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TWISTED PRE-LIE ALGEBRAS OF FINITE TOPOLOGICAL SPACES

MOHAMED AYADI

Abstract. In this paper, we first study the species of finite topological spaces recently considered

by F. Fauvet, L. Foissy, and D. Manchon. Then, we construct a twisted pre-Lie structure on the

species of connected finite topological spaces. The underlying pre-Lie structure defines a coproduct

on the species of finite topological spaces different from those already defined by the Authors

above. In the end, we illustrate the link between the Grossman-Larson product and the proposed

coproduct.
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1. Introduction

A finite topological space is a finite set E endowed with a preorder ≤. The study of finite

topological spaces was initiated by Alexandroff in 1937 [2], and revived at several periods since

then, using the following well-known bijection [7,10]. Any topology T on X defines a quasi-order

(i.e. a reflexive transitive relation) denoted by ≤T on X:

(1.1) x ≤T y⇐⇒ any open subset containing x also contains y.

Conversely, any quasi-order ≤ on X defines a topology T≤ given by its upper ideals, i.e. subsets

Y ⊂ X such that (y ∈ Y and y ≤ z) =⇒ z ∈ Y . Both operations are inverse to each other:

(1.2) ≤T≤=≤, T≤T = T.

Hence there is a natural bijection between topologies and quasi-orders on a finite set X. Any

quasi-order (hence any topology T ) on X gives rise to an equivalence relation:

(1.3) x ∼T y⇐⇒ (x ≤T y and y ≤T x) .
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2 MOHAMED AYADI

Let T and T′ be two topologies on a finite set X. We say that T′ is finer than T, and we write

T′ ≺ T, when any open subset for T is an open subset for T′. This is equivalent to the fact that for

any x, y ∈ X, x ≤T′ y⇒ x ≤T y.

The quotient T/T′ of two topologies T and T′ with T′ ≺ T is defined as follows ( [8, Paragraph

2.2]): The associated quasi-order ≤T/T′ is the transitive closure of the relation R defined by:

(1.4) xRy⇐⇒ (x ≤T y or y ≤T′ x).

More on finite topological spaces can be found in [1, 3, 5, 15, 20].

Recall that a linear (tensor) species is a contravariant functor from the category of finite sets

Fin with bijections into the category Vect of vector spaces (on some field k). The tensor product

of two species E and F is given by

(1.5) (E ⊗ F)X =
⊕

Y⊔Z=X

EY ⊗ FZ ,

where the notation ⊔ stands for disjoint union. The unit of the tensor product denoted by 1 is

defined by 1∅ = k and 1X = {0}, if X , ∅.

We write x ∈ E if there exists a finite set X such that x ∈ EX.

A twisted algebra [12] is an algebra in the linear symmetric monoidal category of linear species.

See [4, 18, 19] for further details on and references to Joyal’s theory of twisted algebras. Con-

cretely, a twisted algebra is a linear species E provided with a product map (which is a map of

linear species: E ⊗ E → E). Associative algebras, commutative algebras, Lie algebras, pre-Lie

algebras and so on, are defined accordingly.

The species T of finite topological spaces is defined as follows: For any finite set X, TX is

the vector space freely generated by the topologies on X. For any bijection ϕ : X −→ X′, the

isomorphism Tϕ : TX′ −→ TX is defined by the obvious relabelling:

Tϕ(T) = {ϕ−1(Y), Y ∈ T},

for any topology T on X′.

A unital associative algebra ( [8, Paragraph 2.3]) on the species of finite topologies is defined

as follows: for any pair X1, X2 of finite sets we introduce

m : TX1
⊗ TX2

−→ TX1⊔X2

T1 ⊗ T2 7−→ T1T2,

where T1T2 is the disjoint union topology characterised by Y ∈ T1T2 if and only if Y ∩ X1 ∈ T1

and Y ∩ X2 ∈ T2. The unit is given by the unique topology on the empty set.

For any topology T on a finite set X and for any subset Y ⊂ X, we denote by T|Y the restric-

tion of T to Y . It is defined by:

T|Y = {Z ∩ Y, Z ∈ T} .
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The external coproduct ∆ on T is defined as follows:

∆ : TX −→ (T ⊗ T)X =
⊕

Y⊔Z=X

TY ⊗ TZ

T 7−→
∑

Y∈T

T|X\Y ⊗ T|Y .

The species T is this way endowed with a twisted bialgebra structure in [8].

Now consider the graded vector space:

(1.6) H = K(T) =
⊕

n≥0

Hn

where H0 = k.1, and where Hn is the linear span of topologies on {1, ..., n} when n ≥ 1, modulo

the action of the symmetric group S n. The vector space H can be seen as the quotient of the

species T by the ”forget the labels” equivalence relation: T ∼ T
′ if T

(

resp.T′
)

is a topology on a

finite set X (resp. X′), such that there is a bijection from X onto X′ which is a homeomorphism

with respect to both topologies. The functor K from linear species to graded vector spaces thus

obtained is intensively studied in ( [1, chapter 15]) under the name ”bosonic Fock functor”. The

twisted Hopf algebra structure on T [8] naturally leads to the following:

(H,m,∆) is a commutative connected Hopf algebra, graded by the number of elements.

L. Foissy, C. Malvenuto and F. Patras in [9, section 6] were the first to prove that the finite

topological spaces can be organized in a graded commutative Hopf algebra. The latter can be

recovered by applying the K functor to the twisted Hopf algebra structure on T described in [8].

The coproduct ∆ defined therein is however not built from a pre-Lie structure. We define in the

present work two twisted pre-Lie structuresց andր on the species of connected finite topologi-

cal spaces, giving rise to two more coproducts ∆ց and ∆ր, hence two more twisted Hopf algebra

structures. We expect that this will contribute to a better understanding of the finite topological

spaces considered as a whole.

In section 2, we recall the method of D. Guin and J.-M. Oudom [16] to describe the enveloping

algebra of a pre-Lie algebra, and we adapt it to the twisted context, following indications in [22].

