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Scale Equivariant Neural Networks with
Morphological Scale-Spaces

Mateus Sangalli, Samy Blusseau, Santiago Velasco-Forero, and Jestis Angulo

Centre for Mathematical Morphology, Mines Paristech, PSL Research University,
France

Abstract. The translation equivariance of convolutions can make con-
volutional neural networks translation equivariant or invariant. Equiv-
ariance to other transformations (e.g. rotations, affine transformations,
scalings) may also be desirable as soon as we know a priori that trans-
formed versions of the same objects appear in the data. The semigroup
cross-correlation, which is a linear operator equivariant to semigroup ac-
tions, was recently proposed and applied in conjunction with the Gaus-
sian scale-space to create architectures which are equivariant to discrete
scalings. In this paper, a generalization using a broad class of liftings,
including morphological scale-spaces, is proposed. The architectures ob-
tained from different scale-spaces are tested and compared in supervised
classification and semantic segmentation tasks where objects in test im-
ages appear at different scales compared to training images. In both
classification and segmentation tasks, the scale-equivariant architectures
improve dramatically the generalization to unseen scales compared to a
convolutional baseline. Besides, in our experiments morphological scale-
spaces outperformed the Gaussian scale-space in geometrical tasks.

Keywords: Morphological scale-space - Neural networks - Scale equiv-
ariance.

1 Introduction

Convolutional Neural Network (CNN) models achieve state-of-the-art perfor-
mance in many image analysis tasks. An important property of CNNs is that
a translation applied to its inputs is equivalent to a translation applied to its
features maps, as illustrated in Fig. [I} This property is a particular case of group
equivariance [3]. An operator is equivariant with respect to a group if applying a
group action in the input and then the operator, amounts to applying the oper-
ator to the original input and then an action of the same group to the outputs.
In addition to translations, group actions can model many interesting classes of
spatial transformations such as rotations, scalings, affine transformations, and
SO on.

Group equivariant CNNs [3] are a generalization of CNNs that, in addition to
being equivariant to translations, are also equivariant to other groups of transfor-
mations. Many of these networks focus on equivariance to rotations, in different



2 M. Sangalli, S. Blusseau, S.Velasco-Forero, J. Angulo

kinds of data [BII3IT2IT0]. A group equivariant neural network may also be used
to obtain invariance, with reduction operations. An operator is invariant to some
transformation if applying the operator to an input or to its transformed version
produces the same output. Invariance is often crucial in image analysis tasks. For
example, in a digit classification task a translation should not change the label
of the digit, as illustrated by Fig. a). The same holds for re-scaled versions of
the same digit (Fig. [[[(b)).

S
(a) (b)

Fig. 1: Image from MNIST [7] and their translated versions with a illustration
of their respective feature maps in a CNN(a), and images from MNIST Large
Scale [0] at different scales(b).

Worrall and Welling [I4] introduce neural networks equivariant to the action
of semigroups, instead of groups. Semigroup actions can model non-invertible
transformations and in [14] the authors focused on equivariance to downsam-
pling in discrete domains. Focusing on downsampling is a way to address equiv-
ariance to scalings without creating spurious information through interpolation.
In their architecture, the first layer is based on a Gaussian scale-space operator,
and subsequent layers of this network are equivariant to the action of a semi-
group of scalings and translations. Effectively, these operators are equivariant to
rescaling of a discrete image. There are other scale-spaces with similar mathe-
matical properties to the Gaussian scale-space, in particular the morphological
scale-spaces.

In this paper we generalize the approach on scale-equivariant neural net-
works [14] by finding a sufficient condition in which scale-spaces, in the sense
of [5], can be used as the first layer, or the so-called lifting, in an equivariant net-
work, and investigate several architectures built on morphological scale-spaces.
We observe that the morphological scale-spaces networks compare favorably to
the Gaussian one in tasks of classification and segmentation of images at scales
previously unseen by the network, in contrast to [I4], in which the experiments
test the overall performance of the network, but where the train and test sets
objects follow the same scale distribution. The rest of the paper is organized as
follows. In Section [2] we give a short review of the existing approaches related
to equivariance in CNNs. Then the general mathematical framework we use is
exposed in Section [3] before we focus specifically on the semigroup of scalings
and translations in Section [@ In the latter, we also review the algebraic basis
of scale-spaces [B] and apply this definition to generalize the scale-equivariant
architecture of [14]. In Section 5| we test scale-equivariant architectures obtained
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from different scale-spaces. In particular we test the models in classification and
segmentation of images where the objects in the test set appear at scales unseen
in the training set. We opt to test the models in tasks where the scale of objects
can be easily controlled and measured rather than tasks with real data, where
even though objects may appear at different scales, it is difficult to explicitly
differentiate between the training and test set scales’. We focus on simple ex-
periments which depend on the shapes of the objects, rather than textures. In
those experiments, the equivariant models improved the generalization accuracy
dramatically over the convolutional models and the morphological scale-spaces’
models performed well even in comparison to the Gaussian scale-spaces.

