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On	a	Shared	Scooter	Service	with	

Opportunistic	Riding	under	Ring	Shape:	

the	S3	Traffic	Model	and	its	Equilibrium	

Abstract 

Shared Scooter Services (S3) have been deployed in many cities to provide public transport to 
individual users on a free-floating basis. The article brings about an analytical traffic model 
for such service under ring shape, i.e. postulating there is a ring road along which the scooters 
are required to park and expected to be driven, in order to avoid detours and increase vehicle 
productivity as well as local availability to potential users. Opportunistic Riding is also 
postulated: on their way, every user takes the first available vehicle which they encounter. 
Also postulated are the homogeneity in both space and time. With respect to the ring 
circumference, the daily volume of potential trips, the statistical distributions of trip lengths, 
walk speeds an ride speeds, as well as the fleet size, operation period and transaction times, 
analytical formulas are provided for (i) access lengths and times, together with usage 
probability, (ii) ride lengths and times, (iii) vehicle occupation at the fleet level, (iv) the 
average number of available vehicles. Traffic equilibrium is shown to exist and to be unique. 
Its characteristic equation is recast as a fleet sizing rule according to demand volume and 
target access length, which stand respectively as the quantitative and qualitative service 
objectives. 

Keywords: shared mobility services; free-floating scooters; vehicle occupation; fleet sizing; 
stochastic model; traffic equilibrium. 

1/ Introduction 

Background. In recent years, e-scooters have emerged as a convenient mode of travel for 
many individuals. As a vehicle, an e-scooter is agile and its motor enables for speeds up to 20 
km/h and beyond: this is quite efficient in the urban setting. Furthermore, its small size and 
light weight make it easy to carry out e.g. in a car trunk or in transit vehicles (buses, trains). 

The parallel development of connectedness both for vehicles and for people owing to 
smartphones has given rise to many shared mobility services. Among them, e-scooters sharing 
systems have been deployed in many big cities worldwide. 

To what extent may such e-scooter sharing services contribute to public transport in urban 
areas? This question carries obvious stakes for mobility planners in territories. Shared e-
scooters look environmental friendly compared to private cars, not only in terms of matters 
utilized and energy consumed but also to the cityscape: their parking requires little space and 
their traffic is by far less intrusive and dangerous to pedestrians. 

Objective. A number of traffic models have been developed to perform traffic studies with 
much detail in space and time. This paper brings about a simple traffic model for an e-scooter 
shared mobility service under ring shape. The principle is to channel the users’ trips in the 
territorial space, so as to increase vehicle availability along the ring, to avoid detours, to ease 
the service logistics (from vehicle maintenance to energy refills, passing by fleet 
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repositioning). By simultaneously reducing the operational costs and increasing vehicle 
productivity, a ring-shaped service is expected to reach commercial profitability under wider 
conditions of demand and territory, thereby enabling the planners to expand the spatial 
outreach of public transport. 

In the model, the territorial conditions are represented as the circumference of the ring and the 
riding speed, a period volume of trips and the statistical distribution of their lengths. The fleet 
size is given and the service is operated on a free-floating basis. The potential service users 
take the first available scooter which they encounter on their way: there is no prior booking, 
in contrast to a related former model (Leurent, 2021). From these assumptions, the model 
determines the access conditions in terms of walk lengths and walk times, the ride lengths and 
riding times depending on users’ ride speeds, the occupation of the vehicle fleet and its 
availability, as well as the probability of using the service among the potential demand. 

Methodology. Homogeneity is postulated regarding both space and time. Spatial homogeneity 
is postulated for trip origin and destination endpoints, hence for the positions of available 
vehicles. Combined to the ring shape, this spatial homogeneity gives rise to circular 
symmetry. Temporal homogeneity is postulated along a duty period within the day, for 
instance a 4h period around the evening peak.  

Traffic is modeled in disaggregate and stochastic way. Each service request is identified with 
its own service user. Trip lengths are modeled as a statistical distribution. Users are modeled 
in terms of walk speeds and ride speeds, with joint statistical distribution. 

Each scooter is identified as an individual resource, of which the dynamic state is either 
Available (i.e. vacant) or Busy. At any instant, the number of available scooters is a random 
variable with specific distribution of which the mean is linked to the fleet workload. The 
service traffic involves two causalities: first, the more there are available scooters, the higher 
the rate of usage and the longer the ride lengths on the demand side, inducing higher traffic 
load on the supply side; second, a higher traffic load comes with more busy scooters and less 
available scooters at any instant. The two causalities balance each other, leading to traffic 
equilibrium. We demonstrate the existence and uniqueness of that equilibrium and derive 
some consequences, among which a fleet sizing rule according to potential demand volume 
and target access length. 

Article structure. The rest of the article is in eight parts. Section 2 describes the system: 
territorial conditions, service supply and travel demand. Section 3 introduces the model 
architecture. After modeling successively Service access in Section 4, User rides in Section 5 
and Fleet occupation in Section 6, the model is integrated in Section 7, which addresses traffic 
equilibrium. Section 8 discusses some properties and consequences of the equilibrium state. 
Lastly, Section 9 concludes and points to theoretical developments. 

2/ System description and mathematical notation 

Inside an urbanized territory, assume that a roadway circuit is designated as pathway for the 
shared e-scooters. By assumption, it can be used in either directions and its overall shape is a 
circular or quasi-circular ring of radius � and circumference � (which is about 2�� for a 
quasi-circular ring). 

On the demand side, we consider that, during a time period of �, there are � trips that would 
like to use the shared mobility service, half of which in each traffic direction. The trip origin 
points are distributed evenly along the ring. From their origin points the trips have spatial 
lengths �� with statistical distribution that is identical from all origins. From the assumptions 
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about the trips’ origins and lengths, it follows that the destination points are also evenly 
distributed along the ring. 

Among the population of customers, each service user has his own walk speed 	 and ride 
speed 
: assumedly, these are cruising speeds over the walk and ride legs respectively. Walk 
speeds are statistically distributed with CDF W and ride speeds with CDF S. Statistical 
independence is assumed between them and also with the generation of trips. 

By assumption, the service is operated under free-floating mode all along the ring.  

Coming to service usage, each potential user begins his trip of length �� by walking along the 
ring towards his destination. On his way, if he finds an available scooter then he takes it to 
ride up to his destination: the walk length is denoted �
, A for Access, and the ride length is 
denoted ��. The condition of service utilization is that ��
 < ���: if negative then �� = 0 and 
the service is not used, whereas if positive then �� ∶= �� − �
 is strictly positive and the 
associated service time ��� ∶= �� + �� involves the ride time, �� = ��/
 according to ride 
length �� and ride speed 
, and also a transaction time denoted �� for vehicle un-parking at 
the point of availability and re-parking at the trip destination point. We shall denote �� the 
probability of utilizing the service among the potential customers. 

On the supply side, there are � scooters constituting the service fleet, supposedly all in 
operational condition. At any instant, each of them has a probability �� of being occupied, 
which means Busy for riding as well as during the transaction operations. Thus, the trip time 
��� is also the resource occupation time for the scooter used for riding. 

At any instant, the average number of vacant scooters, say � , satisfies that 

 �! = �. (1 − �O).  (1) 

From the postulates of spatial homogeneity for demand trips, we deduce that each available 
scooter has its position distributed evenly along the ring, and that the respective positions of 
the available scooters are statistically independent. 

