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Abstract—Extreme Learning Machine (ELM) technology has
started gaining interest in the channel estimation and equalization
aspects of wireless communications systems. This is due to its fast
training and global optimization capabilities that might allow
the ELM-based receivers to be deployed in an online mode
while facing the channel scenario at hand. However, ELM still
needs a relatively large amount of training samples, thus causing
important losses in spectral resources. In this work, we make use
of the ensemble learning theory to propose different ensemble
learning-based ELM equalizers that need much less spectral
resources, while achieving better performance accuracy. Also, we
verify the robustness of our proposed equalizers within different
communication settings and channel scenarios by conducting
different Monte Carlo simulations.

Index Terms—Extreme Learning Machine, Ensemble Learn-
ing, OFDM, Equalization.

I. INTRODUCTION

Recently, many Machine Learning (ML) techniques have
been proposed and investigated for performing channel estima-
tion and equalization within an Orthogonal Frequency Division
Multiplexing (OFDM) communication system. Compared to
traditional estimation techniques, ML-based receivers [1], [2]
have shown better performance in frequency selective and non-
linear channel cases without necessitating the knowledge of
channel statistics. However, the majority of these ML tech-
niques conduct an offline training where stochastic gradient
descent based iterative algorithms are deployed. These training
algorithms require a significant amount of time resources so
that they might reach a global optimum. In addition, the offline
training concept suffers from a performance degradation when
the channel scenario (channel statistics) faced in the deploy-
ment phase differs from the ones used during the training
process.

Here comes the interest of the extreme learning machine
network that was first proposed in [3]. In fact, ELM is a
single-layer feed-forward network that generates its hidden
layer parameters randomly and uses a one-shot Least Square
(LS) technique to calculate the output weights of (i.e., to
train) the network. This structure resulted in an extremely fast
training and in global optimization capabilities that allowed

its online deployment so that it can face the channel scenario
at hand. In that regard, different online receivers have been
proposed in the literature [4]–[7]. Unlike traditional ML-
based communication receivers where the ML network input
is split into its real and imaginary parts, ELM could be easily
extended to its complex counterpart. This allowed [4] to apply
complex received signal directly as input to the ELM; however,
it considered a time-domain approach that posed limitations
when extended to the OFDM waveform. This has been shown
by [5] that proposed a frequency domain ELM system and
employed it to jointly equalize and detect the transmitted bits.
Using ELM as an equalizer followed by a detection block
resulted in a better performance in [6], where the concept was
used on a QAM symbol-per-symbol basis. In [7], one ELM
network was used to estimate all OFDM subcarriers symbols
at once, which yielded better performance compared to the
Deep Neural Network (DNN) used in [1], and to the traditional
Linear Minimum Mean Squared Error (LMMSE) and LS
based channel estimators. However, all these previous studies
necessitated a relatively large number of training samples in
order to achieve a good performance accuracy.

In our work, we use the ensemble learning theory to propose
an Ensemble ELM (EELM) based equalizer that aims at
reducing the number of training pilots, thus rendering the
online deployment more feasible. Ensemble learning aims to
generate different ML models and to combine their decisions
in order to obtain an enhanced final accuracy. In contrast to
the ELM-based receivers from the literature, we highlight the
computational and training efficiencies and the performance
superiority of the proposed EELM-based receivers. Different
combination and pruning strategies are tested for the design
of the EELM equalizer. We also prove the robustness of
the proposed EELM for different channel scenarios, different
Quadrature Amplitude Modulation (QAM) constellation maps,
and for different numbers of subcarriers.

The remainder of this paper is organized as follows. Section
II presents the OFDM system model. Section III presents
the extreme learning machine based equalizer. Section IV
details our proposed Ensemble Extreme Learning Machine



Equalizers. Section V shows the Monte Carlo simulations
conducted to evaluate the system performance, while Section
VI concludes the work. In this paper, we consider bold
lowercase variables x to represent vectors, and bold uppercase
variables X to represent matrices. XT , XH and X† are the
transposition, Hermitian conjugate, and Pseudo-inverse of X ,
respectively. ⊗ is the Kronecker product. diag(.) is the Matlab
function that transforms a vector into a diagonal matrix and a
matrix into a vector of its diagonal elements. C is the set of
complex numbers.

