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Abstract. This study investigates the capacity of a prognosticl Introduction
biosphere model to simulate global variability in atmospheric
CO, concentrations and vegetation carbon dynamics unde o

current environmental conditions. Global data sets of atmo-ﬁ—he tirrestrlalé)llct)sphere gljeTek;allly abbsorb&?ﬁkm thte a}t-
spheric CQ concentrations, above-ground biomass (AGB), mosphere, and Its annual global carbon uptake rate IS con-

and net primary productivity (NPP) in terrestrial vegetation sidered to _be similar to that of the ocedraxs et al._1990.
were assimilated into the biosphere model using an inversé/Ialny studies have aftempted to accurately quantify the total

modeling method combined with an atmospheric transportcarbon exchange rate between the terrestrial biosphere and
he atmosphere and to determine the role of the terrestrial

model. In this process, the optimal physiological parameters’, . . X
of the biosphere model were estimated by minimizing the iosphere in the global carbon cycle (e.§chime] 1995

misfit between observed and modeled values, and paramé:-i9|OI et al, 1998. Mod'eling of the terrestrial piosphere Is
ters were generated to characterize various biome types. RrENE of the key strategies used in these studies (@ajter

sults obtained using the model with the optimized parameter?t gl_, 19ﬁ3 Runn:jngl and Huntl9_9t3 Itof and Olkar\]/vazoog.
correspond to the observed seasonal variations ip €M- I0Sphere models use a variely of approaches and repre-

centration and their annual amplitudes in both the NorthernS(ar‘t‘."Itlons to predict the processes of ecosystem carbop dy-
amics. Therefore, quantities in the carbon budgets derived

and Southern Hemispheres. In simulating the mean annu .
AGB and NPP, the model shows improvements in estimatin rom these models diffeCramer et al(1999 compe_lred 17 .
iosphere models and found that global terrestrial net pri-

the mean magnitudes and probability distributions for each

biome, as compared with results obtained using prior simumary productivity (NPP) calculated by the models ranged

lation parameters. However, the model is less efficient in itsfrom approximately 40 to 65Pg Cyt and that the mod-

simulation of AGB for forest type biomes. This misfit sug- e!s yielded diffe.r.ent NPP spatial distribution;. Even at' re-
gests that more accurate values of input parameters, specig-Ional SCQIeS"Ch” etal. (2010 repor‘ged large dlffer_e_nces n
ically, grid mean AGB values and seasonal variabilities inthe magnitudes of annual gross primary produciivity (GPP)

physiological parameters, are required to improve the perfor-and ecosystem respiration generated by nine S|mulgt|0n mod-
mance of the simulation model. els. The discrepancies revealed by the systematic compar-

isons between different biosphere models indicate that the
current biosphere models are still in need of improvement
(Friedlingstein et a).2006 Jung et al. 2007, Sitch et al,
2008.

Model-data synthesis is one approach to addressing the
problem of discrepancies between models because such a
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1830 M. Saito et al.: Optimization of a prognostic biosphere model

synthesis reduces uncertainties and optimizes controllindpiomass (AGB), and NPP data, combined with an atmo-
processes in a model to improve its fit to observed dataspheric transport model and a Bayesian inversion method.
This method is widely applied in terrestrial biosphere mod-Our primary goal is to improve current assessments of the
eling, as well as in atmospheric and oceanic modeling, basetkrrestrial carbon cycle under current climatic conditions and
on various a priori information. Examples include model- atmosphere—biosphere interactions. For this purpose, we fo-
ing approaches to the estimation of residence times of careus on constructing a model that is capable of comprehen-
bon in soils and plants in regional are8safrett 2002 Zhou sively simulating the carbon dynamics of natural vegetation,
and Luqg 2008, the fit of eddy covariance flux variables at vegetation structure, and atmospheric Q@riability on a
point scales Braswell et al. 2005 Sacks et al.2006, the  global scale.

impact of seasonal water stress on ecosystem gas exchange

(Reichstein et ] 2003, and atmospheric inversion schemes
(Ciais et al, 1995 Enting et al, 1995 Bousquet et a|200Q
Peylin et al, 2005. An overview of model-data synthesis
meth_ods_ln terrestrial carbon studies gnd the w_nprovementi1 Terrestrial biosphere model
required in such methods have been discussed in several pre-

vious studiesRaupach et 312005 Wang et al,2009 Luo A prognostic biosphere model, the Vegetation Integrative
etal, 2011. . Simulator for Trace gases (VISITo, 2010 is used in this
Using ~a  model-data  synthesis  approach, sy,qy to simulate the global terrestrial carbon cycle. Al vari-
Kaminski et al (2002 introduced a method to systemati- gples in VISIT are calculated at a52 x 2.5° spatial reso-
cally infer optimal model parameters and applied the methodtion and with a time step of one day. The global vegeta-
to the assimilation of observed atmospheric O@ncen- o types in the model are classified into 14 biomes (Eg.
trations into an integrated terrestrial biosphere—atmospherig,q 5 map of their distributions is produced using the syn-
transport model. Atmospheric GCconcentrations reflect ergetic land cover product (SYNMAPY(ng et al. 2006.
the distributions of C@sources and sinks at various spatial Tp¢ reanalysis/assimilation data sets released by the Japan
and temporal scales, rather than those distributions reSt”CtGMeteorological Agency (JMA) and the Japan 25-year reanal-
to small-scale footprints. In this way, these inputs are Moreéysjs (JRA-25)/JMA Climate Data Assimilation System (JC-
likely to yield reliable results when appl!ed to an optimized DAS) (Onogi et al, 2007 are used to force the VISIT sim-
global biosphere model. In these studies, two parametersyjation. The JRA-25 reanalysis covers the period from 1979
light use efficiency and the temperature sensitivity of respira- 2004, and JCDAS covers the period from 2005 to 2009.
tion (Q10) were individually assessed for 12 biomes, which The meteorological data used to operate VISIT are down-
resulted in good simulations of the phases and amplitudes fyarg shortwave radiation, total cloudiness, air temperature,
seasonal atmospheric G@t the observation siteRayner  ground surface temperature, soil temperatures, specific hu-
et al. (2003 further developed the method dfaminski iy, precipitation, and wind velocity. The precipitation
et al. (2009 by replacing the biosphere model with a more pa5 in JRA-25/JCDAS is corrected based on the study of
mechanistic approach and optimizing more of the modelgyjtg et al(2011). We use the climate data for the 31-year
parameters, in what is known as the “Carbon Cycle Datayeriod from 1979 to 2009 for both spin-up and model simula-
Assimilation System” (CCDAS). tions. In the spin-up simulation, the 31-year climate data are