3/ Model architecture 

Among the model components, the following parts are exogenous: 

• on the demand side, trip volume �, trip length distribution F� ∶= CDF(��) with mean � �, 
walk speed CDF W and ride speed CDF S, 

• on the supply side, fleet size �, operations period �, transaction time ��, 

• ring circumference � pertains to the territory as it is involved both with the demand and the 
supply of the shared mobility service, 

• a stochastic model of vehicle availability, deriving the statistical distribution of the number 
of available scooters, �, and its mean value � , from fleet size � and an “availability factor” 
denoted *. 

From these exogenous conditions, the model enables us to derive the following endogenous 
components: 

• on the demand side, the probability of service utilization ��|ℓ according to trip length ℓ, the 
statistical distribution of trip lengths ���  conditional on using the service, those of access 
lengths �
 and times �
, those of ride lengths �� and times ��, that of trip times �-, J for 
Journey, whether using the service or generally. 
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• on the supply side, the statistical distributions of ride lengths ���  and times ���, the service 
times ���, the statistical distribution of the number of available scooters � and the fleet 
occupation probability ��. 

The model architecture involves four sub-models: 

(i) the Access model first relates �
 to � hence to � and *, then compares �
 to �� to obtain 
��|ℓ, ���  and �
�, and next derives �
 from �
 and W; 

(ii) the Ride model establishes ���  with respect to ���  and �
�, then derives ��� from ���  and S; 

(iii) the Occupation model determines ��� and relates �� to ��̅�, �, � and �. �/; 

(iv) the Traffic equilibrium model relates the average number of available vehicles �  to the 
occupation probability ��, and sets the availability factor * so as to make the values of �  and 
�� consistent throughout the chain of influences along the previous three models. 

Figure 1 exhibits the model architecture as a graph system of components and dependences. 
Each model component is represented by a box, i.e. a graph node. Each straightforward 
influence of one model component onto another is indicated by a link between their respective 
nodes, with orientation according to causality. The components and links are organized by 
sub-model: in other words, each sub-model consists in a sub-system of dependences. The 
figure shows that the traffic equilibrium model acts as a feedback to the other three sub-
models. 

In the following Sections, we will introduce in turn the Access model, the Ride model and the 
Occupation model, before turning to the Traffic equilibrium model. Thus, the order of 
presentation matches the logical thread in Figure 1. 

 

Fig. 1: S3 Traffic Model Architecture. 
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4/ The Access model 

As potential rider, we consider an individual user that has subscribed to the service and is 
ready to use it, but will do so only if some riding opportunity occurs along his way from his 
origin point to his destination point. 

4.1 Access length conditionally to the number of available vehicles 

Each available scooter is positioned at a point distributed evenly along the ring: thus its 
distance from the trip origin point is distributed uniform between 0 and ring circumference �. 
Let us denote this access length to one available scooter as �0, its CDF as F0(1) ≔
min�1/�, 1� for  1 ≥ 0 and F 0(1) ≔ 1 − F0(1) the distribution function cumulated from 
above. 

When � scooters are available, statistical independence can safely be assumed and the access 
length is the minimum of � i.i.d. random variables U90, �:. Its CDF cumulated from above 
then satisfies: 

 F 
|;(1) ≔ 1 − F
|;(1) = (F 0(1));.   (2) 

Proof. For any available scooter < ∈ �1, . . ��, the length �> from the customer origin point has 
CDF F0. The minimum �
|; of � independent lengths so distributed satisfies that 

PrA�
|; > 1C  = Pr��> > 1 ∶  ∀< � = ∏ 1 − F0(1);>G0 = (1 − F0(1));.  

4.2 The overall distribution of Access lengths 

Now, the number � is itself a random variable: let us denote �;
(H,I) ∶= Pr�� | �, *�  the 

probability values that stem from fleet size � and availability factor * in a way that will be 
specified in the Traffic Equilibrium Model. The overall distribution of the access length 
comes from the conditional distributions weighted by the Pr���. Thus, by integration over the 
values of � (and neglecting to denote the conditionality of �
 to � and *), 

 F 
(1) = ∑ �;
(H,I)F 
|;(1)H;GK .   (3) 

Proof. Conditioning according to �, F 
(1) = Pr��
 > 1 � = ∑ Pr��
 > 1 ∩ ��H;GK , hence 
F 
(1) = ∑ PrA�
|; > 1 C.H;GK Pr���. When � ≥ 1 we already know that F 
|;(1) = (F 0(1)); 
and in fact this formula is also suitable at � = 0 for which it says that the probability of not 
finding an available vehicle within length 1 is equal to 1. 

4.3 The probability of service utilization 

The service is utilized if and only if ��
 < ���. Given �� = ℓ, the probability of service 
utilization is 

 ��|ℓ = Pr��
 < �� | �� = ℓ� = F
(ℓ).   (4) 

Over the original distribution of trip lengths, the probability of service utilization is then 

 �� = M ��|ℓ NF�(ℓ) = 1 − M F 
(ℓ) NF�(ℓ).   (5) 

4.4 Trip lengths depending on service utilization 

In turn, the condition of service utilization determines the statistical distribution of trip lengths 
among the population of service rides: let us denote ���  the conditional random variable. Its 
probability density function f�� is related to f� and ��|ℓ in the following way: 
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 f��(ℓ) = ��P0. ��|ℓ. f�(ℓ).   (6) 

Proof. As every trip has probability ��|ℓ of utilizing the service depending on its length ℓ, in 
the population of rides that are service utilizations it holds that 

 f��(ℓ) ∝ ��|ℓ. f�(ℓ).   

Denoting R the factor of proportionality, by integration of both sides we get that  
 1 = R M ��|ℓ. f�(ℓ) Nℓ, which implies that R = ��P0. 

Let us also provide a more rigorous demonstration:  

F ��(S) ∶= Pr��� > S | �� > �
� = Pr��� > S ∩ �� > �
� / Pr��� > �
�  
= ��P0 Pr��� > max�S, �
� � = ��P0 M  F �(max�S, ℓ�)NF
(ℓ).  
Then, by differentiation,  

f��(S) = − V
VW F ��(S) = ��P0 M  f�(max�S, ℓ�)1�WXℓ�NF
(ℓ)  

= ��P0 M f�(S)NF
(ℓ)S = ��P0f�(S)F
(S). As F
(S) = ��|W, this completes the proof. 

4.5 Effective access lengths 

For one rider with trip length ℓ, the effective access length denoted �
� takes every 
nonnegative value 1 with probability density of  

 f
|ℓ� (1) = f
(1)1�YZℓ�/F
(ℓ).   (7) 

Proof. F
|ℓ� (1) ∶= Pr��[ ≤ 1 | �] > �[, �] = ℓ�  

= ^_�`aZbcd�Y,`e� ∩`ef`a|`eGℓ�
^_�`ef`a|`eGℓ� = ^_�`aZbcd�Y,ℓ� �

gh|ℓ
= ia(bcd�Y,ℓ�)

ia(ℓ)   

By differentiation with respect to 1, we obtain that f[|ℓ� (1) = f[(min�1, ℓ�). 1�1≤ℓ�/F[(ℓ) , 
hence the claim. 

It is then easy to obtain the conditional average access length:  

� 
|ℓ� = M 1f
|ℓ� (1)N1 = M 1. f
(1)N1ℓ
K F
(ℓ)j . 

