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On	a	Shared	Scooter	Service	under	Ring	

Shape,	Free-Floating	and	Prior	Booking	

Abstract 

Shared Scooter Services (S3) have been deployed in many cities to provide public transport to 
individual users on a free-floating basis. The article brings about an analytical traffic model 
for such service under ring shape, i.e. postulating there is a ring road along which the scooters 
are required to park and expected to be driven, in order to avoid detours and increase vehicle 
productivity as well as local availability to potential users. Prior booking is postulated, 
supposedly on a web app. Also postulated are the homogeneity in both space and time. With 
respect to the ring circumference, the daily volume of potential trips, the statistical 
distributions of trip lengths, walk speeds an ride speeds, as well as the fleet size, operation 
period and transaction times, analytical formulas are provided for (i) access lengths and times, 
together with usage probability, (ii) ride lengths and times, (iii) vehicle occupation at the fleet 
level, (iv) the average number of available vehicles. Traffic equilibrium is shown to exist and 
to be unique or bi-valued with one fluid state versus one congested state. Its characteristic 
equation is recast as a fleet sizing rule according to demand volume and target access length, 
which stand respectively as the quantitative and qualitative service objectives. 

Keywords: shared mobility services; free-floating scooters; vehicle occupation; fleet sizing; 
stochastic model; traffic equilibrium. 

1/ Introduction 

Background. In recent years, e-scooters have emerged as a convenient mode of travel for 
many individuals. As a vehicle, an e-scooter is agile and its motor enables for speeds up to 20 
km/h and beyond: this is quite efficient in the urban setting. Furthermore, its small size and 
light weight make it easy to carry out e.g. in a car trunk or in transit vehicles (buses, trains). 

The parallel development of connectedness both for vehicles and for people owing to 
smartphones has given rise to many shared mobility services. Among them, e-scooters sharing 
systems have been deployed in many big cities worldwide. 

To what extent may such e-scooter sharing services contribute to public transport in urban 
areas? This question carries obvious stakes for mobility planners in territories. Shared e-
scooters look environmental friendly compared to private cars, not only in terms of matters 
utilized and energy consumed but also to the cityscape: their parking requires little space and 
their traffic is by far less intrusive and dangerous to pedestrians. 

Objective. A number of traffic models have been developed to perform traffic studies with 
much detail in space and time. This paper brings about a simple traffic model for an e-scooter 
shared mobility service under ring shape. The principle is to channel the users’ trips in the 
territorial space, so as to increase vehicle availability along the ring, to avoid detours, to ease 
the service logistics (from vehicle maintenance to energy refills, passing by fleet 
repositioning). By simultaneously reducing the operational costs and increasing vehicle 
productivity, a ring-shaped service is expected to reach commercial profitability under wider 
conditions of demand and territory, thereby enabling the planners to expand the spatial 
outreach of public transport. 
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In the model, the territorial conditions are represented as the radius of the ring and the riding 
speed, a daily volume of trips and the average length of them. The fleet size is given and the 
service is operated in free-floating mode. The service users go to the closest available scooter, 
which they book in advance using a mobile application. From these assumptions, the model 
determines the occupation of the vehicle fleet, its availability, the access conditions in terms 
of walk lengths and walk times, as well as riding times depending on users’ ride speeds. 

Methodology. Homogeneity is postulated regarding both space and time. Spatial homogeneity 
is postulated for trip origin and destination endpoints, hence for the positions of available 
vehicles. Combined to the ring shape, this spatial homogeneity gives rise to circular 
symmetry. Temporal homogeneity is postulated along a daily period of “active duty”: for 
instance a 14h period from early morning to evening.  

Traffic is modeled in disaggregate and stochastic way. Each service request is identified with 
its own service user. Trip lengths are modeled as a statistical distribution. Users are modeled 
in terms of walk speeds and ride speeds, with joint statistical distribution. 

By facing the total workload demanded by the users to the fleet size times the period duration, 
we establish the condition of traffic equilibrium at the system level as a characteristic 
equation with respect to the number of vacant vehicles. In appendix, we show that the 
macroscopic equilibrium condition is consistent with the stochastic equilibrium of a two-state 
Markov model at the disaggregate level of one scooter (Available vs. Busy states). All in all, 
given � the daily trip volume and � the fleet size, the model determines the average walk 
length say ℓ, which indicates service quality. The relationship can be expressed equivalently 
as a function ℓ�(�, �) or a function ��(�, ℓ), which is useful for planning purposes. 

Article structure. The rest of the article is in seven parts. Section 2 describes the system: 
territorial conditions, service supply and travel demand. Section 3 introduces the model 
architecture. After modeling successively Service access in Section 4, User rides in Section 5 
and Scooter occupation in Section 6, the model is integrated in Section 7. Lastly, Section 8 
concludes and points to theoretical developments. 

