500 (training dataset only), and corresponding morphological descriptors. 

Particles (on the vertical axis) are first sorted by test of origin, and then by the score obtained 

for their test of origin; the height of each bin is proportional to the number of particles 

 

 

 All 

descriptors 

Without 

surface 

area 

Without 

elongation 

Without 

circularity 

Without 

roundness 

Without 

regularity 

Training 

dataset 

44% 42% 44% 43% 41% 32% 

Test 

dataset 

36% 36% 36% 36% 34% 27% 

 

Table 3. Success rates obtained by the Logistic Regression Algorithm in the case λ=0.01 and 

Ni=500 when considering a truncated dataset, i.e. when removing one morphological 

descriptor. 

 

The results provided by Logistic Regression and by Neural Network are similar, but a more 

detailed comparison is provided in Fig.9. The scores attributed to each particle for each test are 

reported in nine separate graphs, allowing to compare the prediction from both algorithms. Both 

training and test datasets are included, and the particles originating from each considered test 

are highlighted in red. In general, the scores provided by both algorithms correlate very well, 

for both datasets. However, a general pattern seems to characterize each algorithm. For low 

scores, data points are generally located above the one-to-one slope, indicating that the Neural 

Network attributes larger scores than Logistic Regression. However, for large scores, the 

inverse observation can be made. In general, the range of the scores is larger for Logistic 

regression, indicating that this algorithm seems to discriminate more between different 

particles. It is striking, for example, that the Neural Network attributes very low scores to 

absolutely all particles for tests 7, 8, and 9, preventing any particle from these tests to be 

accurately labelled. 

The fact that the scores attributed by both methods are so strongly correlated might also indicate 

that both of them are adequately extracting all the relevant information from the database, but 

that their results saturate because of the limited amount of such information. It clearly points 
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towards the fact that the chosen descriptors fed in the morphological database do not provide a 

complete picture of the morphology of the grains. In addition to a larger amount of elements, a 

qualitative enrichment of the database, including different descriptors, is expected to improve 

the results and reveal differences in performance between the two ML approaches, which in the 

present case can hardly be ranked. 

 

 
Fig. 9. Comparison of the scores attributed to each particle by the Logistic Regression 

Algorithm (in the case λ=0.01 and Ni=500) and by the Artificial Neural Network (in the case 

λ=0.01 and Nn=5) to particles for all tests. Dots in red mark the particles which actually 

originated from the considered test, dots in grey mark all the other particles. 
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3. Regression problem 

In the previous sub-section, the output of the machine-learning algorithms is the number of the 

test from where the particle is generated. In this sub-section, as a second step, machine learning 

capability to predict the rheological measurements from the morphological descriptors of the 

particles is investigated. This changes the nature of the problem because it is no longer a 

classification objective but a regression one. More specifically, the algorithms would not predict 

a class to which the grains may belong to, but a numerical quantity. The database contains all 

the particles from the tests. As previously, it is divided into two databases: the training (75 %) 

and the test database (25 %). The input part of the algorithm is the morphological database, and 

the output is the rheological one (restricted in this preliminary study to the value of the average 

friction provided in Table 2). The chosen approach is polynomial regression, with the following 

hypothesis function: 

ℎ$%�& = 00�-?
!

-;�
∙ �-?

@

?;�
 (3) 

The cost function used in that case has the following expression: 

.%�& = − 1/0A23 − 4�56ℎ$%�3&7B
=:

3;�
+ < ∙ 1� ∙ C00�-?=

!

-;�

@

?;�
 (4) 

In this expression, 23 is the coefficient of friction measured in the test of the particle � and the 

vector �3 contains its morphological descriptors, C is the polynomial order of the method, � is 

the number of morphological descriptors, and / is the number of particles in the database. The 

� ∙ C weights are determined by a Gradient Descent Algorithm as in the previous sub-section. 

