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On a Shared Scooter Service with
Opportunistic Riding under Ring Shape:
the S3 Traffic Model and its Equilibrium

Abstract

Shared Scooter Services (S3) have been deployedry cities to provide public transport to
individual users on a free-floating basis. Thec#&tbrings about an analytical traffic model
for such service under ring shape, i.e. postuldtiege is a ring road along which the scooters
are required to park and expected to be driveordeer to avoid detours and increase vehicle
productivity as well as local availability to potent users. Opportunistic Riding is also
postulated: on their way, every user takes the &vsilable vehicle which they encounter.
Also postulated are the homogeneity in both spawt tame. With respect to the ring
circumference, the daily volume of potential trifise statistical distributions of trip lengths,
walk speeds an ride speeds, as well as the fleet gperation period and transaction times,
analytical formulas are provided for (i) accessgtes and times, together with usage
probability, (ii) ride lengthsang times, (iii) vehicle occupation at the fleet levéiv) the
average number of available vehicles. Traffic efuim is shown to exist and to be unique.
Its characteristic equation is recast as a fleehgirule according to demand volume and
target access length, which stand respectivelyhasquantitative and qualitative service
objectives.

Keywords: shared mobility services; free-floating scootesshicle occupation; fleet sizing;
stochastic model; traffic equilibrium.

1/ Introduction

Background. In recent years, e-scooters have emerged as\ement mode of travel for
many individuals. As a vehicle, an e-scooter iseagnd its motor enables for speeds up to 20
km/h and beyond: this is quite efficient in the ambsetting. Furthermore, its small size and
light weight make it easy to carry out e.g. in atcank or in transit vehicles (buses, trains).

The parallel development of connectedness bothvédiicles and for people owing to
smartphones has given rise to many shared mobéityices. Among them, e-scooters sharing
systems have been deployed in many big cities waalkel

To what extent may such e-scooter sharing sendoesribute to public transport in urban

areas? This question carries obvious stakes forilityoplanners in territories. Shared e-

scooters look environmental friendly compared tivgie cars, not only in terms of matters
utilized and energy consumed but also to the clysctheir parking requires little space and
their traffic is by far less intrusive and dangey¢o pedestrians.

Objective. A number of traffic models have been developegddorm traffic studies with
much detail in space and time. This paper bringaiéa simple traffic model for an e-scooter
shared mobility service under ring shape. The jplads to channel the users’ trips in the
territorial space, so as to increase vehicle abiditha along the ring, to avoid detours, to ease
the service logistics (from vehicle maintenance dpergy refills, passing by fleet
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repositioning). By simultaneously reducing the @penal costs and increasing vehicle
productivity, a ring-shaped service is expectedeich commercial profitability under wider
conditions of demand and territory, thereby enapline planners to expand the spatial
outreach of public transport.

In the model, the territorial conditions are reprged as the circumference of the ring and the
riding speed, a period volume of trips and theigtaal distribution of their lengths. The fleet
size is given and the service is operated on affoaéng basis. The potential service users
take the first available scooter which they enceuwnn their way: there is no prior booking,
in contrast to a related former model (Leurent, Y0ZFrom these assumptions, the model
determines the access conditions in terms of veadgths and walk times, the ride lengths and
riding times depending on users’ ride speeds, ttwumation of the vehicle fleet and its
availability, as well as the probability of usirigetservice among the potential demand.

Methodology. Homogeneity is postulated regarding both spadetiame. Spatial homogeneity
is postulated for trip origin and destination endp® hence for the positions of available
vehicles. Combined to the ring shape, this spdt@nogeneity gives rise to circular
symmetry. Temporal homogeneity is postulated alanduty period within the day, for
instance a 4h period around the evening peak.

Traffic is modeled in disaggregate and stochastig.\ieach service request is identified with
its own service user. Trip lengths are modeled statstical distribution. Users are modeled
in terms of walk speeds and ride speeds, with gtetistical distribution.

Each scooter is identified as an individual reseumf which the dynamic state is either
Available (i.e. vacant) or Busy. At any instante thumber of available scooters is a random
variable with specific distribution of which the areis linked to the fleet workload. The
service traffic involves two causalities: firstetimore there are available scooters, the higher
the rate of usage and the longer the ride lengththe demand side, inducing higher traffic
load on the supply side; second, a higher traffexllcomes with more busy scooters and less
available scooters at any instant. The two causslibalance each other, leading to traffic
equilibrium. We demonstrate the existence and wmgsas of that equilibrium and derive
some consequences, among which a fleet sizingaederding to potential demand volume
and target access length.

Article structure. The rest of the article is in eight parts. Setti describes the system:
territorial conditions, service supply and travednthnd. Section 3 introduces the model
architecture. After modeling successively Serviceesas in Section 4, User rides in Section 5
and Fleet occupation in Section 6, the model isgrated in Section 7, which addresses traffic
equilibrium. Section 8 discusses some propertiegscmsequences of the equilibrium state.
Lastly, Section 9 concludes and points to theaasetievelopments.

2/ System description and mathematical notation

Inside an urbanized territory, assume that a rogdwauit is designated as pathway for the
shared e-scooters. By assumption, it can be useithier directions and its overall shape is a
circular or quasi-circular ring of radiu® and circumferenc€ (which is about2nR for a
quasi-circular ring).

On the demand side, we consider that, during a pem®d ofH, there are&) trips that would

like to use the shared mobility service, half ofiethin each traffic direction. The trip origin
points are distributed evenly along the ring. Fridrair origin points the trips have spatial
lengthsL with statistical distribution that is identicabfn all origins. From the assumptions
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about the trips’ origins and lengths, it followsaththe destination points are also evenly
distributed along the ring.

Among the population of customers, each service has his own walk speead and ride
speedv: assumedly, these are cruising speeds over theamal ride legs respectively. Walk
speeds are statistically distributed with CONWV and ride speeds with CD§. Statistical
independence is assumed between them and alstheigeneration of trips.

By assumption, the service is operated under foegihg mode all along the ring.

Coming to service usage, each potential user bégrisip of lengthl. by walking along the
ring towards his destination. On his way, if hedBran available scooter then he takes it to
ride up to his destination: the walk length is dedd.,, A for Access, and the ride length is
denotedLy. The condition of service utilization is thidt, < L;}: if negative ther.; = 0 and

the service is not used, whereas if positive thgn= L, — L, is strictly positive and the
associated service timgy :=tp + ty involves the ride timety = Li /v according to ride
length L, and ride speed, and also a transaction time denotedor vehicle un-parking at
the point of availability and re-parking at theptdestination point. We shall denqig the
probability of utilizing the service among the paial customers.

