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Data Envelopment Analysis (DEA) is basically a linear programming based technique used for measuring the relative performance of organizational units, referred to as Decision Making Units (DMUs). The flexibility in selecting the weights in standard DEA models deters the comparison among DMUs on a common base. Moreover, these weights are not suitable to measure the preferences of a decision maker (DM). For dealing with the first difficulty, the concept of common weights was proposed in the DEA literature. But, none of the common weights approaches address the second difficulty. This paper proposes an alternative approach we term 'preference common weights' which is both practical and intellectually consistent with the DEA philosophy. To do this, we introduce an MOLP model in which objective functions are input/output variables subject to the constraints similar to the equations which define production possibility set (PPS) of standard DEA models. Then by using the Zionts-Wallenius method, we can generate common weights as the DM's underlying value structure about objective functions.

Introduction

Data Envelopment Analysis (DEA), introduced by [START_REF] Charnes | Measuring the efficiency of decision making units[END_REF], is a non-parametric extremal method for evaluation of the relative efficiency of a group of similar units, called Decision Making Units (DMUs). DEA gives a measure of efficiency, which is essentially defined as a ratio of weighted outputs to weighted inputs. Charnes et al.'s idea is to define the efficiency measure by assigning to each unit the most favorable weights as long as the efficiency scores of all DMUs calculated from the same set of weights, do not exceed one. This flexibility in selecting the weights deters the comparison among DMUs on a common base.

A possible answer to this difficulty lies in the specification of common weights, which was first introduced by [START_REF] Roll | Controlling factor weights in data envelopment analysis[END_REF]. Research about the idea of common weights has developed gradually in recent years. Some of the studies in this field are [START_REF] Roll | Alternate methods of treating factor weights in DEA[END_REF], Doyle and Green (1996), [START_REF] Jahanshahloo | A note on some of DEA models and finding efficiency and complete ranking using common set of weights[END_REF], [START_REF] Kao | Data envelopment analysis with common weights: the compromise solution approach[END_REF], [START_REF] Karsak | Practical common weight multi-criteria decision-making approach with an improved discriminating power for technology selection[END_REF], [START_REF] Zohrehbandian | A compromise solution approach for finding common weights in DEA: An improvement to Kao and Hung's approach[END_REF].

As an extension of the previous studies, this paper seeks to develop an interactive multiple objective linear programming (MOLP) model that incorporates preference structures for obtaining common weights in DEA. To achieve this goal, we introduce an MOLP model with objective functions as input/output variables subject to the constraints similar to the equations that define the production possibility set (PPS) of standard DEA models. Then by using the Zionts-Wallenius method, we can generate common weights as the DM's underlying value structure about objective functions. We term this approach 'preference common weights' which is both practical and intellectually consistent with the DEA philosophy.

For solving the proposed MOLP model by using the Zionts-Wallenius method, a DM is assumed to have only an implicit utility function of these objective functions and no explicit knowledge of the utility function that he wishes to maximize. The method uses an implicit function on an interactive basis and to resolve the conflicts inherent in the given multiple objectives, the DM is required only to provide answers to certain 'yes' or 'no' questions on feasible tradeoffs presented to him.

The plan for the rest of this paper is as follows. In section 2 we present a brief discussion about Zionts-Wallenius method in solving the MOLP problems. The mathematical foundation of our method for finding a common set of weights is discussed in Section 3. A numerical example is presented in section 4 and finally, section 5 draws the conclusive remarks.