To date, studies have focused predominantly onz CO repeated over 4000 years until carbon pools reach an equilib-
fluxes associated with atmospheric £@riability, and less  jum state.

effort has been directed toward the effects of parameter op- |, the model, plant physiology and the carbon budget

timization in simulations of ecosystem variability in carbon 5.6 simulated in each grid cell. Net ecosystem productivity
pools or in plant materials. However, the importance of ac-(NEP) is defined as follows:

curate estimates of the forest carbon pools, as well as atmo-

spheric CQ variability, is increasingly recognized in scien- NEP= NPP— HR = —NEE, (1)

tific and political circles (e.gCarvalhais et a]201Q Saatchi NPP= GPP—AR. @)

et al, 2011), as such estimates are required to quantify the

CO, emissions attributable to deforestation and forest degrawhere HR is the heterotrophic respiration, AR is the au-
dation, which account for about 12 % or more of total anthro-totrophic respiration, and NEE is net ecosystem,Ge-
pogenic CQ emissionsyan der Werf et a].2009. Improve-  change rate. The daily GPP rate is expressed using the

ments in the estimates of forest carbon pools and atmospherigry-matter production theory dflonsi and Saek{1953:
CO, variability are necessary for assessing the global carbon

balance and the role of the terrestrial biosphere in the state of
the current climate.

Here, we develop an optimization scheme for a global bio-
sphere model for atmospheric @@ariability, above-ground

2 Method and data
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90" e T . i W v Topt, respectively); and'sy and Frsy are formulated using the
= o photosynthesis-limiting factors for intercellular g€oncen-

] ° AR ° e tration (kmci) and soil moisture (km_nstl), according to
30 Q i sigia :0 WL

e ° s by Fimp = (5)
ol e # i j (T, = Tmnad (Ty — Trin)

° o max| min 5.1(,0],

-60° - cL (Tg - Tmax)(Tg - Tmin) - (Tg - Topt)

— 00 i 11 T sl
-180° -120° —60" 0 60° 120° 180°

Fsi = (6)
Figure 1. Distributions of the dominant biomes in each grid and Csti+ (Ci — CDermp)
the locations of atmospheric GQobservation sites. ENF: ever- max|:min [(1_ Cst) + st 1+ cmp ’1i|,0:|’
green needle-leaf forest; EBF: evergreen broad-leaf forest; DNF: kmci+ C;

deciduous needle-leaf forest; DBF: deciduous broad-leaf forest;
MF: mixed forest; WL: woodland; WGL: wooded grassland; CSL:
closed shrubland; TND: tundra; TOS: temperate open shrubland,Fnstl = (7
GL: grassland; CL: cropland; BG: bare ground; Sl: snow and ice. ) Chstl-
The blue circles are partial-column G@oncentrations and the red ~ Max| min| (1 — Csntl) + »11,0(,
) . ® + FPsy - km_nstl
circles are surface C{xoncentrations.

where CQmp is the CQ compensation pointBrooks and
Farquhar 1985, FPR, is the soil water holding capacity
(mm) (given by soil property data), an@sy and Cpgy are

DL LAl constant coefficients.
GPP=«¢ / / P.dLAId? (3) Parameter AR represents both the growth and maintenance
5 5 respiration from foliage, stem and branch, and root compo-
nents. The growth respiration (AR of each component is
_ 2ePsaDL |:|n {1+ \/1+ K4 - Q.- PPFDhid } the cost to produce new biomass, given as
a Psat
ARGX = I’gX . Tpx, (8)
Kq- Qe - PPFDnid - exp(—K, - LAl)
—In {1+\/1+ Peat }:| where rg is the specific growth respiration rate, ¥Rs
the carbon translocation rate, and the subsckiptepre-

where e(=4.32x10%) is a unit converter from Sents the different components: foliage (FL), stem and branch
umol Cm—2s-1 to MgChalday!; DL is day length (SB), and roots (RT). In contrast, the maintenance respiration

(h), LAl is a leaf-area index estimated as a function of the (ARx) is represented as a functionBf:

given specific leaf area, SLA (¢hg~1); P. is the single-leaf |

photosynthet!c rate (umol C?CDr1*2); Psat_is the single-leaf AR,y = rmy - exp[%(Tg _ 15)] .My, 9)
photosynthetic rate under light saturation (umoLBD 2); 10

K is a dimensionless function of solar heigid is light where riy is the specific maintenance respiration rate for

use efficiency (mol C@mol~1 photon); and PPFRyq is the . i
photosynthetic photon flux density (PPFD) at the canopy topeaCh component anid s the carbon mass for each compo