II. OFDM SYSTEM MODEL

Considering a block of K OFDM symbols to transmit with
M subcarriers each, the transmitted vector x ∈ CMK×1 of
the whole transmission block is written as follows:

x = [xT
1 x

T
2 ...x

T
K ]T , (1)

where
xk = [x1,k x2,k . . . xM,k]

T . (2)

xm,k is the M-QAM based symbol transmitted at the mth
subcarrier and the kth OFDM symbol. We denote by N the
number of samples of the whole transmission block, Nu the
length of the OFDM symbol and NCP the Cyclic Prefix (CP)
length: N = NCP-OFDMK, where NCP-OFDM = Nu + NCP is
the length of CP-OFDM symbol. The demodulated vector y ∈
CMK×1 of the whole transmitted block can be written as:

y = FH
rxCFtx︸ ︷︷ ︸
D

x+ FH
rxη, (3)

where η ∈ CN×1 is the additive white Gaussian noise vector,
and

Fi = diag(1K)⊗Wi. (4)

with i ∈ {tx, rx}. Wi ∈ CNCP-OFDM×M represents the OFDM
modulation (i = tx) or the demodulation (i = rx) matrix. 1K

is a vector of K ones.
• At the transmitter:

Wtx(n,m) =
1√
Nu

ej
2π
Nu

m(n−NCP)

• At the receiver:

Wrx(n,m) = 0 if 0 < n ≤ NCP

Wrx(n,m) =
1√
Nu

ej
2π
Nu

mn if NCP < n ≤ NCP-OFDM

C ∈ CN×N is the channel convolution matrix of the trans-
mitted signal block, where C(i, j) = c(i− j) with c(l) being
the lth tap of the channel impulse response.
D = FH

rxCFtx represents the system transmission matrix
of the CP-OFDM system. When the channel is time unvarying
and the CP length is bigger than the maximum delay spread of
the channel, D becomes diagonal with c = diag(D) denoting
its diagonal vector. Hence, the demodulated symbol ym,k could

be equalized by dividing it with the corresponding System
Transmission Matrix (STM) value cm,k = D(mk,mk):

x̂m,k =
ym,k

ĉm,k
, (5)

To obtain the channel estimate ĉm,k, different techniques could
be considered such as LS and LMMSE channel estimators.

III. EXTREME LEARNING MACHINE BASED EQUALIZER

The extreme learning machine is considered as a general
form of single layer feed-forward neural networks where the
ELM hidden layer parameters are generated randomly. In other
words, hidden layer outputs are always known. Hence, this
structure allows the analytical calculation of the output weights
during the training phase by means of least square solutions.

Figure 1 depicts the ELM-based equalizer structure. We
design the ELM network so that the number of neurons at its
input and output layers is equal to the number of subcarriers
M . We represent the number of neurons in the hidden layer
by Ñ . The input to the ELM network is denoted by the
matrix Y ∈ CNx×M which contains Nx concatenated OFDM
demodulated symbols. Nx ∈ {Np, Nd}, where Np represents
the number of OFDM pilot symbols used to train the ELM
network, while Nd is the number of OFDM data symbols that
the ELM will predict, with K = Np+Nd. The corresponding
output of the ELM network F(Y ) ∈ CNx×M is written as
follows:

F(Y ) = G
(
Y α+B

)
︸ ︷︷ ︸

H

β. (6)

α ∈ CM×Ñ is the matrix of hidden layer weights where α(:
, i) = [α1,i, α2,i, . . . , αM,i]

T represents the weights connect-
ing the M input nodes to the ith hidden node. B = bT ⊗1Nx

with b = [b1b2 . . . bÑ ]T ∈ CÑ×1 representing the bias vector
added to the hidden nodes. β ∈ CÑ×M is the matrix of
output weights where β(:, i) = [β1i, β2i, . . . , βÑi]

T contains
the weights connecting the Ñ hidden nodes to the ith output
node. G(.) denotes the element-wise activation function. In
this work, we consider the inverse hyperbolic sine activation
function.

The working principles of the ELM based equalizer can
be divided into three main phases: Initialization, training and
prediction.

A. Initialization phase

The novelty of the ELM technique lies in the fact that
its hidden layer weights α and biases b are not trained, but
randomly generated and fixed afterward. As stated by [3], any
continuous distribution could be assigned for both α and b. In
our work, we consider a uniform distribution on [−0.1, 0.1].