On the supply side, there afé scooters constituting the service fleet, suppgsedl in
operational condition. At any instant, each of thieas a probabilitypy of being occupied,
which means Busy for riding as well as during tlamsaction operations. Thus, the trip time
trr IS also the resource occupation time for the srasted for riding.

At any instant, the average number of vacant sceotayk, satisfies that
k=N.(1-p). (1)

From the postulates of spatial homogeneity for deiaips, we deduce that each available
scooter has its position distributed evenly aldmg ring, and that the respective positions of
the available scooters are statistically independen

3/ Model architecture
Among the model components, the following partsex@genous:

 on the demand side, trip volunge trip length distributiorf; := CDF(L;) with meanL,
walk speed CDRV and ride speed CD$;

« on the supply side, fleet siag operations perio#f, transaction time,

* ring circumferenc& pertains to the territory as it is involved botlihathe demand and the
supply of the shared mobility service,

* a stochastic model of vehicle availability, demiyithe statistical distribution of the number
of available scooters;, and its mean valuk, from fleet sizeN and an “availability factor”
denoted).

From these exogenous conditions, the model enaislés derive the following endogenous
components:

* on the demand side, the probability of servickzation p,,, according to trip lengtl, the
statistical distribution of trip lengths} conditional on using the service, those of access
lengthsL, and timest,, those of ride lengths; and timestg, that of trip timest;, J for
Journey, whether using the service or generally.
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» on the supply side, the statistical distributi@figide lengthsl; and timesty, the service
times tgr, the statistical distribution of the number of iéadale scootersk and the fleet
occupation probability,.

The model architecture involves four sub-models:

(i) the Access model first relatég to k hence taVv and#8, then compares, to L to obtain
Dyje: L andLy, and next derives, from L, andW;

(i) the Ride model establishég with respect td} andLy, then derivesy from L ands;
(iii) the Occupation model determingg; and relatepg to tgt, H, N andQ. py;

(iv) the Traffic equilibrium model relates the aage number of available vehicIEst_o the
occupation probabilitp,, and sets the availability factrso as to make the valueskioaind
po consistent throughout the chain of influences glihve previous three models.

Figure 1 exhibits the model architecture as a gsmtem of components and dependences.
Each model component is represented by a boxai.gaph node. Each straightforward

influence of one model component onto anotherdgcated by a link between their respective

nodes, with orientation according to causality. Teeponents and links are organized by
sub-model: in other words, each sub-model congists sub-system of dependences. The
figure shows that the traffic equilibrium model @@s a feedback to the other three sub-
models.

In the following Sections, we will introduce in tuthe Access model, the Ride model and the
Occupation model, before turning to the Traffic idquium model. Thus, the order of
presentation matches the logical thread in Figure 1

DEMAND w, Walk Ly, Trip Q, Deman( v, Ride
SIDE Speed length volume speed
tAI \ /

time w \Z
U, effective] Lg, RI g(.ac:engr'][h S tR,t_Ride
. .pu Ridershi m
C. Ring La, length Qp - L '/ &
circumferenc length / /
4 K ¢
0, Factor of ] po, Occupation|_ ter, RESOUrC
Availability ‘J probability |~ time
AN —_—7K A
~_—  _\ /
SUPPLY N, Fleet H, Time t;, Trans-
SIDE size span action time

Fig. 1: S3 Traffic Model Architecture.
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4/ The Access model

As potential rider, we consider an individual uieat has subscribed to the service and is
ready to use it, but will do so only if some ridingportunity occurs along his way from his
origin point to his destination point.

4.1 Access length conditionally to the number of available vehicles

Each available scooter is positioned at a pointridiged evenly along the ring: thus its
distance from the trip origin point is distributediform between 0 and ring circumferentce
Let us denote this access length to one availabd®ter asL,, its CDF asF,(x) =
min{x/C,1} for x >0 andF,(x) := 1 — F,(x) the distribution function cumulated from
above.

Whenk scooters are available, statistical independeanesafely be assumed and the access
length is the minimum ok i.i.d. random variable¥[0, C]. Its CDF cumulated from above
then satisfies:

FA|k(x) =1- FA|k(x) = (Fl(x))k- (2)

Proof. For any available scoote€ {1,.. k}, the lengthL; from the customer origin point has
CDF F,. The minimumL,, of k independent lengths so distributed satisfies that

Pr{lap > x} =Pr{l; >x: Vi} =1, 1-F(x) = (1 - F,x)k

4.2 The overall distribution of Access lengths

Now, the numberk is itself a random variable: let us denat )= Pr{k | N,8} the

probability values that stem from fleet si¥eand availability facto® in a way that will be
specified in the Traffic Equilibrium Model. The aed distribution of the access length
comes from the conditional distributions weightectiie Pr{k}. Thus, by integration over the
values ofk (and neglecting to denote the conditionality.gfto N and8),

Fa(x) = ot P Fape (0. 3)

Proof. Conditioning according t&, F,(x) = Pr{L, > x}=Y¥_,Pr{L, > x Nk}, hence
Fs(x) = XR-o Pr{Laj > x }.Pr{k}. Whenk > 1 we already know thalf (x) = (F; (x))*
and in fact this formula is also suitablekat 0 for which it says that the probability of not
finding an available vehicle within lengihis equal to 1.

4.3 The probability of service utilization

The service is utilized if and only L, < L;}. Given L = ¢, the probability of service
utilization is

Puje = Pr{ly < Lp | Ly =€} =F,(¥). (4)
Over the original distribution of trip lengths, theobability of service utilization is then
Pu = [ Puje dF7(€) = 1 — [ F4(£) dF7 (D). ()

4.4 Trip lengths depending on service utilization

In turn, the condition of service utilization detenes the statistical distribution of trip lengths
among the population of service rides: let us denbtthe conditional random variable. Its
probability density functioffi is related td andp,, in the following way:
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fr' (€) = pu " Puje- fr (£). (6)

Proof. As every trip has probabilipy,, of utilizing the service depending on its lengthin
the population of rides that are service utilizasiat holds that

f7 () « pye- fr(£).

DenotingA the factor of proportionality, by integration afth sides we get that
1 = 2 [ pyje-fr(£) d£, which implies thaf = p;*.