X 1 nent.
at midday (umol photon m? s~). The parameter PPRR The parameter HR represents respiration rates in two lay-

:icﬁjsst;gnnag‘dtf:(reorcqoaze Zggﬁ::(e)nefgﬁtrogv:agag?v\;vrlitgtionsers: the litter (HR) and humus (Hig) layers. Both HR
y ) and HRy are calculated as functions of the soil temperature

in Psgtare assqn;led to be_ dependent on the ground _surfacgt two depths, namely 10 crfigc) and 200 cm {200, and
temperature 1; °C), the intercellular C@ concentration . . )
® in the upper and lower soil layers:

(C;; ppmv) (which is estimated from the ambient €O
concentration), and soil moisturé{mm), according to HR; = shl- My - Fur (Ts1o Pu) (10)
- ul»

HRy =shm- My - Fur (Ts200 ®1), (11)

P = . ) - ) .

sat= Pnax Finp(Tg) - Fsu(Ci) - Frsu(@), ) where shl and shm are the specific heterotrophic respiration
where Pmax is the potential maximum value @& F is the rates andV/;, and My are the carbon masses of the organic
coefficient function used to calculate seasonal variations irmatter in the litter and humus layers, respectively. The annual
Psai, Fimp is formulated using the maximum, minimum, and mean value offs1pis used as a substitute f@k;o0 because
optimum temperatures for photosynthestgdx, Tmin, and  JRA-25/JCDAS provides the soil temperature at depth.

www.geosci-model-dev.net/7/1829/2014/ Geosci. Model Dev., 7, 183219 2014



1832 M. Saito et al.: Optimization of a prognostic biosphere model

In VISIT, the amount of litter fall (LF) is assumed to be ~ We operate the NIES-TM with a2 x 2.5° grid resolu-
proportional to the carbon mass of each component (foliagetion and nine vertical levels, with forcing data from JRA-

stems and branches, and roots), according to 25/JCDAS. The oceanic C(lux, fossil fuel emission in-
ventory, and NEE in the terrestrial biosphere are required
LFx =Ifx - My, (12)  a priori information to run the NIES-TM. In this study, the
) o ocean flux is derived from the Offline ocean Tracer Trans-
where Ify is the specific litter fall rate. port Model (OTTM;Valsala and Maksyutq\2010, and the

Parameter AGB is the sum of the carbon mass in foliagé,ssjl fuel emission data are from the Open-source Data In-
Mg and stems and branchagsg. Changes inMx for & \entory of Anthropogenic COemissions (ODIACOda and
given period are given by Maksyutoy 2011). We run the NIES-TM for a 6-year pe-

_ B _ riod (2000-2005). The data for the first year are used for the
AMy =TPx —ARGx —LFx. (13) spin-up simulation, and the data for 2001-2005 are used in
the analysis. Trends in simulated atmospheric, €@@Gncen-

AMsg on a given initial AGB for both spin-up and model trations with periods longer than aro_und 1.5 years and shorter
simulations. than about 15 days are removed using an orthogonal wavelet

In this study, the prior values of the parameters are thed€composition iowell and Mahrf 1994. Then, the mean

same for all biome types (Tabi. The posterior parameters Menthly atmospheric CQs calculated.
are estimated by Bayesian inversion. An average sensitivit
of each parameter to three variables (NEE, AGB, and NP

of whole biomes) was estimated using 10 % change in th&ye optimize a set of biophysical parameters in VISIT against
prior parameters and #2 variation in temperature parame- mean monthly atmospheric G@nd mean annual AGB and
ters, using first-order sensitivity analysis. From this analysisnpp g derive an optimal parameter sethe deviations of
the 12 parameters with the highest sensitivitigid, SLA,  he model estimates from the observed data are minimized
IfFL, Pmax, Shl, Topt, Qe, TPeL, km_nstl, shmQ10, and lise)  sing a Bayesian inversion scheme. When the probability

were selectgd to optimize the fit of the model sim.ulations t0gistributions of all observed and a priori biophysical param-
the observations (Tabl. These parameters explain 90 % of oiars are assumed to be Gaussian, and their meamsare

the variations in the three variables for whole biomes. Uncer-andmp' respectively, the misfit betweefass and the mod-

tainties associated with these parameters are unknown; thugjqq valuesG(m) for atmospheric C& AGB, and NPP is

they are defined using the results of the sensitivity analysisyefined by a cost functiorarantola 2005:
The sensitivity of I§g, which shows the lowest sensitivity

The value of AGB is estimated by accumulating/g_ and

.3 Bayesian inversion

(1.9 %) of the selected 12 parameters to changes in the three 1 T 1

variables, is defined as a reference value for parameter ur ") = 5 [(G(m) —dops) Cp™ (G(m) —doby) (14)
certainty; i.e., it is assumed that all parameters potentially _ 1

have uniform sensitivity to the three variables. A scale factor +(m —mp) Cly (m mp)] ’

is calculated for each parameter using the reference sensitiv- .
ity of 1.9 % divided by the sensitivity of the parameter; then where the superscript T denotes the transpose Candnd

an uncertainty of the parameter is defined by multiplying b Cu are the covariance matrices defining the uncertainties in

Y . . .
4 : dopsandm ,, respectively. The values &fp are described in

[0) - 14
10 % of the prior parameter, oZ, using a scale factor (Ta: the following section. The model resu® consists of a lin-

ble 1). Here we assume a linear relationship between param- . . .

eter sensitivity and changes in the parameters. ear atmospheric transport '.“9"?5‘”." a nonllnegr terrestrial
biosphere modeB. In the minimization ofS(m), in the case

2.2 Atmospheric tracer transport model of atmospher.ic ceQ G is'dgterr.nined by the _first derivatives

of B(m ), which, using finite differenceam, is

Seasonal variability in atmospheric @@oncentrations at

the observation sites is simulated using the National Insti-g — g [B(m,,) +

tute for Environmental Studies, Frontier Research Center for

Global Change (NIES/-FRCGC) off-line global atmospheric

tracer transport model (NIES-TMylaksyutov et al.2008).

