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bInstitut de Mécanique des Fluides de Toulouse (I.M.F.T)

Abstract

A time scale analysis of the homogeneous flame inhibition problem is carried

out to identify the main parameters controlling the gas phase chemical inter-

action of the alkali metal inhibitors with the flame chemistry. First, kinetic

sub-models for the interaction of alkali metals with the flame are analyzed to

show that a simplified 2-step inhibition cycle can capture the essential fea-

tures of this interaction. Second, it is shown that this cycle is auto-catalytic,

which explains the high efficiency of alkali metals in inhibiting flames even at

low concentrations. Third, the time scales associated to this inhibition cycle

are linked to the free flame termination time scale via a non-dimensional

parameter characterizing the efficiency of an inhibitor at promoting radical

scavenging. It is shown that this parameter accounts for the main trends

observed in the literature and can also be used to provide estimates for the

chemical flame suppression limit.
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1. Introduction

Until the 1970s, industrial safety processes relied heavily on chlorofluoro-

carbon gases as fire suppressants in ground, sea and air systems [1]. Since

then, the threat to Earth’s ozone layer of such gases has been established and

their production prohibited. Following this ban, intensive research has been

conducted to find efficient halon replacements. Alkali metal compounds, such

as (IHCO3)s and (I2CO3)s with I = {K,Na}, have received considerable

attention because of their higher effectiveness per mass basis compared to the

halon 1301 (CF3Br) [2]. The flame inhibition (flame speed reduction) and

flame suppression abilities of these products has been shown experimentally

in premixed flame [3–6] and counter-flow flame [7–10] configurations. This

led to their wide commercial use as chemical fire suppressants.

When injected as powders, these inhibitors may be viewed as a discrete

set of alkali metal particles which undergo thermal decomposition as soon

as they penetrate the flame front [11]. This triggers a series of reactions

that can involve multiple phase changes. The main decomposition product

is the gaseous agent Ig to which is attributed the chemical effect of the in-

hibitor. Ig is the alkali hydroxide IOH when I = {K,Na} for example. Ig
reacts with the radical species via chain-termination reactions of the form:
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Ig + R −→ P , where R and P denote radical species and stable products

respectively. By promoting radical scavenging, Ig acts as a catalyser of the

chain-termination stage. The main source of flame speed reduction in the

case of alkali metals is attributed to this catalytic effect, at least for small

concentrations of inhibitor [10, 12, 13].

Extensive research has been dedicated to understanding the flame inhibi-

tion process. Most studies have so far focused on the gas-phase interaction

between the inhibitor and the flame chemistry. They are based on the as-

sumption that the inhibitor completely decomposes early inside the flame

front into a gaseous agent.The latter can then be included in the fresh gases

composition, thereby leading to a drastic simplification of the flame inhi-

bition problem. This led to the formulation of multiple kinetic models for

the interaction of alkali metal containing species with hydrocarbon flame

chemistries [6, 10, 12–15]. The inhibition efficiency of these gaseous agents

strongly depends on the flame itself (fuel, equivalence ratio, etc...). A clear

understanding of the origin of these differences still lacks today since most

of these papers focus on either a single flame or a single gaseous agent.

The objective of this paper is to propose a time scale analysis of the homo-

geneous inhibition problem, based on one-dimensional flame computations,

to identify the origin of said differences. First, Section 2 details the set of

hypotheses under which gas-phase inhibition arguments are valid. Section 3

presents the chemical mechanisms used to model the gas-phase flame inhibi-

tion process. These mechanisms are then simplified in Section 4 to highlight
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the existence of an auto-catalytic 2-step cycle that captures the essential fea-

tures of the flame inhibition process. The auto-catalytic nature of this cycle

and its effect on the radical species chemistry are analyzed in Sections 5

and 6 respectively. A critical parameter, linking flame and inhibition time

scales, is also identified in these sections and used, in Section 7, to analyze

the chemical flame suppression phenomenon.