Let us also provide a more rigorous demonstration:

Fu(y) = PI‘{LT > y I LT > LA} = PI‘{LT > y n LT > LA}/PF{LT > LA}

= py Pr{ly > max{y,L,} } = pi* [ Fr(max{y, £})dF,(¢£).

Then, by differentiation,

fr(y) = ——F“(y) =py " [ fr(max{y, £}) 10 dF4(f)

= pat [V fr()AFA() = pi fr()F4 (7). ASF4(Y) = Puyy, this completes the proof.

4.5 Effective access lengths

For one rider with trip length¢, the effective access length denotgfl takes every
nonnegative valug with probability density of

fa10(x) = £4(0) Lix<ey/Fa (). (7)
Proof.Fy|,(x) := Pr{L, < x| Ly > Ly, Ly = £}

_ Pr{Lgsmin{x L7} NLy>L4|Lr=¢} _ Pr{la<min{x,f}} _ F4(min{x{})
Pr{Ly>L4|Lr=¢} Duje Fa(f)

By differentiation with respect te, we obtain thafy,(x) = f,(min{x, £}). 11,43 /F,(¥) ,
hence the claim.

It is then easy to obtain the conditional averageess length:

= Y

Laje = [ xf3,(0)dx = [ x.£4(x)dx/Fa(£).

Integrating by parts, the numerator amountgcity (x)]5 f F,(x)dx, so that

L, = J, (Fa(8) — Fo(x))dax/FA(8). (8)

Over the population of rides that stems from thiatrips and the access conditions, the
statistical distribution of effective access lersggtas CDF as follows:

Fi(x) :=Pr{l¥ < x} = [ Pr{l¥ < x| £} dF}(¥) = p;* [ F4(min{x, £}) dF(£)

= pi [Fa@)Fr(x) + f; Fa(®)dFr(£)]
The associated PDF is

f _
(200 = [ £ ,(0)dFE() = fFA((’g LeenydFE(8) = pi'fa(x) [ dF7(£) , 50 that

fi(x) = P £ (20). FT(X) (9)

Shared Scooter Service (S3) Model with opportunissage 6
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Furthermore, the average effective access lenggh te population of service rides satisfies
thatLy = [ L}, dF7(£), so that

L4 = pat J (Ji (Fa(0) = FaGo))dx) dF7(0), (10)

4.6 Access times
Coming to the access ting, from the definition of cruising walk speewsit holds that
tA: = LA/W

It can safely be assumed thigf andw are independently distributed. Then, the average
access time conditionally . = ¢ satisfies that

EA|€:ZA|€E[1/W] (113)
The overall average access time is then:

Similarly to access lengths, conditionally to seeviutilization the average access times
conditional onL; = ¢ or overall are respectively:

tae = Ly -E[1/W], (11c)

£ = L4 E[1/w]. (11d)

Instance. Takingv ~ LN(u,,,0,,), then 1/w ~ LN(—pu,,, 0,,) and E[1/w] = exp(—u,, + 62/2)
= exp(c2) /E[w]. From the properties of LN lawexp(o2) = 1 + 3,2 with respect to the

relative dispersiom,, := SD[w]/E[w]. The relatiorE[1/w] ~ (1 + ¥,2)/ E[w] holds as a good
approximation for any positive random variable witht so large relative dispersion.

5/ The Ride model

5.1 Ride lengths

The service is used depending on the access comsliind especially the access length in
comparison to the trip length. The residual length= L, — L, is the ride length only if
strictly positive: among the population of rides denote the ride lengths &% := LY} — LY.
Conditionally toL = ¢, ride lengthL¥% takes any valug €]0,¢] with probability density as
follows:

fR1e(Y) = £4(€ = ¥) Lio<y<e)/Fa (). (12)
PrOOf.F%W(y) = PI‘{LR > y | LT > LAI LT - ‘g} = Pr{LA < min{LT ) LT} | LT > LAI LT - ‘g}

_ Pr{Lgsmin{Ly—y,Lr} N Ly=f} _ Pr{l,<min{f—y,£}} _ Fp(min{{—y,f})
Pr{Lr>Ly|Lr=*} Puje Fa(®)

By differentiation with respect tg, we get thatz,(y) = fy(min{f — y, £}). Lo<y=<s/Fa(£),
hence the claim.

Then the conditional average ride lendth, = f(fy fri(v) dy, satisfies that

— L F4(x)
rie = I %dx. (13)

Shared Scooter Service (S3) Model with opportunissage 7
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Proof. The reason is thﬁffy f,(£ —y)dy = f(f(f — x)f (x)dx = £F,(¢) — f(fx f,()dx .
Integration by parts of the latter term yieId§A(€)—f(fFA(x)dx, so that the difference
reduces tq(f F,(x)dx.

Over the population of rides, the ride length stribbuted with CDF that satisfies

Fi(x) = pi* [, (Fa(®) = Fa(€ — ))dF7(&). (14)
Proof. This is becauseFy(x) = [ Fg,(x)dF{(£) = fm%(‘;f‘”"”dw(t’) wherein
A

dF¥(#) = p;1F,(£)dF;(¢) and the integrand is nonzero onlyif> x.
The associated PDF also stems from those condiydoatrip lengths:
fg (x) = [ fz,(x)dF%(£), so that

() = pi" [ f4(2 — 0)dF7(2). (15)
Similarly, the average ride length among the ridgesns from the conditional expectations
according to trip lengthdl; = [ Lk, dFy(¢), hence

- _ Y

% = pit J (J FaCo)dx) dFy (). (16)

5.2 Ride times

Coming to the ride time, it stems from the ridegtnand the ride speadast, = Lz /v. It
can safely be assumed that the lengths and speedsdapendent. Conditionally g = ¥,
the average ride time satisfies that:

trie = Lgje- E[1/v]. (A7a)
Similarly, the overall average ride time satistiest
tr = Lg.E[1/v]. (17b)
The effective average ride times are more repraseatof the service usage:
trie = Lkje- E[1/]. (17c)
t¥ = L%.E[1/v]. (17d)

6/ The Occupation model at the fleet level

6.1 Fleet occupation

For every ride, the scooter is assigned to the dseng the ride timey plus the transaction
time oftr which we take as exogenous. Let us denote thestetace time for that ride as:

tRT = tg + tT'
Its overall average value amounts to
ERT = Eg + tT' (18)

At the service level, during the period of openasiothe total vehicle occupation time
amounts to

R = Q.py- ERT =Q.(py-tr + puZIIlQE[l/U])- (19)

Shared Scooter Service (S3) Model with opportunissage 8
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To make this workload feasible in the period tifhethe fleet sizéV must satisfy that

Under this requirement, the proportion of occupatioresource time amounts to
Po i= Q-py-trr/N.H. (21)

6.2 Fleet availability

From our postulates of homogeneity in time and spacoportionpy can be taken as the
probability of occupation for any scooter at amygej in the absence of any other information
(such as the particular assignment of the scooteome user request). The complementary
probability 1 — pg is the probability of the scooter being availafileen, on average over the
vehicle fleet, it must hold that

k=N.(1-p,). (22)

7/ Model integration and traffic equilibrium

7.1 Equilibrium characterization

We have chained up the influences between the esait@bles, from an exogenous factor of
availability 8 in the Access model, to the Occupation probabglgyn the Occupation model,
passing by the formation of access lendthand ride timesy. To close the model it remains
to link the@ factor to the occupation probability, thereby nmgl# endogenous.

