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cSafran Helicopter Engines, Bordes, France

Abstract

High-fidelity Large Eddy Simulations (LES) are performed to study the effect of hydrogen injection on a lean turbu-
lent CH4/Air premixed flame. An Analytically Reduced Chemistry (ARC) mechanism is used to achieve a detailed
description of CH4/Air-H2 chemistry. First, a validation of this kinetic scheme against the detailed GRI-Mech 3.0
mechanism is presented considering both simplified and complex transport properties. When hydrogen is added to
the mixture, large variations of the mixture Prandtl and of the N2 Schmidt numbers are observed depending on the
local species concentration, features that are missed by simplified models. LES is then applied to study the structure
and stabilization mechanisms of a lean (φ = 0.8) premixed CH4/Air swirled flame enriched with hydrogen by using
different transport modeling strategies. First, the fully premixed CH4/Air case is considered and results are found to
validate the LES approach. In agreement with experiments, a classical V-shape flame is stabilized in the low-velocity
region near the flame holder created by a central recirculation zone (CRZ). Then, hydrogen enrichment is achieved in-
jecting 2% of the CH4 thermal power with a central fuel injection lance. Both premixed and diffusion flame branches
are present in this case, impacting flame stabilization and angle. The flame root the main premixed flame stabilized by
a diffusion flame kernel created by the injected hydrogen reacting with the oxygen in excess of the premixed stream.
Moreover, the H2 consumed with the remaining oxygen in burnt gases leads to the formation of a second flame branch
inside the CRZ which is responsible of an increase of the flame angle. Given the high concentration of hydrogen, an
impact of the molecular transport models is observed on the flame lift-off height highlighting the importance of using
complex transport properties in any LES involving hydrogen combustion.
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1. Introduction

Stringent regulations on pollutants emissions from
combustion devices to comply with EU objectives make
the development of low-emission combustors a major
design challenge for aero and land-based gas turbines.
In this scenario, the combination of hydrogen with stan-
dard carbon-based fuels is actually considered as one of
the most promising technical solution for clean combus-
tion [1]. Indeed, lean flame stabilization is enhanced by
the hydrogen high flame speed and its wide flammabil-
ity range [2, 3]. Furthermore, hydrogen offers no emis-
sions of HC or CO2 [3].

For these reasons, multiple numerical and experimen-
tal studies have been carried out to study the impact
of hydrogen addition on methane/air flames. Experi-
ments and Direct Numerical Simulations (DNS) on lam-
inar flame speeds [2, 4–6], lean and anomalous blow-
off [7, 8], stabilization mechanisms and instabilities [9]
have been performed for canonical flames. More real-
istic swirled configurations have been also investigated.
Schefer et al. [10] studied the impact of hydrogen on
flame stability and blowout for a lean premixed swirl-
stabilized flame showing that the addition of a mod-
erate amount of hydrogen to the methane/air mixture
increases the peak OH concentration with a significant
change in the flame structure which is shorter and more
robust. A non-premixed unconfined configuration was
investigated by Cozzi and Coghe [11]. Fuel mixtures
containing a variable volumetric fraction of CH4 and
H2 are injected in a swirling air flow. Again with hy-
drogen addiction a shorter and narrowed blue flame lo-
cated closer to the burner head was observed. The im-
pact of H2 on emissions was also extensively studied.
As an example, a decrease of NOx level, if compared
with a corresponding diffusion flame under same oper-
ating conditions, was observed for a fuel-lean confined
swirl-stabilized methane-air flame by Kim et al. [12].
Recently, the impact of hydrogen enrichment on the
shape of confined swirled flames was investigated by
Guiberti et al. [13] and Shanbhogue et al. [14]. In this
study, the probability of stabilizing a M-flame increases
with the H2 concentration in the combustible mixture.
From a numerical point of view, the appeal of high-
fidelity LES (e.g., see Ref. [15]) is increasing for these
studies given their higher accurate prediction capabil-
ities at a reasonable cost if compared to cheaper Un-
steady Reynolds Averaged Simulations (URANS) and
unaffordable DNS. Refs. [16, 17] report some exam-
ples of studies on academic configurations and, very
recently, the methodology was also extended to a full-
scale gas turbine combustor [18]. In all these previous

