
HAL Id: hal-03212807
https://hal.science/hal-03212807

Submitted on 30 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A compromise solution approach for finding common
weights in DEA: An improvement to Kao and Hung’s

approach
Majid Zohrehbandian, Ahmad Makui, Alireza Alinezhad

To cite this version:
Majid Zohrehbandian, Ahmad Makui, Alireza Alinezhad. A compromise solution approach for finding
common weights in DEA: An improvement to Kao and Hung’s approach. Journal of the Operational
Research Society, 2010, �10.1057/jors.2009.4�. �hal-03212807�

https://hal.science/hal-03212807
https://hal.archives-ouvertes.fr


A compromise solution approach for finding common weights in

DEA: An improvement to Kao and Hung’s approach

Majid Zohrehbandiana,∗, Ahmad Makuib, Alireza Alinezhadc

bDepartment of Mathematics, Islamic Azad University-Karaj Branch, P.O. Box 31485-313, Karaj, Iran.

aDepartment of Industrial Engineering, Iran University of Science & Technology, Tehran, Iran.

cDepartment of Industrial Engineering, Islamic Azad University-Qazvin Branch, Qazvin, Iran.

Abstract

Data envelopment analysis (DEA) is the leading technique for measuring the relative effi-

ciency of decision making units (DMUs) on the basis of multiple inputs and multiple outputs.

In this technique, the weights for inputs and outputs are estimated in the best advantage for

each unit so as to maximize its relative efficiency. But, this flexibility in selecting the weights

deters the comparison among DMUs on a common base. For dealing with this difficulty, Kao

and Hung (2005) proposed a compromise solution approach for generating common weights un-

der the DEA framework. The proposed MCDM model was derived from the original non-linear

DEA model. This paper presents an improvement to Kao and Hung’s approach by means of

introducing an MCDM model which is derived from a new linear DEA model.
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1 Introduction

Data envelopment analysis (DEA) is a method of evaluating relative performance of a group of

similar units, called decision making units (DMU). DMUs are essentially perform the same task

using similar multiple inputs to produce similar multiple outputs. DEA gives a measure of efficiency,

which is essentially defined as a ratio of weighted outputs to weighted inputs. Charnes et al’s (1978)

idea is to define the efficiency measure by assigning to each unit the most favorable weights as long

as the efficiency scores of all DMUs calculated from the same set of weights, do not exceed one.

As the methods of DEA are run separately for each DMU, the set of weights will typically be

different for the various DMUs, and in some cases, this is unacceptable that the same factor is

accorded widely differing weights. Likewise, the problem of allowing total flexibility of the weights

is that the values of the weights obtained by solving the unrestricted DEA program are often in

contradiction to prior views or additional available information. For dealing with this difficulty, the

concept of weight restrictions and value judgements were introduced in DEA to curb the complete

freedom of variation of weights allowed by the original DEA models; see Allen et al. (1997),

Chapparo et al. (1997), Podinovski (2001), Podinovski and Athanassopoulos (1998), Wong and

Beasley (1990).

This flexibility in selecting the weights, on the other hand, deters the comparison among DMUs

on a common base. A possible answer to this difficulty lies in the specification of a common set

of weights, which was first introduced by Roll et al. (1991). Research about the idea of common

weights has developed gradually in recent years. Recently, Kao and Hung (2005) proposed a

compromise solution approach to generate a common set of weights for all DMUs which are able

to produce a vector of efficiency scores closest to the efficiency scores calculated from the standard

DEA model (ideal solution). Some of the other studies in this field are Cook and Kress (1990),

Doyle and Green (1994), Jahanshahloo et al. (2005), Karsak and Ahiska (2005), Roll and Golany

(1993).

The proposed MCDM model in Kao and Hung (2005) was derived from the original fractional

DEA model which resulted a non-linear model. The aim of this study is improvement of Kao and

Hung’s approach to produce a linear model with high correlation between its results with that

obtained by Kao and Hung (2005).