In (22) the mean number of available vehiclesis in fact a functiorky ¢ of the underlying
stochastic model of vehicle availability. ReplaciNgpy with its expression from (21), i.e.
pu- trr- Q/H, we obtain the following equation that determifleand characterizes a state of
traffic equilibrium for that mobility service:

kno=N—p,.trr.Q/H. (23)

Traffic equilibrium of the S3 system is endowedhnpiroperties of existence and uniqueness
that hold under mild conditions, as will be shoatel on.

7.2 Equilibrium properties

Let us define the “Fleet Resizing function”:

0 +— oy (0) :=kyg + Dy ERT'E'
Proposition: Traffic Equilibrium Properties. (i) Bience: ifoy , is continuous with respect to

6 and ranges from 0 to values beyaldthen there exists a solution to the characteristi
equation: in other words, there exists a stateadfi¢c equilibrium._(ii) Uniqueness: if the fleet

resizing function is strictly increasing with respdo 6, then there can exist at most one
solution to the characteristic equation. (iii) Ciastive determination: if the two assumptions
hold jointly, then the fleet resizing function cae inverted on its domain and its inverse

function a,f,,‘Ql) is also strictly increasing and continuous oroitgsm domain that encompasses
[0, N]: thus, the solution of the characteristic equaiiosimplyay )’ ().

Proof. Point (ii) about Uniqueness is obvious beedwetween two valuég andf, > 6,, the
strict increasingness implies that ,(6,) > oy o(0,) so that if valueV is taken on one side

Shared Scooter Service (S3) Model with opportunissage 9
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it cannot be reached on the other side. As fortg@imbout Existence, under the assumptions
of continuity and variation range from 0 up to vedubeyondN, then by the Bolzano-
Weierstrass theorem applieddg, on a bounded interval whose image encompg$sé§,
there is at least one point in that interval, 8gy, such thaby (97\/,@) = N. Coming to Point
(iii), by combining the properties of strict incesagness, variation range encompas$ih/|

and continuity for functiord — oy ,(8), then it is invertible on its domain, with inverse

function a,f,Ql) that is also strictly increasing and continuous itsn own domain that
encompasseld, N]. By constructiong,’(N) satisfies thaby , (o}, (N)) = N, hence it is a

solution to the characteristic equatlon and thgumone.
7.3 Availability factor and increasing fleet resizing function

Definition: A random variabl& is smaller thatX in a weak sense if¥/x, Fy (x) = F;(x).

Lemma: Monotonicity of utilization probability analverage ride length. Given two access

random variablesLEll) and Lﬁf) such thatLElz) is smaller tharLEll) in the weak sense, then

2 1 2) 7u(2 1)7u(1
Pi)Zpi) ()_u()>p£)l—,l;().

andp

e

Proof: asL? is weakly smaller than”, we have thaF'? (x) = F{ (x) everywhere inx.
(2)

From (4) it follows thatpul) 2 Pyje everywhere inf. Then, integration over the original
distribution of trip lengths yields tha ) > pff). Coming to the ride length averaged over all
trips, L = p, L%, from (16) we have that,[% = f(ff FA(x)dx) dFr(£). As F/(lz) >FWY,

f(f F& > f(f F{V everywhere ir? and in turnpPT® > pOLe®,

Consequently, the period service worklogd trr.Q = Q(py. tt + P L%E[1/v]) is greater
under smaller access lengtt}8 than under greater ongg’

The “Monotonicity” turns into “Increasingness” witespect t@ as Availability factor which
decreases the access lengths

We are now ready to define an Accessibility factost more formal way.

Definition: Availability factor: A parameted of an access laWw, is an Availability factor if it
makes the access lengths decrease in the weak senbetween two valugy andé, > 6,,

the associated access laws satisfylffétis weakly smaller thanﬁll).

Thus, wherg increases the CDF,y increases everywhere. In turn, the service workisa
an increasing function of the availability factdf.furthermore the average number of
available vehiclesky ¢, increases witlf, then so does the fleet resizing function. Itticgy
increasing if one of its components is so, for anse the average number of available
vehicles.

7.4 Stochastic models of Fleet Availability

Let us put forward three alternative sets of assiomg that constitute three models of
availability: by order of increasing complexity,etfConcentrated model, the Poisson model
and the Truncated Poisson model.

In the Concentrated model, it is assumed that tireber of available vehicleg, is about
constant hence approximately equal to its averagle@evk. Then 8 = k is rightly an
availability factor, sincé4jo(x) =1 — (1 - x/C)? is an increasing function éf everywhere

Shared Scooter Service (S3) Model with opportunissage 10
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in x € [0, C]. Furthermoreky s = 6 increases strictly witl® from 0O to infinity, and so does
the fleet resizing function singg, tends to O whe® does so (it is obvious for evepy,,,
then by aggregation). Complementariiy, (x) is a continuous function &f for everyx, and
in turn p, and tgy are continuous with respect # making the fleet resizing function

continuous. Thus the requirements for the existamceuniqueness of traffic equilibrium are
satisfied.