studies hydrogen is always considered fully premixed
with the fuel mixture. Fewer are the investigations of
direct H2 injection in the combustion chamber. Indeed,
in this case the pure H2 flame will behave as a classical
pilot flame typical of land-based gas turbines or aero-
engines [1] opening new questions on the resulted flame
structure and stabilization mechanisms.

The present work aims at filling the observed gap of
knowledge by performing experiments and high-fidelity
LES of the impact of H2 injection on flame structure
and stabilization of a confined lean swirling flame. For
this specific objective, simulations are performed cou-
pling the LES solver AVBP with an Analytically Re-
duced Chemistry (ARC) scheme for CH4/Air-H2 chem-
istry. The impact of considering simplified or complex
transport properties is also discussed. This is a topic
well developed for classical single-fuel systems, but less
investigated in case of bi-fuel configurations [19]. With
respect to a classical lean CH4/Air premixed swirled
flame, simulations reveal that both premixed and diffu-
sion flames are present when hydrogen is injected, im-
pacting flame stabilization mechanisms and angle.

2. Experimental setup and Numerical model

The numerical simulations carried out in this work
refer to the experiments performed in the MIRADAS
combustor developed at IMFT laboratory, CNRS
(Toulouse, France) [20]. Figure 1(a) reports a schematic
of the combustor. A methane/air mixture is well
premixed before entering the upstream longitudinal
plenum. After being pushed through a radial swirler
consisting of eight channels of r = 2.25 mm radius ori-
ented at 15◦ with respect to the burner axis, the mixture
enters a 100 mm long quartz flame tube through an an-
nular gap of inner and outer diameters equal to 6 and 12
mm, respectively. Hydrogen is conveyed directly in the
chamber through a 4 mm pilot lance passing along the
entire axis of the plenum. At the inlet of the combus-
tion chamber, the two streams are separated by a thin
annular lip of 1 mm (Fig. 1(a)). Two operating points
are studied in this work. First, a perfectly premixed
methane/air mixture with an equivalence ratio of φ =

0.8 and thermal power of Pth = 3.96 kW is considered
(case REF). Then, the flame is enriched through the pi-
lot lance injecting a mass flow of hydrogen correspond-
ing to the 2% of the CH4 thermal power of case REF
(case PH2). More details on the two operating condi-
tions are summarized in Tab. 1. For PH2, the methane
mass flow rate is slightly changed in order to keep the
total thermal power constant. Note that this specific
variation is so small that no significant change in the
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Figure 1: (a) Schematic of the MIRADAS experimental rig. (b) Numerical setup with details of the computational grid at the flame root.

global equivalence ratio is achieved. For both cases, in
the annular premix passage a well established turbulent
flow reaches a Reynolds number of Repre,Dh ' 7000 us-
ing the equivalent hydraulic diameter Dh = 6 mm of the
annular channel. The hydrogen flow is always laminar
and ReH2 ' 25.

Case Main Pilot Global
ṁAir (g/s) ṁCH4 (g/s) ṁH2 (g/s) φ

REF 1.693 7.912 · 10−2 - 0.8
PH2 1.693 7.754 · 10−2 6.597 · 10−4 ' 0.8

Table 1: Mass flow rates of air, methane and hydrogen and respective
global equivalence ratios for the two operating conditions.