The plan for the rest of this paper is as follows. In section 2 we present a brief discussion about

DEA models and the multiple objective decision making (MODM) problems. The mathematical
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foundation of our method for finding a common set of weights is discussed in Section 3. Numerical

example is presented in section 4 and finally, section 5 draws the conclusive remarks.

2 DEA and MODM Preliminaries

Thirty years after the publication of the founding paper of Charnes et al. (1978), DEA can safely

be considered as one of the recent success stories in operations research and several hundreds of

papers have been published since then. Interestingly, Charnes and Cooper have also had a significant

impact on the development of multiple objective decision making through the development of goal

programming (GP); Charnes and Cooper (1961). Although Charnes and Cooper have played a

significant role in the development of DEA and MODM, researchers in these two camps have

generally not paid much attention to research performed in the other camp. Some works on the

interactions between MODM and DEA, are as follows: Bouyssou (1999), Estellita et al. (2004),

Giokas (1997), Golany (1988), Joro et al. (1998), Stewart (1996), Xiao and Reeves (1999).

2.1 Data Envelopment Analysis

Consider n production units, or DMUs, each of which consume varying amount of m inputs to

produce s outputs. Suppose xij ≥ 0 denotes the amount consumed of the i-th input and yrj ≥ 0

denotes the amount produced of the r-th output by the j-th decision making unit. Then, the original

model, for measuring the efficiency of unit ’p’, was a fractional linear program as follows:

Max

∑s
r=1 ur yrp∑m
i=1 vi xip

s.t.

∑s
r=1 ur yrj∑m
i=1 vi xij

≤ 1 j = 1, . . . , n (1)

vi, ur ≥ 0 i = 1, . . . ,m r = 1, . . . , s

We can transform the above model to a linear program by setting the denominator in the

objective function equal to an arbitrary constant (e.g. unity) and maximizing the numerator. The

obtained model is as follows:

CCRm) Max
s∑

r=1

ur yrp

s.t.
s∑

r=1

ur yrj −
m∑
i=1

vi xij ≤ 0 j = 1, . . . , n

m∑
i=1

vi xip = 1 (2)
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vi, ur ≥ 0 i = 1, . . . ,m r = 1, . . . , s

The above model is called the input oriented CCR multiplier model. The dual problem will also

be used afterwards and this is called the input oriented CCR envelopment model:

CCRe) Min θp

s.t.
n∑

j=1

λj xij − θp xip ≤ 0 i = 1, . . . ,m

n∑
j=1

λj yrj ≥ yrp r = 1, . . . , s (3)

λj ≥ 0 j = 1, . . . , n

DMUp is called (weakly) efficient if and only if the objective function values associated with

the optimal solutions to the above problems are one; otherwise it is inefficient.

Lemma 1 If θ∗p be the optimum solution of model (3), then (x̂p, ŷp) = (θ∗pxp, yp), called the

projection of DMUp on the efficient frontier, is an efficient (virtual) DMU.

Lemma 2 DMUp is efficient if and only if there exists a nonnegative coefficient (u,v)∈ Rs×Rm as-

sociated to the gradient vector of a supporting hyperplane (a hyperplane passing through one of the

(extreme) points of the production possibility set (PPS) and the PPS lies completely in one of the

two halfspaces into which this hyperplane divides the space <m+s) where
s∑

r=1

ur yrp −
m∑
i=1

vi xip = 0.

2.2 Multiple Objective Decision Making

MODM problem can be written in the general form as follows:

Max F (x) = {f1(x), · · · , fk(x)}

s.t. x ∈ X = {x | gi(x) ≤ 0, i = 1, . . . ,m} (4)

Where x∈ Rn. Against the concept of an optimal solution in single objective mathematical pro-

gramming problems, in MODM an efficient solution is introduced as follows:

Definition x∗ ∈ X is an efficient solution (or nondominated solution) if and only if there does not

exist another x∈ X such that ∀j : fj(x) ≥ fj(x∗) and ∃j : fj(x) > fj(x
∗).