The NIES-TM is one of the transport models evaluated in

the Atmospheric Transport Model Intercomparison Project

(TransComyaw et al, 1996 Gurney et al.2002. The ver-

tical turbulent diffusion in the boundary layer of NIES-TM

is parameterized using the monthly mean planetary bound-

ary layer (PBL) heights derived from a 3-hourly PBL height

data set$chubert et a].1993.

(15)

B(mp, + Am) — B(mp)
Am ’

where a linear relationship is assumed between the first
derivative of B andm, for Am. In the cases of NPP and
AGB, the operatof is determined by Eq16) without mul-
tiplication by A.

Geosci. Model Dev., 7, 182%84Q 2014 www.geosci-model-dev.net/7/1829/2014/



M. Saito et al.: Optimization of a prognostic biosphere model 1833

Table 1.List of variables in prior parameters (Prior) and their uncertainties (Unc). The values given in parentheses are for grassland.

Symbol  Parameter description (unit) Prior Scale Unc Scale
Pmax Potential maximum photosynthetic rate (umol£®2s1) 1.75 %10 2.8 x10~1
010 Temperature dependence of respiration rate (dimensionless) 2.0 - 1.8 x10°1
Qe Light use efficiency (mol C@m™2) 5.2 x1072 2.1 %1073
SLA Specific leaf area (cfng—1) 1.4(1.65) x10° 2.0(2.4) -

Tiin Minimum temperature for plant activitieS¢) 1.0 - 21 x1071
Topt Optimum temperature for plant activitie3®) 2.4 x10 4.5 x10~1
TPrL Carbon translocation rate to foliage (dimensionless) 55 x1071 33 x1072
km_nstl  Photosynthesis limitation factor in terms of soil moisture 0.3 - 22 %1072
=1 Specific litter fall of leaf 4.3 x1074 6.4 %1076
lfsg Specific litter fall of stem and branch 2.0 x1074 2.0 x107°
shl Specific heterotrophic respiration rate at upper soil 0.6 - 1.3 x1072
shm Specific heterotrophic respiration rate at lower soil 0.3 - 26 x1072

The center of the posterior Gaussian distribution, whichrecords” (ext), which records weekly smoothed atmospheric
shows the optimized values for the model parametecan  concentrations, and which is used in the following analysis.

be expressed followingarantola(2005 as: Mean monthly CQ variability is calculated from the ext data
in the same manner as that for simulated atmospherig CO
m= (16)  (Sect2.2). The standard error of GQvariability, recorded in

a file named “statistical summary of the average seasonal pat-
tern”, is used as a measure of the uncertainty in the observed
. CO_Z in Cp in Eqs. (1_4) and_ 1L6). We gnalyz_e sampling lo- _
The expressio GTcglG + C;/Il) in Eq. (16) is inverted ~ Cations at 102 sites, including at 19 sites with multiple verti-
cal CQ, observations sampled by aircraft (FI. For those

sites with vertical profiles, partial-column GQ@oncentra-
tions are estimated from the vertical profiles by assuming that
the CQ concentration at each observation height represents
the concentration at altitudes centered around the observation
height. We analyze this partial-column concentration instead
of individual CQ, concentrations at multiple heights.

AGB data from the International Institute for Applied Sys-

-1
mp+ (GTc;,lG + C;,l) G'Cy' (dobs— G(m))).

using single-value decomposition.

The optimal parameter setis given by minimizingS(m)
iteratively. In this process, the values Gfp, and C,, are
fixed, while the value ofn, for all parameters evolved at
each iteration by taking a posterior as a priorm,. The
minimization of$ is assessed by calculating, which is the
mean square mismatch betwegpsandG(m), expressed as

Nobs tems Analysis (IIASA;Kindermann et a).2008 are used
x%= Z(Gi —dobsi)?/Cp.i a7 in this study to optimize AGB in the biosphere model. The
i=0 IIASA data provides half-degree global biomass and carbon
N, stock data estimated from a downscaling model on the ba-
+ Z(mj —mp,j)z/CM,j. sis of a map provided by the Global Forest Resources As-
j=0 sessment. The data for AGB per hectare are calculated from

the gridded AGB data divided by the grid area data. To re-
The value ofx? is calculated for the entire data set of atmo- duce discrepancies attributable to differences in the dominant
spheric CQ, AGB and NPP. The iteration for the optimiza- biome in each grid between the model and 1IASA, the grid
tion is aborted when the value @f between the currentand resolution for AGB is expanded to.5? x 7.5°. Therefore,
previous iterations is less than 0.1 and the difference is conthe IIASA data with a grid resolution of. 8 x 0.5° and the

tinuously maintained or decreases in further iterations. VISIT data with a resolution of B° x 2.5° are aggregated to
the desired resolution. Here, the mean AGB values in VISIT

2.4 Data for the 10-year period of 2000-2009 are used for the analy-
sis. We compare AGB in 344 grids over the global terrestrial