The domain used for the LES (Fig. 1(b)) has been
discretized using an unstructured mesh which has been
refined until a grid-independent solution is obtained.
The final computational grid consists of approx. 23M
tetrahedral elements. Note that to correctly capture the
flame stabilization mechanisms, the grid is designed
with a refinement of ∆x ' 80 µm assuring approx-
imately twelve points in the separation zone between
the two fuel lines and in the finest region positioned at
the flame root (zoom box in Fig. 1(b)). Another refine-
ment region with ∆x ' 300 − 350 µm is located fur-
ther downstream. Turbulent combustion is modeled us-
ing the dynamic TFLES model, which imposes a flame
thickening everywhere a reactive zone is detected by a
flame sensor [21]. Note that, once a target flame reso-
lution is prescribed (i.e.5 points in the flame front are
specified for the present LES), the dynamic formulation
of TFLES does not impose a constant level of thicken-
ing everywhere. Indeed, the model thickens the flame
at the level that is required to reach the target resolu-
tion considering the local mesh size and laminar flame
thickness (i.e.∆l ' 550 µm in the present case). As
a consequence, a thickening factor equals to unity is
applied in the zones where the flame is already suffi-
ciently resolved. This is typically what is happening
close to the burner lips. Simulations are performed
using AVBP (www.cerfacs.fr/avbp7x/), an explicit

cell-vertex parallel code solving compressible reacting
flows with the use of the SIGMA turbulent closure for
the subgrid Reynolds stresses [22]. A third order ac-
curate Taylor-Galerkin scheme [23] is adopted for dis-
cretisation of the convective terms. Inlets and outlets are
treated with the Navier-Stokes Characteristic Boundary
Conditions [24] imposing the mass flow rates (Tab. 1),
and ambient pressure, respectively. For both operating
conditions, a measured temperature of Tbkpl = 450 K
and Tlip = 720 K is fixed, respectively, at the cham-
ber backplane and separator lip. Combustion chamber
wall heat losses are taken into account imposing a tem-
perature profile measured with a movable thermocouple
from the external side of the flame tube and a thermal
resistance of Rw,cc = 9 · 10−4 m2K/W computed assum-
ing a thermal conductivity λ = 2.17 W/mK for the 2 mm
thick quartz wall.

3. Chemistry and Transport properties

The CH4/Air-H2 chemistry is described by an ARC
mechanism comprising 20 species, 166 reactions, and 9
quasi-steady state species derived from GRI-Mech 3.0
using ARCANE (www.chemistry.cerfacs.fr/en/
arcane). A complete description of the ARC mech-
anisms is reported in section A of the supplementary
materials. To validate the kinetic schemes, Cantera
(www.cantera.org) calculations of a 1D-counterflow
H2 diffusion flame against equilibrium products from a
lean CH4/Air flame is presented in Fig. 2. The detailed
GRI-Mech 3.0 scheme with multicomponent transport
and Soret effect [25] is then compared to the reduced
ARC mechanism using both simplified and mixture av-
erage transport properties models. The latter model is
the standard approach for complex transport. An alter-
native often present in LES codes is the simplified ap-
proach which consists in determining the viscosity from
the Sutherland’s law and deducing the mixture heat con-
ductivity using a constant Prandtl number while each
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Figure 2: (a-c) Comparison between flame structures computed with Cantera using GRI-Mech 3.0 mechanism including multicomponent transport
and Soret effect (dashed lines), the ARC scheme with a mixture transport model (dark line) and simplified transport model (light line), for a
counterflow diffusion flame of H2 against the equilibrium burnt gases from lean (φ = 0.8) CH4/Air premixed flame. Normalized profiles of (a)
mass fraction of selected species, (b) temperature and heat release rate; (c) profiles of the transport properties. Computation inputs are: p = 1 bar,
injection temperature of T i

H2
= 570 K and exhaust gas temperature T i

g = 2000 K. (d) Isolines of the Prandtl number and contour map of N2 Schmidt
number in ternary mixture of H2, CH4 and N2 as a function of composition.

