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Abstract. This study investigates the capacity of a prognostic
biosphere model to simulate global variability in atmospheric
CO2 concentrations and vegetation carbon dynamics under
current environmental conditions. Global data sets of atmo-
spheric CO2 concentrations, above-ground biomass (AGB),
and net primary productivity (NPP) in terrestrial vegetation
were assimilated into the biosphere model using an inverse
modeling method combined with an atmospheric transport
model. In this process, the optimal physiological parameters
of the biosphere model were estimated by minimizing the
misfit between observed and modeled values, and parame-
ters were generated to characterize various biome types. Re-
sults obtained using the model with the optimized parameters
correspond to the observed seasonal variations in CO2 con-
centration and their annual amplitudes in both the Northern
and Southern Hemispheres. In simulating the mean annual
AGB and NPP, the model shows improvements in estimating
the mean magnitudes and probability distributions for each
biome, as compared with results obtained using prior simu-
lation parameters. However, the model is less efficient in its
simulation of AGB for forest type biomes. This misfit sug-
gests that more accurate values of input parameters, specif-
ically, grid mean AGB values and seasonal variabilities in
physiological parameters, are required to improve the perfor-
mance of the simulation model.

1 Introduction

The terrestrial biosphere generally absorbs CO2 from the at-
mosphere, and its annual global carbon uptake rate is con-
sidered to be similar to that of the ocean (Tans et al., 1990).
Many studies have attempted to accurately quantify the total
carbon exchange rate between the terrestrial biosphere and
the atmosphere and to determine the role of the terrestrial
biosphere in the global carbon cycle (e.g.,Schimel, 1995;
Field et al., 1998). Modeling of the terrestrial biosphere is
one of the key strategies used in these studies (e.g.,Potter
et al., 1993; Running and Hunt, 1993; Ito and Oikawa, 2002).

Biosphere models use a variety of approaches and repre-
sentations to predict the processes of ecosystem carbon dy-
namics. Therefore, quantities in the carbon budgets derived
from these models differ.Cramer et al.(1999) compared 17
biosphere models and found that global terrestrial net pri-
mary productivity (NPP) calculated by the models ranged
from approximately 40 to 65 Pg C yr−1 and that the mod-
els yielded different NPP spatial distributions. Even at re-
gional scales,Ichii et al. (2010) reported large differences in
the magnitudes of annual gross primary productivity (GPP)
and ecosystem respiration generated by nine simulation mod-
els. The discrepancies revealed by the systematic compar-
isons between different biosphere models indicate that the
current biosphere models are still in need of improvement
(Friedlingstein et al., 2006; Jung et al., 2007; Sitch et al.,
2008).

Model–data synthesis is one approach to addressing the
problem of discrepancies between models because such a
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synthesis reduces uncertainties and optimizes controlling
processes in a model to improve its fit to observed data.
This method is widely applied in terrestrial biosphere mod-
eling, as well as in atmospheric and oceanic modeling, based
on various a priori information. Examples include model-
ing approaches to the estimation of residence times of car-
bon in soils and plants in regional areas (Barrett, 2002; Zhou
and Luo, 2008), the fit of eddy covariance flux variables at
point scales (Braswell et al., 2005; Sacks et al., 2006), the
impact of seasonal water stress on ecosystem gas exchange
(Reichstein et al., 2003), and atmospheric inversion schemes
(Ciais et al., 1995; Enting et al., 1995; Bousquet et al., 2000;
Peylin et al., 2005). An overview of model–data synthesis
methods in terrestrial carbon studies and the improvements
required in such methods have been discussed in several pre-
vious studies (Raupach et al., 2005; Wang et al., 2009; Luo
et al., 2011).

Using a model–data synthesis approach,
Kaminski et al.(2002) introduced a method to systemati-
cally infer optimal model parameters and applied the method
to the assimilation of observed atmospheric CO2 concen-
trations into an integrated terrestrial biosphere–atmospheric
transport model. Atmospheric CO2 concentrations reflect
the distributions of CO2 sources and sinks at various spatial
and temporal scales, rather than those distributions restricted
to small-scale footprints. In this way, these inputs are more
likely to yield reliable results when applied to an optimized
global biosphere model. In these studies, two parameters,
light use efficiency and the temperature sensitivity of respira-
tion (Q10) were individually assessed for 12 biomes, which
resulted in good simulations of the phases and amplitudes of
seasonal atmospheric CO2 at the observation sites.Rayner
et al. (2005) further developed the method ofKaminski
et al. (2002) by replacing the biosphere model with a more
mechanistic approach and optimizing more of the model
parameters, in what is known as the “Carbon Cycle Data
Assimilation System” (CCDAS).

To date, studies have focused predominantly on CO2
fluxes associated with atmospheric CO2 variability, and less
effort has been directed toward the effects of parameter op-
timization in simulations of ecosystem variability in carbon
pools or in plant materials. However, the importance of ac-
curate estimates of the forest carbon pools, as well as atmo-
spheric CO2 variability, is increasingly recognized in scien-
tific and political circles (e.g.,Carvalhais et al., 2010; Saatchi
et al., 2011), as such estimates are required to quantify the
CO2 emissions attributable to deforestation and forest degra-
dation, which account for about 12 % or more of total anthro-
pogenic CO2 emissions (van der Werf et al., 2009). Improve-
ments in the estimates of forest carbon pools and atmospheric
CO2 variability are necessary for assessing the global carbon
balance and the role of the terrestrial biosphere in the state of
the current climate.