In Section 3 of this paper, we define the enveloping algebra of the grafting twisted pre-Lie

algebra of connected finite topological spaces, as well as its enveloping algebra using the Guin-

Oudom method. Denoting by V the species of connected finite topological spaces, we consider

the Hopf symmetric algebra H′ = S (V) of the pre-Lie twisted algebra (V,ց), equipped with its

usual unshuffling coproduct ∆unsh and a product ⋆ defined on T by: For any pair X1, X2 of finite

sets

⋆ : TX1
⊗ TX2

−→ TX1⊔X2

(T1,T2) 7−→
∑

(T1)

T
(1)

1
(T

(2)

1
ց T2).
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In section 4 we prove that there exists a twisted bialgebra structure on T, where the external

coproduct is defined by

∆ց : TX −→ (T ⊗ T)X =
⊕

Y⊔Z=X

TY ⊗ TZ

T 7−→
∑

Y∈T

T|Y ⊗ T|X\Y

where Y∈T stands for

• Y ∈ T,

• T|Y = T1...Tn, such that for all i ∈ {1, ..., n},Ti connected and
(

minTi = (minT) ∩ Ti, or

there is a single common ancestor xi ∈ X\Y to minTi

)

, where X\Y = (X\Y)/ ∼T|X\Y .

We moreover give a relation between the two structures ∆ց and ⋆.

Finally we define in section 5 a new pre-Lie lawր on the species of connected finite topolog-

ical spaces by: For all T = (X,≤T) and S = (Y,≤S) be two finite topological spaces,

T ր S := j
(

j(T) ց j(S)
)

,

where j is the involution which transforms ≤ into ≥. This lawր gives rise to a coproduct denoted

∆ր defined by ∆ր = ( j ⊗ j)∆ց ◦ j.

For any finite set A and for any pair of parts A1, A2 of A with A1 ∩ A2 = ∅, we define

ΨA1, A2
: TA → TA,

as follows: for any topology T ∈ TA, the topology ΨA1, A2
(T) is associated with the following

pre-order ≤ defined by:

• If a ∈ A1, and b ∈ A2 then a and b are incomparable,

• If not, we have: a ≤ b if and only if a ≤T b.

In this section, we provide a relation between both pre-Lie structures, by proving that the

following diagram commutes.

VX ⊗ VY ⊗ VZ

id⊗ցu
//

րs⊗id

��

VX ⊗ VY⊔Z

րs

��

VX⊔Y ⊗ VZ

ցu

��

VX⊔Y⊔Z
ΨX,Z

// VX⊔Y⊔Z

2. The enveloping algebra of pre-Lie algebras and twisted pre-Lie algebras

In this section, we recall the method of D. Guin and J.-M. Oudom [16] to describe the envelop-

ing algebra of a pre-Lie algebra. We also recall how T. Schedler in [22] generalizes this method

to twisted pre-Lie algebras.

Definition 2.1. A Lie algebra over a field k is a vector space V endowed with a bilinear bracket

[., .] satisfying:

(1) The antisymmetry:

[x, y] = −[y, x],∀x, y ∈ V.
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(2) The Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,∀x, y, z ∈ V.

Definition 2.2. [5, 14] A left pre-Lie algebra over a field k is a k-vector space A with a binary

composition � that satisfies the left pre-Lie identity:

(x � y) � z − x � (y � z) = (y � x) � z − y � (x � z),

for all x, y, z ∈ A. The left pre-Lie identity rewrites as:

(2.1) L[x,y] = [Lx, Ly],

where Lx : A −→ A is defined by Lxy = x � y, and where the bracket on the left-hand side is

defined by [x, y] = x � y − y � x. As a consequence this bracket satisfies the Jacobi identity.

The pre-Lie product is extended to the symmetric algebra as follows [17]. Let (A,�) be a

pre-Lie algebra. We consider the Hopf symmetric algebra S (A) equipped with its usual unshuffle

coproduct denoted ∆unsh. We will use without restraint the classical Sweedler notation: ∆unsh(a) =
∑

a

a(1) ⊗ a(2).

We extend the product � to S (A). Let a, b and c ∈ S (A), and x ∈ A. We put:

• 1 � a = a

• a � 1 = ε(a)1

• (xa) � b = x � (a � b) − (x � a) � b

• a � (bc) =
∑

a

(a(1)
� b)(a(2)

� c).

Definition 2.3. We define the following ⋆ product on S (A) by:

(2.2) a ⋆ b =
∑

a

a(1)(a(2)
� b).

Theorem 2.1. [13, 16] The triple (S (A), ⋆,∆unsh) is a Hopf algebra which is isomorphic to the

enveloping Hopf algebra U(ALie) of the Lie algebra ALie.

Proof. This theorem was proved by D. Guin and J.-M. Oudom in [16] (Lemma 2.10 and Theorem

2.12). �

Definition 2.4. [4] A twisted Lie algebra over a field k, is a species E endowed with a bilinear

bracket [, ] : E ⊗ E→ E, satisfying:

(i) [, ] + [, ]τ = 0,

(ii) [, [, ]] + [, [, ]]Σ + [, [, ]]Σ2 = 0,

where τ : E ⊗ E → E ⊗ E is the flip, and Σ : E ⊗ E ⊗ E → E ⊗ E ⊗ E is the cyclic permutation of

factors.

Definition 2.5. A left twisted pre-Lie algebra over a field k, is a species E with a binary compo-

sition ◦ : E ⊗ E→ E, satisfing the left twisted pre-Lie algebra identity

◦(◦ ⊗ Id) − ◦(Id ⊗ ◦) =
(

◦ (◦ ⊗ Id) − ◦(Id ⊗ ◦)
)

(τ ⊗ Id).

T. Schedler in [22] shows that the properties of D. Guin and J.-M. Oudom above also work for

the linear species, i.e:

Let (E, ◦) be a twisted pre-Lie algebra. We consider the twisted Hopf symmetric algebra S (E)

equipped with its usual unshuffle coproduct denoted ∆unsh. We extend the product ◦ to S (E) as

follows. Let a, b and c ∈ S (E), and x ∈ E. We put:
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• 1 ◦ a = a

• (xa) ◦ b = x ◦ (a ◦ b) − (x ◦ a) ◦ b

• a ◦ (bc) =
∑

a

(a(1) ◦ b)(a(2) ◦ c),

and if we define the product ⋆ on S (E) by:

(2.3) a ⋆ b =
∑

a

a(1)(a(2) ◦ b),

then (S (E), ⋆,∆unsh) is isomorphic to the enveloping Hopf algebra U(ELie) of the twisted Lie

algebra ELie.