species diffusivity relies on a constant Schmidt number.
The calculation is performed with hydrogen injected at
2.8 m/s and burned gases injected at 3.5 m/s separated
by a reference distance of δ = 10 mm leading to a strain
rate aT = 630 s−1 [26]. This diffusion flame mimics
the H2 combustion process of the final target configu-
ration close to the burner outlet. The heat release pro-
files obtained with the three mechanisms present two
reaction peaks, a primary peak in the rich side of the
flame, very close to H2 injection point and a second
one, much larger, in the stoichiometric region of the
flame. Normalized species, temperature and heat re-
lease rate profiles comparisons show perfect agreement
between GRI-Mech 3.0 scheme and the ARC scheme
with complex transport while showing only satisfactory
agreement with a simplified transport model (Fig. 2(a-
b)). Figure 2(c) shows the Prandtl (Pr) and Schmidt
(Sc) numbers of selected species present in the 1D-
counterflow diffusion flame confirming the variability
present in this problem. It is noted that the GRI-Mech
3.0 scheme and the ARC scheme with complex trans-
port predict a Pr number dropping from 0.7 to 0.43 in
the region just before the heat release rate peak, i.e., a
region where H2 and N2 form a binary mixture of almost
equal molar fraction. This leads to higher thermal con-

ductivity and hence to a lower temperature peak in the
flame if compared to constant transport property case.
Finally, the N2 Schmidt and the mixture Prandtl number
in a ternary mixture of N2, H2 and CH4 are reported in
Fig. 2(d). By looking at the isolines of the Prandtl num-
ber it can be noticed that Pr is a strong function of the
H2 molar fraction and takes its minimum values when
H2 is present in a binary mixture with N2

1 with almost
equal molar fractions. Focusing on the Schmidt number,
both the 1D-counterflow diffusion flame of Fig. 2(c) and
the ternary mixture of Fig. 2(d) show a variation of the
N2 Schmidt number from 2 when it diffuses in H2 to
only, 0.7 when it diffuses in other gases. Variations of
the Schmidt numbers of other species, even if present,
do not influence combustion since they are rapidly con-
sumed (e.g. O2, CH4). Reduced diffusion of N2 in H2
due to the increase of Sc, decreases the local H2 mo-
lar fraction and the resulted flame will be shifted toward
the H2 side. Vice-versa, when simplified transport is
used, N2 diffuses more in the H2 side leading to a flame

1It should be also noticed that similar results would have been
achieved with a mixture of H2 with other heavy components such as
O2. However, in the present configuration, oxygen is immediately
burned so its concentration is extremely low in the zones where hy-
drogen is present. For this reason, N2 is considered in Fig. 2(d).
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Figure 3: Time and angle average contours of axial Ux (a), radial Ur
(b) and tangential Uθ (c) velocity components. Black isolines indicate
negative values, while positive velocities are in white. The thick black
isoline in the axial velocity map corresponds to Ux = 0.

shifted towards the oxidant side as shown in Fig. 2(b).
Variable Pr and N2 Sc number polynomial functions of
the molar fractions XCH4 , XN2 and XH2 are implemented
in AVBP and used for the following simulations. These
corrections allow to match the complex transport model
perfectly for such flames. Expressions of these func-
tions are reported in section B of the supplementary ma-
terials.

4. Results and discussion

Before discussing the reactive simulations, LES time
averaged contours of axial Ux, radial Ur and tangen-
tial Uθ velocities of the non-reacting flow are shown in
Fig. 3(a-c). The imposed swirl motion is not sufficient
to achieve a complete vortex-breakdown. At the exit
of the annular channel, a large radial component pushes
the jet towards the chamber axis (Fig. 3(b)). As a conse-
quence, the system features a central recirculation zone
(CRZ) that is not completely developed as highlighted
by the black thick isoline Ux = 0 in Fig. 3 (a). A good
match with experimental results is obtained for global
quantities such as the swirl number computed at the en-
trance of the combustion chamber (S LES = 0.35 against
a geometrical value of S th = 0.3) and injector head loss
(∆p,LES = 480 Pa against measured ∆p,exp = 550 Pa)
confirming the accuracy of the proposed simulations.