Here, we develop an optimization scheme for a global bio-
sphere model for atmospheric CO2 variability, above-ground

biomass (AGB), and NPP data, combined with an atmo-
spheric transport model and a Bayesian inversion method.
Our primary goal is to improve current assessments of the
terrestrial carbon cycle under current climatic conditions and
atmosphere–biosphere interactions. For this purpose, we fo-
cus on constructing a model that is capable of comprehen-
sively simulating the carbon dynamics of natural vegetation,
vegetation structure, and atmospheric CO2 variability on a
global scale.

2 Method and data

2.1 Terrestrial biosphere model

A prognostic biosphere model, the Vegetation Integrative
SImulator for Trace gases (VISIT;Ito, 2010) is used in this
study to simulate the global terrestrial carbon cycle. All vari-
ables in VISIT are calculated at a 2.5◦

× 2.5◦ spatial reso-
lution and with a time step of one day. The global vegeta-
tion types in the model are classified into 14 biomes (Fig.1),
and a map of their distributions is produced using the syn-
ergetic land cover product (SYNMAP) (Jung et al., 2006).
The reanalysis/assimilation data sets released by the Japan
Meteorological Agency (JMA) and the Japan 25-year reanal-
ysis (JRA-25)/JMA Climate Data Assimilation System (JC-
DAS) (Onogi et al., 2007) are used to force the VISIT sim-
ulation. The JRA-25 reanalysis covers the period from 1979
to 2004, and JCDAS covers the period from 2005 to 2009.
The meteorological data used to operate VISIT are down-
ward shortwave radiation, total cloudiness, air temperature,
ground surface temperature, soil temperatures, specific hu-
midity, precipitation, and wind velocity. The precipitation
bias in JRA-25/JCDAS is corrected based on the study of
Saito et al.(2011). We use the climate data for the 31-year
period from 1979 to 2009 for both spin-up and model simula-
tions. In the spin-up simulation, the 31-year climate data are
repeated over 4000 years until carbon pools reach an equilib-
rium state.

In the model, plant physiology and the carbon budget
are simulated in each grid cell. Net ecosystem productivity
(NEP) is defined as follows:

NEP= NPP− HR = −NEE, (1)

NPP= GPP− AR, (2)

where HR is the heterotrophic respiration, AR is the au-
totrophic respiration, and NEE is net ecosystem CO2 ex-
change rate. The daily GPP rate is expressed using the
dry-matter production theory ofMonsi and Saeki(1953):
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Figure 1. Distributions of the dominant biomes in each grid and
the locations of atmospheric CO2 observation sites. ENF: ever-
green needle-leaf forest; EBF: evergreen broad-leaf forest; DNF:
deciduous needle-leaf forest; DBF: deciduous broad-leaf forest;
MF: mixed forest; WL: woodland; WGL: wooded grassland; CSL:
closed shrubland; TND: tundra; TOS: temperate open shrubland;
GL: grassland; CL: cropland; BG: bare ground; SI: snow and ice.
The blue circles are partial-column CO2 concentrations and the red
circles are surface CO2 concentrations.
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where ε(= 4.32× 10−4) is a unit converter from
µmol CO2 m−2 s−1 to Mg C ha−1 day−1; DL is day length
(h), LAI is a leaf-area index estimated as a function of the
given specific leaf area, SLA (cm2 g−1); Pc is the single-leaf
photosynthetic rate (µmol CO2 m−2); Psat is the single-leaf
photosynthetic rate under light saturation (µmol CO2 m−2);
Ka is a dimensionless function of solar height;Qe is light
use efficiency (mol CO2 mol−1 photon); and PPFDmid is the
photosynthetic photon flux density (PPFD) at the canopy top
at midday (µmol photon m−2 s−1). The parameter PPFDmid
is estimated from the equation ofKuroiwa (1966) with
inclusion of the cloudy decline effect. Seasonal variations
in Psat are assumed to be dependent on the ground surface
temperature (Tg; ◦C), the intercellular CO2 concentration
(Ci ; ppmv) (which is estimated from the ambient CO2
concentration), and soil moisture (8; mm), according to

Psat= Pmax · Ftmp(Tg) · Fstl(Ci) · Fnstl(8), (4)

wherePmax is the potential maximum value ofPsat; F is the
coefficient function used to calculate seasonal variations in
Psat; Ftmp is formulated using the maximum, minimum, and
optimum temperatures for photosynthesis (Tmax, Tmin, and

Topt, respectively); andFstl andFnstl are formulated using the
photosynthesis-limiting factors for intercellular CO2 concen-
tration (kmci) and soil moisture (km_nstl), according to
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where CDcmp is the CO2 compensation point (Brooks and
Farquhar, 1985), FPsw is the soil water holding capacity
(mm) (given by soil property data), andCstl and Cnstl are
constant coefficients.