2 Related Work

In [15], scale equivariance is obtained by applying filters in the different scales
using decomposed kernels to reduce the model complexity. The authors applied
the equivariant model to multiscale classification and reconstruction of hand-
written digit images and were able to surpass the regular CNN models in the
generalization to unseen scales, even when using data augmentation. In [4] a
locally scale invariant neural network architecture is defined. Filters are defined
as linear combinations of a basis of steerable filters and max-pooling the re-
sult over different scales. The invariant network was successfully applied to the
tasks of classification of re-scaled and distorted images of hand-written digits
and clothing. Both of these approaches reduce computational cost and avoid
creating spurious information through interpolation by using a decomposition
into steerable filters, but applying these models to large scale variations can in-
crease their cost significantly. In [6], a scale invariant architecture is proposed,
in which input images are processed in different scales, with foveated images op-
erators, i.e. images are processed with a higher resolution close to the center and
a smaller resolution as the operators gets farther from the center. The MNIST
Large Scale dataset, which is used later in Section [5| was introduced there, and
the foveated networks achieved very high generalization performance in unseen
scales when compared to regular CNNs. A disadvantage of this approach is that
it assumes that the objects of interest are at the center of the image.

In [I4], instead of treating scaling as an invertible operation, such as it would
behave in a continuous domain, it is considered the action of downsampling the
input image in a discrete domain. Because of that, the obtained operators are
equivariant to a semigroup, and not a group. The semigroup action in the in-
put consists of applying a scale-dependent Gaussian blur to the inputs and then
downsampling, which is the way to re-scale discrete signals while avoiding alias-
ing. The convolutional filters are efficiently applied to feature maps defined on
a semigroup formed by scalings and translations by means of dilated convolu-
tions, without relying on interpolation. These operators are also easily scalable
to large scale variations, since applying it at larger scales has the same compu-
tational cost. The semigroup equivariant models were applied to classification
and semantic segmentation of datasets of large images, achieving results which



4 M. Sangalli, S. Blusseau, S.Velasco-Forero, J. Angulo

are competitive with the literature. The Gaussian scale-space may not be ap-
propriate when blurring affects the geometrical features that characterize the
objects to analyse. With this in mind, the models in this paper are an exten-
sion of the ones in [14], but we generalize the approach to allow the usage of
other scale-spaces [5], with a focus on morphological scale-spaces, as a step to
the generalization of this model to more complicated data, as well as a way to
shed some light into the workings of morphological scale-spaces in the context
of these images.

3 General setting

In the scope of image processing, the notion of equivariance of an operator
means that a transformed version of an image should produce an “equivalently”
transformed version of the original output by the operator, as illustrated in
Fig. a). We are specifically interested in [linear operators, as they are the
elementary operations in common neural networks.

3.1 Group equivariance

Let (G,.) be a discrete group and F = R the set of functions mapping G to R.
Consider the family of operators Ry, g € G defined on F by

Vge GVfeF, Ry(f):ueGw— flugh). (1)

This family of operators is a right group action of G on F (as Ry, 0 Rg, = Rg,g,)-
For illustration, the group G could be for example the group of translations of
72, identified to (Z?,+) itself, and in that case F could be seen as the set of
“infinite” images (or classical images periodised over all Z?). In turn, the action
R, would be the translation of a function by a vector g.