4.1. REF case

First, the reactive case REF without hydrogen in-
jection (Tab. 1) is discussed. The flame shape ob-
tained taking the line-of-sight (LOS) integration of the
CH* chemiluminescence intensity signal (Fig. 4(a)) is
compared with the LOS of the predicted heat release
rate (Fig. 4(b)). Both maps are reported normalized
with respect to their maximum value. The predicted

(a) (b)

EXP LES

0 1ĨCH∗ ,˜̇q

(c)

0 4·108
q̇ [W/m3]

(d)

-5 25
Ux [m/s]

Figure 4: Comparison between the normalized line-of-sight (LOS)
integration of measured CH* chemiluminescence intensity ĨCH∗ (a)
and the normalized LOS integration of the heat release rate ˜̇q from
LES (b). Time and angle average contours of heat release rate with q̇ =

40, 100, 200 MW/m3 isolines (c). Time and angle average contours of
axial velocity Ux (d). Black isolines indicate negative values, positive
velocities are in white, the thick black line refers to Ux = 0.

(a)

-5 25Ux [m/s]

1mm

(b)

300 1850T [K]

1mm

(c)

0 2·10-4YCH3

1mm

Figure 5: Zoom on the flame root. Isoline of heat release rate (red
line) at q̇ = 40 MW/m3 (10% of the maximum value) plotted over the
contours of axial velocity Ux (a), temperature (b), mass fraction of
CH3 (c). In the velocity map, black isolines indicate negative values,
positive velocities are in white. The thick black line refers to Ux = 0.

global flame shape is in agreement with experiment.
No flame is predicted in the corner recirculation zones
(CRZ) proving the appropriateness of the assumed ther-
mal boundary conditions. A good match is also found in
terms of lift-off distance and flame angle, whereas LES
slightly overestimates the flame total extension. The
well-established V-shape of the flame is also clearly vis-
ible in Fig. 4(c) reporting time and angle average con-
tours of heat release rate. Axial velocity contours are
shown in Fig. 4(d). Comparing with the correspond-
ing map for the cold flow (Fig. 3(a)), a proper vortex-
breakdown with the formation of a complete and ex-
tended CRZ is achieved with combustion.

Zooming now at the flame root allows to discuss the
flame stabilization mechanisms. An isoline at 10% of
the maximum of the mean heat release rate (red line)
is plotted in Fig. 5(a) over the axial velocity map. The
swirled flame is stabilized inside the low velocity zone
filled with hot gases created by the CRZ on top of the
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Figure 6: Comparison between the normalized LOS integration of
measured CH* chemiluminescence intensity ĨCH∗ (a) and the normal-
ized LOS integration of the heat release rate ˜̇q from LES (b). Time and
angle average contours of heat release rate (c) and temperature T (d)
with isolines (white lines) of q̇ = 200 MW/m3 (10% of the maximum
value) and q̇ = 40 MW/m3.

separation lip. Plotting the same heat release rate level
over the iso-contours of temperature in Fig. 5(b) under-
lines the fact that flame stabilization happens along a
temperature value of T ' 1300 K, which is close to the
activation temperature of the reaction leading to the pro-
duction of CH3 from methane. Indeed, this species is
found to concentrate within the heat release rate isoline
(Fig. 5(c)) proving that it is a good indicator of the po-
sition of the flame root.

Since no hydrogen is injected, very low XH2 is ob-
tained for this case (not shown), therefore the impact of
the transport model is accordingly negligible.