Integrating by parts, the numerator amounts to 91F
(1):Kℓ − M F
(1)N1ℓ
K , so that 

 � 
|ℓ� = M kF
(ℓ) − F
(1)lN1ℓ
K F
(ℓ)j .   (8) 

Over the population of rides that stems from that of trips and the access conditions, the 
statistical distribution of effective access lengths has CDF as follows: 

F
�(1) ∶= Pr��[m ≤ 1� = M  Pr��[m ≤ 1 | ℓ�  NF��(ℓ) = ��P0 M F[(min�1, ℓ�) NF](ℓ)  

= ��P0nF
(1)F �(1) + M F
(ℓ)NF�(ℓ)Y
K o  

The associated PDF is  

f
�(1) = M  f
| ℓ� (1)NF��(ℓ) = M  pa(Y)
ia(ℓ) 1�Yqℓ�NF��(ℓ) = ��P0f
(1) M NF�(ℓ)r

Y  , so that 

 f
�(1) = ��P0. f
(1). F �(1).   (9) 
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Furthermore, the average effective access length over the population of service rides satisfies 
that � 
� = M  � [|ℓm  NF��(ℓ), so that 

 � 
� = ��P0 M  sM (F
(ℓ) − F
(1))N1ℓ
0 t NF](ℓ).   (10) 

4.6 Access times 

Coming to the access time �
, from the definition of cruising walk speeds 	 it holds that 

 �
: = �
/	.  

It can safely be assumed that �
 and 	 are independently distributed. Then, the average 
access time conditionally to �� = ℓ satisfies that 

 �
̅ |ℓ = � 
 |ℓ . E91/	:.   (11a) 

The overall average access time is then: 

 �
̅ ∶= E9�
: = � 
. E91/	:.   (11b) 

Similarly to access lengths, conditionally to service utilization the average access times 
conditional on �� = ℓ or overall are respectively: 

 �
̅|ℓ� = � 
|ℓ�  . E91/	:,   (11c) 

 �
̅� = � 
� . E91/	:.   (11d) 

Instance. Taking 	 ≈ LN(z{ , |{), then 1/	 ≈ LN(−z{ , |{) and E91/	: = exp (−z{ + |{� /2)  
= exp(|{� ) /E9	:. From the properties of LN laws, exp(|{� ) = 1 + �{� with respect to the 
relative dispersion �{ ∶= SD9	:/E9	:. The relation E91/	: ≈ (1 + �{�)/ E9	:  holds as a good 
approximation for any positive random variable with not so large relative dispersion. 

5/ The Ride model 

5.1 Ride lengths 

The service is used depending on the access conditions and especially the access length in 
comparison to the trip length. The residual length �� ∶= �� − �′
 is the ride length only if 
strictly positive: among the population of rides we denote the ride lengths as ��� ∶= ��� − �
�. 
Conditionally to �� = ℓ, ride length ���  takes any value S ∈:0, ℓ: with probability density as 
follows: 

 f�|ℓ� (S) = f
(ℓ − S)1�KZWZℓ�/F
(ℓ).   (12) 

Proof. F �|ℓ� (S) ∶= Pr��� > S | �� > �
, �� = ℓ� = Pr��
 ≤ min��� − S, ��� | �� > �
, �� = ℓ�  
= Pr�`aZbcd�`e−S,`e� ∩ `eGℓ�

^_�`ef`a|`eGℓ� = Pr��[≤bcd�ℓ−S,ℓ� �
gh|ℓ

= F[(bcd�ℓ−S,ℓ�)
F[(ℓ)   

By differentiation with respect to S, we get that f�|ℓ� (S) = f
(min�ℓ − S, ℓ�). 1�KZWZℓ�/F
(ℓ), 
hence the claim. 

Then the conditional average ride length, � �|ℓ� = M S f�|ℓ� (S) NSℓ
K , satisfies that  

 � �|ℓ� = M ia(Y)
ia(ℓ) N1ℓ

K .  (13) 
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Proof. The reason is that M S f
(ℓ − S)NSℓ
K = M (ℓ − 1)f
(1)N1ℓ

K = ℓF
(ℓ) − M 1 f
(1)N1ℓ
K  .  

Integration by parts of the latter term yields ℓ. F
(ℓ) − M F
(1)N1ℓ
K , so that the difference 

reduces to M F
(1)N1ℓ
K .  

Over the population of rides, the ride length is distributed with CDF that satisfies  

 F��(1) = ��P0 M (F
(ℓ) − F
(ℓ − 1))NF�(ℓ)r
Y .  (14) 

Proof. This is because F��(1) = M F�|ℓ� (1)NF��(ℓ) = M ia(ℓ)Pia(ℓPY)
ia(ℓ) NF��(ℓ)ℓfY  wherein 

NF��(ℓ) = ��P0F
(ℓ)NF�(ℓ) and the integrand is nonzero only if ℓ > 1. 

The associated PDF also stems from those conditionally to trip lengths:  
 f��(1) = M f�|ℓ� (1)NF��(ℓ), so that 

 f��(1) = ��P0 M f
(ℓ − 1)NF�(ℓ)r
Y .  (15) 

Similarly, the average ride length among the riders stems from the conditional expectations 
according to trip lengths: � �� = M � �|ℓ�  NF]m(ℓ), hence 

  � �� = ��P0 M sM F
(1)N1ℓ
K t NF�(ℓ).  (16) 

5.2 Ride times 

Coming to the ride time, it stems from the ride length and the ride speed 
 as �� = ��/
. It 
can safely be assumed that the lengths and speeds are independent. Conditionally to �� = ℓ, 
the average ride time satisfies that: 

 ��̅|ℓ = � �|ℓ. E91/
:.  (17a) 

Similarly, the overall average ride time satisfies that  

 ��̅ = � � . E91/
:.  (17b) 

The effective average ride times are more representative of the service usage: 

 ��̅|ℓ� = � �|ℓ� . E91/
:.  (17c) 

 ��̅� = � �� . E91/
:.  (17d) 

6/ The Occupation model at the fleet level 

6.1 Fleet occupation 

For every ride, the scooter is assigned to the user during the ride time ��� plus the transaction 
time of �� which we take as exogenous. Let us denote the total service time for that ride as: 

 ��� ∶= ��� + ��.  

Its overall average value amounts to  

 ��̅� = ��̅� + ��.  (18) 

At the service level, during the period of operations, the total vehicle occupation time 
amounts to 

 ℛ = �. ��. ��̅� = �. (��. �� + ��� �� E91/
:).   (19) 
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To make this workload feasible in the period time �, the fleet size � must satisfy that 

 �. � ≥ �. ��. ��̅�.   (20) 

Under this requirement, the proportion of occupation in resource time amounts to 

 �� ∶= �. ��. ��̅� �. �⁄ .   (21) 

6.2 Fleet availability 

From our postulates of homogeneity in time and space, proportion �� can be taken as the 
probability of occupation for any scooter at any time, in the absence of any other information 
(such as the particular assignment of the scooter to some user request). The complementary 
probability 1 − �� is the probability of the scooter being available. Then, on average over the 
vehicle fleet, it must hold that 

 �! = �. (1 − �O).  (22) 

7/ Model integration and traffic equilibrium 

7.1 Equilibrium characterization 

We have chained up the influences between the state variables, from an exogenous factor of 
availability * in the Access model, to the Occupation probability �� in the Occupation model, 
passing by the formation of access lengths �
� and ride times ���. To close the model it remains 
to link the * factor to the occupation probability, thereby making * endogenous. 

In (22) the mean number of available vehicles, � , is in fact a function � H,I of the underlying 
stochastic model of vehicle availability. Replacing �. �� with its expression from (21), i.e. 
��. ��̅�. �/�, we obtain the following equation that determines * and characterizes a state of 
traffic equilibrium for that mobility service: 

 �!�,* = � − �m. �̅RT. �/�.  (23) 

Traffic equilibrium of the S3 system is endowed with properties of existence and uniqueness 
that hold under mild conditions, as will be shown later on. 