Bearing in mind the final purpose of defining CNN layers, we focus on linear
endomorphism of the vector space F. Suppose such an operator H is equivariant
with respect to Ry, that is,

VieF, H(Ry(f)) =Ry (H(f)). (2)

Then, using linearity and the fact that the basis (1{4))¢ec spans F, we get
H(f) =2 cq f(9)Rg(h) where h = H(1(.s}) is the response of the filter H to
the impulse on eq, the neutral element of GG. This writes in the more familiar
form

Vued, H(f)(w) =Y flo)h(ug™t) = flg~ uh(g). (3)

geG geG

We end with a classical result, at the basis of linear filtering and convolutional
neural networks: linearity and equivariance implies for an operator to be written
as a convolution with a kernel h that represents it (and conversely). We shall
note H(f) := f g h although this operation is commutative only if G is.
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3.2 Semigroup equivariance

Let’s first stress the interest of extending the equivariance setting to semigroups.
Recall that (G, -) is a semigroup if the law - is associative, but in general they do
not have a neutral element or inverse elements. A semigroup induces a semigroup
action (pg)gec on a set X, as soon as this family is homomorphic to the semi-
group, that is, if either Vg,h € G, ¢4 0 ¢ = @g.p. or Vg, h € G, @40 0 = @p.g.

In image processing, important examples of semigroup actions are scale-
spaces. As we will present in more details in Section semigroup actions on
images may be the convolution with a Gaussian kernel (Gaussian scale-space)
or the application of a morphological operator such as erosion, dilation, open-
ing or closing (morphological scale-spaces). Scale-spaces highlight the multi-scale
nature of images and have shown great efficiency as image representations [g].
Besides, they are naturally complementary to the scaling operation. For exam-
ple, the Gaussian blurring acts as a low-pass filter and allows the subsampling
(or downscaling on a discrete domain) of an image to avoid aliasing artifacts.

Hence, equivariance of linear operators to semigroups seems highly desirable,
as it is natural to expect that the same information at different scales produce
the same responses up to some shift due to scale change. However, the derivation
of Section [3.1|cannot be reproduced here since it includes group inversions, which
precisely lack in semigroups. Still, we notice that Equation [3|can also be written
H(f)(u) =3, e f(u.g)h(g) if we change the function & for its conjugate, that is
h(u) = H(Lfey)(u™t), and thanks to a change in variables. Now this expression
can be applied to semigroups, considering the semigroup right action R, (f)(g) =
f(u.g). We get that operators H defined by

Vue G, H(f)(u) = Ru(f)(9)h(g) (4)

geG

are indeed equivariant to the semigroup action R;,t € G, since

H(R () () =D Ru(Re()))(9)h(9) = Y Reu()(9)hl9) = Re(H(f))(w).

9geG geG
(5)

This class of semigroup equivariant operators is the semigroup cross-correlation
proposed in [I4]. We also write f ¢ h, remarking however that, contrary to the
group case, this operation is not symmetrical in f and h even when the law - on
G is commutative.

3.3 Lifting

So far we have considered functions defined on a general semi-group, but the
input to CNNs are images defined on a discrete set X, which may be different
from the semigroup we seek equivariance to. In particular this will be the case in
Section [} when we consider the semigroup product of translations and scalings.
In theory the issue is easily overcome, as changing the range of the sum from
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geGtox e X in does not change the equivariance property. In practice,
that means defining a semigroup action R, (f)(x). We propose to split this task
into two steps. First, we define the semigroup in which holds as it is, like in
Section 4l Second, we introduce a lifting operator A to map a function f defined
on X into a function Af defined on G, as it is done in Section The operator
H becomes then

VueG, H(f)(u) = Ru(Af)(g)h(g).

geG

Since f and H(f) now lie in different spaces, a more general definition of
equivariance is necessary: H is equivariant to G if there exists two actions R,
and R/, such that H(R'(f)) = R(H(f)). Now we easily check that it is sufficient
for the lifting operator to be equivariant to G, that is, R, 0 A = Ao R, to have
equivariance of H. Indeed, in that case by omitting parentheses for readability,

H(R,f)(u) =Y RuAR;f(g)h(g) = Y | RuRiAf(9)h(g) = Re(Hf)(u). (6)

9eG geG

The advantage of this two-step approach is the richness of operators induced by
the variety of possible liftings, as exposed in Section [4.2

4 Scale and Translations Semigroup

4.1 Scale Cross-Correlation

We focus on the semigroup product of scalings and translations G = S x Z2? =
(S x Z2,"), with S = {y7!|i € N}, and v > 1 is an integer. The operation - is
defined as (s, ) (t,y) = (st, s 'y+z). Assuming v = 2, the operator () applied
to a signal f at a point (s,z) becomes [14]