4.2. PH2 case

As soon as H2 is injected from the pilot channel, the
flame structure changes. Focusing on the measurements
Fig. 6(a), comparing with the REF case (Fig. 4(a)), a
more intense zone is observed at the flame root and all
along the outer side of the flame facing the CRZ. In
agreement with the experiments, LES show high heat
release rate in similar areas (Fig. 6(b)). Nevertheless,
some differences are observable. A mismatch of ap-
prox. 1 mm is indeed noted in the flame lift-off height.
This may be due to the lip temperature which was mea-
sured in the experiments and imposed in the LES. Time
and angle average contours of heat release rate reported
in Fig. 6(c) give more insight on the flame structure.
Again, if compared to case REF, higher mean values
of heat release rate are obtained. The isoline of the
heat release rate at q̇ = 200 MW/m3, i.e. at 10% of
its maximum value, shows a flame shape similar to the
REF case (Fig. 4(c)). On the contrary, a flame branch
in the CRZ is well detectable by the isoline at q̇ = 40
MW/m3, i.e, the same level used to indicate the flame
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1mm
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0

40

200

3·10-4YHO2

1mm

(c)

0
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200

8·10-4YCH3
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Figure 7: Time average mass fractions of OH, HO2 and CH3 at the
flame root with isolines of heat release rate (red lines) at q̇ = 40 and
200 MW/m3.

in case REF. The central region is therefore hotter, with
temperatures that reach 2000 K. A wider flame angle is
then achieved, in line with experimental observations.

Looking at mass fractions of OH, HO2 and CH3 in the
flame root region, high concentrations of OH (Fig. 7(a))
are found within the isolines at q̇ = 40 MW/m3 sug-
gesting that the injected H2 is responsible for the heat
release in this zone. Similarly, the presence of high
concentrations of HO2 just above the splitter indicates
that part of hydrogen is also immediately consumed in
that region when a sufficient concentration of H2 and O2
is reached (Fig. 7(b)). The high concentration of CH3
(Fig. 7(c)), instead, indicates that the anchoring point of
the CH4 premixed flame is lifted off with respect to case
REF. This species is completely enclosed by the higher
q̇ = 200 MW/m3 isoline confirming that, also for this
case, CH4 oxidation drives the mean heat release.

To better understand the interaction between hydro-
gen and the premix mixture, two Takeno flame indices
(FI) [27] are computed. To do so, variables are con-
ditioned by the consumption rates of H2 and CH4, re-
spectively, and then weighted by the magnitude of these
variables to underline the regions in which heat release
is more relevant:

FIFuel = |ω̇Fuel|
∇O2 · ∇Fuel∥∥∥∇O2 · ∇Fuel

∥∥∥
∣∣∣∣∣∣∣
ω̇Fuel<0

(1)

Results in the flame root region are reported in Fig. 8.
While the Takeno index of CH4 is always positive, con-
firming that it burns in premixed mode (Fig. 8(a)), the
FI of H2 detects that hydrogen is consumed in both pre-
mixed and diffusion regimes (Fig. 8(b)). A large diffu-
sion reacting layer generated by the reaction of H2 with
residual O2 in the burned gases is found in the CRZ,
confirming the hydrogen nature of this second branch of
the flame. At the flame root, a premixed region is pre-
dicted detached from the splitter and is believed to be
generated by H2 diffusion from the high concentration
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Figure 8: Zoom on the flame root. Computed dimensional Takeno
index of CH4 (a), dimensional Takeno index of H2 (b) with isolines
of temperature (black lines) at T = 700, 1300 and 2000 K and heat
release rate (red lines) at q̇ = 40 and 200 MW/m3. (c) Contours of
axial velocity Ux with isolines of heat release rate (red). Isolevels of
negative velocity values are in black, positive velocities are in white.
The thick black line refers to Ux = 0.

zone to the CH4/Air stream. More interestingly, a sec-
ond diffusion reacting layer is predicted starting form
the splitter wall until the premixed zone. This flame is
obviously responsible of the HO2 concentration previ-
ously discussed (Fig. 7(b)) and has a direct role in the
stabilization mechanisms of the flame. Indeed, plotting
the two heat release rate isolines over the axial veloc-
ity field Fig. 8(c), it is possible to notice that differ-
ently from case REF, the hydrogen diffusion flame sta-
bilizes in the low velocity region. This diffusion kernel
appears to support the premixed CH4 flame that is an-
chored more downstream in a higher positive velocity
region. Observing now the temperature profile (black
lines in Fig. 8(a-b)), it is noted that hydrogen oxida-
tion happens in a low temperature zone. The extension
of the lower flammability limit temperature is a well-
known property of H2 that is characterized by reactions
with low activation energy (such as the one correlated to
the HO2 production) [28]. On the contrary, stabilization
of the CH4/Air flames happens at the same temperature
T ' 1300 K value as the REF case. This shows that the
spatial position of the high heat release zone depends on
the axial location of these isolines which is highly im-
pacted by the Prandtl number of the mixture and the N2
Schmidt number as discussed in section 3.