7.2 Equilibrium properties 

Let us define the “Fleet Resizing function”: 

* ⟼ |H,�(*) ∶= � H,I + ��. ��̅�. �
�. 

Proposition: Traffic Equilibrium Properties. (i) Existence: if |H,� is continuous with respect to 
* and ranges from 0 to values beyond �, then there exists a solution to the characteristic 
equation: in other words, there exists a state of traffic equilibrium. (ii) Uniqueness: if the fleet 
resizing function is strictly increasing with respect to *, then there can exist at most one 
solution to the characteristic equation. (iii) Constructive determination: if the two assumptions 
hold jointly, then the fleet resizing function can be inverted on its domain and its inverse 
function |H,�

(P0) is also strictly increasing and continuous on its own domain that encompasses 

90, �:: thus, the solution of the characteristic equation is simply |H,�
(P0)(�). 

Proof. Point (ii) about Uniqueness is obvious because between two values *0 and *� ≥ *0, the 
strict increasingness implies that |H,�(*�) > |H,�(*0) so that if value � is taken on one side 
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it cannot be reached on the other side. As for point (i) about Existence, under the assumptions 
of continuity and variation range from 0 up to values beyond �, then by the Bolzano-
Weierstrass theorem applied to |H,� on a bounded interval whose image encompasses 90, �:, 
there is at least one point in that interval, say *H,�∗ , such that |H,�k*�,�∗ l = �. Coming to Point 
(iii), by combining the properties of strict increasingness, variation range encompassing 90, �: 
and continuity for function * ⟼ |H,�(*), then it is invertible on its domain, with inverse 

function |H,�
(P0) that is also strictly increasing and continuous on its own domain that 

encompasses 90, �:. By construction, |H,�
(P0)(�) satisfies that |H,�(|�,�

(−1)(�)) = �, hence it is a 
solution to the characteristic equation, and the unique one.  

7.3 Availability factor and increasing fleet resizing function 

Definition: A random variable � is smaller than � in a weak sense iff  ∀1, F�(1) ≥ F�(1). 

Lemma: Monotonicity of utilization probability and average ride length. Given two access 

random variables �

(0) and �


(�) such that �

(�) is smaller than �


(0) in the weak sense, then 

��
(�) ≥ ��

(0)  and  ��
(�)� �

�(�) ≥ ��
(0)� �

�(0). 
Proof: as �


(�) is weakly smaller than �

(0), we have that F


(�)(1) ≥ F

(0)(1) everywhere in 1. 

From (4) it follows that ��|ℓ
(�) ≥ ��|ℓ

(�) everywhere in ℓ. Then, integration over the original 

distribution of trip lengths yields that ��
(�) ≥ ��

(0). Coming to the ride length averaged over all 

trips, � � = ��� �� , from (16) we have that ��� �� = M sM F
(1)N1ℓ
K t NF�(ℓ). As F


(�) ≥ F

(0), 

M F

(�)ℓ

K ≥ M F

(0)ℓ

K  everywhere in ℓ and in turn ��
(�)� �

�(�) ≥ ��
(0)� �

�(0). 

Consequently, the period service workload ��. ��̅�. � = �(��. �� + ��� �� E91/
:) is greater 
under smaller access lengths �


(�) than under greater ones �

(0). 

The “Monotonicity” turns into “Increasingness” with respect to * as Availability factor which 
decreases the access lengths 

We are now ready to define an Accessibility factor in a more formal way. 

Definition: Availability factor: A parameter * of an access law F
 is an Availability factor if it 
makes the access lengths decrease in the weak sense: i.e. between two values *0 and *� ≥ *0, 

the associated access laws satisfy that �

(�) is weakly smaller than �


(0). 
Thus, when * increases the CDF F
|I increases everywhere. In turn, the service workload is 
an increasing function of the availability factor. If furthermore the average number of 
available vehicles, �!�,*, increases with *, then so does the fleet resizing function. It is strictly 
increasing if one of its components is so, for instance the average number of available 
vehicles. 

7.4 Stochastic models of Fleet Availability 

Let us put forward three alternative sets of assumptions that constitute three models of 
availability: by order of increasing complexity, the Concentrated model, the Poisson model 
and the Truncated Poisson model. 

In the Concentrated model, it is assumed that the number of available vehicles, �, is about 
constant hence approximately equal to its average value �!. Then * = �  is rightly an 
availability factor, since F
|I(1) = 1 − (1 − 1/�)I is an increasing function of * everywhere 



Fabien Leurent, ENPC-CIRED  April 30, 2021 

Shared Scooter Service (S3) Model with opportunistic usage 11 

in 1 ∈ 90, �:. Furthermore, �!�,* =  * increases strictly with * from 0 to infinity, and so does 
the fleet resizing function since �� tends to 0 when * does so (it is obvious for every ��|ℓ, 
then by aggregation). Complementarily, F
|I(1) is a continuous function of * for every 1, and 
in turn �� and ��̅� are continuous with respect to *, making the fleet resizing function 
continuous. Thus the requirements for the existence and uniqueness of traffic equilibrium are 
satisfied. 

In the Poisson model, a Poisson law with intensity * is postulated for �: thus Pr���  =
�PI*;/�! , which is a continuous function of *. This postulate is obviously an approximation 
since it assigns positive probabilities to values of � beyond fleet size �… A specific appendix 
is dedicated to the Poisson model, which is relatively simple. Its advantages are (i) that 
�!�,* =  *, (ii) F 
|I(1) = �PIY/�, a continuous function of * that decreases with it for every 
1 > 0, thereby making * a correct availability factor, (iii) functions �� and ��̅� are continuous 
with respect to *. Thus the Poisson model also satisfies the requirements for the existence and 
uniqueness of traffic equilibrium. A salient feature of this model is that the Fleet Resizing 
Function does not depend on �, which makes it a convenient Fleet Sizing Function depending 
on a target access length �/* and a period demand volume �. 

The third model is a truncated Poisson model, still with parameter * and such that the number 
of available vehicles is limited to the �0,1, . . . �� range. Then, denoting XH(1) ∶= ∑ 1; �!⁄H;GK , 
we have that  

 �;
(H,I) = *; 9�! XH(*):⁄ .   (24) 

It is shown in Appendix C that �!�,* = Ψ�(*) , wherein ΨH(*) ∶= I.����(I)
��(I)  is continuous and 

increases from 0 to �P as * varies from 0 to ∞, Cf. Leurent (2019b). Furthermore, the access 
lengths are distributed according to the following CDF from above:  

 F 
|I(1) = ��(Ii!a|�(Y))
��(I) .   (25) 

The property that * is a correct availability factor is shown in Appendix C. Thus, the 
truncated Poisson model also induces the existence and uniqueness of traffic equilibrium.  

8/ Discussion and numerical study 

The model outcomes consist in (i) the distributions of trip access lengths and times, together 
with the probability of service usage according to trip length, (ii) the distributions of ride 
lengths and times, (iii) service fleet occupation measured as a period workload for the vehicle 
fleet, (iv) a characteristic equation of traffic equilibrium, with respect to availability factor * 
which is involved in the stochastic model of fleet availability. The characteristic equation can 
be turned into a fleet sizing rule according to target demand volume and average access 
length.  

As the traffic equilibrium is endowed with existence and uniqueness properties, all of the 
model outcomes constitute functions of the AF. And as the outcomes are characterized by 
explicit analytical formulas, this makes the model fully analytical. 