In the Poisson model, a Poisson law with intensitys postulated fork: thus Pr{k} =
e~90%/k! , which is a continuous function 6f This postulate is obviously an approximation
since it assigns positive probabilities to valukg beyond fleet siz&/ ... A specific appendix
Is dedicated to the Poisson model, which is redfiwsimple. Its advantages are (i) that
kno = 6, (ii) FA|9(x) = e~9%/Ca continuous function o that decreases with it for every
x > 0, thereby makin@ a correct availability factor, (iii) functions, andtgr are continuous
with respect t@. Thus the Poisson model also satisfies the reapaings for the existence and
uniqueness of traffic equilibrium. A salient feauwf this model is that the Fleet Resizing
Function does not depend & which makes it a convenient Fleet Sizing Functdepending
on a target access lengthig and a period demand volurQe

The third model is a truncated Poisson model, withh parametef and such that the number
of available vehicles is limited to t§6,1,... N} range. Then, denotirky (x) := Y¥_, x* /k!,
we have that

7" = gk /[k! Xy (6)]. (24)
It is shown in Appendix C thaty , = Wy (0) , wherein®y (6) := 9'):(”—‘(;@ is continuous and
N

increases from 0 t&~ asé varies from 0 teo, Cf. Leurent (2019b). Furthermore, the access
lengths are distributed according to the followIQF from above:

= _ XN(0F41(x))

Fao(x) = —— 45—
The property that is a correct availability factor is shown in Apgen C. Thus, the
truncated Poisson model also induces the exisamteiniqueness of traffic equilibrium.

(25)

8/ Discussion and numerical study

The model outcomes consist in (i) the distributiohsrip access lengths and times, together
with the probability of service usage accordingtrip length, (ii) the distributions of ride
lengths and times, (iii) service fleet occupatioeasured as a period workload for the vehicle
fleet, (iv) a characteristic equation of trafficuddrium, with respect to availability factar
which is involved in the stochastic model of flegtilability. The characteristic equation can
be turned into a fleet sizing rule according tagéardemand volume and average access
length.

As the traffic equilibrium is endowed with existenand uniqueness properties, all of the
model outcomes constitute functions of the AF. Axsdthe outcomes are characterized by
explicit analytical formulas, this makes the mofdly analytical.

The analytical nature of the model makes it esfigcgitable to sensitivity analysis. We
have shown that both the usage probability anchtiteal average ride length are increasing
functions of the AF. In a similar way, the influenof all model parameters onto all model
outcomes can be traced analytically to demonsthae respective directions of variations,

Shared Scooter Service (S3) Model with opportunissage 11
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either increasing or decreasing. This is the tagi@ subsequent article. These influences
depend on one another. For instance, given the¢ fize, the demand volume exerts a
decreasing influence on the AF: in turn, this malkes access length increase and the ride
length decrease, as well as the usage probability.

If S3 services under ring shape were implementesh) the analytical formulas would make
them observable. For instance, knowing the flest, ghe service volume could be estimated
from measuring in the field the average accessleng

8.1 Numerical study

Numerical instance. Let us consider a ring roachwédiusR = 1km and circumference
C = 6.3km. By assumption, trip lengths are distributedfamnly on [0,C/2] yielding
average trip lengtlil; of C/4 = 1,6km. Transaction time; is set to 2’ (for scooter un-
parking then re-parking, putting one’s helmet etmyl daily service period = 14h, riding
speeds such that/E[1/v] =15km/h, daily trip volumeQ = 1000. Based on the Poisson
model (cf. Appendix B), Figure 2 exhibits the flegte according t@ (part a) and to target
access length /6 (part b).

To serve a given volume of demand, halving theetasgcess length from 400m to 200m
requires doubling the fleet size. Of course, shiateess lengths require a larger number of
available vehicles, at the cost of a larger shérdle time for each vehicle in the fleet.

SizingFn SizingFn

120 120
100 100
80 80
60 60

40 40

SizingFn

20 20 SizingFn

0 0
0 20 40 60 80 100 0,0 0,2 0,4 0,6 0,8 1,0

Fig. 2. Fleet size according to (a) Theta, (b) Target access length.

9/ Conclusion

We have provided an analytical model for a shacedter service (S3) under ring form, free-
floating and opportunistic usage. Owing to postdadf homogeneity in space and time, we
established simple formulas for the average adesggh and time, ride time, probability of
occupation. Given the fleet size and the potemteahand volume, the number of available
vehicles is involved in a balance equation thatattarizes a state of traffic equilibrium for
that system. This equation can be solved with i@dpea variable called “availability factor”
as it determines the statistical distribution ¢f ttumber of available vehicles. We established
some mild conditions under which a traffic equilifon does exist and is unique. Moreover,
the characteristic equation constitutes a fleehgizule for a service operator targeting both
the demand volume (a quantitative objective of isejvand the access length (a qualitative
objective).

The S3 traffic model is a physical and technicablelolt stands as the scooter counterpart of
the ring-shaped taxi service model (Leurent, 201&a) the ring-shaped Shuttle service
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model C3 (Leurent, 2019b). It may represent a shgped bike-sharing system as well, if
operated in free-floating mode.

The economic theory of the S3 model can be devdlagpeng the same path as that for the
taxi and C3 models, all the more so as the charstiteequation is analogous to that of the
taxi service. Yet service production for a freeating S3 is specific as it involves charging
operations and vehicle maintenance, which we didaddress in detail for the other modes
(since vehicle driving, be it human or robotic, lelea for offline maintenance and energy
refill).
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Appendix A: The Concentrated Model of Availability

The postulate of a concentrated number of availalghicles involves a continuous
approximation: the discrete value lofis put in equivalence with the continuous vakjé.e.
6. We have that:

Pr{k} = 1{k=9}- (A.l)

A.1 On access lengths
The access length has a simple CDF from above:
Fajo(x) = (1 — min{1,x/C})°. (A.2)

Given x €]0,CJ[, then1 —x/C €]0,1[: when 8 increasesF,(x) decreases: thuB, g (x)
increases witl®, which is thus a suitable availability factor.

The associated PDF is simply:
0 _
fA|9(x) =< 1- x/C)e 11{03x<c}- (A.3)

A.2 Probability of utilization

The probability of utilization conditional to tripength is generic whatever the initial
distribution:

Puje = Fa(£) =1 — (1 — min{1,¢/C})°. (A.4)

To go further, let us from now on consider a umifatistribution of trip lengths in the domain
[0,€/2]. Thus,f(£) = 2 1(0z<c/2) and

Fr(¢) = min{1,2¢/C}.

Over the initial distribution of trip lengths, tipeobability of service utilization satisfies
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C/2

pu=1—[Fape(®) dFr(®) =1-=["°(1 - £/C) d¢

=1-2[(1-2)%dz=1-2|-—(1- )9+1] =1--2(1-.5%")
Thus,
_ 6-1+5°
Pu="g7
It depends only oA, not onC, norN or Q.