2. Clarifying the homogeneous inhibition limit

Research on flame inhibition [6, 10, 12–15] has mostly relied on the in-

teraction of the gaseous agent with the flame chemistry (homogeneous inhi-

bition) to explain the experimental results, without clearly stating the set of

assumptions under which this approach is valid. An attempt to clarify this

issue is provided in this section.

Let τf = δL/sL be the flame time scale, where δL and sL are the flame thick-

ness and speed respectively. Let Is be the solid inhibiting particle. Let τm and

τh be the particle hydrodynamic and thermal relaxation time scales respec-

tively. Let τs be the time scale of the surface reaction Is +R′ =⇒ νgsIg +P ′,

which provides the flame with the gaseous agent Ig. Unfortunately, major

uncertainties surround the rate of the reactions involved in the thermal de-

composition stage, preventing us from estimating τs. The inhibition problem

reduces to its homogeneous limit provided that: 1) the flame is not thermally

perturbed by the decomposition stage (i.e. negligible thermal-radiation and

thermal-cooling); 2) the particle thermal and hydrodynamic inertia are neg-

ligible (i.e. τm/τf � 1 and τh/τf � 1); 3) the decomposition reactions are

fast (i.e. τs/τf � 1). These requirements are typically fulfilled for dilute

4



and finely crushed inhibiting powders. Note that violating (2) or (3) may

shift the liberation of the gaseous agent towards the burnt gases where the

inhibition effect vanishes.

3. Detailed chemical inhibition sub-models

Under the set of hypotheses detailed in Section 2, the impact of the in-

hibitor reduces to the catalytic effect of the gaseous agent Ig on the chain

termination stage. To analyze this mechanism, potassium and sodium con-

taining inhibitors are considered (for their high effectiveness). In the follow-

ing, Ig = IOH with I = {K,Na}. The Kinetic models in [13] and [12]

are used to model the catalytic properties of potassium and sodium con-

taining inhibitors respectively. They are composed of a set of reactions for

methane/air flame chemistry (GRI-3.0 mechanism [16]) combined with a set

of reactions for alkali metal species. The inhibition sub-models include 48

and 38 reactions, and are denoted 48R and 38R, for I = K and I = Na

respectively. 48R and 38R were validated against the experimental data of

Rosser et al. [3] who used finely crushed powders (2 µm) on CH4/air flames.

The inhibition effect of alkali hydroxydes are analyzed using one-dimensional

premixed flames, computed with the Cantera [17] software. A flame with

given equivalence ratio φ is enriched with various values of YIOH,u at Tu =

300 K and P = 1 atm, where the subscript u refers to the unburnt gas side.

Of interest is the evolution of the flame consumption speed sL with YIOH,u.

In this paper, the free flame limit, denoted by the superscript 0, refers to

the case YIOH,u = 0 where no inhibitor is introduced. Figure 1 displays the

evolution of the flame speed sL with YIOH,u for I = {K,Na}. With 48R and
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Figure 1: Evolution of the reduced flame speed sL/s
0
L with the gaseous agent mass fraction

YIOH,u for a stoichiometric methane/air flame. s0L is the flame speed at the free flame

limit (i.e. for YIOH,u = 0). The circles denote the Rosser et al. [3] experimental data.
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Figure 2: Evolution of the reduced flame speed sL/s
0
L with the gaseous agent mass fraction

YIOH,u for lean (φ = 0.6), stoichiometric and rich (φ = 1.4) methane/air flames.

38R sub-mechanisms, a drastic decrease of the flame speed is observed, which

illustrates the catalytic potential of alkali hydroxides. Figure 1 also shows

that potassium hydroxyde is more effective, per mass basis, at reducing the

flame speed than sodium hydroxide. The results are in fair agreement with

the experimental data of Rosser et al. [3].

4. The existence of a two-step auto-catalytic inhibition cycle

This section is devoted to the analysis of the inhibition sub-mechanism.