To estimate the success of the prediction, the success quantifier is the average absolute error on 

the friction coefficient (i.e. the average on all the particles of the absolute value of the difference 

between the predicted and actual friction coefficients). 
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The results of this approach are gathered in Fig.10. Fig.10A shows the predicted coefficients of 

friction for all the particles, in the case of a polynomial of order 2 and for two different values 

of the regularization parameter λ. The prediction appears to be rather poor. It predicts well the 

friction coefficients for the particles coming from some tests (e.g. tests 3 and 5 for < = 0.001 

and tests 1, 6 and 8 for < = 1), but it is probably due to chance since the prediction for the other 

tests are not as good. Increasing the value of λ clearly reduces the variance of the predictions, 

making them closer to the average value of the friction coefficient. As shown in Fig. 10B, the 

average absolute error (which serves as a success quantifier) remains close to 0.065 for all 

values of λ (except for < F 100) and for all orders of the method. It should be noted that the 

same method was applied on an extended version of the rheological database (including more 

rheological descriptors for each of the nine tribotests, not reported here), and led to very similar 

results. 
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Fig. 10. Results of the regression approach. A. Comparison between the measured and 

predicted friction coefficient for p=2; B. Average absolute error as a function of the 

regularization parameter and the polynomial order. 
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VI. DISCUSSION AND CONCLUSIONS 

In the classification problem, the success rates obtained by both methods are modest when 

compared to similar applications of machine learning techniques reported in the literature. The 

work of Podsiadlo and Stachowiak 2005 [30] reported for example an impressive success rate 

of 97% when applying Support Vector Machines (SVM) to the classification of wear particles 

coming from the same tribotest, i.e. same contact conditions such as speed, load, or 

environment, but at different test durations. The key of success in this case was an appropriate 

method of data reduction and the choice to account for particles textures. This success rate, 

however, was obtained for an optimal choice of the parameters of the Machine Learning 

algorithm, and could drop below 75% in other cases. Other studies reported good results, such 

as the work of Stachowiak et al. 2008 [31] and Yuan et al. 2016 [32]. The former reached a 

success rate of 97% when classifying particles from three different wear mechanisms (fatigue, 

adhesive and abrasive wear) based only on simple shape descriptors. In that case, it appeared 

that the three categories could be easily discriminated by such simple properties as surface area 

and elongation. In most cases it could even have been done manually. Yuan et al. [32] also 

obtained good results (between 75% and 83% of success) when classifying particles in four 

rather distinct categories (e.g. spherical, irregular, etc.), using only contour descriptors. 

 

A very interesting case was provided in Wang et al. 2019 [33]. Based only on morphological 

features extracted from pictures collected using ferrography, they first applied Neural Networks 

to classify various kinds of particles in five classes. This part of their work was similar to the 

present work in many aspects, and led to a satisfactory level of prediction. However, detailed 

analyses showed that the Neural Network was very predictive for three different classes 

(success rate larger than 80%), but was unsuccessful for two other classes (36% and 45% of 

success for Severe Sliding and Fatigue Wear, respectively). This is in good agreement with the 
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results reported here, since it indicates that a given algorithm can give very different results 

with the same training, depending on the database: some cases are simply more difficult to 

discriminate based on the available data. In the work by Wang et al. [33], a second pass on the 

same grains but using a Convolutional Neural Network (CNN) on raw images instead of 

extracted features restored a success rate larger than 80% for the most critical classes. It 

indicates that the discriminating information was there, but that it could not be extracted by 

simple shape features. This raises the following important question: can the visual information 

allowing to discriminate between different classes of particles be always encoded in cleverly 

designed morphological descriptors? If the answer is yes, then future challenges will consist in 

building such descriptors, but if the answer is no, then image-based Deep Learning might be 

the only viable solution. 

 

Based on the rather scarce literature on the topic, it can be hypothesized that the classification 

results reported here are less good than expected for two related reasons. The first reason is that 

the tests are too numerous (9, instead of 3 to 5 reported in [30-33]) and too similar (only minor 

experimental parameters are modified) to produce particles that could be easily discriminated 

based on simple descriptors (this can be observed in Fig. 4, where the error bars are larger than 

the inter-class variability). The second reason is that the geometric information that would be 

necessary to perform this discrimination is missing in the chosen descriptors. Considering these 

two reasons, it appears that the choices made in the construction of the database should be 

proportioned to the difficulty of the task assigned to the trained algorithm. For example, the 

chosen descriptors might have been sufficient for the dissimilar particles of study [32], but were 

not for those of the present study. The strategy to build a sufficiently rich database for a given 

task remains to be investigated. However, despite being less good than some other reported 

results, the predictions obtained in the present study remain way above a purely random 
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assessment (it would be one successful prediction over nine). As such, they are equally 