Indeed, focusing then on the transport properties,
Fig. 9(a-b) shows, respectively, the Pr and the N2 Sc
contours in the region in which the H2 (white lines) mo-
lar fraction is relevant. To highlight this result, an in-
stantaneous snapshot of H2 mass concentration of the
current simulation (right) is compared in Fig. 9(c) to an
equivalent instant with simplified transport properties
(left). Pr and Sc numbers for each transported species of
the ARC scheme used for the simplified transport case
are listed in section B of the supplementary materials.
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Figure 9: Zoom on the flame root. Instantaneous snapshot of Prandtl
number (a) and N2 Schmidt number (b) with isolines of heat release
rate (red lines) at q̇ = 40 and 700 W/m3 and H2 molar fraction (white
lines) at XH2 = 0.1, 0.3, 0.5 and 0.7. (c) Comparison between sim-
plified (left) and complex (right) transport properties computations on
an instantaneous snapshot. Mass fraction of H2 (log scale) is shown
together with isolines of heat release rate (red lines) at q̇ = 40 and 700
MW/m3 and temperature (black lines) at T = 700, 1300 and 2000 K.

In both images, isolines of the temperature field are also
reported (black lines). With complex transport proper-
ties (Fig. 9(c-right)) the region with high concentration
of H2 moves upstream since N2 diffuses less from the
upper region (i.e. higher Schmidt number). A different
diffusion of H2, together with a higher thermal conduc-
tivity, i.e., lower Prandtl number, have a strong impact
on the temperature field, making the hotter region fol-
lowing the movement of H2 concentration downward.
Simplified transport properties (Fig. 9(c-left)) fail to
correctly reproduce this mechanism, resulting in a less
diffuse temperature field. As a consequence, the low-
intense hydrogen reaction zone is more stretched and
the CH4 oxidation is pushed downstream resulting in a
lifted flame.

5. Conclusions

In this paper, the impact of non-premixed hydrogen
addition on the flame shape and stabilization mecha-
nisms of a swirled methane/air flame has been consid-
ered by a numerical analysis. At first, a novel ARC
chemical scheme was derived from the detailed GRI-
Mech 3.0 to describe the CH4/Air-H2 combustion reac-
tions. To validate the reduced chemistry model, calcu-
lations of a 1D-counterflow H2 diffusion flame against
equilibrium products from a lean CH4/Air flame were
presented for a condition representative of the combus-
tion regime with H2 injection in the system (PH2). At
the same time, large changes of the Prandtl and Schmidt
numbers altering the transport properties were high-
lighted when hydrogen is present. In agreement with
experiments, H2 injection is found to have a marginal
impact on the general structure of the swirled V-shaped
flame, leading only to a more intense reaction at the
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flame root and along the outer side of the flame facing
the CRZ. New features were also highlighted with LES.
Close to the pilot hydrogen injector outlet, a premixed
and a diffusion flame branch were identified when hy-
drogen is injected impacting the flame stabilization and
its angle. These two branches could not be observed
when pure CH4 is injected instead of hydrogen [20]. In-
deed, at the flame root the main premixed flame is found
to be stabilized on a diffusion flame kernel created by
the injected hydrogen reacting with the oxygen of the
lean premixed stream. Given the high concentration
of H2 in these regions, flame stabilization is found to
be strongly influenced by the adopted transport models
highlighting the importance of using complex transport
properties in any LES involving hydrogen combustion.
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