One of the most dominant inhibition reactions is the chain termination re-

7



action:

(RI,1) IOH +H =⇒ I +H2O, kI,1 = A1f1(T )

where according to [12, 13]:

I = K : f1 =
√
T , I = Na : f1 = e−991.44/T

By appending (RI,1) to the set of chain-termination reactions, the alkali hy-

droxide may be viewed as a catalyser of the chain-termination stage. The

reaction (RI,1) alone, however, can not explain the drastic flame speed de-

pletion observed with alkali hydroxydes. This is illustrated in Fig. 1, where

the detailed inhibition sub-mechanisms are reduced to the sub-models 1iR

containing only the single irreversible reaction (RI,1). The very mild flame

speed depletion observed with 1iR is due to the small concentrations YIOH,u

of alkali hydroxides considered, as will be explained in Section 6. Assum-

ing IOH to be the primary inhibition agent, there must exist an additional

mechanism that can account for the inhibition effect of alkali hydroxide. This

additional mechanism is provided by the reaction:

(RI,2) I +OH +M =⇒ IOH +M, kI,2 = A2f2(T )

where, according to [12, 13], f2 = 1/T . Figure 1 shows that the sub-

mechanisms 2iR, composed of only reactions (RI,1) and (RI,2), can fairly re-

produce the flame speed reduction observed with the detailed sub-mechanisms

48R and 38R. The reaction (RI,2) allows to regenerate the alkali hydroxide

along its path inside the flame front. In this sense, one may say that (RI,2)

makes the 2-step inhibition cycle (RI,1 −RI,2) auto-catalytic.

Radical species typically exhibit concentration profiles with a peak around
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Figure 3: Evolution of the reduced flame speed sL/s
0
L with the gaseous agent mass fraction

YIOH,u for stoichiometric methane/air (no symbol), acetylene/air (triangle symbol) and

hydrogen/air (square symbol) flames.
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the chain-branching layer of the flame and rapidly relax to zero and their

adiabatic equilibrium value on the fresh and burnt gas sides respectively.

Therefore, the source terms associated to (RI,1) and (RI,2) are mostly con-

fined around the radical species peak position x?. This remark combined

with the low thermal sensitivity of kI,1 and kI,2, allows to get rid of the

temperature dependance in kI,1 and kI,2. This thermal insensitivity assump-

tion is useful to define relevant time scales for (RI,1) and (RI,2), as will be

done in Section 5. f1 and f2 are therefore taken at T ? = T 0(x?), which

is defined here as the temperature of a free flame (i.e. for YIOH,u = 0) at

the peak H concentration. Let 2iR? be 2iR under this thermal insensitivity

approximation:

(R?
I,1) IOH +H =⇒ I +H2O, kI,1 = A1f1(T

?)

(R?
I,2) I +OH +M =⇒ IOH +M, kI,2 = A2f2(T

?)

with M ≈ N2+6H2O according to [12, 13]. Figure 1 shows that 2iR? and 2iR

predict very similar inhibition effects. Figure 2 shows a reasonable agreement

between the detailed inhibition sub-mechanisms and 2iR? for lean (φ = 0.6)

and rich (φ = 1.4) methane/air flames as well.

In an effort to extend the analysis to other fuels, the inhibition sub-

mechanisms are now appended to hydrogen/air and acetylene/air mecha-

nisms. In doing so, we implicitly assume the fuel independence of the pa-

rameters in kI,1 and kI,2. The Wang et al. [18] and UCSD [19] mechanisms

are used here for acetylene and hydrogen flame chemistries respectively. The

results are displayed for stoichiometric methane/air, acetylene/air and hydro-

gen/air flames in Fig. 3. The reduced sub-model 2iR? captures the essential
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features of the flame inhibition process for all selected fuels, thereby validat-

ing the thermal insensitivity assumption applied on (RI,1) and (RI,2). Note

that for all selected fuels and equivalence ratios, KOH is more effective per

mass basis that NaOH.

In the following, a time-scale analysis of the homogeneous flame inhibition

process is carried out using 2iR?. The auto-catalytic nature of the inhibition

cycle is investigated in Section 5, whereas its effect on the radical species

chemistry is tackled in Section 6.