A.3 Trip lengths among the rides
Coming to the trip lengths among the rides, frojnwé deduce that:

f1(0) = pit. (1 — (1 = £/0)%). = Loze<csay.

It follows that
pu-fff () dt = _f

G2 =2 e —/0) de =S -2 [ 2(1 - 2)° dz

o1 —(1-¢/0)] ae

1/2 1

=—+2C[z—(1 z)9+1] —2c f"* 2(

Z)9+1 dz

_¢ + i( 5)9+2 + _2xc [(1 _ Z)9+2]' _¢

€ (eyor1___2C
i (6+1)(6+2) T a1 0D

(9+1)(9+2)(

19__ __91-6
4(9+1)(0+1+2 -(8-2%)).

So that:
1-6__1 _51-6
—u c 6+1+2 9+2(8 2179

T g 6—1+.5°

A.4 Access lengths among the rides
As for the effective access lengths, their PDF @amahlly to trip length? < C is

8 (1-x/0)°"
ale (%) = 2 Wl{m’}

The conditional average access length is such that:
Fa(). L, = fo"x. B COdx =2 [/ x. (1 - x/0)0dx

e/c ]{‘/C {‘/C

=0C |, —2)%71dz = C[-z(1 - 2) +C [, —2)%dz

£

g el o 5= (-9" - e(-3

April 30, 2021

(A.5)

(A.6)

1— ( 5)9+2)

(A.7)

(A.8)

e (1= + 50 ) e (19 =35 (1-(-) ~0t (1))

Thus

Lije == (1-02/(1 =D = 1)).
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Over the population of all rides, from (9) we Jett

6-1
(200 =pt2(1-3) (1= 29) Ippzxaesar (A.10)

The average effective access length over the ptpulaf service rides comes from (10):
- - c/2 ¢ N\ ¢ 2\?
pull = [ Ly pufi()de = 2 [ 9+1( —(1-3) -03(1-3) ) de

= 1Cf "(1-(1-2)f - 0z(1 - 2)?) dz

0+
5
= —C(E+|— 0+1 o+1|” _ _9_ 6+1
T o6+ ( [9+1 -2 ] +[6+1 —2) ]0 9+1f ( z)”"" dz)
= G+ (50 — D+ 50 z)9+2]'5)
6+1 0+1 8+1° 8+1 0+2 0
_ _Z 60+1 0+2 0+2
T o6+ ( + 6+1( Y ton 5 o 9+2( - D)
= i ful 0+2 _ v _ v 0+2 9+2
T oe+1 ( 9+1( 5 ) + 6+1 6+1 (1 ST+ oo 0+160+2 ( - 1)
_ 2,0 L 0+2 _(1_c6+2y 9 1
o641 C( Tt ton ( 5072 -1) - (1 -5 )9+1 1-52)
= = (2 —-—— _ 7 0+2
T o6+1 C( 6+1 (2 +6 0+2)(1 -5°79)
So that
+ 2
L= o CC-=—@2+0—--)(1-.5D). (A.11)

A.5 Ride lengths
Turning to ride lengths%, their PDF conditionally to trip lengthcomes from (12):

(200 = Lpozysey 2 (1 — (£ = 3)/0)° 7 /[1 = (1 = £/C)°]. (A.12)

The average ride length conditionally to trip ldrspt satisfies that:
2 ?
FA(‘g) LRHJ f FA(.X) dx == fO [1 - (1 - x/C)e] dx

=t+[=- x/C)9+1] =¢—S(1-(1-¢/C)0*

6+1 6+1

=35 (1= (-8 00 =17 0-8) -5 (- (0-9)

= eh-a-(1-9)
Thus,

L, = i’—(l—(l—-) )t - (A.13)

6+1 6+1

Over the population of all rides, the PDF and efqean of the ride lengths stem from (15)
and (16) respectively:

Pl ) =2 [ puge i) d =2 [ 2 (1= (£ = y)/C)P ae
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_2 B 01C/2 _ B 29
=i-a- -0t =2(1-(+2))

_2 0+1 _ (1 Xg

£¥(y) Cg_1+.5,,<1 G+ ) (A.14)

= c/2 c/2 f
pulih = [ ety ae =2 [0 (1= (2+2)") ae
21 c 1 9+1 S a0 51 6+1
cz(z ZCf (+Z) Z———ZC[0+1(2 ]0+m (E+Z) dz
¢ ¢ 21 6+21° 2 042
=ttt ]0—C<re—+mm1 57%2))
Thus

- 6—3+-—(4-.59)

=0 T A.15

R7a" p-145° (A.15)

The respective influences 6fandf on the average ride length are under product foma
uniform distribution of initial trip lengths.

A.6 Fleet sizing function

Owing to the generic formulation of the S3 trafiimdel and as the access law specific to the
concentrated model does not dependMgnit follows that in this specific model the fleet
resizing function does not depend @nlt is then a straightforward “fleet sizing furani’. Its
exact formula, denoting := Q.tr/H andp := Q.E[1/v]/H, is as follows:

0o(0) := 60 + a.p, + B.p,L%, so that

9-1+2 9+B g —3+505(4-279)
9+1 0+1 ’

00(0) := 60 + a (A.163)

For values ob above 5, we can neglezt® and obtain a first approximate sizing function:

C63+

0o(0) =6 + a + p.- T{’“, (A.16b)

For largerf e.g. beyond 20, we may neglget— and apprommatg—1 ~ — = 1, yielding:
00(0) ~ 0 +a+ ﬁ.z, (A.16c)
Then, the solution to the characteristic equatsonltained straightforwardly:
O~ N — (tr +ZE[1/v])Q/H. (A.17)

Complementarily, for large values 6f we havep, ~ 1 andL% =~ Ly =% for the uniform
distribution of trip lengths.
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Appendix B: The Poisson Model of Availability

B.0 Postulate and basic properties

Assuming a Poisson distribution with paramétethen

Pr{k} = e 96%/k!. (B.1)
The mean number of available vehicles is equaie¢adistribution parameter:
EN,B == 0 (BZ)

It is a well-known property of Poisson laws. Fomgeteness, let us recall the proof that is
very simple:

= _ oF _ gt _ o _ _
ko = Zizo Prik}.k = e Yimo kg = €700 Nim1 gy = € "0 Lizo 7y = €707 = 6.

Another well-known property of the Poisson lawhsttits variance is equal ty too. Thus
the relative dispersiop, := SD (k) /k is equal to1/V0: the large®, the more concentrated is
k in relative terms.