3. The enveloping algebra of the twisted pre-Lie algebra of finite topological spaces

3.1. The pre-Lie algebra of rooted trees. Let T the vector space spanned by the set of isomor-

phism classes of rooted trees and H = S (T ). Grafting pre-Lie algebras of rooted trees were stud-

ied for the first time by F. Chapoton and M. Livernet [6], see also D. Manchon and A. Saidi [15].

The grafting product is given, for all t, s ∈ T , by:

(3.1) t → s =
∑

s′ vertex of s

t →s′ s,

where t →s′ s is the tree obtained by grafting the root of t on the vertex s′ of s. More explicitly,

the operation t → s consists of grafting the root of t on every vertex of s and summing up.

Theorem 3.1. [6] Equipped by→, the space T is the free pre-Lie algebra with one generator.

Now, we can use the method of D. Guin and J.-M. Oudom [16] to find the enveloping algebra of

the grafting pre-Lie algebra of rooted trees. We consider the Hopf symmetric algebra H = S (T )

of the pre-Lie algebra (T,→), equipped with its usual unshuffling coproduct ∆unsh. We extend

the product → to H by the same method used in (3.1), and we define the Grossman-Larson

product [11] ⋆ on H by:

t ⋆ t′ =
∑

t

t(1)(t(2) → t′).

By construction, the space (H, ⋆,∆unsh) is a Hopf algebra.

3.2. Twisted pre-Lie algebra of the finite topological spaces. Let T1 = (X1,≤T1
) and T2 =

(X2,≤T2
) be two finite topological spaces, and let v ∈ X2. We define:

T1 ցv T2 := (X1 ⊔ X2,≤),

where ≤ is obtained from ≤T1
and ≤T2

as follows: compare any pair in X2 (resp. X1) by using ≤T2

(resp. ≤T1
), and compare any element y ∈ X2 with any element x ∈ X1.

To sum up, for any x, y ∈ X1 ⊔ X2, x ≤ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 and x ≤T2
y,

• or x ∈ X2, y ∈ X1 and x ≤T2
v.

Example 3.1. s2 s1

s3 s4

ցt2

t2
t1 = t1

t2

s2 s1

s3 s4

, s2 s1

s3 s4

ցt1

t2
t1 =

s2 s1

s3 s4

t1

t2
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Proposition 3.1. Let T1 = (X1,≤T1
) and T2 = (X2,≤T2

) be two connected finite topological spaces,

and let v ∈ X2. Then T1 ցv T2 := (X1 ⊔ X2,≤), is a connected finite topological space.

Proof. Let T1 = (X1,≤T1
) and T2 = (X2,≤T2

) be two connected finite topological spaces, and let

v ∈ X2.

We must show that ≤ is a preorder relation on X1 ⊔ X2:

Reflexivity; Let x ∈ X1 ⊔ X2, then x ∈ X1 or x ∈ X2.

If x ∈ X1, we have x ≤T1
x, then x ≤ x.

If x ∈ X2, we have x ≤T2
x, then x ≤ x.

Transitivity; Let x, y, z ∈ X1 ⊔ X2 such that x ≤ y and y ≤ z. So we have four possible cases:

• First case; x, y, z ∈ X1, and (x ≤T1
y and y ≤T1

z).

Since ≤T1
is transitive, then x ≤T1

z, then x ≤ z.

• Second case; x, y, z ∈ X2, and (x ≤T2
y and y ≤T2

z).

Since ≤T2
is transitive, then x ≤T2

z, then x ≤ z.

• Third case; x, y ∈ X2, z ∈ X1, and (x ≤T2
y and y ≤T2

v).

Since ≤T2
is transitive, then x ≤T2

v, and since x ∈ X2 and z ∈ X1 therefore x ≤ z.

• Fourth case; x ∈ X2, y, z ∈ X1, and (x ≤T2
v and y ≤T1

z).

In this case we have x ∈ X2, z ∈ X1, and x ≤T2
v, then x ≤ z.

�

Proposition 3.2. Let T1 = (X1,≤T1
), T2 = (X2,≤T2

) and T3 = (X3,≤T3
) be three finite connected

topological spaces, and let u ∈ X2, v,w ∈ X3. Then

1) (T1 ցu T2)ցw T3 = T1 ցu (T2 ցw T3).

2) T1 ցv (T2 ցw T3) = T2 ցw (T1 ցv T3).

Proof. 1) Let T1 = (X1,≤T1
), T2 = (X2,≤T2

) and T3 = (X3,≤T3
) be three finite connected topolo-

gies, and let u ∈ X2, w ∈ X3. We denote T′
3
= (T1 ցu T2) = (X1 ⊔ X2,≤3), with ≤3 defined on

X1 ⊔ X2 by:

x, y ∈ X1 ⊔ X2 et x ≤3 y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 and x ≤T2
y,

• or x ∈ X2, y ∈ X1 and x ≤T2
u,

and we denote T = (T1 ցu T2)ցw T3 = (X1 ⊔ X2 ⊔ X3,≤), with ≤ defined on X1 ⊔ X2 ⊔ X3 by:

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤ y if and only if:

• Either x, y ∈ X1 ⊔ X2 and x ≤3 y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X1 ⊔ X2 and x ≤T3
w,

then

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 and x ≤T2
y,

• or x ∈ X2, y ∈ X1 and x ≤T2
u,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X1 ⊔ X2 and x ≤T3
w.

On the other hand,

we denote T
′
1 = T2 ցw T3 = (X2 ⊔ X3,≤1), with ≤1 defined on X2 ⊔ X3 by:

x, y ∈ X2 ⊔ X3 et x ≤1 y if and only if:
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• Either x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X2 and x ≤T3
w,

and we denote T′ = T1 ցu (T2 ցw T3) = (X1 ⊔ X2 ⊔ X3,≤
′), with ≤′ defined on X1 ⊔ X2 ⊔ X3 by:

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤′ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 ⊔ X3 and x ≤1 y,

• or x ∈ X2 ⊔ X3, y ∈ X1 and x ≤1 u,

then

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤′ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X2 and x ≤T3
w,

• or x ∈ X2, y ∈ X1 and x ≤T2
u,

• or x ∈ X3, y ∈ X1 and x ≤T3
w,

then ≤=≤′ on X1 ⊔ X2 ⊔ X3.