Parameter AR represents both the growth and maintenance
respiration from foliage, stem and branch, and root compo-
nents. The growth respiration (ARG) of each component is
the cost to produce new biomass, given as

ARGX = rgX · TPX, (8)

where rgX is the specific growth respiration rate, TPX is
the carbon translocation rate, and the subscriptX repre-
sents the different components: foliage (FL), stem and branch
(SB), and roots (RT). In contrast, the maintenance respiration
(ARM ) is represented as a function ofTg:

ARMX = rmX · exp

[
lnQ10

10
(Tg − 15)

]
· MX, (9)

where rmX is the specific maintenance respiration rate for
each component andMX is the carbon mass for each compo-
nent.

The parameter HR represents respiration rates in two lay-
ers: the litter (HRL) and humus (HRH ) layers. Both HRL
and HRH are calculated as functions of the soil temperature
at two depths, namely 10 cm (Ts10) and 200 cm (Ts200), and
8 in the upper and lower soil layers:

HRL = shl· ML · FHR (Ts10,8u) , (10)

HRH = shm· MH · FHR (Ts200,8l) , (11)

where shl and shm are the specific heterotrophic respiration
rates andML andMH are the carbon masses of the organic
matter in the litter and humus layers, respectively. The annual
mean value ofTs10 is used as a substitute forTs200 because
JRA-25/JCDAS provides the soil temperature at depth.
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In VISIT, the amount of litter fall (LF) is assumed to be
proportional to the carbon mass of each component (foliage,
stems and branches, and roots), according to

LFX = lfX · MX, (12)

where lfX is the specific litter fall rate.
Parameter AGB is the sum of the carbon mass in foliage

MFL and stems and branchesMSB. Changes inMX for a
given period are given by

1MX = TPX − ARGX − LFX. (13)

The value of AGB is estimated by accumulating1MFL and
1MSB on a given initial AGB for both spin-up and model
simulations.

In this study, the prior values of the parameters are the
same for all biome types (Table1). The posterior parameters
are estimated by Bayesian inversion. An average sensitivity
of each parameter to three variables (NEE, AGB, and NPP
of whole biomes) was estimated using 10 % change in the
prior parameters and a 2◦C variation in temperature parame-
ters, using first-order sensitivity analysis. From this analysis
the 12 parameters with the highest sensitivities (Tmin, SLA,
lfFL, Pmax, shl,Topt, Qe, TPFL, km_nstl, shm,Q10, and lfSB)
were selected to optimize the fit of the model simulations to
the observations (Table1). These parameters explain 90 % of
the variations in the three variables for whole biomes. Uncer-
tainties associated with these parameters are unknown; thus,
they are defined using the results of the sensitivity analysis.
The sensitivity of lfSB, which shows the lowest sensitivity
(1.9 %) of the selected 12 parameters to changes in the three
variables, is defined as a reference value for parameter un-
certainty; i.e., it is assumed that all parameters potentially
have uniform sensitivity to the three variables. A scale factor
is calculated for each parameter using the reference sensitiv-
ity of 1.9 % divided by the sensitivity of the parameter; then,
an uncertainty of the parameter is defined by multiplying by
10 % of the prior parameter, or 2◦C, using a scale factor (Ta-
ble1). Here we assume a linear relationship between param-
eter sensitivity and changes in the parameters.

2.2 Atmospheric tracer transport model

Seasonal variability in atmospheric CO2 concentrations at
the observation sites is simulated using the National Insti-
tute for Environmental Studies, Frontier Research Center for
Global Change (NIES/–FRCGC) off-line global atmospheric
tracer transport model (NIES-TM;Maksyutov et al., 2008).
The NIES-TM is one of the transport models evaluated in
the Atmospheric Transport Model Intercomparison Project
(TransCom;Law et al., 1996; Gurney et al., 2002). The ver-
tical turbulent diffusion in the boundary layer of NIES-TM
is parameterized using the monthly mean planetary bound-
ary layer (PBL) heights derived from a 3-hourly PBL height
data set (Schubert et al., 1993).

We operate the NIES-TM with a 2.5◦
× 2.5◦ grid resolu-

tion and nine vertical levels, with forcing data from JRA-
25/JCDAS. The oceanic CO2 flux, fossil fuel emission in-
ventory, and NEE in the terrestrial biosphere are required
a priori information to run the NIES-TM. In this study, the
ocean flux is derived from the Offline ocean Tracer Trans-
port Model (OTTM;Valsala and Maksyutov, 2010), and the
fossil fuel emission data are from the Open-source Data In-
ventory of Anthropogenic CO2 emissions (ODIAC;Oda and
Maksyutov, 2011). We run the NIES-TM for a 6-year pe-
riod (2000–2005). The data for the first year are used for the
spin-up simulation, and the data for 2001–2005 are used in
the analysis. Trends in simulated atmospheric CO2 concen-
trations with periods longer than around 1.5 years and shorter
than about 15 days are removed using an orthogonal wavelet
decomposition (Howell and Mahrt, 1994). Then, the mean
monthly atmospheric CO2 is calculated.