5. Estimates for the effective alkali hydroxide concentration

Section 4 highlighted the importance of the alkali hydroxide regeneration

mechanism, provided by reaction (R?
I,2), in the inhibition cycle (R?

I,1−R?
I,2).

Obviously, this is possible only for a certain range of τI,2/τI,1, where τI,n is the

time scale associated to reaction (R?
I,n). The limiting case is τI,2/τI,1 → +∞,

under which the role of reaction (R?
I,2) is lost and only a mild inhibition ef-

fect may be observed (see the results for 1iR in Fig. 1). The regeneration

property of reaction (R?
I,2) can be characterized by the alkali hydroxide mass

fraction at the radical pool position Y ?
IOH = YIOH(T ?). The objective of the

present section is to link this effective mass fraction Y ?
IOH to the mass frac-

tion of IOH at the fresh gases YIOH,u and the parameter τI,2/τI,1.

The validity of the thermal insensitivity assumption on a wide range of
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Figure 4: Evolution of the reduced effective alkali hydroxide mass fraction Y ?
IOH/YIOH,u

with the right hand side of Eq. (4). Gray and black symbols denote I = Na and I = K

respectively. φr = {1.4, 2, 2.5} for CH4, C2H2 and H2 respectively.
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flames allows to introduce two relevant inhibition time-scales:

τI,1 =
WH

A1(ρf1)|T=T ?

, τI,2 =
WN2WOH

A2(ρ2f2)|T=T ?

(1)

where Wk is the molar mass of species k. Suppose that IOH and I species

diffusion is negligible compared to convection. The gaseous agent balance

equation reads in the flame-attached coordinate system:

sL
dYIOH

dx
=

ρ

ρu

(
−YHYIOH

τI,1
+

YOHYIYM
(WI/WIOH)τI,2

)
(2)

with, (WIOH/WI)YI = (YIOH,u − YIOH) (3)

We search for the mass fraction of gaseous agent Y ?
IOH for which an equi-

librium between reaction (R?
I,1) and (R?

I,2) is reached around the peak H

concentration. Applying a QSS assumption on IOH (dYIOH/dx ≈ 0) yields

the equilibrium inhibition relation:

Y ?
IOH

YIOH,u

≈ 1

1 + rf (τI,2/τI,1)
, rf ≡

Y ?
H

Y ?
OHY

?
M

(4)

rf is a flame parameter characterizing the relative importance of H and

OH radicals inside the chain-branching layer. τI,2/τI,1 is an auto-catalytic

term describing the capacity of a given inhibition cycle to maintain non-

zero mass of gaseous agent near the radical pool. The reduced effective alkali

hydroxide mass fraction Y ?
IOH/YIOH,u is a decreasing function of τI,2/τI,1. As

τI,2/τI,1 → 0, Y ?
IOH → YIOH,u since, in this case, the reaction (I?2 ) provides

instantaneously one mole of gaseous agent for each mole consumed by the

first reaction. On the other hand, as τI,2/τI,1 → +∞, 2iR reduces to 1iR

thereby breaking the inhibition cycle. In this case (R?
I,1) proceeds with zero

concentration of gaseous agent around T ?.
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Figure 4 displays the evolution of the reduced effective alkali hydroxide mass

fraction Y ?
IOH/YIOH,u with the right hand side of Eq. (4) for hydrogen/air,

methane/air and acetylene/air flames. Despite a clear deviation for rich

flames, Eq. (4) provides a fair estimate for Y ?
IOH/YIOH,u. More importantly,

it shows that the sodium inhibition cycle is more efficient at regenerating

the alkali hydroxide during the inhibition process. Therefore, the higher

inhibition efficiency, per mass basis, of the potassium hydroxide (see Fig. 1-

3) can not be explained by the regeneration properties of its inhibition cycle.

The origin of its higher efficiency is unveiled in Section 6.

6. Time scale analysis of the catalytic properties of alkali metals

Section 5 analyzed the auto-catalytic properties of the inhibition cycle

for I = {K,Na} through the effective gaseous agent mass fraction variable

Y ?
IOH . This section is devoted to the analysis of the impact of Y ?