2/ System description and mathematical notation 

Inside an urbanized territory, assume that a roadway circuit is designated as pathway for the 
shared e-scooters. By assumption, it can be used in either directions and its overall shape is a 
circular or quasi-circular ring of radius 	. 

On the demand side, we consider that each day, during a time period of 
, there are � trips 
that use the shared mobility service, half of which in each traffic direction. The trip origin 
points are distributed evenly along the ring. From their origin points the trips have spatial 
lengths �� with statistical distribution that is identical from all origins. From the assumptions 
about the trips’ origins and lengths, it follows that the destination points are also evenly 
distributed along the ring. 

Among the population of customers, each service user has his own walk speed w and ride 
speed v: assumedly, these are cruising speeds over the walk and ride legs respectively. Walk 
speeds are statistically distributed with CDF W and ride speeds with CDF S. Statistical 
independence is assumed between them and also with the generation of trips. 

By assumption, the service is operated under free-floating mode all along the ring.  
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Coming to service quality, the user spends a ride time �� that depends on the trip length �� 
and his own ride speed, �: 

 �� = ��/� .  (1)  

Complementarily, there is a time to get to an available scooter, denoted ��, with subscript A 
for Access. Trip planning, including booking a scooter at a given place, un-parking it at the 
origin and parking it at the destination, takes a transaction time of ��. Then, to the user the 
overall trip time adds up to 

 ���� ∶= �� + �� + �� .  (2) 

On the supply side, there are � scooters constituting the service fleet, supposedly all in 
operational condition. At any instant, each of them has a probability �� of being occupied, 
which means Busy for riding as well as during the access of the user that has booked it, and 
during the transaction operations. Thus, the trip time �ART is also the resource occupation time 
for the scooter used for riding. 

At any instant, the average number of vacant scooters, say  , satisfies that 

  = �. (1 − ��).  (3) 

From the postulates of spatial homogeneity for demand trips, we deduce that each available 
scooter has its position distributed evenly along the ring, and that the respective positions of 
the   available scooters are statistically independent. 

3/ Model architecture 

Among the model components, the following parts are exogenous: 

• on the demand side, trip volume �, trip length distribution $%&(��) with mean �'�, walk 
speed CDF W and ride speed CDF S. 

• on the supply side, fleet size �, operating period 
, transaction time �(, 

• as well as ring radius 	 that pertains to the territory as it is involved both with the demand 
and the supply of the shared mobility service. 

From these exogenous conditions, the model enables us to derive the following endogenous 
components: 

• on the demand side, ride time �	, access length �) and time �), trip time �ART. 

• on the supply side, average number of vacant scooters   and occupation probability ��. 

The model architecture involves four sub-models: 

(i) the Access model that relates �) to  , and then �� to �) and W; 

(ii) the Ride model that relates �� to �� and S; 

(iii) the Occupation model that relates �� to �ART, 
, � and �; 

(iv) the Traffic equilibrium model balances the state variable  : its ensures that its value is 
consistent throughout the chain of influences along the previous three models. 

Figure 1 exhibits the model architecture as a graph system of components and dependences. 
Each model component is represented by a box, i.e. a graph node. Each straightforward 
influence of one model component onto another is indicated by a link between their respective 
nodes, with orientation according to causality. The components and links are organized by 
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sub-model: in other words, each sub-model consists in a sub-system of dependences. The 
figure shows that the traffic equilibrium model acts as a feedback to the other three sub-
models. 

In the following Sections, we will introduce in turn the Access model, the Ride model and the 
Occupation model, before turning to the Traffic equilibrium model. Thus, the order of 
presentation matches the logical thread in Figure 1. 

 

Fig. 1: Traffic Model Layout (adapted from Leurent, 2019a). 

4/ The Access model 

Let us consider a service customer that is planning his trip by looking for an available scooter 
(typically via a mobile app). We assume he will select the available scooter closest to his 
initial position, so as to minimize the walk length and walk time, which is presumably more 
tedious than the ride time. 

Each available scooter is positioned at a point distributed evenly along the ring: thus its 
distance from the trip origin point is distributed uniform between 0 and *	. As the   available 
scooters are statistically independent, the access length is the minimum of   i.i.d. random 
variables U,0, *	.. Its CDF is thus, denoting F1(0) ≔ min50/*	, 16 for  0 ≥ 0: 

 F89(0) ∶= Pr5�� ≤ 06 = 1 − (1 − F=(0))>.   (4) 

Proof. For any scooter ? ∈ 51, . .  6, the length �? from the customer origin point has CDF F1. 
The minimum �) of   independent lengths so distributed satisfies that 

Pr5�� > 06  = Pr5�B > 0 ∶  ∀? 6 = ∏ 1 − F=(0) ?=1 = (1 − F=(0))>.  