In order to solve the above problem (identifying the efficient solutions), there are many different

methods in the literature. One of these methods is the compromise solution approach. Suppose
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f∗j (x) j = 1, · · · , k, are the optimum values of the following models:

Max fj(x), j = 1, · · · , k

s.t. x ∈ X (5)

Then an efficient solution is defined as the one which minimizes the deviations from these optimum

values (ideal solution) as follows:

Min Dp = {
k∑

j=1

[
f∗j (x)− fj(x)

f∗j (x)
]p}

1
p , p ≥ 1

s.t. x ∈ X (6)

Where the value of p is based upon the utility function of the DM. In the above Model, for the

smallest value of p=1, every deviation is being weighted equally. As p increases, more weights

are given to the larger deviations. Ultimately, the largest deviation completely dominates when

p=∞. However, there are three values of p, viz., p=1, 2, and ∞, which have special mathematical

properties and are worthy of consideration.

3 A Method for Finding a Common Set of Weights

In DEA for calculating the efficiency of different DMUs, different set of weights are obtained,

which seems to be unacceptable in reality. Kornbluth (1991) noticed that the DEA model could

be expressed as a multi-objective linear fractional programming problem. The objective function

of the model is the same as in the CCR model (1), but applied to maximize efficiency of all DMUs,

instead of one at a time, and the restrictions remaining unchanged. However, the proposed model

was nonlinear. Some other methods also proposed in the literature which were based on Kornbluth’s

approach. One of them is the compromise solution approach of Kao and Hung (2005). Below, we

present a brief discussion of their approach.

The optimal objective value of model (1), denoted by E∗
p, is the best attainable efficiency level

for DMUp. Any other set of weights would result in an efficiency score which is less than or

equal to E∗
p. In generating a common set of weights for all DMUs, Kao and Hung (2005) consider

E∗ = (E∗
1 , . . . , E

∗
n) as the target, or ideal solution, to achieve. They want the efficiency vector

E(u, v) = (E1(u, v), . . . , En(u, v)) calculated from the common weights (u,v) to be closest to the

ideal solution E∗. To determine the degree of closeness between E(u,v) an E∗, a generalized family

of distance measures was applied:
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Dp(E(u, v)) = [
n∑

j=1

(E∗
j − Ej(u, v))p]

1
p , p ≥ 1

where p represents the distance parameter. Then, the common weights (u,v) and the associated

efficiency scores Ej(u, v) j = 1, · · · , n, solved from a mathematical program, called the compromise

solution with parameter p, which is equivalent to a linearly constrained nonlinear program.

Now, suppose θ∗j , j=1,. . .,n, are the optimum values obtained from the model CCRe, when

DMUj is under consideration and (x̂j , ŷj) = (θ∗jxj , yj), which is an efficient DMU according to

lemma 1. In this section, we present an improvement to Kao and Hung’s approach by introducing

a multiple objective linear programming (MOLP) for finding common weights in DEA. But, firstly,

the following model is introduced to find efficiency value of DMUp which has the same results as

the CCR multiplier model. However, it has some advantages compared to model (2) that will be

discussed later on.

Max
s∑

r=1

ur ŷrp −
m∑
i=1

vi x̂ip

s.t.
s∑

r=1

ur ŷrj −
m∑
i=1

vi x̂ij ≤ 0 j = 1, . . . , n

s∑
r=1

ur +
m∑
i=1

vi = 1 (7)

vi, ur ≥ 0 i = 1, . . . ,m r = 1, . . . , s

Here, the constraint
∑s

r=1 ur +
∑m

i=1 vi = 1 is superfluous. However, it corresponds to the

constraint
∑m

i=1 vi xip = 1 in model (2). Moreover, its effect is to have normalized weights u and v

(uniqueness of optimal solution). The dual problem of model (7) is as follows:

Min z

s.t.
n∑

j=1

λj x̂ij − z ≤ x̂ip i = 1, . . . ,m

n∑
j=1

λj ŷrj + z ≥ ŷrp r = 1, . . . , s (8)

λj ≥ 0 j = 1, . . . , n

Here, due to the fact that (x̂p, ŷp) is an efficient DMU (it is not possible to improve all of inputs

and outputs of an efficient DMU), we have z∗=0. In other words, the optimum value of model (7)

is zero.