disappointing and promising. They demonstrate that, in some cases, the morphology of the 

grains possess a signature that is closely linked to the tribological conditions where they were 

formed. As such, this work brings a first quantitative validation to the common practice of 

tribological experts, who have been used for decade to interpret tribological scenarios based on 

the observation of the particles on worn surfaces. It is striking, for example, to consider the 

prediction results of test 6. As shown in Fig. 8, the morphological signature of this test is clearly 

the Regularity descriptor. This is confirmed by Table 3, where the absence of this descriptor 

leads to a drop of the success rate. It is thus very likely that the lowest success rate of some 

other tests is related to the fact that some of the visual features characterizing their particles was 

absent from the morphological database. The choice of considering nine different classes of 

particles (instead of three to five in similar studies) coming from rather similar tests (same wear 

type, only varying minor operational parameters) also certainly led to the limited success rates. 

It can thus be foreseen that future enrichment of the database could only improve the prediction 

capability of the algorithms. This extended database could include more descriptors of the 

particles contours, but also of their texture and chemistry, and take advantage of different 

observation tools in a “multi-mode” framework (optical microscopy, topography 

measurements, etc.). The idea that contour and texture descriptors are equally necessary to 

distinguish different classes of particles (contour descriptors for some classes, texture 

descriptors for some others) was already proposed in several studies [26, 31], and is a promising 

research avenue. A quantitative enrichment of the database, including a much larger number of 

particles, could also improve the training results. As demonstrated in [33] however, Deep 

Learning might be the only solution for the most complicated cases. 
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The outcome of the regression problem, in contrast, seems to indicate that very little should be 

expected in terms of prediction of the rheology of a tribosystem based on the morphology of its 

generated particles, if the methodology used in this work is reproduced as such. There is, 

however, a simple explanation for this disappointing result. As shown in Fig.2B, the friction 

coefficient is a measured quantity that strongly varies in space (variation during a given 

revolution of the tribometer), but also in time (variation from one revolution to the next). It is 

certainly the same for any other rheological descriptor. This variability has been lost in the 

chosen methodology, by considering rheological descriptors averaged both in space and time. 

It makes sense that morphological properties of particles, which are local by definition, should 

fail to predict a quantity which is averaged on a whole tribotest. This observation means that 

the results of the regression approach could be considerably improved by considering local 

rheological parameters (e.g. instantaneous friction coefficient) instead of averaged ones. This 

promising research avenue will be explored in future studies. 

 

The results obtained in this work did not allow to discriminate between different Machine 

Learning approaches. In the classification problem, Logistic Regression and Neural Networks 

led to similar results, albeit with some minor differences (Fig.9), and a parametric study showed 

that the influence of the methods numerical parameters was not dramatic in the investigated 

range (Fig.8). This is true as well for the regression approach, where the regularization 

parameter and the polynomial order did not appear to have sharp effects on the average absolute 

error (Fig.10). At this point, it seems clear that the priority is the enrichment of the database (by 

adding morphological descriptor and making the rheological descriptors more local, while 

removing any sampling bias), more than a search for the most suited Machine Learning 

approach. 
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Fig. 11. SEM views of the same third body particle with different magnifications 

 

One important question that seems to arise from this work is illustrated in Fig.11, and is related 

to the definition of a third body particle. This definition seems, at the moment, extremely 

subjective. It depends on the personal assessment of the observer, but also on the chosen scale 

of observation. Fig.11 indeed shows that what would appear as a clearly identified third body 

particle could also be seen as an agglomerate of a large number of individual particles if 

sufficiently magnified. At the moment, the expert judgement is thus still needed when building 

the morphological database. This is a good point if the mission assigned to Machine Learning 

is to improve our understanding of tribological phenomena, because human eye needs in that 

case to be part of the process in order to bring some interpretation to the Machine Learning 

results (connecting them, for example, with numerical simulations). But if Machine Learning 

is to be assigned the role of a black box making operational decisions (say, by automatically 

modifying in real time an industrial process based on some changes detected on the surfaces 

after observation of the third body particles), then the objectivity of the method should be seen 

as an ultimate goal. In the context of an increasing use of and trust in automated Machine 

Learning algorithms in countless applications, these two purposes (scientific and operational) 

might request rather distinct strategies. 
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