MCDM Preliminaries

Although the DEA and MCDM approaches are different regarding how efficiency is measured in practice, some of the authors have underlined the equivalence between the notion of efficiency in DEA and MCDM; e.g. [START_REF] Giokas | The use of goal programming and data envelopment analysis for estimating efficient marginal costs of outputs[END_REF] and [START_REF] Golany | An interactive MOLP procedure for the extension of DEA to effectiveness analysis[END_REF]. Furthermore, several authors have pointed out some close connections between DEA and MCDM; see [START_REF] Belton | Demystifying DEA-A visual inreractive approach based on multiple criteria analysis[END_REF], [START_REF] Bouyssou | Using DEA as a tool for MCDM: some remarks[END_REF][START_REF] Lins | A multi-objective approach to determine alternative targets in data envelopment analysis[END_REF], [START_REF] Giokas | The use of goal programming and data envelopment analysis for estimating efficient marginal costs of outputs[END_REF], [START_REF] Golany | An interactive MOLP procedure for the extension of DEA to effectiveness analysis[END_REF], [START_REF] Joro | Structural comparison of data envelopment analysis and multiple objective linear programming[END_REF][START_REF] Stewart | Relationships between data envelopment analysis and multicriteria decisionanalysis[END_REF], [START_REF] Bai | A multiple criteria approach to data envelopment analysis[END_REF], [START_REF] Zhu | Data Envelopment Analysis with Preference Structure[END_REF]. Interestingly, Charnes and Cooper have also had a significant impact on the development of MCDM through the development of goal programming.

An MOLP problem is a case of MCDM problems, which can be written as follows:

M ax F (x) = {f i (x) = C i x, i = 1, • • • , p} s.t. x ∈ X = {x ∈ R n + | a i x = b i , i = 1, • • • , m} (1) 
In order to solve the above problem (identifying the efficient solutions), there are many different methods in the literature. One of these methods is an interactive programming method proposed by [START_REF] Zionts | An Interactive Programming Method for Solving the Multiple Criteria Problem[END_REF]. In this method, it is assumed that the utility function U is a linear function of the objective function variables

u i = f i (x), i = 1, • • • , p
, but the precise weights in such a function are not known explicitly. Below, we introduce the steps of this well known method.

Step 0: The Zionts-Wallenius method, first, chooses an arbitrary set of positive multipliers or weights, γ i ≥ ε satisfying p i=1 γ i = 1, and generates a composite objective function. The composite objective function is then optimized to produce an extreme efficient solution x * to the problem.

Step 1: For each nonbasic variable x l , compute the value of the w il i = 1, • • • , p, as

w il = f i (x * ) -f i (x) x l , (2) 
where x is an optimal solution of model (3).

M ax x j s.t. x ∈ X = {x ∈ R n + | a i x = b i , i = 1, • • • , m} (3) 
Step 2: Solve model (4), where NBV is the set of nonbasic variables.

M in

p i=1 w il γ i s.t. p i=1 w ij γ i ≥ 0 j = l, j ∈ N BV (4) p i=1 γ i = 1 γ i ≥ 0, i = 1, • • • , p
Test 1 If the optimal value of model ( 4) is negative, the variable x l is efficient,

Test 2 If the optimal value of model ( 4) is nonnegative, the variable x l is not efficient.

Step 3: For each efficient variable, the DM is asked: Here is a trade. Are you willing to accept a decrease in objective function u 1 of w 1j , a decrease in objective function u 2 of w 2j , • • •, and a decrease in objective function u p of w pj ? Respond 'yes', 'no' or 'indifferent' to the trade.

If the responses are all no for all efficient variables, terminate the procedure and take γ i 's as the bast set of weights. Otherwise, using the DM's responses, we construct constraints to restrict the choice of the weights γ i to be used in finding a new efficient solution.

Step 4: For each 'yes' response construct an inequality of the form

p i=1 w ij γ i ≤ -ε. (5) 
For each 'no' response, construct an inequality of the form

p i=1 w ij γ i ≥ ε. (6) 
For each response of indifference, construct an equality of the form

p i=1 w ij γ i = 0. (7) 
A feasible solution to the following set of constraints is found:

All previously constructed constraints of the form ( 5), ( 6), (7) and

p i=1 γ i = 1, (8) 
γ i ≥ ε i = 1, • • • , p.
Step 5: The process is then repeated by the resulting set of γ i 's and optimization of composite objective function to produce a new extreme efficient solution to the problem. Go to step 1.

In this manner, convergence to an overall optimal solution with respect to the DM's implicit utility function is assured and finally, the overall optimal solution of γ i 's are the weights of objective functions with respect to the DM's implicit utility function.