The analytical nature of the model makes it especially suitable to sensitivity analysis. We 
have shown that both the usage probability and the actual average ride length are increasing 
functions of the AF. In a similar way, the influence of all model parameters onto all model 
outcomes can be traced analytically to demonstrate their respective directions of variations, 
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either increasing or decreasing. This is the topic of a subsequent article. These influences 
depend on one another. For instance, given the fleet size, the demand volume exerts a 
decreasing influence on the AF: in turn, this makes the access length increase and the ride 
length decrease, as well as the usage probability. 

If S3 services under ring shape were implemented, then the analytical formulas would make 
them observable. For instance, knowing the fleet size, the service volume could be estimated 
from measuring in the field the average access length. 

8.1 Numerical study 

Numerical instance. Let us consider a ring road with radius � = 1km and circumference 
� = 6.3km. By assumption, trip lengths are distributed uniformly on [0, �/2] yielding 
average trip length � � of �/4 = 1,6km. Transaction time �� is set to 2’ (for scooter un-
parking then re-parking, putting one’s helmet etc.) and daily service period � = 14h, riding 
speeds such that 1/E91/
: =15km/h, daily trip volume � = 1000. Based on the Poisson 
model (cf. Appendix B), Figure 2 exhibits the fleet size according to * (part a) and to target 
access length �/* (part b).  

To serve a given volume of demand, halving the target access length from 400m to 200m 
requires doubling the fleet size. Of course, shorter access lengths require a larger number of 
available vehicles, at the cost of a larger share of idle time for each vehicle in the fleet. 

  

Fig. 2. Fleet size according to (a) Theta, (b) Target access length. 

9/ Conclusion 

We have provided an analytical model for a shared scooter service (S3) under ring form, free-
floating and opportunistic usage. Owing to postulates of homogeneity in space and time, we 
established simple formulas for the average access length and time, ride time, probability of 
occupation. Given the fleet size and the potential demand volume, the number of available 
vehicles is involved in a balance equation that characterizes a state of traffic equilibrium for 
that system. This equation can be solved with respect to a variable called “availability factor” 
as it determines the statistical distribution of the number of available vehicles. We established 
some mild conditions under which a traffic equilibrium does exist and is unique. Moreover, 
the characteristic equation constitutes a fleet sizing rule for a service operator targeting both 
the demand volume (a quantitative objective of service) and the access length (a qualitative 
objective). 

The S3 traffic model is a physical and technical model. It stands as the scooter counterpart of 
the ring-shaped taxi service model (Leurent, 2019a) and the ring-shaped Shuttle service 
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model C3 (Leurent, 2019b). It may represent a ring-shaped bike-sharing system as well, if 
operated in free-floating mode. 

The economic theory of the S3 model can be developed along the same path as that for the 
taxi and C3 models, all the more so as the characteristic equation is analogous to that of the 
taxi service. Yet service production for a free-floating S3 is specific as it involves charging 
operations and vehicle maintenance, which we did not address in detail for the other modes 
(since vehicle driving, be it human or robotic, enables for offline maintenance and energy 
refill). 
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Appendix A: The Concentrated Model of Availability 

The postulate of a concentrated number of available vehicles involves a continuous 
approximation: the discrete value of � is put in equivalence with the continuous value �!, i.e. 
*. We have that: 

 Pr���  = 1�;GI�.   (A.1) 

A.1 On access lengths 

The access length has a simple CDF from above: 

 F 
|I(1) = (1 − min�1, 1/��)I.   (A.2) 

Given 1 ∈:0, �9, then 1 − 1/� ∈:0,19: when * increases, F 
|I(1) decreases: thus F
|I(1) 
increases with *, which is thus a suitable availability factor.  

The associated PDF is simply: 

 f
|I(1) = I
� (1 − 1/�)IP01�KZYq��.   (A.3) 

A.2 Probability of utilization 

The probability of utilization conditional to trip length is generic whatever the initial 
distribution: 

 ��|ℓ = F
(ℓ) = 1 − (1 − min�1, ℓ/��)I.   (A.4) 

To go further, let us from now on consider a uniform distribution of trip lengths in the domain 
90, �/2:. Thus, f�(ℓ) = �

� 1�KZℓq�/�� and  

 F�(ℓ) = min�1, 2ℓ/��.  
Over the initial distribution of trip lengths, the probability of service utilization satisfies 
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�� = 1 − M F 
|I(ℓ) NF�(ℓ) = 1 − �
� M (1 − ℓ/�)I Nℓ�/�

K   

= 1 − 2 M (1 − �)I N�.�
K = 1 − 2 �− 0

I�0 (1 − �)I�0�K
.� = 1 − �

I�0 (1 −. 5I�0)  

Thus, 

 �� = IP0�.� 
I�0 .  (A.5) 

It depends only on *, not on �, nor � or �. 

A.3 Trip lengths among the rides 

Coming to the trip lengths among the rides, from (6) we deduce that: 

 f��(ℓ) = ��P0. (1 − (1 − ℓ/�)I). �
� 1�KZℓq�/��.   (A.6) 

It follows that  

��. M ℓ f��(ℓ) Nℓ =  �
� M ℓn1 − (1 − ℓ/�)Io Nℓ�/�

K   

= �
�

0
� (�

�)� − �
� M ℓ(1 − ℓ/�)I Nℓ�/�

K = �
¡ − 2� M �(1 − �)I N�0/�

K   

= �
¡ + 2� �� 0

I�0 (1 − �)I�0�K
.� − 2� M 0

I�0 (1 − �)I�0 N�0/�
K   

= �
¡ + ��

I�0 (. 5)I�� + ��
(I�0)(I��) n(1 − �)I��oK

.� = �
¡ + �

I�0 (. 5)I�0 − ��
(I�0)(I��) (1 − (. 5)I��)  

= �
¡(I�0) (* + 1 + 20PI − 0

I�� k8 − 20PIl).  

So that: 

 � �� = �
¡ . I�0���� P �

 £¤(¥P��� )
*−1+.5* .   (A.7) 

A.4 Access lengths among the rides 

As for the effective access lengths, their PDF conditionally to trip length ℓ ≤ C is 

 f
|ℓ� (1) = I
�  (0PY/�) ��

0P(0Pℓ/�)  1�YZℓ�.   (A.8) 

The conditional average access length is such that:  

F
(ℓ). � 
|ℓ� = M 1. f
(1)N1ℓ
K = I

� M 1. (1 − 1/�)IP0N1ℓ
K   

= *� M �. (1 − �)IP0N�ℓ/¦
K = �n−�(1 − �)IoK

ℓ/¦ + � M (1 − �)IN�ℓ/¦
K   

= −ℓ s1 − ℓ
¦tI + � �− 0

I�0 (1 − �)I�0�K

ℓ
§ = �

I�0 (1 − s1 − ℓ
¦tI�0) − ℓ s1 − ℓ

¦tI
  

= �
I�0 ¨1 − s1 − ℓ

¦tI + ℓ
� s1 − ℓ

¦tI© − ℓ s1 − ℓ
¦tI = �

I�0 ¨1 − s1 − ℓ
¦tI − * ℓ

� s1 − ℓ
¦tI©  

Thus 

 � 
|ℓ� = ¦
I�0 (1 − * ℓ

¦ ((1 − ℓ
¦)PI − 1)j ).   (A.9) 
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Over the population of all rides, from (9) we get that: 

 f
�(1) = ��P0. I
� s1 − Y

�tIP0 . (1 − 2 Y
�) 1�KZYq�/��.   (A.10) 

The average effective access length over the population of service rides comes from (10): 