Then

(T1 ցu T2)ցw T3 = T1 ցu (T2 ցw T3).

2) Let v,w ∈ X3, we denote T
′
2 = (T1 ցv T3) = (X1 ⊔ X3,≤2), with ≤2 defined on X1 ⊔ X3 by:

x, y ∈ X1 ⊔ X3 et x ≤2 y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X1 and x ≤T3
v,

and we denote

T = T2 ցw (T1 ցv T3) = (X1 ⊔ X2 ⊔ X3,≤), with ≤ defined on X1 ⊔ X2 ⊔ X3 by:

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤ y if and only if:

• Either x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X1 ⊔ X3 and x ≤2 y,

• or x ∈ X1 ⊔ X3, y ∈ X2 and x ≤2 w,

then

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤ y if and only if:

• Either x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X1 and x ≤T3
v,

• or x ∈ X3, y ∈ X2 and x ≤T3
w.

On the other hand,

we denote T′1 = (T2 ցw T3) = (X2 ⊔ X3,≤1) , with ≤1 defined on X2 ⊔ X3 by:

x, y ∈ X2 ⊔ X3 et x ≤1 y if and only if:

• Either x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X2 and x ≤T3
w,
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and we denote

T′ = T1 ցv (T2 ցw T3) = (X1 ⊔ X2 ⊔ X3,≤
′), with ≤′ defined on X1 ⊔ X2 ⊔ X3 by:

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤′ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 ⊔ X3 and x ≤1 y,

• or x ∈ X2 ⊔ X3, y ∈ X1 and x ≤1 v,

then

x, y ∈ X1 ⊔ X2 ⊔ X3 et x ≤′ y if and only if:

• Either x, y ∈ X1 and x ≤T1
y,

• or x, y ∈ X2 and x ≤T2
y,

• or x, y ∈ X3 and x ≤T3
y,

• or x ∈ X3, y ∈ X2 and x ≤T3
w,

• or x ∈ X3, y ∈ X1 and x ≤T3
v,

then ≤=≤′ on X1 ⊔ X2 ⊔ X3.

Then

T1 ցv (T2 ցw T3) = T2 ցw (T1 ցv T3).

�

We then define the grafting law in the species of connected finite topological spaces by:

For all T1 ∈ TX1,T2 ∈ TX2

T1 ց T2 =
∑

v∈X2

T1 ցv T2 ∈ TX1⊔X2
.

Theorem 3.2. (V,ց) is a twisted pre-Lie algebra.

Proof. Let T1 = (X1,≤T1
), T2 = (X2,≤T2

) and T3 = (X3,≤T3
) three finite topological spaces, we

have:

T1 ց (T2 ց T3) =
∑

v∈X3

T1 ց (T2 ցv T3)

=
∑

u∈X2⊔X3

∑

v∈X3

T1 ցu (T2 ցv T3)

=
∑

u∈X2

∑

v∈X3

T1 ցu (T2 ցv T3)

+
∑

u∈X3

∑

v∈X3

T1 ցu (T2 ցv T3).

On the other hand we have:

(T1 ց T2)ց T3 =
∑

r∈X2

(T1 ցr T2)ց T3

=
∑

s∈X3

∑

r∈X2

(T1 ցr T2)ցs T3.

Then

T1 ց (T2 ց T3) − (T1 ց T2)ց T3 =
∑

u, v∈X3

T1 ցu (T2 ցv T3).
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Which is symmetric on T1 and T2. Then we obtain:

T1 ց (T2 ց T3) − (T1 ց T2)ց T3 = T2 ց (T1 ց T3) − (T2 ց T1)ց T3.

Consequently, (V,ց) is a twisted pre-Lie algebra, thus yielding a pre-Lie algebra structure on

K(T). �

We showed that (V,ց) is a twisted pre-Lie algebra, so we consider the Hopf symmetric algebra

H′ = S (V) equipped with its usual unshuffling coproduct ∆unsh. We extend the productց to T

by using Definition 2.3 and we define a product ⋆ on T by: For any pair X1, X2 of finite sets

⋆ : TX1
⊗ TX2

−→ TX1⊔X2

(T1,T2) 7−→
∑

T1

T
(1)

1
(T

(2)

1
ց T2).

By construction, the space (H′, ⋆,∆unsh) is a cocommutative twisted Hopf algebra.

Remark 3.1. The species of finite connected posets (i.e. finite connected T0 topological spaces)

is a twisted pre-Lie subalgebra of (V,ց), and the species of finite posets is a Hopf subalgebra of

H′.

Example 3.2.

( )ց = ց ( ց ) − ( ց )ց

= ց ( + ) − ց

= + + + + 2

− −

= + + +
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( ) ⋆ = ( )ց + + ( ց ) + ( ց )

= + + + + + ( + )

+ ( + )

= + + + + + +

+ +

4. Bialgebras of finite topological spaces

4.1. A twisted bialgebra of finite topological spaces. Let X be any finite set, we define the

coproduct ∆ց by:

∆ց : TX −→ (T ⊗ T)X =
⊕

Y⊔Z=X

TY ⊗ TZ

T 7−→
∑

Y∈T

T|Y ⊗ T|X\Y .

Where Y∈T, stands for

• Y ∈ T,

• T|Y = T1...Tn, such that for all i ∈ {1, ..., n},Ti connected and
(

minTi = (minT) ∩ Ti, or

there is a single common ancestor xi ∈ X\Y to minTi

)

, where X\Y = (X\Y)/ ∼T|X\Y .

Example 4.1. ∆ց( ) = ⊗ 1 + 1 ⊗

∆ց( ) = ⊗ + ⊗ 1 + 1 ⊗

Theorem 4.1. (T,m,∆ց) is a commutative connected twisted bialgebra, and H = K(T) is a

commutative graded bialgebra.

Proof. To show that T is a twisted bialgebra [1], it is necessary to show that ∆ց is coassociative,

and that the species coproduct ∆ց and the product defined by:

m : TX1
⊗ TX2

−→ TX1⊔X2

T1 ⊗ T2 7−→ T1T2,



12 MOHAMED AYADI

are compatible. The unit 1 is identified to the empty topology. Coassociativity is checked by a

careful, but straighforward computation. We have

(∆ց ⊗ id)∆ց(T) = (∆ց ⊗ id)

















∑

Y∈T

T|Y ⊗ T|X\Y

















=
∑

Z∈T|Y ,Y∈T

T|Z ⊗ T|Y\Z ⊗ T|X\Y .