2.3 Bayesian inversion

We optimize a set of biophysical parameters in VISIT against
mean monthly atmospheric CO2 and mean annual AGB and
NPP. To derive an optimal parameter setm, the deviations of
the model estimates from the observed data are minimized
using a Bayesian inversion scheme. When the probability
distributions of all observed and a priori biophysical param-
eters are assumed to be Gaussian, and their means aredobs
andmp, respectively, the misfit betweendobs and the mod-
eled valuesG(m) for atmospheric CO2, AGB, and NPP is
defined by a cost function (Tarantola, 2005):

S(m) =
1

2

[
(G(m) − dobs)

T C−1
D (G(m) − dobs) (14)

+
(
m − mp

)T C−1
M

(
m − mp

)]
,

where the superscript T denotes the transpose, andCD and
CM are the covariance matrices defining the uncertainties in
dobs andmp, respectively. The values ofCD are described in
the following section. The model resultG consists of a lin-
ear atmospheric transport modelA and a nonlinear terrestrial
biosphere modelB. In the minimization ofS(m), in the case
of atmospheric CO2, G is determined by the first derivatives
of B(mp), which, using finite differences1m, is

G = A

[
B(mp) +

B(mp + 1m) − B(mp)

1m

]
, (15)

where a linear relationship is assumed between the first
derivative ofB and mp for 1m. In the cases of NPP and
AGB, the operatorG is determined by Eq. (15) without mul-
tiplication byA.
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Table 1.List of variables in prior parameters (Prior) and their uncertainties (Unc). The values given in parentheses are for grassland.

Symbol Parameter description (unit) Prior Scale Unc Scale

Pmax Potential maximum photosynthetic rate (µmol CO2 m−2 s−1) 1.75 ×10 2.8 ×10−1

Q10 Temperature dependence of respiration rate (dimensionless) 2.0 – 1.8 ×10−1

Qe Light use efficiency (mol CO2 m−2) 5.2 ×10−2 2.1 ×10−3

SLA Specific leaf area (cm2 g−1) 1.4 (1.65) ×102 2.0 (2.4) –
Tmin Minimum temperature for plant activities (◦C) 1.0 – 2.1 ×10−1

Topt Optimum temperature for plant activities (◦C) 2.4 ×10 4.5 ×10−1

TPFL Carbon translocation rate to foliage (dimensionless) 5.5 ×10−1 3.3 ×10−2

km_nstl Photosynthesis limitation factor in terms of soil moisture 0.3 – 2.2 ×10−2

lfFL Specific litter fall of leaf 4.3 ×10−4 6.4 ×10−6

lfSB Specific litter fall of stem and branch 2.0 ×10−4 2.0 ×10−5

shl Specific heterotrophic respiration rate at upper soil 0.6 – 1.3 ×10−2

shm Specific heterotrophic respiration rate at lower soil 0.3 – 2.6 ×10−2

The center of the posterior Gaussian distribution, which
shows the optimized values for the model parameterm, can
be expressed followingTarantola(2005) as:

m = (16)

mp +

(
GTC−1

D G + C−1
M

)−1
GTC−1

D

(
dobs− G(mp)

)
.

The expression
(
GTC−1

D G + C−1
M

)−1
in Eq. (16) is inverted

using single-value decomposition.
The optimal parameter setm is given by minimizingS(m)

iteratively. In this process, the values ofCD and CM are
fixed, while the value ofmp for all parameters evolved at
each iteration by taking a posteriorm as a priormp. The
minimization ofS is assessed by calculatingχ2, which is the
mean square mismatch betweendobsandG(m), expressed as

χ2
=

Nobs∑
i=0

(Gi − dobs,i)
2/CD,i (17)

+

Np∑
j=0

(mj − mp,j )
2/CM,j .

The value ofχ2 is calculated for the entire data set of atmo-
spheric CO2, AGB and NPP. The iteration for the optimiza-
tion is aborted when the value ofχ2 between the current and
previous iterations is less than 0.1 and the difference is con-
tinuously maintained or decreases in further iterations.

2.4 Data

The atmospheric CO2 data from GLOBALVIEW-CO2
(2010) are used as the observation data for CO2 concentra-
tions. The GLOBALVIEW-CO2 product is based on atmo-
spheric measurements and provides information about CO2
variability at over 100 sampling locations around the globe.
The CO2 variability is stored in a file named “extended

records” (ext), which records weekly smoothed atmospheric
concentrations, and which is used in the following analysis.
Mean monthly CO2 variability is calculated from the ext data
in the same manner as that for simulated atmospheric CO2
(Sect.2.2). The standard error of CO2 variability, recorded in
a file named “statistical summary of the average seasonal pat-
tern”, is used as a measure of the uncertainty in the observed
CO2 in CD in Eqs. (14) and (16). We analyze sampling lo-
cations at 102 sites, including at 19 sites with multiple verti-
cal CO2 observations sampled by aircraft (Fig.1). For those
sites with vertical profiles, partial-column CO2 concentra-
tions are estimated from the vertical profiles by assuming that
the CO2 concentration at each observation height represents
the concentration at altitudes centered around the observation
height. We analyze this partial-column concentration instead
of individual CO2 concentrations at multiple heights.