��� 
� = M � 
|ℓ�  ��f��(ℓ)Nℓ  =  �
� M �

I�0 ¨1 − s1 − ℓ
¦tI − * ℓ

� s1 − ℓ
¦tI©  Nℓ�/�

K   

=  �
I�0 � M k1 − (1 − z)I − *�(1 − �)Il N�.�

K    

=  �
I�0 �(0

� + � 0
I�0 (1 − �)I�0�K

.� + � I«
I�0 (1 − �)I�0�K

.� − I
I�0 M (1 − �)I�0 N�.�

K )  

 =  �
I�0 �(0

� + 0
I�0 (. 5I�0 − 1) + I

I�0 . 5I�� + I
I�0 � 0

I�� (1 − �)I���K
.�)  

=  �
I�0 �(0

� + 0
I�0 (. 5I�0 − 1) + I

I�0 . 5I�� + I
I�0

0
I�� (. 5I�� − 1))   

=  �
I�0 �(0

� + �
I�0 s. 5I�� − 0

�t + I
I�0 − I

I�0 (1 −. 5I��) + I
I�0

0
I�� (. 5I�� − 1))  

=  �
I�0 �(0

� + I
I�0 + 0

I�0 + �
I�0 k. 5I�� − 1l − (1 −. 5I��) I

I�0 (1 − 0
I��))   

=  �
I�0 �(¬

� − 0
I�0 (2 + * − I

I��)(1 −. 5I��))  

So that 

 � 
� = 2
*−1+.5* �(3

2 − 1
*+1 (2 + * − *

*+2)(1 −. 5*+2)).   (A.11) 

A.5 Ride lengths 

Turning to ride lengths ��� , their PDF conditionally to trip length ℓ comes from (12): 

 f�|ℓ� (S) = 1�KZWZℓ�
I
� (1 − (ℓ − S)/�)IP0/n1 − (1 − ℓ/C)Io.   (A.12) 

The average ride length conditionally to trip lengths ℓ satisfies that: 

F
(ℓ). � �|ℓ� = M F
(1) N1ℓ
K = M n1 − (1 − 1/C)Io N1ℓ

K   

= ℓ + � �
I�0 (1 − 1/C)I�0�K

ℓ = ℓ − �
I�0 (1 − (1 − ℓ/C)I�0)   

= ℓ − �
I�0 ¨1 − s1 − ℓ

¦tI + ℓ
¦ s1 − ℓ

¦tI© = ℓ ¨1 − 0
I�0 s1 − ℓ

¦tI© − �
I�0 ¨1 − s1 − ℓ

¦tI©  

= ℓ I
I�0 − �Pℓ

I�0 (1 − s1 − ℓ
¦tI)  

Thus, 

 � �|ℓ� = ℓ I
I�0 (1 − s1 − ℓ

¦tI)P0 − �Pℓ
I�0.  (A.13) 

Over the population of all rides, the PDF and expectation of the ride lengths stem from (15) 
and (16) respectively: 

��f��(S) = �
� M ��|ℓ f�|ℓ� (S) Nℓ�/�

W = �
� M I

� (1 − (ℓ − S)/�)IP0 Nℓ�/�
W   
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= �
� n−(1 − (ℓ − S)/�)IoW

¦/� = �
� ¨1 − s0

� + ­
�tI©  

 f��(S) = �
�  *+1

*−1+.5* ¨1 − s0
� + ­

�tI©.  (A.14) 

��� �� = M ℓ ��f��(ℓ) Nℓ�/�
K = �

� M ℓ ¨1 − s0
� + ℓ

�tI©   Nℓ�/�
K   

= �
�

0
� (�

�)� − 2� M � s0
� + �tI N�.�

K = �
¡ − 2� ® «

I�0 s0
� + �tI�0¯

K

.�
+ ��

I�0 M s0
� + �tI�0 N�.�

K    

= �
¡ − �

I�0 + ��
I�0 ® 0

I�� s0
� + �tI��¯

K

.�
= �(0

¡ − 0
I�0 + �

I�0
0

I�� k1 −. 5I��l)  

Thus: 

  � �� = �
¡ . *−3� ¤

 £¤k¡P.� l
*−1+.5* .  (A.15) 

The respective influences of � and * on the average ride length are under product form for a 
uniform distribution of initial trip lengths.  

A.6 Fleet sizing function 

Owing to the generic formulation of the S3 traffic model and as the access law specific to the 
concentrated model does not depend on �, it follows that in this specific model the fleet 
resizing function does not depend on �. It is then a straightforward “fleet sizing function”. Its 
exact formula, denoting ° ∶= �. ��/� and ± ∶= �. E91/
:/�, is as follows: 

|�(*) ∶= * + °. �� + ±. ��� �� , so that  

 |�(*) ∶= * + °. *−1+2−*
*+1 + ±. �

¡ . *−3� ¤
 £¤k¡P�� l
*+1 ,   (A.16a) 

For values of * above 5, we can neglect 2PI and obtain a first approximate sizing function: 

 |�(*) ≈ * + °. *−1
*+1 + ±. �

¡ . *−3� ²
 £¤

*+1 ,   (A.16b) 

For larger * e.g. beyond 20, we may neglect 
¥

I�� and approximate 
IP0
I�0 ≈ IP¬

I�0 ≈ 1, yielding: 

 |�(*) ≈ * + ° + ±. �
¡,   (A.16c) 

Then, the solution to the characteristic equation is obtained straightforwardly: 

 *H,�∗ ≈ � − (�� + �
¡ E91/
:)�/�.   (A.17) 

Complementarily, for large values of *, we have �� ≈ 1 and � �� ≈ � � = �
¡ for the uniform 

distribution of trip lengths. 
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Appendix B: The Poisson Model of Availability 

B.0 Postulate and basic properties 

Assuming a Poisson distribution with parameter *, then  

 Pr���  = �PI*;/�!.   (B.1) 

The mean number of available vehicles is equal to the distribution parameter: 

 �!�,*  = *.   (B.2) 

It is a well-known property of Poisson laws. For completeness, let us recall the proof that is 
very simple: 

�!�,* = ∑ Pr���. ��≥0 = �−* ∑ � *�
�!�≥0 = �−** ∑ *�−1

(�−1)!�≥1 = �−** ∑ *�
�!�≥0 = �−**�* = * .  

Another well-known property of the Poisson law is that its variance is equal to *, too. Thus 
the relative dispersion �; ∶= ³´(�)/�  is equal to 1/√*: the larger *, the more concentrated is 
� in relative terms. 

B.1 Access lengths 

 F 
(1) = exp −*F0(1).   (B.3) 

Proof. F 
(1) = ∑ F 
|;(1)Pr���;XK = �PI ∑ ki!�(Y)l¶I¶
;!;XK = �PI ∑ (i!�(Y)I)¶

;!;XK = �PI�Ii!�(Y) , 
yielding the claimed result. This proof is recalled here for the sake of completeness – it is a 
well-known property of Poisson laws that the length until the first occurrence has an 
exponential distribution with parameter equal to the intensity of the Poisson law (e.g. 
Kleinrock, 1975). 

B.2 Utilization probability 

Given �� = ℓ ≤ �/2, the probability of service utilization is 

 ��|ℓ = Pr��
 < �� | �� = ℓ� = F
(ℓ) = 1 − �PℓI/¦.   (B.4) 

Over the distribution of trip lengths, the probability of service usage is then 

 �� = M ��|ℓNF�(ℓ) = 1 − M �PℓI/¦ NF�(ℓ).   (B.5a) 

The probability of NOT using the service amounts to the Laplace transform f�∗ of PDF 

f� ∶= ·
·ℓ F� at point */C which is the spatial density of available scooters. 