H(f)2 ™ a) = (frah)2 7 2) =) > f@ 2% +2)h2y). (7)

1>0 yez2

The operations here were defined for single channel images on G, but they can
easily be applied to multichannel images. Let the input f = (f1,..., f,) € (R")¢
be a signal with n channels. Assuming the output has m channels, the filter is

of the form h : G — R™ ™. In this case [I4], we compute the operator H at
n

channel o € {1,...,m} as (f xa h)o(27F,2) == 3 (fe *c heo)(27%, 2).

c=1

Note that in , because of the multiplicative constant 2* in the spatial
component, the receptive field (i.e. the region that the network “sees” of the input
image at any given output position) of networks consisting of scale semigroup
correlations are large. Indeed, a network consisting of L scale cross-correlations
with filters with dimensions P x K x K(i.e. the support of the filter is a grid
{(p, k1, k2)|p € {20,2%,...,2P71}1 1 < ky, ke < K}) has as a receptive field at
each scale s a square of sides K 4 257P~1(L — 1)(K — 1), which is large when
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compared to a convolutional network with L layers and K x K filters, which
has a receptive field of size L(K — 1) + 1. In other words, an architecture built
on scale cross-correlations attains the same receptive field as a deep CNN with
much smaller depth and number of parameters.

As anticipated in Section[3.3] we now have equivariant operators on functions
f G — R™ and we need to apply this to images supported by a grid. In the
next sections we use the notion of scale-space to define lifting operators that
map images to functions on the semigroup of scales and translations. With that
we aim to define a neural network architecture that is equivariant with respect
to re-scaling of 2D images.

4.2 Scale-Spaces as Lifting Operators

Following the definitions of [5], a family {S(t) : F& — F®|t > 0} of operators
on images is a scaling if:

S(1) =id, Vt,s>0 S(t)S(s) = S(ts) (8)

where id is the identity transform. A scaling can be seen as an action of the
group of continuous scalings, which is isomorphic to (R}, x). An example is the
family SP?, p,q > 0, given by (SP1(t)f)(x) = t¢f (tipx), where p and ¢ control
rates of the spatial and contrast scaling, respectively.

Let S be a scaling and + a commutative operation such that (R}, +) is a
semigroup. Then a (S, +) scale-space is a family {T'(t)|t > 0} of operators such
that, for all t,s > 0 [5]:

T(T(s) = T(t+s),  TH)S(t) = SH)T(1). (9)

The property T'(t)S(s) = S(s)T'(t/s), for all t,s > 0, is a direct consequence
of the second property [5]. Here, in addition to @[), we assume that the scale-
space T'(t) is translation-equivariant for all ¢ > 0 (i.e. T(¢)(L.f) = L.(T(¥)f)
where L. (f)(x) = f(x + z)). Thanks to the second property in (9], a (SP,+)
scale-space T' defines an operator on images f : R? — R¢

Y(s,2) € Sx B (Af)(s,2) = (T(s™7)f)(x) (10)

such that, for all (¢,2) € SxZ2, R;,.y0A = /10R2t)z)7 where RES)I) is applied to an
image on a continuous domain, f : R? — R®, as (st7x)f)(y) = f(s7ty+x). So,
in order for A to be our lifting operator we assume that the input f is a function
on a continuous domain. In practice, we discretize A and the input images. With
this, the morphological scale-spaces, as well as the Gaussian scale-space, being
(S%’O, +) scale-spaces, can be used as the lifting operators.

Gaussian Scale-Space Lifting: The Gaussian scale-space is a (S %,+) scale-
space defined by the family Tg(¢). For all images f € RE” and points = € R2,
Tg can be computed as the convolution (Tg(t)f)(x) = (f xG;)(x) where Gi(z) =
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(27t) " Lexp (—%) This was the scale-space considered in [14]. There, it was

assumed that image f has a maximum spatial frequency content. They model
this by assuming that there exists a signal fy and a constant sy > 0 such that

f = (fO *g%)

Quadratic Morphological Scale-Spaces: Morphological operators can form
many different types of scale-spaces [5]. In this paper we consider quadratic

morphological scale-spaces. The families of quadratic erosions and dilations by
_l=I?

the structuring functions ¢;(z) = —*;- t > 0, given by
(T, () f)(2) = ee(f)(z) = Jnf, (fle+y) —a(y), and, (11)
(Ts, () ) (@) = 6:(f) (@) = sup (flz —y) +aly), (12)

form (S %*0, +) scale-spaces that can be regarded as morphological counterparts
to the Gaussian scale-space [I1]. Here, to increase flexibility, we consider a pa-
rameter ¢ > 0 learned by gradient descent with the rest of the parameters of the
network. It is also shown in [5] that the openings Ty, (t) = T5,0c, = 0t © €; and
closings T, (t) = Tz, 05, = €t © 0 by those structuring elements form (520,V)
scale-spaces, where V is the pairwise maximum, a V b = max{a,b}.