Producing preference common weights

Consider n production units, or DMUs, each of which consume varying amounts of m inputs in the production of s outputs. Suppose x ij ≥ 0 denotes the amount consumed of the i-th input measure and y rj ≥ 0 denotes the amount produced of the r-th output measure by the j-th DMU. The PPS of obviously most widely used DEA model, CCR with constant returns to scale characteristic, is defined as semi-positive vectors (x,y) as follows:

T c = {(x, y)| x ≥ n j=1 λ j x j , y ≤ n j=1 λ j y j , λ j ≥ 0 j = 1, .
. . , n} Classical DEA models rely on the assumption that inputs have to be minimized and outputs have to be maximized. In other words, they evaluate DMUs and specify reference points due to this assumption. Here we notice that based on this assumption, a DEA model could be expressed as an MOLP problem applied to minimization of input variables and maximization of output variables subject to the constraints similar to the equations which define the PPS of standard DEA models. Hence, we propose following MOLP model which is intellectually consistent with the DEA philosophy:

M ax -x 1 . . . M ax -x m M ax y 1 . . . M ax y s s.t. Xλ ≤ x (9) Y λ ≥ y λ ≥ 0
Like any MOLP model, the above model has no unique solution. But it is notable that its efficient solutions are defined analogously to the efficient frontier of CCR model. Now and due to the objective functions of this model, if we solve it by Zionts-Wallenius method, we can specify a proper set of preference weights that reflect the relative degree of DM's underlying value structure about inputs and outputs. In other words, we produce a preference common weights and then efficiency score of DMU j , j=1,...,n, can be obtained by using these common weights as

s r=1 u * r y rj m i=1 v * i x ij . 6
Roll et al. (1991) indicate that a general requirement for the common set of weights is that at least one DMU must attain efficiency 1 with the common weights. If there is no DMU with efficiency score 1, then it is obvious that the efficiencies are under-estimated in the sense of relative comparison. In this sense and based on the following theorem, the efficiency scores obtained from our proposed method are not under-estimated and satisfied the general requirement.

Theorem There is a DMU p , p∈ {1, ..., n} for which we have

s r=1 u * r y rp m i=1 v * i x ip =1.
Proof Suppose that we generate a composite objective function using (u * , v * ) multipliers and subject to the same constraints of ( 9). Then based on the duality, optimal objective value of this model is equal to zero. Hence, for all feasible solutions (λ, x, y) of the model we have:

s r=1 u * r y r - m i=1
v * i x i ≤ 0, and there is an optimal solution (λ * , x * , y * ) of the model for which we have:

s r=1 u * r y * r - m i=1 v * i x * i = 0.
In other words, the equation of the form

s r=1 u * r y r - m i=1 v * i x i = 0
defines a supporting hyperplane that contains PPS in only one of the halfspaces and support it at virtual DMU (x * , y * ). But such a supporting hyperplane must support PPS at an observed DMU; e.g. DMU p . Therefore, we have:

s r=1 u * r y rp - m i=1 v * i x ip = 0, or s r=1 u * r y rp m i=1 v * i x ip = 1 2
Note that by slight manipulation of the proposed model (e.g. adding the constraint for sum of λ j ), we can develop the concept of producing a preference common weights to other DEA models.

Numerical Example

To illustrate the idea of the proposed approach, an example is utilized with 25 DMUs. Where each DMU uses 4 inputs to produce 3 outputs. Table 1 shows the value of these inputs and outputs.

The results of using the presented approach in section 3 for obtaining a preference common weights in Variable Returns to Scale (VRS) context is as follows:

Iteration 1 We first choose an arbitrary set of weights γ = (0.143, 0.143, 0.143, 0.143, 0.143, 0.143, 0.143). The composite objective function was then optimized which produced (x 1 , x 2 , x 3 , x 4 , y 1 , y 2 , y 3 ) = (4236,3145,3334,4504,8423,9821,8821) with λ 4 = 1 as an extreme efficient solution to the problem. The set of nonbasic variables were λ i , i = 1, • • • , 25, i = 4 and solving model (2), by maximization of the nonbasic variable λ i , i = 1, • • • , 25, i = 4, caused to the optimal solution (x i1 , x i2 , x i3 , x i4 , y i1 , y i2 , y i3 ) with optimal value equals to 1. Determination of efficient variables were based on the estimation of w ij values which were introduced in table (2).