The atmospheric C® data from GLOBALVIEW-CO,
,52 Ol()_ﬁ:e lgfg; :E\?FES\? zervaﬂo(r; d::\tg fg rﬂ?ncenttra— The third data set contains the NPP data from the Global
lons. The "CQ product 1S based on atmo- Primary Production Data Initiative (GPPD&curlock et al.
spheric measurements and provides information about CO1999 Olson et al, 2007). The GPPDI data set consists of

variability at ‘?V"".r.loF’ sampllng Iocat_|ons afo“”‘?[ the gIObe'three classes of NPP data: NPP measurements at intensively
The CQ variability is stored in a file named “extended

area.

www.geosci-model-dev.net/7/1829/2014/ Geosci. Model Dev., 7, 183219 2014



1834 M. Saito et al.: Optimization of a prognostic biosphere model

studied sites with site-specific information, NPP measure- 15
ments at extensive sites with less site-specific information,
and gridded NPP data with a grid resolution offGcbmpiled
from collections of inventory, modeling, and remote-sensing s
data. All of the NPP data from the three classes are aggre-
gated into a 5° grid cells, resulting in 166 grid cells being
analyzed in this study. As for AGB, the NPP data in VISIT
are averaged over the period 2000-2009 and are aggregated
into 7.5° grid cells.

Global maps of AGB and NPP include various estimat-
ing errors, including scale mismatches between measure- -15
ments and models, measurement errors, and representation
errors, leading to large uncertainties@y, (Raupach et a. N s 0 5 o 5 10 s
2005. This study defines the uncertainties in the observation GLOBALVIEW CO, (ppm)
data of AGB and NPP as 50 % of the57 grid mean val-
ues, based on the errors in relative estimates of annual NPPigure 2. Comparison of the mean monthly G®ariability calcu-
given in Raupach et aKzooa, with minimum uncertainties lated with GLOBALVIEW and with the model presented here.
of 1.0MgCha? and 0.5 Mg C ha' yr—! for AGB and NPP,
respectively.

y=0.97x+0.20

Modeled CO, (ppm)

peninsulas, bare ground, complex terrains, and oceans, where
the biospheric C@flux exerts less influence on atmospheric

3 Results CO, variability, or where local mesoscale motions control
] . ] the variability. Improvements in the atmospheric £€m-
3.1 Atmospheric CQ, simulation ulation at these stations is necessary to improve not only

Th . | 62 that i iahted b ber of d the biospheric model, but also the atmospheric transport and
€ pnfor value Or)]( .t aé ISAVé(Eg ted N{:)Su,m 7eé00 Tk?ta ocean models; thus, the 11 stations at Wb@g%,h> 10 are ex-
points for atmospheric C£) » an IS £.60. TNIS = c1yded from the following analysis. Consequently, the mean

value decreases with each iterations, and the iteration iSalues ofy2 and RMSE for the whole data set become 3.02
aborted after 10 repetitions because no large changg$ in and 1.36 p]gm respectively '

are subsequently observed. The final value of weighted mean . .
2 after 10 iterations for the whole data set is 3.93:= 4.83 _Figure 3 shows examples of the mean seasonal varia
X . e tions in atmospheric CPat the University of Maine, Ar-
for atmospheric CQ 1.46 for AGB, and 1.90 for NPP. The gyle, Maine, USA (AMT; 45.03N, 68.68 W) and Tierra
large value ofx? for atmospheric C@ can be partly at- Del i:uego LJshuaia Argientina ('I,'DF' 54°85, 68.32 W).
tributed to the combined effect of minor uncertainties in the.l.he biome, types at ’the AMT and TI:SF stations are classi-
observat|ons._ o . fied as mixed forest and closed shrubland, respectively, in
Atmospheric CQ Va”ab.'“ty Is estimated 9'°t?a"y' and e model. The annual meagﬁ, and RMSE values for the ob-
mean monthly concentrations are compe}red with observeélrved and posterior data are 3.59 and 2.01 ppm, respectively,
data from GLOBALVIEW-CQ at 102 stations. The result at AMT and 0.17 and 0.11 ppm, respectively, at TDF. The

eztlmatetq fro;n ”tf pioster:jor NE,E IS ('jn good aa%teegzgt W'thpeak of photosynthetic uptake in August at AMT is slightly
observations for the large domain and seasonatity(0.86, underestimated in the model, resulting in a discrepancy in the

P < 0.001; Fig. 2). The slope Of th.? Iinear_regression in- position of the peak between the observations and the model
dicates that the modeled GQariability is slightly under- (Fig. 3a). An improvement can be seen in the results for the

eSt'Tﬁtedi with r? n.of(f:set <th O.2pp£n ' Th?. misfit gf mza? posterior parameter as compared with the prior parameter,
monthly atmospheric CEbetween observations and mode although the C@variability for some months is still outside

N
values is defined at each station @& = 1/ Nmnt fn(Gi — the domain of the uncertainties in the observed data. At the
_ i=1 TDF station, the prior concentration shows overestimates of
dobsi)?/Cp,i, WhereNpnt is the number of monthsYmnt= both the photosynthetic uptake in summer and the respira-

12. The value ofx2 at each station varies from 0.16 to tion release in winter (FigBb). The posterior concentration
52.75, with a mearxf, of 4.90, and the annual mean value reduces these to a difference of within a few tenths of a ppm,
of the root mean squared error (RMSE) varies from 0.11 toand the discrepancy of the G@elease peak in the prior data
4.71 ppm, with a mean RMSE of 1.46 ppm. The values ofis moderated in the posterior data.