On the other hand

(id ⊗ ∆ց)∆ց(T) = (id ⊗ ∆ց)

















∑

U∈T

T|U ⊗ T|X\U

















=
∑

W∈T|X\U ,U∈T

T|U ⊗ T|W ⊗ T|X\(U⊔W).

Coassociativity will come from the fact that (Z, Y) 7−→ (Z, Y\Z) is a bijection from the set of pairs

(Z, Y) with Y∈T and Z∈T|Y and, onto the set of pairs (U,W) with U∈T and W∈T|X\U . The inverse

map is given by (U,W) 7−→ (U,U ⊔W).

Let A = {(Z, Y), Y∈T and Z∈T|Y }, and B = {(U,W),U∈T and W∈T|X\U}.

We define

f : A −→ B

(Z, Y) 7−→ (Z, Y\Z)

g : B −→ A

(U,W) 7−→ (U,U ⊔W)

Let us prove that f and g are well defined.

Let (Z, Y) ∈ A, i.e

- Y ∈ T and T|Y = T1...Tn, such that for all i ∈ {1, ..., n}, Ti connected component and
(

minTi = (minT) ∩ Ti or there is a unique common ancestor xi ∈ X\Y to minTi

)

,

and

- Z ∈ T|Y and T|Z = T1|Z ...Tn|Z = T1,1T1,2...T1,i1T2,1T2,2...T2,i2 ...Tn,1Tn,2...Tn,in , such that for all

i ∈ {1, ..., n}, j ∈ {i1, ..., in}, Ti, j connected component and
(

minTi, j = minT|Y ∩ Ti, j or there is a

unique common ancestor xi, j ∈ Y\Z to minTi, j

)

.

Then we can visualise T by the graph illustrated below in figure 1:

Graphically it is clear that Z ∈ T and Y\Z ∈ T|X\Z . Then (Z, Y\Z) ∈ B.

Then f is well defined.

Let (U,W) ∈ B, i.e

- U ∈ T and T|U = T|U1
...T|Up

, such that for all i ∈ {1, ..., p}, T|Ui
connected component and

(

minT|Ui
= (minT) ∩ T|Ui

or there is a unique xi ∈ X\U common ancestor to minT|Ui

)

.

and

- W ∈ T|X\U and T|W = T1...Tq, such that for all j ∈ {1, ..., q}, T j connected component and
(

minT j = minT|X\U ∩ T
j or there is a unique x j ∈ X\(U ⊔W) common ancestor to minT j

)

.

For all k ∈ {1, ..., q}, we notice Uk =
⊔

0≤n≤p

Ui, where Ui verifies the existence of xi ∈ Wk = V(Tk)

common ancestor to minT|Ui
, where v ∈ V(Tk) denotes that v is a element of the topological space

Tk.
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Z

Y \ Z

X \ Y
X

Y1 Y2 Yn

Z11 Z1k1 Z21 Z2k2 Zn1 Znkn Z01 Z0k0

Figure 1

We notice U0 =
⊔

0≤n≤p

Ui, where Ui verifies the existence of a unique xi ∈ X\(U ⊔W) common

ancestor to minT|Ui
.

We notice W0 ⊂ W, where W0 verifie thet for all x ∈ W0, there is no y ∈ U such that x ≤T y.

Then we can visualise T by the graph illustrated below in figure 2 below:

Graphically it is clear that U ∈ T|W⊔U and W ⊔ U ∈ T. Then (U,U ⊔W) ∈ A.

X

U1 U2
Uq

W0

U0

U

W W1 W2 Wq

X\(U ⊔W)

Figure 2

Then g is well defined.

We have for all (Z, Y) ∈ A then (Z, Y\Z) ∈ B, and for all (U,W) ∈ B then (U,U ⊔W) ∈ A. Then
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|A| = |B|.

Let (Z1, Y1), (Z2, Y2) ∈ A such that f (Z1, Y1) = f (Z2, Y2), then Z1 = Z2, then Y1\Z1 = Y2\Z1,

then f is injective, then f is bijective.

In the same way we show that g is bijective, and g ◦ f = f ◦ g = Id.

Then ∆ is coassociative.

Finally, we show immediately that

∆ց(T1T2) = ∆ց(T1)∆ց(T2).

�

Remark 4.1. For any finite set X, let us recall from [8] the internal coproduct Γ on TX:

(4.1) Γ(T) =
∑

T′#≺T

T
′ ⊗ T/T′.

The sum runs over topologies T′ which are T-admissible, i.e

• finer than T,

• such that T′
|Y
= T|Y for any subset Y ⊂ X connected for the topology T′,

• such that for any x, y ∈ X,

(4.2) x ∼T/T′ y ⇐⇒ x ∼T′/T′ y.

F. Fauvet, L. Foissy, and D. Manchon in [8] show that Γ and ∆ are compatible.

On the other hand, we notice that Γ and ∆ց are not compatible. In fact:

∆ց( ) = ⊗ + 1 ⊗ + ⊗ 1

Γ( ) = ⊗ + ⊗ + 2 ⊗ + ⊗

+ ⊗

then

(Id ⊗ ∆ց)Γ( ) = ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ 2 ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ 1 + 1 ⊗ ]

On the other hand
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m13(Γ ⊗ Γ)∆ց( ) = ⊗ [1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ 2 ⊗ [1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ + 1 ⊗ + ⊗ 1]

+ ⊗ [ ⊗ 1 + 1 ⊗ ]

+ ⊗ [ ⊗ + ⊗ ]

then (Id ⊗ ∆ց)Γ( ) , m13(Γ ⊗ Γ)∆ց( ). Then Γ and ∆ց are not compatible.

4.2. Relation between ⋆ and ∆ց. In this subsection, we prove that there exist relations between

the Grossman-Larson product ⋆ and the coproduct ∆ց.

Let G be a group acting on X. For every x ∈ X, we denote by G · x the orbit of x and we denote

by Gx the stabilizer subgroup of G with respect to x. The group action is transitive if and only if

it has exactly one orbit, that is if there exists x in X with G · x = X (i.e. X is non-empty and if for

each pair x, y ∈ X there exists g ∈ G such that g · x = y). This is the case if and only if G · x = X,

for all x in X.