5 Experiments

5.1 Image Classification

The MNIST Large Scale dataset is built upon the MNIST dataset [7] and was
introduced to evaluate the ability of CNNs to generalize to scales not seen in
the training set [6]. The dataset contains three training sets, trl, tr2 and tr4,
which consist of 50000 samples from the MNIST dataset upscaled by factors
one, two and four respectively. The remaining 10000 samples from the original
MNIST are used as validation sets, upscaled to match trl, tr2 and tr4. In our
experiments we use tr2 as the training set. The test set is re-scaled to the scales
2%, =—4,...,12.

The scale-equivariant architecture used consists of the lifting layer, truncated
at five scales, followed by L = 5 scale cross-correlations layerSEI and a global max-
pooling, before a dense with a softmax activation. The filters have dimension
1 x 3 x 3, and each layer has 16, 16, 32, 32, 64 feature maps and 1,2, 1, 2, 1 strides,
respectively, using Batch Normalization and ReLU activations. The architecture
is similar to the one used in [6]. By taking a max-pooling over all scales and
spatial positions we attempt to make the model invariant to the action of the
semigroup G. This makes so that the output is at least as high as the output of

! In our experiments, we use the implementation of the cross-correlation layer from
https://github.com/deworrall92/deep-scale-spaces
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the same model after the action of the G. So if at a certain scale the features are
indicative of a certain class, the output should also be indicative of that class.

We compare liftings that use scale-spaces: the Gaussian scale-space Tg, the
quadratic dilation and closing scale—spacesﬂ Ts, and Tg, and the scale-space
Tia(t) = id for all ¢ > 0. We also compare with a CNN with size similar to the
equivariant models’. For this proposal, one can measure the Euclidean distance
between the features obtained from the same images at different scales to quan-
tify the quality of invariance of the model. The distance is normalized by the
norm of the inputs. For the purposes of this experiment, we consider the features
of the whole dataset as a single vector.

Fig. a) shows the accuracies of the models when tested with different scales
and in Fig. (b) the distances between the features obtained from the same
input image at different scales. As expected the equivariant models outperform
the CNN model in terms of generalization and even at the training scale. The
difference between the peaks of the equivariant models and the CNN models
may be related to the difference in the receptive field. In this experiment, the
equivariant models performed similarly, with performance peaks at scales one,
two and four which are one scaling upwards or downwards from one another.
The distances in Fig. b) are mostly consistent with the accuracies and smaller
in the equivariant models.

w
a
=3

1.0

o

o
w
=3
=1

—— Closing

IN)
a
=3

—— Gaussian
= R —— Dilation

o

o
N
o
o
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o
S
distance
[
o w
o o

—— Gaussian
/ —— Dilation
/ / — Closing

u
=3

0.2 3 id -
[—— = e CNN o — o
050 071 1.00 1.41 2.00 283 4.00 5.66 8.00 050 071 1.00 1.41 2.00 2.83 4.00 566 8.00
scale scale

(a) Accuracies of the models at different (b) Distances between the features in the
scales. training scale and all the test scales.

Fig. 2: Results on MNIST Large Scale experiment averaged from five initializa-
tions of the models.

2 We do not use erosion and opening scale-spaces because the bright objects in a dark
background would be erased by the anti-extensive operators. For a dataset without
a well-defined polarity, self-dual operators could be used instead.
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5.2 Image segmentation

In this section we perform an experiment on image segmentation where the
objects in the image are re-scaled independently of one another. Unlike in the
classification problem, it would be difficult to obtain the images from the dataset
by means of data augmentation. In this problem the network benefits from being
locally invariant to re—scalingﬂ We apply a max-pooling over the scale dimension,
i.e. the operator M(f)(z) = max{f(s,z)|s € {2°,2%,22,...,2N}}. This means
that the activations used by the softmax layer are the highest for each scale, and
should in practice make a locally invariant-model.