B.1 Access lengths
F,(x) = exp —0F,(x). (B.3)

_ _ T koK = k -
Proof.F,(x) = Ygso Fap (x)Prik} = e”? ZkZOW =ef ZkZO% = e 91

yielding the claimed result. This proof is recalleere for the sake of completeness — it is a
well-known property of Poisson laws that the lengihtil the first occurrence has an
exponential distribution with parameter equal te timtensity of the Poisson law (e.qg.
Kleinrock, 1975).

B.2 Utilization probability
GivenLy = ¢ < C/2, the probability of service utilization is

Puje = Pr{ly < Ly | Ly = £} =F,(£) = 1 — e~*9/C, (B.4)
Over the distribution of trip lengths, the probéabpibf service usage is then
Py = [ PupedFr(£) = 1= [e7*%/C dF1(0). (B.5a)

The probability of NOT using the service amountstiie Laplace transfornfiy of PDF
fr = %FT at pointd/C which is the spatial density of available scooters

For trip lengths uniformly distributed from O &2, the average i&; = C/4 and we have
C ¢ 0
that [ e =*9/€ dF,(¢) = %foz e cdt = 5(1 — e 2), thus:
2 _8
py=1-2(1—e72). (B.5b)

It depends only o, neither on the ring circumference nor on thetfl@ee or the demand
volume.

B.3 Trip lengths over the population of rides
Coming to the trip lengths among the rides, frojnwé deduce that:
fr(€) = pi'. (1 — e~ *%/%).£r.(D). (B.6a)
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Starting from a uniform initial distribution, thesulting distribution is:
f1(0) = pat. (1 — e7/%). 2 1ocpccyay. (B.6b)
The average trip length among the population dgigiatisfies that:

£6
pu [ LEECE) de = [ ¢ (1 - e‘?) £.(£)de , so that

— _ 20

From the uniform distribution,

2 (C/2 5 —06/C gp _ 2 ¢ —eo/c|/* L Cclz  _eosc
Sl P et de =2 —egen /| T4 T[T et/ a

6

c -2 ¢ c _b c (o c c
=—ge 2+5(1—pu)=5<1—pu—e 2)=5(;(1—pu)—pu)=;(1—pu)—5pu
¢
2

— _ Cc Cc Cc Cc c _
=tG+2- —plu . (B.7b)

B.4 Effective access lengths (over the population of rides)

Let us define the effective access lengttL'gs= min{L,, Lr}. Conditionally toL; = ¢, L',
takes valuef with probability F,(¢#) and on every value < ¢ it has probability density
function ofe=*%/¢g /¢ . The conditional average effective access lergthen

_ 26
LA |€ = g(l - e_T).
. . I o I _te
Proof. Value? is taken with probabilityF,(#) = e ¢ yielding contribution offe ¢ to the

average. The values< ¢ contribute an amount of

ffgx e *0/Cdx = [—xe‘xe/c]{ + ffe‘xe/cdx = —fe_% +<¢(1 - e_%
0ocC 0 0 06 )

The contribution of the first term to the averageanceled out by that of the specific value.

Overall, the average access length is

- Cc
Ly = 7 Pu-

£6

— — £0
we recognize the formula @f,.

For those effectively using the service, the effectaccess lengtliy, conditionally to
Ly = € has PDF as follows:

u oy SRR
fh1¢(x) = PR—O) Lio<x<e)- (B.8)
C

Its average value is thus:

16 . ,—x6/C
—u Jo & xe™*0/Cdx

Alt = FA(f)

. (B.9)
6 exp({%g)—l
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Over all effective users, the effective accesstlehy has PDF as follows:

£(0) = pt £4(0). Fr(x) = pilexp(—2) 2Fr (). (8.10)

To obtain the effective access length averaged ave o integrate the conditional average
taking into account their respective weights that@oportional td&,(€). dF(£):

% = pi [(—Pexp(—2) + S(1 — exp(—2))) dF.(£), so that
L = & — pu'f texp(—2) dFr(f). (B.11a)
Then, it is less than the target Iengthmong riders. Recalling the derivation of (B7.o) &
uniform distribution of trip Iengths we know thag?! [ ¢ e_% fr(£) dt = %(p;l -1 —%.

Xp —

Asp;t—1=—Pu _lewsy that
S Pu o 9(1__(1 o _g)) so tha
— I 1—exp—2
Lf=cQ-——2%) (B.11b)

2 [
1—5(1—exp —5)

When 6 is large,exp —g is negligible andL} ~ g(z - (1+ g)) ~ %(1 — g). Thus% is a
good indicator of the average access length not aveerall but also among riders, who tend
to obtain shorter lengths.

B.5 Ride lengths

The service is used depending on the access comgliind especially the access length in
comparison to the trip length. The residual length, := Ly — L', is the ride length only if
strictly positive. Conditionally td.; = ¢, it takes value 0 with probabilitf,(#) and each
valuey €]0, £] with probability densityy @=49/Cg /(.

The conditional average residual trip length issthu
— L _ _
Lroajg=e = Jy 2y €070/Cdx = £ —£(1 — 719/,
The overall average residual length satisfies that
= = c
Ly_p=Lr— 7 Pu-

Proof. The overall average residual length sterosfthe integration of the conditional
average residual lengths over the distributiorripflengths. Thus

Lr_g=[Lr_p,=¢ dFr(£) = Ly — g(l — fe_% dF;(¥#)) in which we recognizg,,.
For those using the service, the ride length caortht on trip length has PDF

fr1e(Y) = £4a(€ = ¥) Lio<y<ry/Fa(£). (B.12)
In their population, the average ride length caoddl on trip length is

TU _ ZR|LT=€ _ £ c
R (B.13)

Over all effective users, the ride lendth has PDF as follows:
fr(x) = Pulf fa (¢ — x)dFr(£). (B.14)
For those using the service, the effective averalgelength is thus:
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1+ C
1;3 == ZLT - 5 (815)

It depends offi; only throughL; andp, = 1 — f7(8/C), whereind /C is the spatial density of
available vehicles.

For trip lengths uniformly distributed from 0 &2, their initial average i&; = C/4 and we
0
have thap, =1 — %(1 —e 2), thus:
— _ C 2 o1t ¢
LR =Z 1—5(1—6 2) 9 (816)
- Cc 2 Cc C 2
Under Iarge9, Llé = Z(l + 5) ~ 3 = Z(l — 5)

B.6 Fleet sizing function

Proposition: Fleet sizing function in the Poissond@l. The functiond — ¢, (6) :=6 +
Q.py.trr/H is continuous and it increases strictly from @nfinity as 6 does so.