AGB data from the International Institute for Applied Sys-
tems Analysis (IIASA;Kindermann et al., 2008) are used
in this study to optimize AGB in the biosphere model. The
IIASA data provides half-degree global biomass and carbon
stock data estimated from a downscaling model on the ba-
sis of a map provided by the Global Forest Resources As-
sessment. The data for AGB per hectare are calculated from
the gridded AGB data divided by the grid area data. To re-
duce discrepancies attributable to differences in the dominant
biome in each grid between the model and IIASA, the grid
resolution for AGB is expanded to 7.5◦

× 7.5◦. Therefore,
the IIASA data with a grid resolution of 0.5◦

× 0.5◦ and the
VISIT data with a resolution of 2.5◦

×2.5◦ are aggregated to
the desired resolution. Here, the mean AGB values in VISIT
for the 10-year period of 2000–2009 are used for the analy-
sis. We compare AGB in 344 grids over the global terrestrial
area.

The third data set contains the NPP data from the Global
Primary Production Data Initiative (GPPDI;Scurlock et al.,
1999; Olson et al., 2001). The GPPDI data set consists of
three classes of NPP data: NPP measurements at intensively
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studied sites with site-specific information, NPP measure-
ments at extensive sites with less site-specific information,
and gridded NPP data with a grid resolution of 0.5◦ compiled
from collections of inventory, modeling, and remote-sensing
data. All of the NPP data from the three classes are aggre-
gated into a 7.5◦ grid cells, resulting in 166 grid cells being
analyzed in this study. As for AGB, the NPP data in VISIT
are averaged over the period 2000–2009 and are aggregated
into 7.5◦ grid cells.

Global maps of AGB and NPP include various estimat-
ing errors, including scale mismatches between measure-
ments and models, measurement errors, and representation
errors, leading to large uncertainties inCD (Raupach et al.,
2005). This study defines the uncertainties in the observation
data of AGB and NPP as 50 % of the 7.5◦ grid mean val-
ues, based on the errors in relative estimates of annual NPP
given inRaupach et al.(2005), with minimum uncertainties
of 1.0 Mg C ha−1 and 0.5 Mg C ha−1 yr−1 for AGB and NPP,
respectively.

3 Results

3.1 Atmospheric CO2 simulation

The prior value ofχ2 that is weighted by number of data
points for atmospheric CO2, AGB, and NPP is 7.80. This
value decreases with each iterations, and the iteration is
aborted after 10 repetitions because no large changes inχ2

are subsequently observed. The final value of weighted mean
χ2 after 10 iterations for the whole data set is 3.93;χ2

= 4.83
for atmospheric CO2, 1.46 for AGB, and 1.90 for NPP. The
large value ofχ2 for atmospheric CO2 can be partly at-
tributed to the combined effect of minor uncertainties in the
observations.

Atmospheric CO2 variability is estimated globally, and
mean monthly concentrations are compared with observed
data from GLOBALVIEW-CO2 at 102 stations. The result
estimated from the posterior NEE is in good agreement with
observations for the large domain and seasonality (r2

= 0.86,
P < 0.001; Fig. 2). The slope of the linear regression in-
dicates that the modeled CO2 variability is slightly under-
estimated, with an offset of 0.2 ppm. The misfit of mean
monthly atmospheric CO2 between observations and model

values is defined at each station asχ2
N = 1/Nmnt

Nmnt∑
i=1

(Gi −

dobs,i)
2/CD,i , whereNmnt is the number of months,Nmnt =

12. The value ofχ2
N at each station varies from 0.16 to

52.75, with a meanχ2
N of 4.90, and the annual mean value

of the root mean squared error (RMSE) varies from 0.11 to
4.71 ppm, with a mean RMSE of 1.46 ppm. The values of
χ2

N show large misfits (χ2
N > 10) at 11 stations; misfits of

2–3 ppm in atmospheric CO2 in months with minor obser-
vation uncertainties result in the largeχ2

N value. Such ob-
servation uncertainties occur at stations located on islands,
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Figure 2. Comparison of the mean monthly CO2 variability calcu-
lated with GLOBALVIEW and with the model presented here.

peninsulas, bare ground, complex terrains, and oceans, where
the biospheric CO2 flux exerts less influence on atmospheric
CO2 variability, or where local mesoscale motions control
the variability. Improvements in the atmospheric CO2 sim-
ulation at these stations is necessary to improve not only
the biospheric model, but also the atmospheric transport and
ocean models; thus, the 11 stations at whichχ2

N > 10 are ex-
cluded from the following analysis. Consequently, the mean
values ofχ2

N and RMSE for the whole data set become 3.02
and 1.36 ppm, respectively.

Figure 3 shows examples of the mean seasonal varia-
tions in atmospheric CO2 at the University of Maine, Ar-
gyle, Maine, USA (AMT; 45.03◦ N, 68.68◦ W) and Tierra
Del Fuego, Ushuaia, Argentina (TDF; 54.85◦ S, 68.31◦ W).
The biome types at the AMT and TDF stations are classi-
fied as mixed forest and closed shrubland, respectively, in
the model. The annual meanχ2

N and RMSE values for the ob-
served and posterior data are 3.59 and 2.01 ppm, respectively,
at AMT and 0.17 and 0.11 ppm, respectively, at TDF. The
peak of photosynthetic uptake in August at AMT is slightly
underestimated in the model, resulting in a discrepancy in the
position of the peak between the observations and the model
(Fig. 3a). An improvement can be seen in the results for the
posterior parameter as compared with the prior parameter,
although the CO2 variability for some months is still outside
the domain of the uncertainties in the observed data. At the
TDF station, the prior concentration shows overestimates of
both the photosynthetic uptake in summer and the respira-
tion release in winter (Fig.3b). The posterior concentration
reduces these to a difference of within a few tenths of a ppm,
and the discrepancy of the CO2 release peak in the prior data
is moderated in the posterior data.