Theorem 1 For optimal solution of model (7), say (u∗, v∗), we have:

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

= θ∗p.

Proof The production possibility set produced by (x̂j , ŷj) = (θ∗jxj , yj) j=1,· · ·,n, is the same as
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original PPS. Furthermore, since (θ∗pxp, yp) is input oriented projection of DMUp on the efficient

frontier, according to foregoing lemmas (1 and 2) it is efficient and there is a supporting hyperplane

of PPS at (x̂p, ŷp) = (θ∗pxp, yp) which will result

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

= θ∗p 2

Suppose (x̂j , ŷj) = (θ∗jxj , yj) j = 1, · · · , n. Then, according to the above model and the pro-

posed approach by Kornbluth (1991), the idea behind the identification of the common weights is

formulated as the following MOLP problem. The objective function of the model is the same as in

the model (7), but applied for all DMUs, instead of one at a time, and the restrictions remaining

unchanged.

Max [
s∑

r=1

ur ŷr1 −
m∑
i=1

vi x̂i1, · · · ,
s∑

r=1

ur ŷrn −
m∑
i=1

vi x̂in]

s.t.
s∑

r=1

ur ŷrj −
m∑
i=1

vi x̂ij ≤ 0 j = 1, . . . , n

s∑
r=1

ur +
m∑
i=1

vi = 1 (9)

vi, ur ≥ 0 i = 1, . . . ,m r = 1, . . . , s

Furthermore, in order to solve the above MOLP model, we use the compromise solution ap-

proach to produce a vector of deviation scores closest to the scores calculated from the model (7).

Hence, a vector of zero scores is considered as an ideal solution. By using the generalized family of

distance measures as follows:

Dp(u, v) = [
n∑

j=1

(0− (
s∑

r=1

ur ŷrj −
m∑
i=1

vi x̂ij))
p]

1
p , p ≥ 1

where p represents the distance parameter, the following mathematical programming, called com-

promise solution with parameter p, is produced.

Min Dp(u, v) = [
n∑

j=1

(−
s∑

r=1

ur ŷrj +
m∑
i=1

vi x̂ij)
p]

1
p , p ≥ 1

s.t.
s∑

r=1

ur ŷrj −
m∑
i=1

vi x̂ij ≤ 0 j = 1, . . . , n

s∑
r=1

ur +
m∑
i=1

vi = 1 (10)

vi, ur ≥ 0 i = 1, . . . ,m r = 1, . . . , s

Although model (10) is equivalent to a linearly constrained nonlinear program, it is completely

linear for p=1 and ∞. Therefore, for p=1 and ∞ it is solved easier than proposed model by Kao

and Hung (2005) which was completely nonlinear.
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The duals of model (10) for the case p=1, ∞ are as follows:

Max z

s.t.
n∑

j=1

λj x̂ij ≤
n∑

j=1

x̂ij − z i = 1, . . . ,m

n∑
j=1

λj ŷrj ≥
n∑

j=1

ŷrj + z r = 1, . . . , s (11)

λj ≥ 0 j = 1, . . . , n

Max z

s.t.
n∑

j=1

λj x̂ij ≤
n∑

j=1

βj x̂ij − z i = 1, . . . ,m

n∑
j=1

λj ŷrj ≥
n∑

j=1

βj ŷrj + z r = 1, . . . , s

n∑
j=1

βj = 1 (12)

λj , βj ≥ 0 j = 1, . . . , n

Here, model (11) corresponds to the radius of stability model, see Cooper et al (2001), of a unit

with inputs and outputs equal to (
∑n

j=1 x̂j ,
∑n

j=1 ŷj) = (
∑n

j=1 θ
∗
jxj ,

∑n
j=1 yj), which corresponds to

the sum of all the radially input projected units.