For each nonbasic variable λ i , i = 1, Iteration 2 The composite objective function was optimized which produced (x 1 , x 2 , x 3 , x 4 , y 1 , y 2 , y 3 ) = (3333,3720,4228,3292,5912,7324,8914) with λ 22 = 1 as an extreme efficient solution to the problem. The set of nonbasic variables were λ i , i = 1, Furthermore, normalization of these optimal preference common weights is associated to coefficients (-v * , u * , w * ) ∈ 4 × 3 × 1 of a supporting hyperplane that contains T v in only one of the halfspaces and pass among at least one of the points of it. Therefore, we can find the value of w * based on the values of v * i 's and u * r 's accompany with the input/output values of observed DMUs. It is sufficient to solve the following model which can be performed based on simple comparisons.

M ax w

s.t. w ≤ - s r=1 u * r y rj + m i=1 v * i x ij j = 1, • • • , n (10) 
For this example we find w * =681.736. In this manner and due to the fact that the value of vector (-v * , u * , w * ) is at hand, the output oriented efficiency score of DMU j , j=1,...,n, can be obtained by using these common weights as

m i=1 v * i x ij s r=1 u * r y rj + w * .
These efficiency values are depicted in table 1.

Conclusion

For assessment of all the DMUs on the same scale, this paper examines the application of the Zionts-Wallenius method for generating common weights under the DEA framework. There are other methods in the literature which are also able to generate common weights.

None of them are suitable to measure the preferences of a decision maker, and most of them are based on the solution of nonlinear problems. Hence, because of interactively solution of an MOLP problem that incorporates preference structures of a decision maker about input/output factors, use of our approach has an advantage over the general approaches in the literature.

When the weights of the input/output factors are available, efficiency scores can be measured.

Moreover, all the DMUs can be ranked in terms of a common base. Finally, the proposed method, simply and with appropriate modifications, can be generalized to the other DEA models.

  • • • , 25, i = 4, model (4) was solved and variables λ 1 , λ 6 , λ 9 , λ 10 , λ 11 , λ 15 , λ 16 , λ 17 , λ 18 , λ 19 , λ 22 , λ 23 , λ 25 , were determined as efficient variables. Then