Figure4 shows a comparison of the mean seasonal ampli-
tudes of atmospheric CO2 based on the observed and pos-
terior parameters at all stations along a single latitude. The
seasonal amplitude at each station is defined as the difference
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Figure 3. Seasonal variations in the observed and modeled mean
monthly CO2 concentrations (ppm) at(a) University of Maine,
USA, and(b) Tierra Del Fuego, Argentina. Open circles with the
dashed lines are GLOBALVIEW-CO2 data, the dotted lines repre-
sent the prior parameters, and the solid line represents the posterior
parameters. The error bars indicate the uncertainties in the observa-
tions.

between the maximum and minimum mean monthly concen-
trations. The posterior simulation shows a representation of
the seasonal amplitude with an RMSE of 1.65 ppm for all
stations, although the differences in the seasonal amplitude
between the observation and the model are significant (P <

0.001). Erroneous overestimates (> 5 ppm) in the mean am-
plitude occurs at two stations in the Northern Hemisphere:
Sary Taukum, Kazakhstan (KZD; 44.08◦ N, 76.87◦ W), and
Schauinsland, Germany (SCH; 48.00◦ N, 8.00◦ E). The sea-
sonal variability in the posterior parameters at both stations
shows large overestimates in the winter concentration and
slight overestimates of the maximum photosynthetic uptake,
which occur in early summer. Unfortunately, in this study
we failed to improve these mismatches and produce a good
agreement with observations at other stations. This is partly
because of the inability of the global biosphere model to rep-
resent NEE variability in the areas around observation points
and also because unsuitable biophysical parameters are se-
lected for adjustment in the optimization process.
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Figure 4. Annual amplitudes of the atmospheric CO2 variables
(ppm) along specific latitudes. The closed diamonds represent the
GLOBALVIEW-CO2 data and the open circles represent the pos-
terior parameters. The latitudinal mean amplitudes and standard
deviations for each 30◦ band from north to south are 15.1± 1.9
(n = 11), 11.3±3.1 (n = 51), 6.7±1.4 (n = 13), 2.2±1.1 (n = 9),
1.3±0.3 (n = 3), and 1.2±0.2 ppm (n = 4) for the GLOBALVIEW-
CO2 data and 15.3±2.9, 11.2±3.6, 6.1±1.6, 1.9±0.9, 2.1±0.4,
and 1.9± 0.1 ppm for the posterior data.

3.2 Biomass simulations

The χ2
N values of mean annual AGB and NPP for the ob-

served and prior data range from 0.00 to 4781 among the
grid cells, with a mean of 71.50. This large misfit of AGB
and NPP is improved by using posterior values, which give
χ2

N values in the range of 0.00 to 58, with a mean of 1.74.
Six of the total of 510 grid cells (at a 7.5◦

× 7.5◦ resolution)
showχ2

N values much greater than 10 for the posterior data.
In these grid cells, the posterior AGB or NPP are overes-
timated as compared with observations, suggesting that dis-
crepancies exist between observations and the model in some
biome types.

In the simulation using the posterior parameters, the mean
annual AGB and NPP values are estimated at a spatial res-
olution of 2.5◦

× 2.5◦ before being compared with IIASA
and GPPDI data for each biome type that had been aggre-
gated to a comparable resolution (Figs.5 and6). The biome
type for each grid cell is classified using the SYNMAP prod-
uct (see above). The IIASA data show biome-specific pat-
terns in the median AGB: the biomes showing AGB values of
> 30 Mg C ha−1, and with relatively large variances, include
evergreen broad-leaf forest (EBF), deciduous broad-leaf for-
est (DBF), and mixed forest (MF). Those with AGB values of
approximately 20–30 Mg C ha−1 include evergreen needle-
leaf forest (ENF), deciduous needle-leaf forest (DNF), and
woodland (WL); other biome types show AGB values of
< 20 Mg C ha−1 (Fig. 5). The simulation using the prior pa-
rameters shows greater variability in AGB values for most
biome types but does not overestimate AGB in any of the
forest biome types relative to the IIASA data. These patterns
in the AGB distributions are improved in the simulations us-
ing the posterior values. The variations in AGB with respect
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Figure 5. Comparison of AGB (Mg C ha−1) values for each biome
according to IIASA (light grey box) and VISIT with prior (dark grey
box) and posterior (open box) parameters. The box-and-whisker
plots show the median, upper, and lower quartiles, and the upper
and lower 10 % of the data.

to biome and the small variations in AGB for each type are
reproduced in the model. However, the model using the pos-
terior values underestimates the magnitudes of AGB for for-
est and woodland biomes (except for DNF), and a significant
difference is noted between observations and model results in
median AGB for the whole biomes (P < 0.001). The largest
difference between model results in terms of AGB is present
in EBF; the lower and upper 10 % AGB in the IIASA are
equal to 19.5 and 105.5 Mg C ha−1, respectively, with a me-
dian value of 52.4 Mg C ha−1, whereas those of the model
range from 1.2 to 38.5 Mg C ha−1, respectively, with a me-
dian value of 22.3 Mg C ha−1.