With respect to the dual of model (10) for the case p=∞, it would be slightly different. In

this case, model (12), the unit for which the radius of stability is computed is determined by

the own model among those that belong to the convex hull of the radially input projected units

(x̂j , ŷj) = (θ∗jxj , yj) j = 1, · · · , n. The solution to the model will be the radius of stability of the

furthest point (using Tchebycheff metric) within the convex hull to the efficient frontier.

However, solving the model (10) give us a common set of weights and then efficiency score of

DMUj , j=1,...,n, can be obtained by using these common weights as

∑s
r=1 u

∗
r yrj∑m

i=1 v
∗
i xij

. If for (u∗, v∗)

we have

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

=1, then DMUp is called efficient. Furthermore, by defining the set A={j:

DMUj is efficient in model (10)}, and using the same approach as in Jahanshahloo et al. (2005) a

complete ranking of DMUs will be obtained.

Theorem 2 Suppose that DMUp is indicated efficient by model (10). Then, it is efficient in

an input oriented CCR model.

Proof According to the first inequalities we have:

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

≤ θ∗p ≤ 1. Therefore, if

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

=1
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then θ∗p = 1 and DMUp is CCR efficient2

Theorem 3 There is a DMUj , j=1,...,n for which model (10) characterize it as an efficient DMU.

Proof Suppose p=1 or ∞ in model (10). There is a DMUp, p∈ {1, · · · , n} for which the first

inequality in (10) is binding. Because, if it is not the case, there is a sufficiently small value ε > 0

where (u, v) = (u∗ + [ε, 0, . . . , 0]T1×s, v
∗ − [ε, 0, . . . , 0]T1×m) satisfy the set of restrictions in (10). On

the other hand, the value of Dp(u, v) is smaller than Dp(u
∗, v∗) and this is a contradiction.

Therefore, there is a DMUp, p∈ {1, · · · , n} for which we have:
s∑

r=1

u∗r ŷrp −
m∑
i=1

v∗i x̂ip = 0. Such a

(u∗, v∗) is associated to the gradient vector of a supporting hyperplane. Furthermore, this support-

ing hyperplane must support the PPS at some extreme efficient DMUs. Therefore, such extreme

efficient DMUs are indicated efficient by the model (10)2

Roll et al. (1991) and Golany and Yu (1995) indicate that a general requirement for the common

set of weights is that at least one DMU must attain efficiency 1 with the common weights. If there

is no DMU with efficiency score 1, then it is obvious that the efficiencies are under-estimated in

the sense of relative comparison. In this sense, the efficiency scores obtained from our proposed

method are not under-estimated and satisfied the general requirement.

4 Numerical Example

To illustrate the idea of the proposed approach, an example from Kao and Hung (2005) is utilized.

In that example, there are 17 DMUs with four inputs and three outputs.

Table (1) contains the common set of weights generated by proposed method in this paper (for

p=1, and ∞), respect to inputs and outputs. Furthermore, table (2) shows the efficiency scores

of DMUs calculated from the CCR Model, the compromise solution approach by Kao and Hung

(2005), and the compromise solution approach in this paper, respectively.

The CCR efficiency scores are the highest values that the DMUs can attain, and there are nine

efficient units which cannot be differentiated. Regarding the compromise solution approach by Kao

and Hung (2005), two values of p, viz., 1, and ∞, have been considered and the results are referred

to as MAD1, and MAX1. Likewise, Regarding to the compromise solution approach in this paper,

two values of p, viz., 1, and ∞, have been considered and the results are referred to as MAD2, and

MAX2.

Note that, it is inappropriate to say which weights from these four common weights are correct

and which are not. They are different sets of weights due to the fact that they are obtained from
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different viewpoints. But in general, these common weights are more informative than those of the

CCR model. They not only differentiate the efficient units, but also assess all of the DMUs on the

same scale.