Proof. As for increasingness, the functioms and tgr are increasing with respect t
because it is a suitable availability factor. Adhbéunctions are nonnegative, their product
also is an increasing function &, and so is functiord — o,(0) := 6 + p,trrQ/H.
Increasingness is strict because the pgtizrQ/H is increasing and parm is strictly
increasing.

Coming to smoothness, functieh— p,,(8) is continuous and differentiable with respect to
6 because so are the exponential functiéns> e~/ and the integral of such functions
over the distribution of trip lengths. Whén— 0 thene=*%/¢ ~ 1 — £0/C so thatl — p, =
L76/C —indeed a standard property of Laplace transfoifhus, functior® — p,(8)/6 is
continuous at poind as well as for any > 0. In turn, functionf — p,,.tgr = putt +
E[1/v](Lr — Cp,(8)/0) has the same smoothness propertigs, A8.

As for the range of variations, whéh— 0 so does,,.tgr, implying thato, — 0. And as
oo = 0 it will tend to infinity when6 does so. Overall, function, is continuous and it
increases strictly from zero to infinity with QED.

In fact functiongy, is the most essential outcome of the Poisson maetn @ and @ it
yields the fleet siz&/ = g,(0) that meets the demand volu@eand the quality objective.
Another way to interpret that quality objectivet@srecall thatC /8 is the spatial density of
available vehicles: thus, it stands as the avelaggth that a potential user has to walk in
order to find an available vehicle.

For a uniform distribution of initial trip length#e fleet sizing function is specified as:

00(0) := 0 + (py. tr + pyLEE E]) %, so that

0(8) = 0 + (Pu-tr +CG—5pE[S]) 2, (B.18a)

For larged, p, = 1 — 2/6 can be approximated by 1 apg/6 may be neglected compared to
i ,SO that

0(8) ~ 6 + (tr +E[5]) 2, (B.18b)

This is the same approximate function as in theeeotrated model.
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Depending on a target access lenfjfland also o, the fleet sizing function is thus:
N ~ & Celth £
N Q) ~ 5+ (tr +5E[2) 2 (B.19)
The shares of idle (available) and busy timesHerdcooters are respectively:
C C-1 Q
Pa =75 andps = (tr +;E[;]) T

For a scooter, being busy is a dynamic state wdttsaatio o% = ei'%/(tT + %E E]) :
A A

Put in words: botH, and@ influence vehicle productivity in a proportionaayand the odds
ratio in an inversely proportional way. The smalllee target access length, the larger the
odds ratio. The larger the demand volume, the emgde odds ratio.

Appendix C: The Truncated Poisson Model of Availability

The truncated Poisson model has paramétemd is such that the number of available
vehicles is limited to th€0,1,... N} range.

DenotingXy (x) := Y ¥_,x*/k!, we have thaﬂr,(cN‘e) = 0% /[k!' Xy (0)].

TN 0 _ 6 v 67 _ : .
It holds thatky o = Zk=0kk1x,v(e) = XN(B)Zkzl(k—l)! =Wy(0) , whereinWy (0) := X () is

continuous and increases from QW0 asé varies from 0 teo, Cf. Leurent (2019a).

0.Xn_1(6) -

It remains to demonstrate thatis truly an availability factor for the access law the
truncated Poisson model.

From (25).Faje (x) = oo (Fan (0))F —

KX (6)'

so that

XN (0F 4)1(x))

X 0) (C.1)

l_:A|9(9C) =

Xn(0)-Xn(61)
Xn(6)

Let us show that functiof +— f;(0) = 1 — Xy (04) /Xy (0) increases with respect o
Its derivative is as follows:

0 _ Xn(02) | Xn(OD)Xn(6) _ Xn(62) [ Xn(6) _ Xn(62)

aefﬂ(e) =—4 Xy (6) + Xn(@2 T Xn(0) (XN(e) XN(G)D)

_ Xy 1

Xn(0) 6

ThUSFAlg(X) =1- FAlg(X) = , Whereind := FA|1(x) S [0,1]

(Pn(6) — Py (62)).

As 1€[0,1], 0 <64 <80 so that, by the increasingness Bf, we have that:—eﬁ > 0.

Therefore functionf; = F49(x) increases withg, which implies thatf is a rightful
availability factor.
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Appendix D: a two-state Markov chain model of vehicle occupation

A shared scooter may be modeled as a stochastensyaking one out of two states A/B in
alternation: state A means no current user hen@alable to any newcomer, whereas state B
stands for Busy, i.e. Occupied by a user. The timtes communicate with each other, i.e.
there are transitions from each state to the ather Figure 3 depicts the two states and the
stochastic transitions between them, with respedtansition rates of’ andu.

A1

Fig. 3. States and Transitions.

Transition rateu is the ending rate of an occupation under waynFitee duratiorr, it is the
ratio between the probabiliBr{tgr < 7 + 67 | tgr > 7} that such occupation will end during
an elementary intervall0,t], and its incremental duratiodt. Making the crude
approximation that the random variable of vehicwecupation, tgr, is distributed
exponential, then the exponential parametéyigr. Thus, the transition rate satisfies

Pr{trT<t+87 | trT>T} 1 Pr{trT<t+67 N trT>T}

:=lim 1
1 670 6T 670 Pr{tgr>1}.6T
T —
_ _PDF(trr) _ eXP )/ RT =1/t
1-CDF(trr) exp(—z) RT

p=1/tgr. (D.1)

As for the transition rate from State A (Availabte)State B (Busy), it comes from the overall
rate of customers arrivals per time utp, /H, divided by the average number of available
vehicles k:

A'=Q.p,/(H.k). (D.2)

The system is in stochastic equilibrium with staéiny probability distributiorip,, pg] such
thatp,, pg = 0 andp, + pg = 1, and the probability flow is conserved in eacltesta

Pa-A = Dpp- 1. (D.3)

Put in words, the probability flow going out of &aA and to State B per time unit is equal to
that coming in A from B. Substituting— p,4 for pg, the balance condition becomes that

pa- A =(1—pau hencepy = u/(u+2)=1/(1+2'/u) = 1/(1 + Q.py.trr/(H.k))
At every instant, it also holds thag = k/N.

(1+0.p,. 5 =1, ie.
( )

= | =

Substituting, the balance equation becomes an iequiatk:

Thus, the balance condition of the Markov modeadxactly the characteristic equation of the
traffic model.
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