The median NPP for each biome type in the GPPDI ranges
from 2 to 6 Mg C ha−1 yr−1, except for the much higher NPP
of EBF and lower NPP of bare ground (BG) (Fig.6). As in
the AGB distributions, the simulation with the prior values
shows greater variability in NPP values across biomes rel-
ative to observations. The NPP distributions using the pos-
terior values show biome-specific patterns similar to those
of AGB. As compared with AGB distributions, no large un-
derestimations in the NPP values of forest type biomes are
present; however, there is a significant difference in the me-
dian NPP values between observations and the model for
whole biomes (P < 0.05). No forest type biomes show NPPs
comparable with those of forest type biomes in the GPPDI,
suggesting that there may be discrepancies in the dominant
biome type in a grid cell between the GPPDI data and the
model.

4 Discussion

4.1 Model parameterization

The differences between posterior and prior parameters, di-
vided by the uncertainties of the prior parameters (Table1),
are shown in Fig.7. The posterior parameters show various
changes relative to the prior parameters. Here, we examine
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Figure 6. As for Fig. 5, except showing a comparison of NPP val-
ues (Mg C ha−1 yr−1) for GPPDI and VISIT with prior and poste-
rior parameters. The GPPDI does not contain NPP data in the grids
corresponding to tundra (TND).

some of the parameters that show clear changes. The largest
increases and reductions in the magnitudes of the poste-
rior parameters are observed for the optimum temperature
for plant activitiesTopt. This parameter specifies the opti-
mum temperature for photosynthetic uptake, which directly
controls the rate of photosynthesis and its seasonal variabil-
ity in response to changes in air temperature. The tempera-
ture dependence of photosynthesis is strongly influenced by
other environmental factors, such as light intensity, intercel-
lular CO2 pressure, and water and nutrient regimes; however,
Topt, which is generally between 20 and 30◦C, represents the
adaptation of a plant to the temperature regimes of its habitat
(Berry and Björkman, 1980; Monson et al., 1982). The pos-
terior parameters ofTopt are approximately observed within
20 and 30◦C, which range from 19.8 to 28.7◦C, with high
Topt values for EBF, closed shrubland (CSL), and cropland,
and lowTopt values for DNF, MF, and tundra biomes. The
variability in posteriorTopt values among biomes is roughly
consistent with the latitudinal distribution that the biomes oc-
cupy (Fig.1): high Topt value with high mean temperatures
at low latitudes, and lowTopt values with low mean temper-
atures at high latitudes. The minimum temperature for plant
activities,Tmin, which mainly controls the phases of leafing
and senescence and the duration of photosynthetic activity,
also shows similar patterns of change in the posterior param-
eters to those ofTopt. These results suggest that variability in
biome-specific parameters associated with temperature de-
pendence can be reproduced by our optimization scheme.

The SLA describes the allocation of leaf biomass per unit
of leaf area. Values of SLA generally decrease with increas-
ing leaf life span, and the mean SLA values of forbs, broad-
leaf shrubs, broad-leaf trees, and needle-leaf trees are 188,
112, 112, and 48 cm2 g−1, respectively (Reich et al., 1997,
1998). Regardless of biome, the SLA is well predicted by
the posterior parameters for the corresponding biomes, of
175, 131, 131, and 195 cm2 g−1 for grassland, CSL, EBF, and
ENF, respectively, although the SLA for ENF is obviously a
misfit relative to values obtained in previous studies. In our
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Figure 7. Differences between the posterior parameters (PRMpst)
and the prior parameters (PRMpri), with uncertainties of prior pa-
rameters (UNCpri) as(PRMpst− PRMpri)/UNCpri.

model, SLA directly regulates the variability in GPP, along
with changes in the LAI, which is similar to the function
of Pmax, which defines the potential maximum photosyn-
thetic rate (Eq.3). However, SLA is an ecological parameter
that is closely related to canopy leaf nitrogen content, pho-
tosynthetic capacity, irradiance, and nutrient availability, and
the relationship betweenPmax and SLA is non-linear (Pierce
et al., 1994; Meziane and Shipley, 1999). Nevertheless, our
optimization scheme does not account for the interactions
among parameters or between parameters and environmen-
tal factors, and parameters that work similarly in the model
are not explicitly excluded, resulting in similar changes in
posterior parameters betweenPmax and SLA. Consequently,
posterior SLA may be partly constrained by changes inPmax,
leading to a misfit for ENF. This shortcoming in our system
may extend to other parameters; therefore, further develop-
ment of our system is required to include the interactions
among parameters and to identify criteria for selecting op-
timized parameters.