We can also use correlation between the set of efficiency scores of the two compromise solution

approaches obtained for two values of p, viz., 1, and∞, for verifying the results of the approach. Like

the Pearson product moment correlation coefficient, Spearman’s ρ is a measure of the relationship

between two variables. However, Spearman’s ρ is calculated on ranked data. For calculating

Spearman’s ρ we can use the below formulation where di is the difference between ranks for the

same observation (DMU) and n is the number of DMUs.

rs = 1− 6
∑n

i=1 d
2
i

n(n2 − 1)
Likewise, we can compute the Pearson’s correlation on the columns of ranked data. The results

of this formulation is too close to the exact Spearman’s ρ. In this formulation xj and yj are the

ranks for the same DMUj j = 1, . . . , n.

r =

∑
xiyi − mx y√∑

x2i − nx2
√∑

y2i − ny2
Empirically, in this example the Spearman’s correlation between the set of efficiency scores of

the two compromise solution approaches (Kao and Hung’s approach and our approach) obtained

for two values of p, viz., 1, and ∞, are 0.963 and 0.914, respectively. However, use of the proposed

approach in this paper has an advantage over the Kao and Hung’s approach. Our approach is based

on solution of a linear problem but Kao and Hung’s approach is based on solution of a nonlinear

problem.

5 Conclusion

For assessment of all the DMUs on the same scale, this paper examines the application of compro-

mise solution approach for generating common set of weights under the DEA framework. There

are other methods in the literature which are also able to generate common weights. A case taken

from Kao and Hung (2005) is solved to investigate the differences among these methods and some

conclusions are derived.

The proposed approach in this paper is based on solution of a linear problem. Hence, the use

of it has an advantage over the general approaches in the literature, which are based on solving

nonlinear problems. When weights of the input/output factors are available, efficiency scores can

be measured. Moreover, all DMUs can be ranked in terms of a common base. Finally, the proposed
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method, simply and with appropriate modifications, can be generalized to the other DEA models.
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Method v1 v2 v3 v4 u1 u2 u3

p=1 0.20026 0.34628 0.00010 0.03421 0.06658 0.35022 0.00236

p=∞ 0.000100 0.404158 0.097841 0.074547 0.075495 0.346710 0.001149

Table 1. Common weights generated from the proposed compromise solution approach.

DMUs CCR MAD∗
1 MAX∗

1 MAD2 MAX2

1 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

2 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1) 1.0000(1)

3 1.0000(1) 1.0000(1) 0.7231(11) 1.0000(1) 0.7433(9)

4 1.0000(1) 1.0000(1) 0.8984(4) 1.0000(1) 0.8537(6)

5 1.0000(1) 0.9747(5) 1.0000(1) 1.0000(1) 0.9442(4)

6 1.0000(1) 0.8524(9) 0.8692(7) 0.9654(6) 0.8351(7)

7 1.0000(1) 0.9244(6) 0.7432(9) 0.8743(8) 0.7109(12)

8 1.0000(1) 0.8954(7) 0.8939(5) 0.8469(9) 0.9619(3)

9 1.0000(1) 0.6619(14) 0.7230(12) 0.6783(13) 0.6494(15)

10 0.9403(10) 0.8721(8) 0.8761(6) 0.8779(7) 0.8995(5)

11 0.9346(11) 0.6398(15) 0.6577(13) 0.6526(15) 0.7456(8)

12 0.8290(12) 0.7456(10) 0.7594(8) 0.7175(11) 0.7265(11)

13 0.7997(13) 0.6229(17) 0.6453(14) 0.6227(16) 0.6919(13)

14 0.7733(14) 0.7140(12) 0.7406(10) 0.7126(12) 0.7428(10)

15 0.7627(15) 0.7245(11) 0.6410(15) 0.7215(10) 0.6691(14)

16 0.7435(16) 0.6996(13) 0.4665(17) 0.6696(14) 0.5554(17)

17 0.6873(17) 0.6310(16) 0.5908(16) 0.5925(17) 0.5667(16)

Average 0.910 0.821 0.778 0.819 0.782

Table 2. Efficiency scores and the associated rankings (in parentheses)

calculated from the CCR ratio model and different methods of common weights.

∗ Results obtained from Kao and Hung (2005).