Xz%/ show large misfits;(f, > 10) at 11 stations; misfits of Figure4 shows a comparison of the mean seasonal ampli-
2-3ppm in atmospheric GOn months with minor obser- tudes of atmospheric GChased on the observed and pos-
vation uncertainties result in the Iargﬁ, value. Such ob- terior parameters at all stations along a single latitude. The
servation uncertainties occur at stations located on islandsseasonal amplitude at each station is defined as the difference

Geosci. Model Dev., 7, 182%84Q 2014 www.geosci-model-dev.net/7/1829/2014/



M. Saito et al.: Optimization of a prognostic biosphere model 1835

+ GLOBALVIEW

€
Q
€ o ) ® o
[ % 20 F © Posterior o .5 1
Q 8 — o o
L v o °
c 2 Q@O‘ .
ks g 5t 2% e , %%
3 5 P
o a - o o
= 0 g 0% O?@ o)
3 % 10t A E
5 5 o8
o] ] . :}@0 09
& 8 o GLOBALVIEW . 3 4l o E
[\ PR Prior %_ * O& OO
P i o 3
Posterior £ Q9% 8 . e, 4 8% 0
16 L1 I | | 0 MO A R I P
1 2 3 4 -90 -60 -30 0 30 60 90

Latitude

Figure 4. Annual amplitudes of the atmospheric g€®ariables
(ppm) along specific latitudes. The closed diamonds represent the
GLOBALVIEW-CO> data and the open circles represent the pos-
terior parameters. The latitudinal mean amplitudes and standard
deviations for each 30band from north to south are 15+ 1.9
(n=11),113+31(n =51),67+14 (n =13),22+1.1 (n=9),
1.3+0.3 (n = 3), and 124+0.2 ppm @ = 4) for the GLOBALVIEW-
COydataand 18+2.9,1124+3.6,61+1.6,19+0.9,21+04,

and 19+ 0.1 ppm for the posterior data.
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Figure 3. Seasonal variations in the observed and modeled mean 2
monthly CQ concentrations (ppm) &g) University of Maine, ~ 1he xy Values of mean annual AGB and NPP for the ob-

USA, and(b) Tierra Del Fuego, Argentina. Open circles with the Served and prior data range from 0.00 to 4781 among the
dashed lines are GLOBALVIEW-C§data, the dotted lines repre- grid cells, with a mean of 71.50. This large misfit of AGB
sent the prior parameters, and the solid line represents the posteri@and NPP is improved by using posterior values, which give
parameters. The error bars indicate the uncertainties in the observ%%, values in the range of 0.00 to 58, with a mean of 1.74.
tions. Six of the total of 510 grid cells (at a5 x 7.5° resolution)
showXI%, values much greater than 10 for the posterior data.

. - In these grid cells, the posterior AGB or NPP are overes-
between the maximum and minimum mean monthly concen-. . : . i

. S . ) imated as compared with observations, suggesting that dis-
trations. The posterior simulation shows a representation o

the seasonal amplitude with an RMSE of 1.65 ppm for o Crepancies exist between observations and the model in some
: . . .~ biome types.
stations, although the differences in the seasonal amplitude . . . .
. o In the simulation using the posterior parameters, the mean
between the observation and the model are significAnt ( . i
0.001). Erroneous overestimates  ppm) in the mean am annual AGB and NPP values are estimated at a spatial res-
. ' P olution of 25° x 2.5° before being compared with 11ASA

gg;ld_?_a%(l?(%lﬁs E;ggﬁhsstgr']o?iz'g_ﬂ;iggrtrgg?w;ngﬁgere:and GPPDI data for each biome type that had been aggre-
y ' SN ' gated to a comparable resolution (Fi§sand6). The biome

Schaums.lan.d., Qermany (SC.H; 4800 8.00 E). The sea- type for each grid cell is classified using the SYNMAP prod-

sonal variability in the posterior parameters at both stations . .

shows large overestimates in the winter concentration an ct (see above). The lIASA data show biome-specific pat-
erns in the median AGB: the biomes showing AGB values of

shght overest_lmates of the maximum photosyn_thetl_c uptake,> 30 Mg C ha'l, and with relatively large variances, include
which occur in early summer. Unfortunately, in this study

we failed to imorove these mismatches and oroduce a qoo§ er9reen broad-leaf forest (EBF), deciduous broad-leaf for-
P P 9 est (DBF), and mixed forest (MF). Those with AGB values of

agreement with observations at other stations. This is partIyapproximately 20-30 Mg C i include evergreen needle-

because of the inability of the global biosphere model to €D aaf forest (ENF). deciduous needle-leaf forest (DNF), and

resent NEE variability in the areas around observation pomt‘c{/voodland (WL): other biome types show AGB values of

and also because unsuitable biophysical parameters are se- 1 : . . .
lected for adjustment in the optimization process. < 20Mg Cha* (Fig. 5). The simulation using the prior pa-

rameters shows greater variability in AGB values for most
biome types but does not overestimate AGB in any of the
forest biome types relative to the IIASA data. These patterns
in the AGB distributions are improved in the simulations us-
ing the posterior values. The variations in AGB with respect
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Figure 5. Comparison of AGB (Mg C hal) values for each biome Figure 6. As for Fig. 5, except showing a comparison of NPP val-
according to IIASA (light grey box) and VISIT with prior (dark grey ues (Mg C halyr—1) for GPPDI and VISIT with prior and poste-
box) and posterior (open box) parameters. The box-and-whiskerior parameters. The GPPDI does not contain NPP data in the grids
plots show the median, upper, and lower quartiles, and the uppecorresponding to tundra (TND).

and lower 10 % of the data.