(a) (b) (c)

(d) (e) ()
Fig. 3: Example images from the (a) training and (d) test sets of the segmentation
experiments, and segmentation results using equivariant models with the (b)(e)

proposed dilation and (c)(f) Gaussian scale-spaces. Pixels in red are classified as
disk, those in blue as star.

The dataset we use in this experiment consists of 224 x 224 synthetic binary
images of shapes such as Fig. [3| which are divided in three classes: disks, stars
and the background. In the training set, only one scale is present, like in Fig.
a). We construct test sets where each shape is re-scaled by a factor uniformly
sampled from the interval [277,27], in which we use i = 1,2. Fig. [3[b) shows
an example of a test image. The train set contains 10000 images and the test
sets contain 500 images each. The experiment is repeated ten times, each time
generating a different training/test set pair.

The architecture chosen for the equivariant models consists simply of six
layers of semigroup cross-correlations. Because the scale cross-correlation has a

3 We say that an operator ¥ on images is locally invariant w.r.t. to R'(S)I) ifVv(s,z) € G
VR, o) f = Ry -0 f.
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naturally large receptive field, subsampling is not necessary. The output of the
network is a three-channel image with the scores for each class, and the class is
chosen as the coordinate with the greatest score. To quantitatively evaluate the
models, the Intersection over Union(IoU), or Jaccard index, between the ground
truth image and the predictions is used. As baselines, we compare the models
to a CNN with the same number of layers and a similar size and number of
parameters, and also to a U-Net [9] architecture.

In Table [1) we compare the IoU obtained from different models. We see that
CNN performs badly, compared to the equivariant models, even in the training
set scale. This is partially attributed to the fact that the receptive field of the
CNN is not as large, although having the same number of layers and a similar
number of parameters. As expected, the equivariant models outperformed the
CNN architectures and the U-Net architecture in the generalization to other
scales.

Scales|Gaussian Lifting|Dilation Lifting| Closing Lifting Id Lifting U-Net CNN

1. | 0.9929 & 0.0006 {0.9929 + 0.0006|0.9929 + 0.0005|0.9927 + 0.0008|0.9927 + 0.0006|0.9083 + 0.0006
(3,2] 0.92 £+ 0.06 0.97+0.01 0.89 £ 0.06 0.91+0.03 0.86 £+ 0.02 0.68 +£0.01
[3,4] 0.88 +0.07 0.93 4+ 0.02 0.86 4 0.05 0.88 4+ 0.03 0.70 + 0.04 0.627 4 0.008

Table 1: IoU between the ground truth images and the predictions obtained from
equivariant models with different liftings, trained on images where objects only
appear at scale one.

To analyse why the dilation is suited to this particular dataset, we can analyse
the effect of applying a discrete re-scaling, i.e. a subsampling to the objects
processed by the scale-spaces. In Fig. [ we see the difference between a Gaussian
and dilation lifting followed by a subsampling operator. Indeed, the persistence
of concavities of the star shapes makes it easier to distinguish the objects in the
last images.

6 Conclusions and Future Work

In this paper we presented a generalization of the scale-equivariant models of
Worrall and Welling [14] based on the general definition of scale-spaces given
in [5]. The models obtained from this approach with different scale-spaces are
evaluated in experiments designed to test invariance to change in scales. In our
experiments, the generalization to new scales of the models based on scale-spaces
surpassed the CNN baselines, including a U-Net model. We see that changing
the type of scale-space in the architecture of [I4] can induce a change in the
performance of the model. In the datasets used, where the geometric informa-
tion of the images is important, the dilation scale-space model compared very
favorably to the Gaussian one. Regarding future works, we note that only the
second property of the scale-space definition @ is necessary in order for oper-
ators to be equivariant, which means that some operators that fulfill it but are
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(b) Quadratic Dilation scale-space

Fig. 4: The same image after being processed by the Gaussian (a) and quadratic
dilations (b) scale-spaces and being subsampled by factors 2° i = 0,1,2,3, 4.

not scale-spaces, such as the top-hat transform, can be used as lifting operators.
It would also be interesting to compare these models with the invariance ob-
tained from data augmentation and possibly combine the two approaches in a
complementary way. Additionally, future works will explore the use of the pro-
posed morphological scale-spaces on other types of data like 3D point clouds [I],
graphs [2], and high dimensional images.
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