The posterior parameters of temperature dependence of
the respiration rateQ10, light use efficiencyQe, specific
litter fall of stems and branches lfSB, and the photosynthe-
sis limitation factor in terms of soil moisture km_nstl show
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Figure 8. As Fig. 7, but as the uncertainty reduction (%) from
UNCpri to uncertainties of posterior parameters (UNCpst) for each
parameter as(UNCpri − UNCpst)/UNCpri × 100.

large reductions in uncertainty relative to those of prior val-
ues (Fig.8). This large reduction in uncertainty indicates
that more information is integrated into the model parame-
ters based on observational data. The causes of larger reduc-
tions in uncertainty in the four parameters are the relatively
large uncertainties in the prior parameters (see Sect.2.1) and
the relatively high sensitivity of atmospheric CO2, AGB, and
NPP to changes in the parameters. However, very small re-
ductions in uncertainty are observed in all parameters. This
is attributed to indirect contributions of each parameter to
observational variables and small uncertainties given in the
prior parameters, resulting in a difficulty of integrating new
information into the parameter (Rayner et al., 2005).

The biosphere model VISIT is designed to be used with
biome-specific parameters that have constant values for each
biome, many of which are independent of environmental in-
fluences. The parameters optimized in this study, such as the
carbon translocation rate to foliage (TPFL) and litter fall (lfX)
rate, have constant values for each biome, indicating that
these parameters have been adjusted to represent the cen-
tral parts of the distributions of the corresponding physiolog-
ical processes on long-term and regional scales. However, for
example, vegetation alters its biomass allocation patterns in
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response to differences in climate to allow its survival under
unfavorable conditions (Callaway et al., 1994; Maherali and
DeLucia, 2001), and the amount of litter fall also varies con-
siderably under different environmental conditions (Berg and
Laskowski, 2006), but none of these factors are included in
the model. Therefore, the model far from adequately repre-
sents the physiological processes under all conditions, which
might result in large discrepancies in model results from the
observed data at some points. If it is possible to describe the
response of each parameter to the environmental conditions,
a model that includes those variable parameters could im-
prove the simulation of global carbon sequestration and its
distribution, although adopting empirical rules also entails
the possibility that the uncertainties in the modeling will in-
crease (Saito et al., 2009).

In this study, we selected 12 key parameters in a prog-
nostic biosphere model for model–data synthesis. Caution
is required because it might be possible to obtain similar
model results with different combinations of model param-
eters (Wang et al., 2009). Additional observations would be
useful in optimizing many more model parameters and en-
hancing the performance of the model–data synthesis.

4.2 Model limitations

Our optimization scheme was tested by running it with only
observational data on atmospheric CO2 concentrations, in
the same manner as performed using the three observational
variables. Theχ2 value of 7.5 obtained using the prior val-
ues decreases to 4.6 after 10 iterations. Relative changes in
prior and posterior parameters and the mean annual distri-
butions of AGB and NPP for each biome show very similar
patterns to those displayed in Figs.5–7, despite the fact that
any information on observational data for AGB and NPP is
not integrated into the posterior parameters (not shown). The
test results, and the discrepancies between observations and
the results of posterior simulations for mean annual AGB
and NPP (shown in Figs.5 and 6), suggest that observa-
tional data of AGB and NPP might not contribute much to
the minimization of the misfit between the observations and
the model. A possible explanation for this observation is that
the sizes of the observational uncertainties for AGB and NPP
are too large to solve the minimization problem, resulting in
an incomplete indication of variability. The large observa-
tional uncertainty reflects a lower degree of confidence in the
accuracy of the AGB and NPP observations (Raupach et al.,
2005), and improving the representation of the AGB and NPP
distributions on large spatial scales would, thus, improve the
results of the model simulations.

The model does not account for the effects of natural
and anthropogenic disturbances, such as those due to fire,
land use changes, and grazing and harvesting of forest prod-
ucts and croplands; thus, the mean global budget of NEP
estimated from the posterior parameters is approximately
0 Pg C yr−1 on account of the equilibrium state of carbon

pools. This result clearly underestimates the current carbon
uptake rate of about 2.6 Pg C yr−1 (IPCC, 2007). Including
the effects of disturbances and subsequent regrowth of vege-
tation would improve the discrepancies between observations
and model simulations of the global carbon budgets.

5 Conclusions

This study has described a framework for optimizing a
prognostic biosphere model and gives some typical results
estimated from posterior parameters. We used a Bayesian
inversion method to improve the model estimates against
observed variabilities in atmospheric CO2 concentrations,
mean annual AGB, and NPP by adjusting the physiological
model parameters. The simulation based on posterior pa-
rameters produces moderate seasonal variations and annual
amplitudes in atmospheric CO2; however, it is still not able
to solve explicitly the distributions of the mean amounts
of AGB and NPP. Nevertheless, by using the optimization
scheme, it is possible to reproduce some features of the
physiological parameters that characterize different biomes,
suggesting that the optimization scheme could be useful
in understanding the dynamics of the global carbon cycle.
However, it should be noted that the following advances will
be required for further improvement of carbon cycle models
to be made: a greater number of observations and improve-
ments in the model regarding physiological processes and
global biome distributions; reductions in the uncertainties in
the atmospheric transport model and the a priori informa-
tion; and models with greater spatial and temporal resolution.

Edited by: M. Kawamiya
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