Coming to the access time �), from the definition of cruising walk speeds E it holds that 

 �� = ��/E.   (5) 

It can safely be assumed that �) and E are independently distributed. Then, the average access 
time satisfies that 

 ��̅ ∶= E,��. = E,��.. E,1/E..   (6) 

Instance. Taking E ≈ LN(KE, LE), then 1/E ≈ LN(−KE, LE) and E,1/E. = exp (−KP + LE2/2)  
= exp(LPR ) /E,E.. From the properties of LN laws, exp(LPR ) = 1 + SPR  with respect to the 
relative dispersion SP ∶= SD,E./E,E.. The relation E,1/E. ≈ (1 + SE2)/ E,E.  holds as a good 
approximation for any positive random variable with not so large relative dispersion. 

k, # free 
vehicles 

LR, Ride 
length 

tT, Trans- 
action time 

tART, Resource 
time 

v, Ride 
speed 

w, Walk 
speed 

LA, Access 
length 

tA, Access 
time 

tR, Ride 
time 

pO, Occupation 
probability 

H, Time 
span 

Q, Demand 
volume 

N, Fleet 
size 

R, Ring 
radius 



Fabien Leurent, ENPC-CIRED  April 9, 2021 

Shared Scooter Service (S3) Model with Prior Booking  5 

5/ The Ride model 

So far we have defined �� as the trip length: the subscript R for Ride suggests that it is 
equivalent to the ride length. Yet the access conditions influence the effective ride lengths, 
say �′�, in two respects: first, depending on the direction of walking with respect to that of 
riding, the effective ride length will be 

 �′� = �� ± ��.   (7) 

Second, in an even deeper way, it may occur that the Access distance be greater than the trip 
length. In other words, the distribution of trip lengths is shaped by service availability in 
space. In reality, it would not occur that  �� < �)  for a trip using the service. 

Here we shall keep to the assumption of an exogenous distribution of Ride lengths, of given 
average �'�. Neglecting the case for negative values, this is consistent with (7) as the net 
contribution of the ±�� part is null. 

Coming to the ride time, from the definition of ride speeds � it holds that 

 �� = �′�/�.   (8) 

It can safely be assumed that �′� and � are independently distributed. Then the average ride 
time satisfies that  

 ��̅ ∶= E,��. = E,�′�.. E,1/�..   (9) 

6/ The Occupation model at the fleet level 

Given an exogenous transaction time of �T, and postulating that the scooter is booked by the 
user from his origin point and instant, then it is assigned to the customer during not only the 
ride time but also the access time and the transaction time. The total service time �ART ∶= �A +
�R + �T applies to both the service user and the scooter as a resource. 

At the service level, during one day of operations, the total resource occupation time amounts 
to 

 ℛ = �. ��̅��.   (10) 

To make this workload feasible in the time period 
, the fleet size � must satisfy that 

 �. 
 ≥ �. ��̅��.   (11) 

Under this requirement, the proportion of occupation in resource time amounts to 

 �� ∶= Y.Z̅[\]
^._ .   (12) 

From our postulates of homogeneity in time and space, this proportion can be taken as the 
probability of occupation for any scooter at any time, in the absence of any other information 
(such as the particular assignment of the scooter to some user request). 

7/ Model integration 

We have chained up the influences between the state variables, from an exogenous number   
of available scooters in the Access model, to the Occupation probability �� in the Occupation 
model, passing by the formation of access time �� and ride time ��. To close the model it 
remains to link the   variable to the occupation probability, thereby making   endogenous. 
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From the occupation probability applied to the fleet size �, on average there are �. �� 
occupied vehicles. The average number of available vehicles is then  = �. (1 − ��), hence 

  = � − �. ��̅��/
.   (13) 

As ��̅ stems from �'� in a straightforward way, we keep its notation along with �T in ��̅�. As 
for ��̅, we put it as ��̅ = �)0 /( + 1) with ��̀ ∶= *	. E,1/E.. 
By doing so, we have assimilated an integer-valued and instantaneous   involved in ��, with 
an average   that is positive and real-valued. Of course it is an approximation which enables 
us to obtain the following characteristic equation: 

  = � − (��̅� + Z9a
>b=)�/
.   (14) 

This is a second-degree equation in  . We restate it as follows, letting ′ ∶= � − �. Z̅RT

 − 1 : 

  ( + 1) = (�c + 1)( + 1) − �. ��̀ /
.   (15) 

Then,  R − �′ − (�′ + 1 − �. Z9a

 ) = 0 

( − �′/2)R = �′ + 1 − �. Z9a

 + (�′/2)R  

  ∗ = ^e
R + fg�c + 1 − �. Z9a

_ + (�c/2)R  for  f ∈ 5−1, +16.   (16) 

There are two solutions to this equation: 

• the high root  b = �′
R + g�′ + 1 − �. Z9a


 + (�′/2)R ,  

• the low root  h = �′
R − g�′ + 1 − �. Z9a


 + (�′/2)R. 