 For trip lengths uniformly distributed from 0 to �/2, the average is � � = �/4 and we have 

that M �PℓI/¦ NF�(ℓ) = �
� M �Pℓ 

§ Nℓ
¸
¤K = �

I (1 − �P 
¤), thus: 

 �� = 1 − �
I (1 − �P 

¤).   (B.5b) 

It depends only on *, neither on the ring circumference nor on the fleet size or the demand 
volume. 

B.3 Trip lengths over the population of rides 

Coming to the trip lengths among the rides, from (6) we deduce that: 

 f��(ℓ) = ��P0. (1 − �PℓI/¦). f�(ℓ).   (B.6a) 
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Starting from a uniform initial distribution, the resulting distribution is: 

 f��(ℓ) = ��P0. (1 − �PℓI/¦). �
� 1�KZℓq�/��.   (B.6b) 

The average trip length among the population of rides satisfies that:  

��. M ℓ f��(ℓ) Nℓ =  M ℓ ¨1 − �Pℓ 
§ © f�(ℓ)Nℓ , so that 

 � �� = �m
−1. (� � − M ℓ �Pℓ 

§  f�(ℓ) Nℓ).   (B.7a) 

From the uniform distribution,  

�
� M ℓ �PℓI/¦ Nℓ�/�

K = �
� �−ℓ �

I �PℓI/¦�K
�/� + �

I M �PℓI/¦ Nℓ�/�
K   

 = − �
I �P 

¤ + �
I (1 − ��) = �

I ¨1 − �� − �P 
¤© = �

I sI
� (1 − ��) − ��t = �

� (1 − ��) − �
I ��  

So that: � �� = �m
−1. s�

¡ − �
� (1 − ��) + �

I ��t = �
I + �

� − �
¡ �m

−1 

 � �� = �
¡ (¡

I + 2 − 0
gh

).   (B.7b) 

B.4 Effective access lengths (over the population of rides) 

Let us define the effective access length as �′
 ∶= min��
, ���. Conditionally to �� = ℓ, �′
 
takes value ℓ with probability F 
(ℓ) and on every value 1 < ℓ it has probability density 
function of �PYI/¦*/� . The conditional average effective access length is then 

 � 
 |ℓ = �
I ¨1 − �Pℓ 

§ ©.  

Proof. Value ℓ is taken with probability F 
(ℓ) = �Pℓ 
§  yielding contribution of ℓ�Pℓ 

§  to the 
average. The values 1 < ℓ contribute an amount of  

M  
¸ 1 �PYI/¦N1ℓ

K = n−1�PYI/¦oK
ℓ + M �PYI/¦N1ℓ

K = −ℓ�Pℓ 
§ + ¸

  ¨1 − �Pℓ 
§ ©.  

The contribution of the first term to the average is canceled out by that of the specific value.  

Overall, the average access length is  

 � 
 = �
I ��.  

Proof. � 
 = M � 
 |`eGℓ NF�(ℓ) = M �
I ¨1 − �Pℓ 

§ ©  NF�(ℓ) = �
I ¨1 − M �Pℓ 

§  NF�(ℓ)© in which 

we recognize the formula of ��. 

For those effectively using the service, the effective access length �
|ℓ�  conditionally to 
�� = ℓ has PDF as follows: 

 f
|ℓ� (1) = ¹º» (Pℓ 
§ ) 

§
0P¹º» (Pℓ 

§ ) 1�KZYZℓ�.   (B.8) 

Its average value is thus: 

 � 
|ℓ� = M *
� 1�−1*/CN1ℓ

0
F[(ℓ) = �

* − ℓ
exp (ℓ*

C )−1
.  (B.9) 
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Over all effective users, the effective access length �
� has PDF as follows: 

 f
�(1) = ��P0. f
(1). F �(1) = ��P0exp (− ℓI
¦ ) I

¦ F �(1).   (B.10) 

To obtain the effective access length averaged we have to integrate the conditional average 
taking into account their respective weights that are proportional to F
(ℓ). NF�(ℓ): 
� 
� = ��P0 M(−ℓexp (− ℓI

¦ ) + ¸
 (1 − exp (− ℓI

¦ ))) NF�(ℓ), so that  

 � 
� = �
* − ��P0M ℓexp (−ℓ*

C ) NF](ℓ).  (B.11a) 

Then, it is less than the target length 
�
I among riders. Recalling the derivation of (B7.d) for a 

uniform distribution of trip lengths we know that ��P0 M ℓ �Pℓ 
§  f�(ℓ) Nℓ = �

� (��P0 − 1) − �
I. 

As ��P0 − 1 = 0Pgh
gh

= �
I ( 0P¹º» P 

¤
0P¤

 (0P¹º» P 
¤)) so that  

 � 
� = �
I (2 − 0P¹º» P 

¤
0P¤

 (0P¹º» P 
¤)).  (B.11b) 

When * is large, exp − I
� is negligible and � 
� ≈ �

I (2 − (1 + �
I))  ≈ �

I (1 − �
I). Thus 

�
I is a 

good indicator of the average access length not only overall but also among riders, who tend 
to obtain shorter lengths. 

B.5 Ride lengths 

The service is used depending on the access conditions and especially the access length in 
comparison to the trip length. The residual length ��P
 ∶= �� − �′
 is the ride length only if 
strictly positive. Conditionally to �� = ℓ, it takes value 0 with probability F 
(ℓ) and each 
value S ∈:0, ℓ: with probability density �(WPℓ)I/¦*/�. 

The conditional average residual trip length is thus: 

 � �P
 |`eGℓ = M  
¸ S �(WPℓ)I/¦N1ℓ

K = ℓ − ¸
 (1 − �PℓI/¦).  

The overall average residual length satisfies that 

 � �P
 = � � − �
I ��. 

Proof. The overall average residual length stems from the integration of the conditional 
average residual lengths over the distribution of trip lengths. Thus   

� �P
 = M � �P
 |`eGℓ NF�(ℓ) = � � − �
I (1 − M �Pℓ 

§  NF�(ℓ)) in which we recognize ��. 

For those using the service, the ride length conditional on trip length has PDF 

 f�|ℓ� (S) = f
(ℓ − S)1�KZWZℓ�/F
(ℓ).   (B.12) 

In their population, the average ride length conditional on trip length is 

 � �|ℓ� =  ̀¼ |½e¾ℓ
ia(ℓ) = ℓ

0P¿�ℓ /§ − ¸
 .  (B.13) 

Over all effective users, the ride length ���  has PDF as follows: 

 f��(1) = ��P0 M f
(ℓ − 1)NF�(ℓ)r
Y .  (B.14) 

For those using the service, the effective average ride length is thus: 
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 � �� = 0
gh

� � − �
I.  (B.15) 

It depends on f� only through � � and �� = 1 − f�∗(*/�), wherein */� is the spatial density of 
available vehicles. 

For trip lengths uniformly distributed from 0 to �/2, their initial average is � � = �/4 and we 

have that �� = 1 − �
I (1 − �P 

¤), thus: 

 � �� = �
¡ ®1 − �

I (1 − �P 
¤)¯

P0
− �

I.  (B.16) 

Under large *, � �� ≈ �
¡ (1 + �

I) − �
I  ≈ �

¡ (1 − �
I)  

B.6 Fleet sizing function 

Proposition: Fleet sizing function in the Poisson model. The function * ⟼ |�(*) ∶= * +
�. ��. ��̅�/� is continuous and it increases strictly from 0 to infinity as * does so.  