If G and X is finite, then the orbit-stabilizer theorem, together with Lagrange’s theorem [21](theorem

3.9), gives

(4.3) |G · x| = [GX : G] =
|G|

|Gx|
,

that implies that the cardinal of the orbit is a divisor of the group order.

Definition 4.1. For any topology T on a finite set X, we denote by Aut(T) the subgroup of per-

mutations of X which are homeomorphisms with respect to T. The symmetry factor is defined by

σ(T) = |Aut(T)|. We define the linear map eT : TX −→ K by:

eT(T′) = σ(T), if T = T
′, and 0 if not.

Definition 4.2. We define the graft operator B : T → T by, B(T) = T ց {∗}, for any topology

T on X, this is the topology on X ⊔ {∗} obtained by keeping the preorder and X and by putting

∗ < x for any x ∈ X.

Theorem 4.2. Let T1 ∈ TX1
, T2 ∈ TX2

and T′ ∈ TX, then

< eT1
⋆ eT2

,T′ >=< eT1
⊗ eT2

,∆ց(T′) > .
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Proof. Let T1 ∈ TX1
, T2 ∈ TX2

and T′ ∈ TX.

Case 1; T1 is connected, we have

< eT1
⋆ eT2

,T′ > =< eT1ցBT2
,BT

′ >

=
∑

v∈X2⊔{∗}

< eT1ցvBT2
,BT

′ >

=
∑

v∈X2⊔{∗}
BT
′=T1ցvBT2

σ(BT
′).

Let us consider the set B = {v ∈ X2 ⊔ {∗},BT′ = T1 ցv BT2}, we show that Aut(BT2) acts

transitively on B. We define the map

Φ1 : Aut(BT2) × B −→ B

(ϕ, v) 7−→ ϕ(v).

Let v ∈ B, if v = ∗, then ϕ(v) = v. If not then T1 ցϕ(v) BT2 = T1 ցϕ(v) ϕ(BT2) = h(T1 ցv BT2),

where h|X1
= Id and if v ∈ X2⊔{∗}, h(v) = ϕ(v), where ϕ ∈ Aut(BT2). It is clear that h ∈ Aut(BT

′),

then T1 ցϕ(v) BT2 = h(BT′) = BT′. Then Φ1 is well defined.

Moreover for all v ∈ B, Id(v) = v, and for all ϕ, ϕ′ ∈ Aut(BT2),Φ1

(

ϕ, ϕ′(v)
)

= ϕ(ϕ′(v)) = (ϕϕ′)(v).

Then Φ1 is an action.

Now to show that Φ1 is transitive, let u, v ∈ B, and let us define f : X ⊔ {∗} −→ X ⊔ {∗} by

f (u) = v, f (v) = u, and for all w ∈ X ⊔ {∗}\{u, v}, f (w) = w, it is clear that f ∈ Aut(BT′).

If we take ϕ : X2 ⊔ {∗} −→ X2 ⊔ {∗}, defined by ϕ = f|X2⊔{∗}, so we have, ϕ ∈ Aut(BT2), and

ϕ(u) = v, then Φ1 is transitive. Then B = Aut(BT2) · v, for all v ∈ B.

For all v ∈ B, we call the stabilizer of v the set:

Aut(BT2)v = {ϕ ∈ Aut(BT2), ϕ(v) = v}.

And since |(Aut(BT2)| is finite, then |B| = |Aut(BT2) · v| =
|Aut(BT2)|

|Aut(BT2)v|
, for all v ∈ B.

Then

|B| =
|σ(T2)|

|Aut(T2)v|
, for all v ∈ B\{∗}.

On the other hand

< eT1
⊗ eT2

,∆ց(T′) > =
∑

Y∈T′

< eT1
,T′|Y >< eT2

,T′|X\Y >

=
∑

Y∈T′

T1=T
′
|Y
,T2=T

′
|X\Y

σ(T1)σ(T2).

Let us consider the set

A = {v ∈ X, the cut above v give the term of ∆ց(T′) isomorphic to T1 ⊗ T2},

we notice that A ∩ B\{∗} , ∅.

We show that Aut(T′) acts transitively on A. We define the map

Φ2 : Aut(T′) × A −→ A

(ϕ, v) 7−→ ϕ(v).
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Let v ∈ A then T′
|X1

isomorphic to T1 and T′
|X2

isomorphic to T2, then for all ϕ ∈ Aut(T′), ϕ(T′
|Xi

)

isomorph to Ti, i ∈ {1, 2}, and ∆ց
(

ϕ(T′)
)

isomorphic to ∆ց(T′),

then for all ϕ ∈ Aut(T′), the cut above ϕ(v) give the term of ∆ց(T′) isomorphic to T1 ⊗ T2, then

ϕ(v) ∈ A. Then Φ2 is well defined.

Let v ∈ A, and ϕ, ϕ′ ∈ Aut(T′), then Id(v) = v and Φ2

(

ϕ, ϕ′(v)
)

= ϕ(ϕ′(v)) = (ϕϕ′)(v). Then Φ2 is

an action.

Let u, v ∈ A, we defined f : X −→ X by: f (u) = v, f (v) = u, and for all w < {u, v}, f (w) = w, it is

clear that f ∈ Aut(T′), then Φ2 is transitive. And since |Aut(T′)| is finite, then

|A| =
|Aut(T′)|

|Aut(T′)v|
, for all v ∈ A.

Let v ∈ A, then |Aut(T′)v| = |Aut(T1)Aut(T2)v| = |Aut(T1)||Aut(T2)v|. Then

|Aut(T2)v| =
|Aut(T′)|

|A||Aut(T1)|
, for all v ∈ A,

that since A ∩ B\{∗} , ∅, there exists v ∈ A ∩ B\{∗} such that

|Aut(T2)v| =
|Aut(T′)|

|A||Aut(T1)|
=
|Aut(T2)|

|B|

then

σ(T′)

|A|σ(T1)
=
σ(T2)

|B|
,

then

|B|σ(T′) = |A|σ(T1)σ(T2).