The high root pertains to a fluid system in which many vehicles are available, whereas the 
low root is associated to a congested system with few available vehicles and long access times 
that contribute to vehicle occupation. To the consumers, the fluid state is preferable as it 
provides shorter access times. 

Beyond the ambiguity between the two equilibrium states, the major outcome is the “fleet 
sizing rule” contained in (14): to the service operator, the main objective of quality of service 
is to ensure a target access time �̂�, which is equivalent to ensure a target access distance ���. 

This involves available scooters in average number of  � ∶= Z9a
Zj9 − 1. In turn, (14) indicates the 

target fleet size,  

Nhat = khat + Q.(tRT+tA0/khat+1)/H (17). 

 �� ∶=  � + Y
_ k��̅� + Z9a

>� b=l = Z9a
Zj9 − 1 + Y

_ (��̅� + �̂�)  .   (17) 

This fleet sizing rule involves � and �̂� in a straightforward way. 
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Fig. 2. Fleet size according to target access time. 

8/ Conclusion 

We have provided an analytical model for a shared scooter service (S3) under ring form and 
free-floating. Owing to postulates of homogeneity in space and time, we established simple 
formulas for the average access length and time, ride time, number of available vehicles and 
probability of occupation. Given the fleet size and the demand volume, the traffic equilibrium 
is characterized by a second-degree equation with respect to the number of available vehicles. 
Moreover, the characteristic equation constitutes a fleet sizing rule for a service operator 
targeting both the demand volume (a quantitative objective of service) and the access time (a 
qualitative objective). 

The S3 traffic model is a physical and technical model. It stands as the scooter counterpart of 
the ring-shaped taxi service model (Leurent, 2019a) and the ring-shaped Shuttle service 
model C3 (Leurent, 2019b). It may represent a ring-shaped bike-sharing system as well, if 
operated in free-floating mode. 

The economic theory of the S3 model can be developed along the same path as that for the 
taxi and C3 models, all the more so as the characteristic equation is very close to that of the 
taxi service. Yet service production for a free-floating S3 is specific as it involves charging 
operations and vehicle maintenance, which we did not address in detail for the other modes 
(since vehicle driving, be it human or robotic, enables for offline maintenance and energy 
refill). 
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Appendix: a two-state Markov chain model 

A shared scooter may be modeled as a stochastic system taking one out of two states A/B in 
alternation: state A means no current user hence Available to any newcomer, whereas state B 
stands for Busy, i.e. Occupied by a user. The two states communicate with each other, i.e. 
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there are transitions from each state to the other one. Figure 3 depicts the two states and the 
stochastic transitions between them, with respective transition rates of mc and K. 

. 

Fig. 3. States and Transitions. 

Transition rate K is the ending rate of an occupation under way. From the duration n, it is the 
ratio between the probability Pr5���� ≤ n + on | ���� > n6 that such occupation will end 
during an elementary interval ,0, on., and its incremental duration on. Making the crude 
approximation that the random variable of vehicule occupation, �ART, is distributed 
exponential, then the exponential parameter is 1/�A̅RT. Thus, the transition rate satisfies  

K ∶= limrs→` uv5�[\]≤sbrs | �[\]>s6
rs = limrs→` uv5�[\]≤sbrs ∩ �[\]>s6

uv5�[\]>s6.rs    

= PDF(ZART)
1−CDF(ZART) = exp (− n

y'ART)/Z̅ART
exp (− n

y'ART) = 1/�A̅RT. 

  K = 1/��̅��.   (18) 

As for the transition rate from State A (Available) to State B (Busy), it comes from the overall 
rate of customers arrivals per time unit, �/
, divided by the number of available vehicles,  :  

 mc = �/(
.  ).   (19) 

 

The system is in stochastic equilibrium with stationary probability distribution z�), �{| such 
that ��, �} ≥ 0 and �� + �} = 1, and the probability flow is conserved in each state: 

 ��. mc = �}. K.   (20) 

Put in words, the probability flow going out of State A per time unit is equal to that coming in 
it from State B. Substituting 1 − �) for �}, the balance condition becomes that 

��. mc = (1 − ��)K  hence  �� =  K/(K + mc) = 1/(1 + mc/K) = 1/(1 + �. �̅���/(
.  ))   
At every instant, it also holds that �� =  /�. 

Substituting, the balance equation becomes an equation in  : 

 >
^ . k1 + �. �̅[\]

_.> l = 1 i.e.  � =  + �̅����/
. 

Now, as �A̅RT = �R̅T + �)0
 +1, the balance condition of the Markov model is exactly the 

characteristic equation of the traffic model. 
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