Proof. As for increasingness, the functions �� and ��̅� are increasing with respect to * 
because it is a suitable availability factor. As both functions are nonnegative, their product 
also is an increasing function of *, and so is function * ⟼ |�(*) ∶= * + ����̅��/�. 
Increasingness is strict because the part ����̅��/� is increasing and part * is strictly 
increasing.  

Coming to smoothness, function * ⟼ ��(*) is continuous and differentiable with respect to 
* because so are the exponential functions * ⟼ �PℓI/¦ and the integral of such functions 
over the distribution of trip lengths. When * → 0 then �PℓI/¦ ≈ 1 − ℓ*/C so that 1 − �� ≈
� �*/C  – indeed a standard property of Laplace transforms. Thus, function * ⟼ ��(*)/* is 
continuous at point 0 as well as for any * > 0. In turn, function * ⟼ ��. ��̅� = ���� +
E91/
:(� � − ���(*)/*) has the same smoothness properties as ��/*.  

As for the range of variations, when * → 0 so does ��. ��̅�, implying that |� → 0. And as 
|� ≥ * it will tend to infinity when * does so. Overall, function |� is continuous and it 
increases strictly from zero to infinity with *. QED. 

In fact function |� is the most essential outcome of the Poisson model: given � and * it 
yields the fleet size � = |�(*) that meets the demand volume � and the quality objective *. 
Another way to interpret that quality objective is to recall that �/* is the spatial density of 
available vehicles: thus, it stands as the average length that a potential user has to walk in 
order to find an available vehicle. 

For a uniform distribution of initial trip lengths, the fleet sizing function is specified as: 

|�(*) ∶= * + (��. ��  + ��� �� E �0
Á�) �

Â , so that  

 |�(*) = * + (��. ��  + �(0
¡ − 0

I ��)E �0
Á�) �

Â,   (B.18a) 

For large *, �� ≈ 1 − 2/* can be approximated by 1 and ��/* may be neglected compared to 
0
¡ ,so that  

 |�(*) ≈ * + (��  + �
¡ E �0

Á�) �
Â,   (B.18b) 

This is the same approximate function as in the concentrated model. 
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Depending on a target access length ℓ
 and also on �, the fleet sizing function is thus: 

 �Ã(ℓ
, �) ≈ �
ℓa

+ (��  + �
¡ E �0

Á�) �
Â,   (B.19) 

The shares of idle (available) and busy times for the scooters are respectively: 

p
 = �
ℓaHÃ  and  pÄ = (��  + �

¡ E �0
Á�) �

ÂHÃ  

For a scooter, being busy is a dynamic state with odds ratio of 
»a
»a

= �
ℓa

. Â
� /(��  + �

¡ E �0
Á�) . 

Put in words: both ℓ
 and � influence vehicle productivity in a proportional way and the odds 
ratio in an inversely proportional way. The smaller the target access length, the larger the 
odds ratio. The larger the demand volume, the smaller the odds ratio. 

Appendix C: The Truncated Poisson Model of Availability 

The truncated Poisson model has parameter * and is such that the number of available 
vehicles is limited to the �0,1, . . . �� range.  

Denoting XH(1) ∶= ∑ 1; �!⁄H;GK , we have that �;
(H,I) = *; 9�! XH(*):⁄ . 

It holds that �!�,* = ∑ � *�
�!X�(*)

��=0 = *
X�(*) ∑ *�−1

(�−1)!
��=1 = Ψ�(*) , wherein ΨH(*) ∶= I.����(I)

��(I)  is 

continuous and increases from 0 to �P as * varies from 0 to ∞, Cf. Leurent (2019a).  

It remains to demonstrate that * is truly an availability factor for the access law in the 
truncated Poisson model.  

From (25), F 
|I(1) = ∑ (F 
|0(1)); I¶
;!��(I)

H;GK , so that  

 F 
|I(1) = ��(Ii!a|�(Y))
��(I) .   (C.1) 

Thus F
|I(1) = 1 − F 
|I(1) = ��(I)P��(IÅ)
��(I) , wherein R ∶= F 
|0(1) ∈ 90,1:.  

Let us show that function * ⟼ ÆÅ( *) = 1 − XH(*R)/XH(*) increases with respect to *. 

Its derivative is as follows: 

V
VI ÆÅ( *) = −R �Ç �(IÅ)

��(I) + ��(IÅ).�Ç �(I)
��(I)¤ = ��(IÅ)

��(I) s �Ç �(I)
��(I) − R �Ç �(IÅ)

��(IÅ)t  

= ��(IÅ)
��(I)

0
I (ΨH(*) − ΨH(*R)). 

As R ∈ 90,1:, 0 ≤ *R ≤ * so that, by the increasingness of ΨH, we have that 
V

VI ÆÅ ≥ 0. 

Therefore function ÆÅ = F
|I(1) increases with *, which implies that * is a rightful 
availability factor. 
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Appendix D: a two-state Markov chain model of vehicle occupation 

A shared scooter may be modeled as a stochastic system taking one out of two states A/B in 
alternation: state A means no current user hence Available to any newcomer, whereas state B 
stands for Busy, i.e. Occupied by a user. The two states communicate with each other, i.e. 
there are transitions from each state to the other one. Figure 3 depicts the two states and the 
stochastic transitions between them, with respective transition rates of RÈ and z. 

. 

Fig. 3. States and Transitions. 

Transition rate z is the ending rate of an occupation under way. From the duration É, it is the 
ratio between the probability Pr���� ≤ É + ÊÉ | ��� > É� that such occupation will end during 
an elementary interval 90, ÊÉ:, and its incremental duration ÊÉ. Making the crude 
approximation that the random variable of vehicule occupation, ���, is distributed 
exponential, then the exponential parameter is 1/��̅�. Thus, the transition rate satisfies  

z ∶= limÌÍ→K
^_�ÎÏÐZÍ�ÌÍ | ÎÏÐfÍ�

ÌÍ = limÌÍ→K
^_�ÎÏÐZÍ�ÌÍ ∩ ÎÏÐfÍ�

^_�ÎÏÐfÍ�.ÌÍ    

= ^Ñi(ÎÏÐ)
0P¦Ñi(ÎÏÐ) = ¹º» (P Ò

Ó ÏÐ)/Î̅ÏÐ
¹º» (P Ò

Ó ÏÐ) = 1/��̅�. 

  z = 1/��̅�.   (D.1) 

As for the transition rate from State A (Available) to State B (Busy), it comes from the overall 
rate of customers arrivals per time unit, �. �� /�, divided by the average number of available 
vehicles, �!:  

 RÈ = �. ��/(�. � ).   (D.2) 

The system is in stochastic equilibrium with stationary probability distribution 9�
, �Ä: such 
that �
, �Ä ≥ 0 and �
 + �Ä = 1, and the probability flow is conserved in each state: 

 �
. RÈ = �Ä. z.   (D.3) 

Put in words, the probability flow going out of State A and to State B per time unit is equal to 
that coming in A from B. Substituting 1 − �
 for �Ä, the balance condition becomes that 

�
. RÈ = (1 − �
)z  hence  �
 =  z/(z + RÈ) = 1/(1 + RÈ/z) = 1/(1 + �. ��. ��̅�/(�. � ))   

At every instant, it also holds that �
 = � /�. 

Substituting, the balance equation becomes an equation in �!: 
; 
H . s1 + �. ��. � ÏÐ

Â.; t = 1, i.e.  

  � = � + �m�R̅T�/�.  (D.4)  

Thus, the balance condition of the Markov model is exactly the characteristic equation of the 
traffic model. 
  

A B 

µ 

λ’  