We define A′ = {Y, Y∈T′,T1 = T′
Y
,T2 = T′

|X\Y
}, we notice that |A| = |A′|. Then

< eT1
⋆ eT2

,T′ > =
∑

v∈X2⊔{∗}
BT′=T1ցvBT2

σ(BT
′)

= |B|σ(BT
′)

= |B|σ(T′)

= |A′|σ(T1)σ(T2)

=
∑

Y∈T′

T1=T
′
|Y
,T2=T

′
|X\Y

σ(T1)σ(T2)

=< eT1
⊗ eT2

,∆ց(T′) > .

Case2; T1 not connected.

Let T1 = T1,1...T1,n ∈ TX1
, where T1,i is connected for all i ∈ [n]. And let T2 ∈ TX2

, T′ ∈ TX, we
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have

< eT1
⋆ eT2

,T′ > =< eT1ցBT2
,BT

′ >

=
∑

v=(v1 ,...,vn)∈X2

< eT1ցvBT2
,BT

′ >

=
∑

v=(v1 ,...,vn)∈X2

BT′=T1,1ցv1
(T1,2ցv2

...(T1,nցvnBT2)...)

σ(BT
′).

Let us consider the set B = {v = (v1, ..., vn) ∈ X2 ⊔ {∗},BT
′ = T1 ցv BT2}.

Aut(T2) acts transitively on B by the action. (In the same way that we used to show that Φ1 is a

transitive action.)

Φ3 : Aut(T2) × B −→ B

(ϕ, v) 7−→ ϕ(v).

And since |Aut(T2)| is finite, then |B| =
σ(T2)

|Aut(T2)v|
, where v ∈ B.

On the other hand

< eT1
⊗ eT2

,∆ց(T′) > =
∑

Y∈T′

< eT1
,T′|Y >< eT2

,T′|X\Y >

=
∑

Y∈T′

T1=T
′
|Y
,T2=T

′
|X\Y

σ(T1)σ(T2).

Let us consider the set

A = {v = (v1, ..., vn) ∈ X, the cut above v give the term of ∆ց(T′) isomorphic to T1 ⊗ T2}.

We notice that A ∩ B
|X2
, ∅.

Aut(T′) acts transitively on A by the action. (In the same way that we used to show that Φ2 is a

transitive action.)

Φ4 : Aut(T′) × A −→ A

(ϕ, v) 7−→ ϕ(v).

And since |Aut(T′)| is finite, then |A| =
σ(T′)

|Aut(T′)v|
, where v ∈ A.

If v ∈ A, then |Aut(T′)v| = |Aut(T1)Aut(T2)v| = |Aut(T1)||Aut(T2)v|,

then |Aut(T2)v| =
|Aut(T′)|

|A||Aut(T1)|
for all v ∈ A,

then

|Aut(T2)v| =
|Aut(T′)|

|A||Aut(T1)|
=
|Aut(T2)|

|B|
, for all v ∈ A ∩ B ∩ X2,

then
σ(T′)

|A|σ(T1)
=
σ(T2)

|B|
. Then |B|σ(T′) = |A|σ(T1)σ(T2).
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We define A′ = {Y, Y∈T′,T1 = T′
|Y

and T2 = T′
|X\Y
}, we notice that |A| = |A′|. Then

< eT1
⋆ eT2

,T′ > =< eT1ցBT2
,BT

′ >

=
∑

v=(v1 ,...,vn)∈X2

< eT1ցvBT2
,BT

′ >

=
∑

v=(v1 ,...,vn)∈X2

BT′=T1,1ցv1
(T1,2ցv2

...(T1,nցvnBT2)...)

σ(BT
′)

= |B|σ(T′)

= |A′|σ(T1)σ(T2)

=
∑

Y∈T′

T1=T
′
|Y
,T2=T

′
|X\Y

σ(T1)σ(T2)

=
∑

Y∈T′

< eT1
,T′|Y >< eT2

,T′|X\Y >

=< eT1
⊗ eT2

,∆ց(T′) > .

�

5. Relation betweenց andր

In this part we define the law ր on V by: For all T = (X,≤T) and S = (Y,≤S) be two finite

connected topological spaces,

T ր S := j
(

j(T) ց j(S)
)

,

where j is the involution which transforms ≤ into ≥. In other words, open subsets in T are closed

subsets in j(T) and vice-versa. In particular, it is obvious that (V,ր) is a twisted pre-Lie algebra

due to the fact that (V,ց) is a twisted pre-Lie algebra.

Definition 5.1. For any finite set A and for any pair of parts A1, A2 of A with A1 ∩ A2 = ∅, we

define ΨA1, A2
: TA → TA, as follows: for any topology T ∈ TA, ΨA1, A2

(T) = (A,≤), where ≤

defined by

• If a ∈ A1, and b ∈ A2 then a and b are uncomparable,

• otherwise, we have a ≤ b if and only if a ≤T b.

Proposition 5.1. For any finite set A and for any pair of parts A1, A2 of A with A1 ∩ A2 = ∅, and

let T ∈ TA then

1) ΨA1, A2
(T) = (A,≤) is a finite topological space.

2) ΨA1, A2
is a projector.

Proof. 1) Let A = A1 ⊔ A2, with A1 ∩ A2 = ∅, and let T ∈ TA, we must show that ≤ is a preorder

relation on A:

Reflexivity; Let x ∈ A, then x ∈ A1 or x ∈ A2.

If x ∈ A1, we have x ≤T x then x ≤ x, same thing if x ∈ A2.

Transitivity; Let x, y, z ∈ A such that x ≤ y and y ≤ z. So we have two possible cases:

• First case; x, y, z ∈ A1, and (x ≤ y and y ≤ z), then (x ≤T y and y ≤T z).

Since ≤T is transitive, then x ≤T z, then x ≤ z.

• Second case; x, y, z ∈ A2, likewise the first case.
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2) Let T ∈ TA, we must show that ΨA1, A2
(T) = Ψ2

A1, A2
(T).

If not T′ = (A,≤′) = ΨA1, A2
(T), then Ψ2

A1, A2
(T) = ΨA1, A2

(T′) = (A,≤), where ≤ defined by

• If a ∈ A1, and b ∈ A2 then a and b are uncomparable,

• otherwise, we have a ≤ b if and only if a ≤′ b.

And since we have, a ≤′ b if and only if a ≤T b, then ≤ defined by

• If a ∈ A1, and b ∈ A2 then a and b are uncomparable,

• otherwise, we have a ≤ b if and only if a ≤T b.