IOH on the

chain termination stage.

Let RT be the set of all termination reactions involving the radical H.

The chemical source term ṠH for the H radical reads around the radical pool:

ṠH(T ?) =
∑
r/∈RT

ω̇?
r +

∑
r∈RT

ω̇?
r −

ρ?Y ?
HY

?
IOH

WIOHτI,1
(5)

Let τT ≡ 1/(
∑

r∈RT
|ω̇?

r |/[H]?) be the chain termination time scale, where

[H] is the molar concentration of species H. Introducing τT to Eq. (5), one

14



Figure 5: Evolution of the reduced radical peak mass fraction with the mass fraction of

gaseous agent YIOH,u at the fresh gas side (top) and with the catalytic term in Eq. (6)

YIOH,u CI (bottom) for methane/air (no symbol), acetylene/air (triangle symbol) and

hydrogen/air (square symbol) flames.
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gets:

ṠH(T ?) =
∑
r/∈RT

ω̇?
r − ([H]?/τT ) [1 + YIOH,u CI ] (6)

with, CI ≡ (WH/WIOH)(Y ?
IOH/YIOH,u) (τT/τI,1) (7)

CI characterizes the efficiency of IOH at promoting radical scavenging. CI
links the free flame termination time scale τT to the effective termination

time scale τ ′T :

τT/τ
′
T ≡ 1 + YIOH,u CI (8)

CI may be written in terms of inhibition parameters using the equilibrium

relation (4):

CI ≈
(WH/WIOH) (τT/τI,1)

1 + rf (τI,2/τI,1)
(9)

The impact of the inhibition parameters on the chain-termination stage

depends on the ratio τT/τI,1. In the slow inhibition regime, namely τT/τI,1 →

0, the chain-termination stage is not affected by the presence of the gaseous

agent and the inhibition effect vanishes. On the other hand, in the instan-

taneous inhibition regime (τT/τI,1 → +∞, τI,2 6= 0), CI → (τT/τI,2)/rf and

vanishes when no auto-catalytic support is provided by (R?
I,2) (i.e. when

τI,2/τT → +∞). This explains the mild flame speed reduction observed in

Fig. 1 using the scheme (1iR).

Figure 5 shows that when YIOH,u is scaled by CI , the scavenging effect of

the alkali hydroxyde on the H radical exhibits three distinct behaviors, which

correspond to the three fuels considered. This shows that, within each fuel,
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CI accounts for a change in equivalence ratio (via τT and rf ) and a change

in alkali-metal (via τI,1, τI,2 and WI). Note that the differences observed

between fuels may be explained by the relative importance of the H radical

within each chain-branching kinetics.

Figure 5 shows that the reduced catalytic term CI is a well suited variable

to analyze the inhibition efficiency of alkali hydroxides. CI is displayed in

Fig. 6 for the whole set of flames considered in this paper and confronted

to relation (9). Using Eq. (9), which provides a fair estimate for CI , one

can explain the main trends observed in the literature. 1) for fixed fuel

and φ, Fig. 6 shows that CK > CNa, despite weaker auto-catalytic support

(τK,2/τK,1 > τNa,2/τNa,1, see Fig. 4). Therefore, the origin of the higher inhi-

bition efficiency of potassium hydroxide lies in faster H scavenging reaction

(RI,1) (i.e. higher τT/τI,1). 2) For fixed fuel and I, Fig. 6 shows that CI
is a decreasing function of φ, which may be explained mostly by stronger

relative radical pool rf as φ increases. For fixed inhibitor parameters, rf

dictates the balance between IOH consumption and regeneration rates (see

Eq. (2)), thereby controlling the effective IOH mass fraction, which as stated

in Eq. (4) is a decreasing function of rf . 3) Finally, Fig. 6 shows that, for

fixed I and φ, CI is higher for CH4 in comparison with more reactive fuels

like H2, which is attributed here to lower rf .