to biome and the small variations in AGB for each type areSsome of the parameters that show clear changes. The largest
reproduced in the model. However, the model using the posincreases and reductions in the magnitudes of the poste-
terior values underestimates the magnitudes of AGB for for-fior parameters are observed for the optimum temperature
est and woodland biomes (except for DNF), and a significanfor plant activities7op. This parameter specifies the opti-
difference is noted between observations and model results ilum temperature for photosynthetic uptake, which directly
median AGB for the whole biomes(< 0.001). The largest ~ controls the rate of photosynthesis and its seasonal variabil-
difference between model results in terms of AGB is presentty in response to changes in air temperature. The tempera-
in EBF; the lower and upper 10% AGB in the IIASA are ture dependence of photosynthesis is strongly influenced by
equal to 19.5 and 105.5 Mg Ch}, respectively, with a me-  Other environmental factors, such as light intensity, intercel-
dian value of 52.4 Mg C hal, whereas those of the model lular CO; pressure, and water and nutrient regimes; however,
range from 1.2 to 38.5 Mg C hd, respectively, with a me-  Topt, Which is generally between 20 and 3D, represents the
dian value of 22.3 Mg C ha. adaptation of a plant to the temperature regimes of its habitat
The median NPP for each biome type in the GPPDI rangedBerry and Bjérkman198Q Monson et al.1982. The pos-
from 2 to 6 Mg C halyr—1, except for the much higher NPP terior parameters ofopt are approximately observed within
of EBF and lower NPP of bare ground (BG) (F@ As in 20 and 30C, which range from 19.8 to 28°, with high
the AGB distributions, the simulation with the prior values Zopt Values for EBF, closed shrubland (CSL), and cropland,
shows greater variability in NPP values across biomes reland low Top values for DNF, MF, and tundra biomes. The
ative to observations. The NPP distributions using the posvariability in posteriorZopt values among biomes is roughly
terior values show biome-specific patterns similar to thoseconsistent with the latitudinal distribution that the biomes oc-
of AGB. As compared with AGB distributions, no large un- cupy (Fig.1): high Topt value with high mean temperatures
derestimations in the NPP values of forest type biomes arét low latitudes, and lowWgpt values with low mean temper-
present; however, there is a significant difference in the meatures at high latitudes. The minimum temperature for plant
dian NPP values between observations and the model fofctivities, Tmin, Which mainly controls the phases of leafing
whole biomes P < 0.05). No forest type biomes show NPPs and senescence and the duration of photosynthetic activity,
comparable with those of forest type biomes in the GPPDI,also shows similar patterns of change in the posterior param-
suggesting that there may be discrepancies in the dominar@ters to those dfopr. These results suggest that variability in
biome type in a grid cell between the GPPDI data and thebiome-specific parameters associated with temperature de-
model. pendence can be reproduced by our optimization scheme.
The SLA describes the allocation of leaf biomass per unit
of leaf area. Values of SLA generally decrease with increas-

4 Discussion ing leaf life span, and the mean SLA values of forbs, broad-
leaf shrubs, broad-leaf trees, and needle-leaf trees are 188,
4.1 Model parameterization 112, 112, and 48cfy 1, respectively Reich et al. 1997,

1998. Regardless of biome, the SLA is well predicted by
The differences between posterior and prior parameters, dithe posterior parameters for the corresponding biomes, of
vided by the uncertainties of the prior parameters (Taple 175,131, 131, and 195 &g~ for grassland, CSL, EBF, and
are shown in Fig7. The posterior parameters show various ENF, respectively, although the SLA for ENF is obviously a
changes relative to the prior parameters. Here, we examinmisfit relative to values obtained in previous studies. In our
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Figure 7. Differences between the posterior parameters (BRM Figure 8. As Fig._?,_but as the yncertainty reduction (%) from
and the prior parameters (PRJ), with uncertainties of prior pa- UNCpyi to uncertainties of posterior parameters (U¥for each
rameters (UNGyi) as(PRMpst— PRMyi) / UNCpyi. parameter agUNCpri — UNCpsp / UNCpyi x 100.

model, SLA directly regulates the variability in GPP, along large reductions in uncertainty relative to those of prior val-
with changes in the LAI, which is similar to the function ues (Fig.8). This large reduction in uncertainty indicates
of Pmax, Which defines the potential maximum photosyn- that more information is integrated into the model parame-
thetic rate (Eq3). However, SLA is an ecological parameter ters based on observational data. The causes of larger reduc-
that is closely related to canopy leaf nitrogen content, pho-ions in uncertainty in the four parameters are the relatively
tosynthetic capacity, irradiance, and nutrient availability, andlarge uncertainties in the prior parameters (see Rebtand
the relationship betweeRnax and SLA is non-linearRierce  the relatively high sensitivity of atmospheric g@AGB, and
et al, 1994 Meziane and Shipleyl999. Nevertheless, our NPP to changes in the parameters. However, very small re-
optimization scheme does not account for the interactiongluctions in uncertainty are observed in all parameters. This
among parameters or between parameters and environmeis attributed to indirect contributions of each parameter to
tal factors, and parameters that work similarly in the modelobservational variables and small uncertainties given in the
are not explicitly excluded, resulting in similar changes in prior parameters, resulting in a difficulty of integrating new
posterior parameters betwe@pax and SLA. Consequently, information into the parameteR@yner et al.20095.
posterior SLA may be partly constrained by change®igy, The biosphere model VISIT is designed to be used with
leading to a misfit for ENF. This shortcoming in our system biome-specific parameters that have constant values for each
may extend to other parameters; therefore, further developbiome, many of which are independent of environmental in-
ment of our system is required to include the interactionsfluences. The parameters optimized in this study, such as the
among parameters and to identify criteria for selecting op-carbon translocation rate to foliage @ and litter fall (Ify)
timized parameters. rate, have constant values for each biome, indicating that
The posterior parameters of temperature dependence dhese parameters have been adjusted to represent the cen-
the respiration ratg)1o, light use efficiencyQ., specific  tral parts of the distributions of the corresponding physiolog-
litter fall of stems and branchessif, and the photosynthe- ical processes on long-term and regional scales. However, for
sis limitation factor in terms of soil moisture km_nstl show example, vegetation alters its biomass allocation patterns in
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response to differences in climate to allow its survival underpools. This result clearly underestimates the current carbon
unfavorable conditionsJallaway et al.1994 Maherali and  uptake rate of about 2.6 Pg Cyr (IPCC, 2007). Including
Deluciag 2007), and the amount of litter fall also varies con- the effects of disturbances and subsequent regrowth of vege-
siderably under different environmental conditioBefg and  tation would improve the discrepancies between observations
Laskowskj 2006, but none of these factors are included in and model simulations of the global carbon budgets.