Then ΨA1, A2
= Ψ2

A1, A2
. �

Theorem 5.1. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topological

spaces, and let s ∈ Y, u ∈ Z. The following diagram is commutative:

VX ⊗ VY ⊗ VZ

id⊗ցu
//

րs⊗id

��

VX ⊗ VY⊔Z

րs

��

VX⊔Y ⊗ VZ

ցu

��

VX⊔Y⊔Z
ΨX,Z

// VX⊔Y⊔Z

Proof. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topological spaces,

and let s ∈ Y , u ∈ Z, then for W = (X ⊔ Y ⊔ Z,≤W) = (T րs
S)ցu U, we have

• for all x ∈ X, x ≤W s,

• and for all y ∈ X ⊔ Y , u ≤W y,

then

• for all x ∈ X, x ≤ΨX,Z (W) s,

• and for all y ∈ Y , u ≤ΨX,Z (W) y,

then ΨX,Z(W) is connected.

moreover we have T րs
S = (X ⊔ Y,≤

′

1), with ≤
′

1 defined on X ⊔ Y by:

x, y ∈ X ⊔ Y et x ≤
′

1
y if and only if:

• Either x, y ∈ X and x ≤T y,

• or x, y ∈ Y and x ≤S y,

• or x ∈ X, y ∈ Y and s ≤S y,

then (T րs S)ցu U = (X ⊔ Y ⊔ Z,≤W), with ≤W defined on X ⊔ Y ⊔ Z by:

x, y ∈ X ⊔ Y ⊔ Z et x ≤W y if and only if:

• Either x, y ∈ X ⊔ Y and x ≤′
1

y,

• or x, y ∈ Z and x ≤U y,

• or x ∈ Z, y ∈ X ⊔ Y and x ≤U u,

then x, y ∈ X ⊔ Y ⊔ Z et x ≤W y if and only if:

• Either x, y ∈ X and x ≤T y,

• or x, y ∈ Y and x ≤S y,

• or x ∈ X, y ∈ Y and s ≤S y,

• or x, y ∈ Z and x ≤U y,

• or x ∈ Z, y ∈ Y and x ≤U u,

• or x ∈ Z, y ∈ X and x ≤U u,
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if we apply ΨX,Z to (T րs S)ցu U, we can eliminate the cases: x ∈ Z, y ∈ X and x ≤U u.

On the other hond

Sցu U = (Y ⊔ U,≤1), with ≤1 defined on Y ⊔ Z by:

x, y ∈ Y ⊔ Z et x ≤1 y if and only if:

• Either x, y ∈ Y and x ≤S y,

• or x, y ∈ Z and x ≤U y,

• or x ∈ Z, y ∈ Y and x ≤U u,

then T րs (Sցu U) = (X ⊔ Y ⊔ Z,≤), with ≤ defined on X ⊔ Y ⊔ Z by:

x, y ∈ X ⊔ Y ⊔ Z et x ≤ y if and only if:

• Either x, y ∈ X and x ≤T y,

• or x, y ∈ Y ⊔ Z and x ≤1 y,

• or x ∈ X, y ∈ Y ⊔ Z and s ≤1 y,

then x, y ∈ X ⊔ Y ⊔ Z et x ≤ y if and only if:

• Either x, y ∈ X and x ≤T y,

• or x, y ∈ Y and x ≤S y,

• or x, y ∈ Z and x ≤U y,

• or x ∈ Z, y ∈ Y and x ≤U u,

• or x ∈ X, y ∈ Y and s ≤S y.

Then the equality between

T րs (Sցu U) = ΨX,Z

(

(T րs
S)ցu U

)

.

�

Corollary 5.1. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topological

spaces, and let s ∈ Y, u ∈ Z. Then

T ցs (Sրu
U) = ΨX,Z

(

(T ցs S)րu
U
)

.

i.e, the following diagram is commutative:

VX ⊗ VY ⊗ VZ

id⊗րu

//

ցs⊗id

��

VX ⊗ VY⊔Z

ցs

��

VX⊔Y ⊗ VZ

րu

��

VX⊔Y⊔Z
ΨX,Z

// VX⊔Y⊔Z

Proof. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topological spaces,

and let s ∈ Y , u ∈ Z.

We notice T
′ = j(T), S′ = j(S) and U

′ = j(U), according to theorem 5.1, we have:

T
′ րs (S′ ցu U

′) = ΨX,Z

(

(T′ րs
S
′)ցu U

′),

then j
(

T′ րs (S′ ցu U
′)
)

= j[ΨX,Z

(

(T′ րs S′)ցu U
′
)

],

then j(T′)ցs j
(

(S′ ցu U
′)
)

= ΨX,Z[ j
(

(T′ րs
S
′)
)

րu j(U′)],

then j(T′)ցs

(

j(S′)րu j(U′)
)

= ΨX,Z[
(

j(T′)ցs j(S′)
)

րu j(U′)].

Then

T ցs (Sրu
U) = ΨX,Z

(

(T ցs S)րu
U
)

.
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�

Proposition 5.2. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topologi-

cal spaces, then

T ր (Sց U) − ΨX,Z

(

(T ր S)ց U
)

= Sց (T ր U) − ΨY,Z

(

(Sց T) ր U
)

.

Proof. Let T = (X,≤T), S = (Y,≤S) and U = (Z,≤U) be three finite connected topological spaces,

then

T ր (Sց U) − ΨX,Z

(

(T ր S)ց U
)

=
∑

u∈Z, s∈Y⊔Z

T րs (Sցu U) −
∑

u∈Z, s∈Y

ΨX,Z

(

(T րs
S)ցu U

)

=
∑

u,s∈Z

T րs (Sցu U) +
∑

u∈Z, s∈Y

[

T րs (Sցu U)

−ΨX,Z

(

(T րs
S)ցu U

)]

=
∑

u,s∈Z

T րs (Sցu U)

=
∑

u,s∈Z

Sցu (T րs
U)

=
∑

u,s∈Z

Sցu (T րs
U) +

∑

s∈Z, u∈X

[

Sցu (T րs
U)

−ΨY,Z

(

(Sցu T)րs
U
)]

=
∑

s∈Z, u∈X⊔Z

Sցu (T րs
U) −

∑

u∈X, s∈Z

ΨY,Z

(

(Sցu T) րs
U
)

= Sց (T ր U) −ΨY,Z

(

(Sց T) ր U
)

.

�
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