B. Training phase

After generating the hidden layer parameters in the initial-
ization phase, the training phase aims to calculate the output
weights parameters, i.e., the matrix β. To do so, three steps
are conducted:



Figure 1. The structure of the ELM based equalizer

1) Generation of the training set: the ELM
equalizer is provided with a training set

(
Y (p),X(p)

)
.

Y (p) = [yT
1 y

T
2 . . . yT

Np
]T represents the received block

of demodulated OFDM symbols at pilots positions, while
X(p) = [xT

1 x
T
2 . . . xT

Np
]T is the transmitted block of these

OFDM pilots.

2) Calculation of the hidden layer output: Y (p) is fed to
the ELM network as its input Y = Y (p) in Eq. (6). Based on
that, and on the fact that hidden layer parameters are known,
the output of the hidden layer is directly found as:

H(p) = G
(
Y (p)α+B

)
. (7)

3) Calculation of the output layer weights β: X(p) is fed to
the ELM based equalizer as its corresponding desired output
F(Y (p)) = X(p). Hence, Eqs. (6) and (7) are used in order
to write:

X(p) =H(p)β. (8)

Unlike most of the ML training techniques, Eq. (8) shows that
ELM is trained in one shot by minimizing the corresponding
LS cost function instead of conducting iterative training, e.g.,
back propagation. We express the sum of squared errors as
follows:

E =

Np∑
i=1

‖ei‖2, (9)

with
ei =X

(p)(i, :)−H(p)(i, :)β. (10)

The least square solution for minimizing E in Eq. (9) is given
by the pseudo-inverse method [8]:

β̂ =
(
H(p)

)†
X(p), (11)

where
H† =

(
HHH

)−1
HH . (12)

C. Prediction phase

Based on the calculated output weights matrix β̂, the ELM
equalizer can estimate the Nd transmitted OFDM data symbols
X(d) ∈ CNd×M in one shot. This prediction is performed by
following two steps:

1) Calculation of the hidden layer output: The received
OFDM data symbols Y (d) ∈ CNd×M are fed to the ELM
input to calculate the corresponding hidden layer output H(d)

using Eq. (7).
2) Equalization: Based on Eq. (6), the hidden layer output,

H(d) in this case, is used together with the previously calcu-
lated β̂ to estimate the corresponding transmitted OFDM data
symbols:

X̂(d) =H(d)β̂. (13)

IV. ENSEMBLE EXTREME LEARNING MACHINE BASED
EQUALIZERS

Ensemble learning aims at generating different ML models
that can be combined in a certain way in order to construct
a final decision with high prediction accuracy [9]. Projecting
this concept into the ELM-based equalizer makes it possible to
diversify the ELM structure. This allows countering the prob-
lem of the hidden layer output matrix being ill-conditioned
and which is due to the random generation of the hidden layer
parameters. Hence, we can write the model of the Ensemble
Extreme Learning Machine based Equalizer as follows:

F(Y ) =

R∑
r=1

WrFr(Y ). (14)

R represents the number of ELM models and Wr is a
weighting function of the rth ELM model Fr(Y ) that could
be designed in different ways as we show in section IV-C. Eq.
(14) implies three main steps: Ensemble generation, ensemble
pruning and ensemble integration.

A. Ensemble generation

This steps concerns the adopted method for the creation
of the R ELM models. In the ELM framework, this can be
achieved by producing different ELM models, each model
having the same architecture and training sets while randomly
generating its hidden layer parameters [10]. This diversified
structure aims at handling the instability that ELM might suffer
from due to possibly ill-conditioned matrix H induced by the
randomly generated weights and biases of the hidden layer.

B. Ensemble pruning

Ensemble pruning aims at eliminating a subset of the models
generated in the previous step based on a specific criterion.
This step usually aims at improving the prediction accuracy
or reducing the computational complexity. In this work, we
compare the mean square error of each ELM model during
the training phase, and retain the best Q models (Q < R) to
participate in the decision making during the prediction phase.



C. Ensemble integration

The ensemble integration step is responsible for combining
the predictions of the chosen ELM models in a certain way,
thus resulting in the final prediction. One way to do so
is to simply estimate the weighted average of the models
predictions, where the weights can be given as follows:

Wr = 1/R, 1 ≤ r ≤ R. (15)

Another way to perform this integration is to only take the
median of the ELM models predictions. In a more complex
method, we design the weight of each ELM model so that it
is inversely proportional to its training error:

Wr =
− log10(MSEr)∑R

n=1 log10(1/MSEn)
, (16)

where
(∑R

n=1 log10(1/MSEn)
)

is a normalization factor.