												7 8
	DMUs NBV	I 1	w 1i	I 2	w 2i	I 3	w 3i	I 4	O 1 w 4i	O 2 w 5i	O 3 w 6i	Efficiency w 7i
	DMU 1 3422 4012 4353 3525 8921 5842 7512 λ 1 -814 867 1019 -979 -498 3979 1309 1.05942
	DMU 2 3899 4316 4528 4656 5618 7343 6200 λ 2 -337 1171 1194 152 2805 2478 2621 1.43594
	DMU 3 3478 4802 3874 3270 5468 5698 5102 λ 3 -758 1657 540 -1234 2955 4123 3719 1.40834
	DMU 4 4236 3145 3334 4504 8423 9821 8821 λ 5 585 765 806 252 -758 2942 1516 1.12505
	DMU 5 4821 3910 4140 4756 9181 6879 7305 λ 6 -126 342 212 -1381 1671 3300 -879 1.40201
	DMU 6 4110 3487 3546 3123 6752 6521 9700 λ 7 -256 1367 153 -828 108 1421 1275 1.08162
	DMU 7 3980 4512 3487 3676 8315 8400 7546 λ 8 505 1086 789 19 1965 4221 -179 1.18137
	DMU 8 4741 4231 4123 4523 6458 5600 9000 λ 9 -814 423 627 -505 413 4821 2934 1.37730
	DMU 9 3422 3568 3961 3999 8010 5000 5887 λ 10 566 9 881 -712 1384 3806 3179 1.22153
	DMU 10 4802 3154 4215 3792 7039 6015 5642 λ 11 -1186 1843 637 319 -830 1388 2924 1.56621
	DMU 11 3050 4988 3971 4823 9253 8433 5897 λ 12 -591 608 936 -258 2611 4822 2163 1.14583
	DMU 12 3645 3753 4270 4219 5812 4999 6658 λ 13 674 854 856 -1314 1109 4333 4222 1.31994
	DMU 13 4910 3999 4190 3190 7314 5488 4599 λ 14 484 346 230 298 1882 1497	1.70783 926
	DMU 14 4720 3491 3564 4802 6541 8324 7895 λ 15 -357 1113 166 -891 -318 280	1.39392 1530
	DMU 15 3879 4258 3500 3613 8741 9541 7291 λ 16 276 1763 874 -812 -1295 530	1.13478 719
	DMU 16 4512 4908 4208 3692 9718 9291 8102 λ 17 -545 1180 -112 496 2781 2303 -1120 1.21120
	DMU 17 3691 4325 3222 5000 5642 7518 9941 λ 18 85 722 -110 -501 -1577 3356 -608 1.12987
	DMU 18 4321 3867 3224 4003 10000 6465 9429 λ 19 -452 167 36555 -782 -1335 3693 2112 1.10821
	DMU 19 3784 3312 3989 3722 9758 6128 6709 λ 20 -771 1512 541 414 1121 2509 1789 1.14007
	DMU 20 3465 4657 3874 4918 7302 7312 7032 λ 21 174 1270 1298 -946 -398 3603	1.23246 576
	DMU 21 4410 4415 4632 3558 8821 6218 8245 λ 22 -903 575 894 -1212 2511 2497	1.22949 -93
	DMU 22 3333 3720 4228 3292 5912 7324 8914 λ 23 -452 1521 886 314 880 1322 -393 1.00000
	DMU 23 3784 4666 4220 4818 7543 8499 9214 λ 24 3589 1632 556 -113 2323 2155 4300 1.12713
	DMU 24 4825 4777 3890 4391 6100 7666 4521 λ 25 89 380 1137 -987 100 1875 1406 1.82717
	DMU 25 4325 3525 4471 3517 7415 7946 7415	1.25152
	Table 1: The raw data set accompany with efficiency values

Table 2 :

 2 The value of w ij 's in iteration 1 the DM was asked to indicate the acceptability of the trade-offs and based on the DM's responses, a new set of weights for objective functions was obtained as γ = (0.5250, 0.0970, 0.0001, 0.1383, 0.0671, 0.0321, 0.1405).

  • • • , 25, i = 22 and solving model (2), by maximization of the nonbasic variable λi , i = 1, • • • , 25, i = 22, resulted in the optimal solution (x i1 , x i2 , x i3 , x i4 , y i1 , y i2 , y i3 ) with optimal value equal to 1. Determination of efficient variables were based on the estimation of w ij values which were introduced in table (3).For each nonbasic variable λ i , i = 1, • • • , 25, i = 22, model (4) were solved and variables λ 4 , λ 6 , λ 7 , λ 9 , λ 10 , λ 11 , λ 13 , λ 14 , λ 15 , λ 18 , λ 19 , λ 21 , λ 23 , λ 25 , were determined as efficient variables. Then the DM was asked to indicate the acceptability of the trade-offs. Since all the responses were no for all efficient variables, we terminated the procedure and introduced γ = (v *

	1 = 0.5250, v * 2 =
	0.0970, v * 3 = 0.0001, v * 4 = 0.1383, u * 1 = 0.0671, u * 2 = 0.0321, u * 3 = 0.1405) as the best set of weights
	for inputs and outputs 2

Table 3 :

 3 The value of w ij 's in iteration 2 approach is based on solution of an MOLP model which is intellectually consistent with the DEA philosophy. Meanwhile, the Zionts-Wallenius method does not require explicit knowledge of the DM's utility function, but uses it on an interactive basis with the DM by asking certain 'yes' or 'no' questions.