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ABSTRACT

Diffusing a graph signal at multiple scales requires to com-
pute the action of the exponential of as many versions of the
Laplacian matrix. Considering the truncated Chebyshev poly-
nomial approximation of the exponential, we derive a tight-
ened bound on the approximation error, allowing thus for a
better estimate of the polynomial degree that reaches a pre-
scribed error. We leverage the properties of these approxima-
tions to factorize the computation of the action of the diffu-
sion operator over multiple scales, thus drastically reducing
its computational cost.

Index Terms— Approximate computing, Chebyshev ap-
proximation, Computational efficiency, Estimation error.

1. INTRODUCTION

The matrix exponential operator has applications in numerous
domains, ranging from time integration of ordinary differen-
tial equations [1] or network analysis [2] to various simula-
tion problems (like power grids [3] or nuclear reactions [4])
or machine learning [5]. In graph signal processing, it ap-
pears in the diffusion process of a graph signal — an analog on
graphs of low-pass filtering.

Given a graph G and its combinatorial Laplacian matrix
L =D — A, with A the adjacency matrix and D the diag-
onal degree matrix, let = be a signal on this graph (a vector
containing a value at each node), the diffusion of x in G is
defined by the equation 42 = —Lw with w(0) = = [6]. It
admits a closed-form solution w(7) = exp(—7L)x involving
the heat kernel 7 — exp(—7L), which features the matrix
exponential.

Applying the exponential of a matrix M € R™ "™ to a
vector x € R™ can be achieved by computing the matrix B =
exp(M) followed by the matrix-vector product Bz. How-
ever, the computational cost of these operations, quadratic
in n, become quickly computationally prohibitive in high di-
mension. On the other hand, multiscale graph representations
such as graph wavelets [7], graph-based machine learning
methods [5], rely on graph diffusion at different scales that
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imply applications of the matrix exponential for various mul-
tiples of the graph Laplacian.

To speedup such repeated computations one can use
a well-known technique based on approximations of the
(scalar) exponential function using Chebyshev polynomials.
We build on the fact that polynomial approximations [8] can
significantly reduce the computational burden of approxi-
mating exp(M)x with good precision when M = —7L and
L is symmetric positive semi-definite (SPSD) and sparse.
This is notably the case when L is the Laplacian of an undi-
rected graph. The principle is to approximate the exponential
as a low-degree polynomial in M and compute its action,
exp(M)z = p(M)z := ZkK:o apMPF z. Several methods
exist, some requiring the explicit computation of coefficients
associated with a particular choice of polynomial basis, oth-
ers, including Krylov-based techniques, not requiring ex-
plicit evaluation of the coefficients but relying on an iterative
determination [9] of the polynomial approximation on the
subspace spanned by {x, Mz, - -- ,MKx}.

Our contribution is twofold. First, we devise a new
bound on the approximation error of truncated Chebyshev
expansions of the exponential, that improves upon existing
works [10, 11, 12]. This avoids unnecessary computations
by determining a small truncation degree K to achieve a pre-
scribed error. Second, we propose to compute exp(—7L) at
different scales 7 € R, faster, by reusing the calculations
of the action of Chebyshev polynomials on # and combin-
ing them with adapted coefficients for each scale 7. This is
particularly efficient for multiscale problems with arbitrary
values of 7, unlike [13] which is limited to linear spacing.

In Section 2 we recall Chebyshev polynomials approxi-
mation and derive new bounds on the coefficients (Cor. 2.2).
Then, we approximate in Section 3 the matrix exponential
with controlled complexity and error (Lemma 3.1) with our
new error bounds. Section 4 ends with numerical validations.

2. CHEBYSHEYV APPROXIMATION

The Chebyshev polynomials of the first kind are characterized
by the identity T (cos(#)) = cos(kf). They can be computed
from Ty (t) = 1, T1(t) = ¢ and the recurrence relation:

Thoio(t) = 2tTpr () — Ti(t). (1)



The Chebyshev series decomposition of a function f
[—1,1] — R takes on the form:

FO) =243 e Ti), @)

and the Chebyshev coefficients have the following expression:

2 T
ck = 7/ cos(k@) f(cos(6))do. 3)
T Jo
By truncating the sum in the series (2) to some K < 400, we
obtain an approximation of the function f.!

Chebyshev series of the exponential. Here, we focus on
approximating the function h, : A € [0,2] — exp(—TA),
that will serve as a starting point to obtain a low-degree poly-
nomial approximations of the matrix exponential exp(—7L)
for symmetric positive semi-definite matrices whose largest
eigenvalue satisfies A\, = 2 (see Section 3).

Using the change of variable: ¢t = (A — 1) €
the Chebyshev series of Eq. (2), we get:

[—1,1] and

hr(A) = fco )+ Z er(T )
where, for any k € N, Tj,(\) = T (X — 1) and
ck(T) = % /Tr cos(kf) exp(—7(cos(d) +1))db.  (5)
0

Truncating the series (4) to K yields a polynomial approx-
imation of h, of degree K whose quality can be controlled.