V. NUMERICAL RESULTS & DISCUSSION

A. Simulation results

In this section, we conduct Monte Carlo simulations to eval-
uate the performance of the proposed EELM-based equalizers,
while comparing them to the ELM case used in the literature.
We also consider the one-tap equalizer with Perfect Channel
State Information (PCSI), Least Square estimated CSI (LSCSI)
and LMMSE estimated CSI (LMMSE-CSI) as reference cases.
Unless stated otherwise, we adopt the following simulations
parameters. We consider a Tapped Delay Line model C (TDL-
C) [11] power delay profile with an RMS delay spread of
200 ns. A cyclic prefix of 4.7µs is used with an OFDM
system constituted of 16 or 64 subcarriers and a 16-QAM
constellation map. The subcarrier spacing is set to 15 kHz with
a sampling rate of 2.94 MHz. Concerning (E)ELM parameters,
we choose Ñ = 32 and Np = 100 for the case of M = 16
subcarriers, while Ñ = 192 and Np = 500 when M = 64.
R =30 ensemble functions are considered, among which the
EELM with pruning retains the best Q = 10 ELMs with lowest
training errors.

We start, in Figure 2, by presenting the Bit Error Ratio
(BER) performance of our proposed EELM based equalizers
for M = 16 subcarriers. The performance is evaluated for
different constellation maps, namely the 4, 64, and 1024
QAM. First, we note that EELM-based equalizers outperform
the ELM equalizer for all SNR values and within small and
high constellation types. Furthermore, we observe that Average
EELM and Weighted EELM have a similar performance and
outperform all other equalization techniques, while approach-
ing the PCSI case. Hence, only the average version of EELM
equalizer will be shown in the subsequent graphs. It is also
worth mentioning that while ELM performs better than LS-
CSI for low QAM constellations, it performs badly for higher
constellations and especially at high SNR values. In contrast,
Average-based EELM proves to perform close to PCSI in high
constellation and high SNR values.

In Figure 3, we assess the robustness of the average EELM
equalizer against different channel scenarios, where the RMS
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16-QAM and SNR = 25 dB

delay spread of the channel is varied from 200 to 2400 ns.
Note that increasing the RMS value will cause the maximum
delay spread to start exceeding the adopted CP, leading to
inter-symbol interference. It can be clearly noticed how the
gap between EELM and the PCSI starts decreasing until the
reversal of the two methods performance order. The non-linear
capabilities of the EELM equalizer allow to better deal with
this imperfectness, thus outperforming the LMMSE estimator
case, starting from an RMS at 1000 ns, and the PCSI, starting
from an RMS around 1600 ns.

The predominance of the EELM equalizer over its ELM
counterpart is highly dependant on the training size Np. To
better analyse this effect, Figure 4 presents the BER obtained
with different sizes of the training set. The superiority of
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the proposed EELM-based equalizer is clearly cast by its
capability of necessitating only a small number of training
symbols to achieve high performance accuracy.

In order to handle higher numbers of OFDM subcarriers, the
dimensions of the ELM-based system need to be increased
significantly, which is reflected on the need for a higher
amount of training pilot symbols. In Figure 5, we consider the
M = 64 subcarriers scenario, where we set Ñ = 192 hidden
nodes and evaluate the BER for different training sizes. While
EELM performs close to the PCSI case starting from almost
300 training samples, ELM needs about 1500 training samples
to perform similarly to the LS-CSI case while being constantly
outperformed by EELM.

In Figure 6, we show that EELM does not need a large
amount of ensemble functions R to achieve this superiority.
In fact, this is evident starting from a few ensemble functions
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R ≈ 5 and it saturates at about R ≈ 10.

B. Discussion on spectral and computational efficiencies

In this section, we discuss the aspects of spectral effi-
ciency and computational complexity of our proposed EELM
equalizer. In the training phase, the computational complexity
comes mainly from equations (11) and (12) that we rewrite in
one equation for clarity:

β̂ =

((
H(p)

)H
H(p)

)−1(
H(p)

)H
X(p). (17)

The computational complexity of the matrix inversion process
is of order O(Ñ3). However, knowing that Np > Ñ > M , we
can note that the complexity of the multiplication HHH will
dominate that of other operations. Thus, the ELM complexity
will be given asymptotically by OELM (Ñ2Np).