the model. Therefore, the model far from adequately repre-

sents the physiological processes under all conditions, which

might result in large discrepancies in model results from the5 Conclusions

observed data at some points. If it is possible to describe the

response of each parameter to the environmental conditionghis study has described a framework for optimizing a
a model that includes those variable parameters could imPrognostic biosphere model and gives some typical results

prove the simulation of global carbon sequestration and it€Stimated fro?}‘ Sostgrior parangeters. dV\I/e used a Bayesian
distribution, although adopting empirical rules also entails'MVersion method to improve the model estimates against

- S . .. observed variabilities in atmospheric g@oncentrations,
'([:r;g;szﬁgil(l)tgg?tztggguncertalntles in the modeling will in- mean annual AGB, and NPP by adjusting the physiological

_ _ model parameters. The simulation based on posterior pa-
In this study, we selected 12 key parameters in & progyameters produces moderate seasonal variations and annual

nostic biosphere model for model-data synthesis. Cautiolymplitudes in atmospheric GOhowever, it is still not able

is required because it might be possible to obtain similarto solve explicitly the distributions of the mean amounts

model results with different combinations of model param- of AGB and NPP. Nevertheless, by using the optimization

eters Wang et al. 2009. Additional observations would be scheme, it is possible to reproduce some features of the

useful in optimizing many more model parameters and en{hysiological parameters that characterize different biomes,

hancing the performance of the model—data synthesis. suggesting that the optimization scheme could be useful
in understanding the dynamics of the global carbon cycle.

However, it should be noted that the following advances will
be required for further improvement of carbon cycle models
L o to be made: a greater number of observations and improve-
Our optimization scheme was tested by running it with only oyt i the model regarding physiological processes and
observational data on atmospheric £€bncentrations, in  4ohal biome distributions; reductions in the uncertainties in

the same manner as performed using the three observationfe atmospheric transport model and the a priori informa-
variables. Theg? value of 7.5 obtained using the prior val- tion; and models with greater spatial and temporal resolution.
ues decreases to 4.6 after 10 iterations. Relative changes in

prior and posterior parameters and the mean annual distriedited by: M. Kawamiya

butions of AGB and NPP for each biome show very similar
patterns to those displayed in Figs:7, despite the fact that
any information on observational data for AGB and NPP is
not integrated into the posterior parameters (not shown). Th
test results, and the discrepancies between observations a
the results of posterior simulations for mean annual AGB
and NPP (shown in Figs and 6), suggest that observa-
tional data of AGB and NPP might not contribute much to
the minimization of the misfit between the observations and
the model. A possible explanation for this observation is that
the SiZeS Of the Observational Uncertainties fOI’ AGB and NPF‘Barret’[l D. J.: Steady state turnover time of carbon in the Aus-
are too large to solve the minimization problem, resulting in  tralian terrestrial biosphere, Global Biogeochem. Cy., 16, 1108,
an incomplete indication of variability. The large observa-  doi:10.1029/2002GB00186@002.

tional uncertainty reflects a lower degree of confidence in theBerg, B. and Laskowski, R.: Litter decomposition: a guide to carbon
accuracy of the AGB and NPP observatioRagpach et a|. and nutrient turnover, Adv. Ecol. Res., 38, 1-423, 2006.

2009, and improving the representation of the AGB and NPPBerry, J. and Bjérkman, O.: Photosynthetic response and adaptation
distributions on large spatial scales would, thus, improve the © temperature in higher plants, Annu. Rev. Plant Phys., 31, 491~
results of the model simulations. 543, 1980.

Bousquet, P., Peylin, P., Ciais, P., Le Quéré, C., Friedlingstein, P.,
The model does not account for the effects of natural and Tans, P. P.: Regional Changes in Carbon Dioxide Fluxes of

and anthropogenic disturbances, such as those due to fire, | 54 and Oceans Since 1980. Science 290. 1342—1346. 2000.
land use changes, and grazing and harvesting of forest progsaswell, B. H., Sacks, W. J., Linder, E., and Schimel, D. S.: Esti-
ucts and croplands; thus, the mean global budget of NEP  mating diurnal to annual ecosystem parameters by synthesis of a
estimated from the posterior parameters is approximately carbon flux model with eddy covariance net ecosystem exchange
0PgCyr?! on account of the equilibrium state of carbon  observations, Glob. Change Biol., 11, 335-355, 2005.

4.2 Model limitations

The publication of this article is
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