7. Chemical flame suppression phenomenon

As shown in Section 6, the catalytic effect of a given chemical inhibitor on

the chain termination stage may be described using CI which, according to

17



Figure 6: Evolution of the reduced catalytic term CI , defined in Eq. (7), with the right

hand side of Eq. (9). φr = {1.4, 2, 2.5} for CH4, C2H2 and H2 respectively.

Eq. (8), increases the overall rate of the chain termination reactions τT/τ
′
T .

τT/τ
′
T admits an upper bound above which no flame can be sustained. This

upper bound corresponds to the chemical suppression limit. It is reached

when the source term in Eq. (6) vanishes, i.e. when the radical termination

rate equates its creation rate. Let Rc = R\RT be the set of reactions

responsible for the production of H, which includes mostly chain initiation

and chain-branching reactions. Let τc be the creation time scale, defined by

τc ≡ 1/(
∑

r∈Rc
|ω̇?

r |/[H]?). τc is computed at the free flame limit. Chemical

flame suppression is thus achieved for τT/τ
′
T = τT/τc. Using Eq. (9), this

provides an estimate for the minimum mass of gaseous agent Y s
IOH,u able to

chemically suppress a given flame:

Y s
IOH,u ≈ (τT/τc − 1)/C0I (10)

where CI is taken at the free flame limit for simplicity. According to Eq. (10),

Y s
IOH,u is a decreasing function of C0I , which simply means that a set of

flame and inhibitor characterized by high catalytic potentiel (high C0I) would
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require few mass of gaseous agent to reach flame suppression. Equation (10)

predicts that Y s
KOH,u = 0.0017 (Y s

KOH,u = 0.013) is needed to suppress a

stoichiometric CH4/air (H2/air resp.) flame, in fair agreement with the

values extracted from the 1D-simulations: 0.003 and 0.024 respectively. The

fact that Y s
KOH,u is lower for CH4 in comparison with H2 is attributed here

to lower termination to creation time scale ratio τT/τc and higher catalytic

potential (i.e. higher C0I).

8. Conclusion

A time scale analysis of the homogeneous flame inhibition problem has

been conducted in this paper to identify the main parameters controlling

the gas phase chemical interaction of the inhibitor with the flame chemistry.

First, proposed sub-models for the interaction of alkali metals with the flame

have been analyzed to highlight the existence of a 2-step inhibition cycle that

captures the essential features of this interaction. It is shown that the cycle is

auto-catalytic which explains the high efficiency of alkali metals in inhibiting

flames even at low concentrations.

The autocatalytic efficiency of this 2-step cycle is characterized by the effec-

tive alkali hydroxide mass fraction Y ?
IOH around which the inhibition reac-

tions take place. A time scale analysis of the H radical conservation equation,

based on this effective agent mass fraction Y ?
IOH , allows to explain the cat-

alytic effect of this 2-step cycle on the chain-termination reactions using a

single non-dimensional variable CI . CI is a reduced catalytic term linking

the time scales of the inhibition reactions to the time scale of the free-flame

chain termination stage. The scavenging effect of the inhibitor on the H

19



radical becomes quasi self-similar when displayed on the CI axis for fixed

fuel, which shows that this catalytic term is well suited for the analysis of

the homogeneous flame inhibition process rather than YIOH,u usually used in

the flame inhibition community.

Finally, CI is used to provide estimates for the minimum mass of inhibitor

Y s
IOH,u able to chemically suppress a given flame. Chemical flame suppres-

sion may be achieved when the radical H is consumed to the point where no

radical pool is observed. Y s
IOH,u reproduces all the important trends observed

numerically.

Note that the extension of the present study to other inhibitors may require

further analysis of their associated inhibition sub-mechanisms. More com-

plex approaches than the one proposed in this paper could most assuredly be

mandatory in the study of more complex gaseous agents. A partial equilib-

rium approximation can, for example, be applied to the system of inhibition

species and radical reactions, leading to a more accurate description of the

inhibition process. Also, it is important to stress that this analysis is based

on the strong instantaneous thermal decomposition assumption, which may

hardly be valid under most relevant conditions.
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