The computational complexity of the Average EELM based
equalizer without pruning is in order of OEELM (RÑ2Np).
When using the same number of hidden nodes for both ELM
and EELM, the difference in computational load stems from:

1) The number of ensemble functions R.
2) The number of needed training pilots Np.
From Figure 6, we can note that EELM performance

converges at about R = 10. On the other hand, Figures 4
and 5 clearly show that the number of training symbols Np,
that EELM needs to achieve a certain performance accuracy,
is much smaller than that required by the ELM technique.
Also, the gap increases when dealing with high numbers of
subcarriers, e.g., 64, 128, and so on.

1) 16 subcarriers case: For example, in the case of 16
subcarriers, we see, from Figure 4, that ELM needs about
200 training symbols to achieve the same performance as that
obtained by EELM with 100 training symbols. Hence, EELM
computational complexity can be written in terms of the ELM
complexity as OEELM = R

200/100O
ELM . With R = 10,



this means that EELM will have 5 times the computational
complexity of ELM, while saving 50% of ELM used pilots.

2) Case of higher numbers of subcarriers: When the
number of subcarriers starts increasing, EELM rises as a
highly efficient solution compared to ELM in terms of both
computational complexity and spectrum resources (i.e. number
of training pilots). To support these claims, we consider the
example of 64 subcarriers. As it can be seen from Figure 5,
ELM requires more than 3000 training symbols to achieve the
same performance accuracy of EELM with only 200 training
symbols. Hence, the EELM computational complexity can be
approximated as follows: OEELM < R

3000/200O
ELM . With

R = 10, we can say that EELM consumes less than 66% of
ELM computational resources. In addition, EELM uses less
than 6% of ELM spectral resources.

In fact, considering higher numbers of subcarriers, e.g., 256,
512, and so on, will increase the gap between EELM and
ELM even further, in terms of both spectral and computational
efficiencies, thus leading to the inevitable adoption of EELM.

It is worth mentioning that the complexity of Average
EELM is R times higher than ELM in the prediction phase and
it depends on the number of predicted data symbols Nd and on
the number of subcarriers. Overall, the dominant complexity
component (in the prediction phase or training phase) depends
on the number of data symbols (Short packet / Long packet)
and on the number of subcarriers.

To sum up, we can say that:
• EELM has a higher spectral efficiency than that of

ELM, the gap increasing with an increasing number of
subcarriers.

• In the prediction phase: EELM has a higher computa-
tional complexity than ELM.

• In the training phase:
– With a small number of subcarriers(∼ 16): EELM

has a higher computational complexity than ELM.
– With a high number of subcarriers(≥ 64): EELM

has a lower computational complexity than ELM.
The gap increases with an increasing number of
subcarriers.

• Determining whether ELM or EELM technique will have
a higher overall computational complexity depends on the
number of subcarriers and the number of data symbols.

VI. CONCLUSION

In this paper, we have proposed different extreme learning
machine based equalizers for OFDM systems. Compared to
traditional machine learning based equalizers, ELM has proven
its fast training and high performance accuracy without requir-
ing any knowledge of the channel statistics. While this allows
ELM to be deployed in an online mode, it causes high losses
in spectral resources in terms of training samples. To alleviate
the ELM needs for large training sets, we have proposed to use
the ensemble learning theory where a set of ELM networks is
designed instead of one ELM. We have considered different
Ensemble ELM techniques and showed that averaging the

decisions of few ELMs is enough to achieve a performance
accuracy much better than that of ELM alone, while exceeding
the performance of LMMSE channel estimation in frequency
selective channels. In addition, we have shown that training
the EELM costs much less computational resources than ELM
when using a relatively large number of subcarriers. To prove
the robustness of our proposed technique, we have considered
different constellation maps, channel scenarios, and numbers
of OFDM subcarriers, and highlighted the EELM superiority
by means of Monte Carlo simulations. In future works, we
believe that EELM performance should be evaluated in time-
varying channels, by the means of an adaptive online EELM-
based receiver that could be deployed efficiently in doubly
selective channel scenarios.
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