Chebyshev coefficients of the exponential operator. Nu-
merical evaluation of the coefficients using the integral for-
mulation of Eq. (3) is in general prohibitive. However, in the
exponential case, the coefficients in Eq. (5) have a close form
expression [15]:

cr(7) = 2Ik(1) - exp(—71) = 2 - Iex(—7),

where I (-) is the modified Bessel function of the first kind
and Tey(+) is the exponentially scaled modified Bessel func-
tion of the first kind. Moreover, the following lemma yields
another expression for the coefficients c; of Eq. (5), which
will show more relevant to bound the error of the truncated
Chebyshev expansion.

Lemma 2.1 ([14], Equation 2.91). Let f be a function ex-
pressed as an infinite power series f(t) = > .o, a;t" and
assume that this series is uniformly convergent on [—1,1].
Then, the Chebyshev coefficients of f can be expressed as:

1 o 1 (k+2i
Ck:2k_1§22i( i >ak+2i- (6)

IFor theoretical aspects of the approximation by Chebyshev polynomials
(and other polynomial basis) we refer the reader to [14].

Corollary 2.2. For the particular function h () :=exp(—T(t+
1)), t€[—1, 1], the coefficients of its Chebyshev series read:

Cr = (—1)kdk5k, with
_ \Fk exp(—7 . _ %) 12 k!
& =2(%) plg! Ly dy = Yico (§) M(k+i)!?

and in addition, 1 < d;, < min (exp ((;/j)lz) ,cosh(r)) .

Proof. Posing C'=7/2, we have the power series expansions:

- -2
hr(t) = exp(—2C) exp(—2C't) Z exp( 20 C)

and, using Lemma 2.1, for each k£ € N, we obtain:

1

_ k=
k‘—|—2) ( 1) dek.

cr = (—1)FC*2exp(—20) ZC%

For any integers k and i, k!/(k +1)! < min(1/4!,1/(k+1)")
and 1/(i!)% = (%) /(2i)! < 2%/(2i)!, which leads to:
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3. APPROXIMATION OF THE MATRIX
EXPONENTIAL

The extension of a univariate function f : R — R to sym-
metric matrices L € R™*™ exploits the eigen-decomposition
L = UAUT, where A = diag(\;)1<i<n, to define the ac-
tion of f as f(L) := Udiag(f()\;))U'. When f(t) = t*
for some integer k, we have f(L) = L*, and the definition
matches with the intuition when f is polynomial or analytic.

While the function of a matrix can be computed by taking
the same function applied to its eigenvalues, diagonalizing
the matrix is computationally prohibitive. On the other hand,
computing the matrix f(L) itself is rarely required, as it is
often its action on a given vector that is of interest. This
remark enables faster methods, notably those using polyno-
mial approximations. When the function f admits a Taylor
expansion, a natural choice for the polynomial p is a trun-
cated version of the Taylor series [13]. Other polynomial
bases exist, such as the Padé polynomials or, in our case, the
Chebyshev polynomials [11, 16, 17, 18], leading to approx-
imation errors that decay exponentially with the polynomial
degree K.

Chebyshev approximation of a matrix exponential. Con-
sider L any SPSD matrix of largest eigenvalue Ay = 2
(adaptations to matrices whose largest eigenvalue is larger
than 2 will be discussed in the experimental section). To
approximate the action of exp(—7L), where 7 > 0, we use



the matrix polynomial pg (L) where pg(\) is the poly-
nomial obtained by truncating the series (4). The trun-
cation degree K offers a compromise between computa-
tional speed and numerical accuracy. The recurrence rela-
tions (1) on Chebyshev polynomials extends to the calculus
of Ty (L)x = Tj(L — Id)z. Given a polynomial degree K,
computing p (L)a requires K matrix-vector products for the
polynomials, and K + 1 Bessel functions evaluation for the
coefficients. This cost is dominated by the K matrix-vector
products, which can be low if L is a sparse matrix.

Generic bounds on relative approximation errors. Denote
pr the polynomial obtained by truncating the Chebyshev
expansion (4) at degree k. For a given input vector x # 0, we
can measure the approximation error relative to || x ||2 as:

ex(z) ==

[exp(=7L)x — p (L)x|/3
[Edl5

Expressing exp(—7L) and px (L) in an orthonormal eigen-
basis of L yields a worst-case relative error:

(N

€x = sup ek (7) —pxl%

= max |hr(\i) =pc (M) * < [[hr
z#0 g
with \; € [0, Amax] the eigenvalues of L and ||g|lcc :=

SUPX€[0,Amax] lg(A).

Lemma 3.1. Consider T > 0, h, as in Section 2, and L. a
SPSD matrix with largest eigenvalue 2 = 2. Consider pi
as above, with K > 7/2 — 1. We have that:

/22 (r/2)K+1
h, — o <2 ST =:g(K, 7).
1hr =P T Rk i) 9T
Proof. Posing C = 7/2, for K > C — 1, we have:
) k 1 & k K ¢
% =K 2 (K +01)k—K B % (chr 1)
k=K+1 T k=K+1 Tr=1
CK—H
TK(K+1-0)

since C2/(K +1) < C, for k > K + 1, Corollary 2.2 yields:
1 < d, < exp(C?/(K +2)) < exp(C).
Since |Tx(t)| < 1 on [—1,1], again from Corollary 2.2, we

obtain:

oo

Z Ck (T)Tk ()\)

k>K

<> |dnek]
k>K
Ck
< exp (K+2) 2exp (—2C) T
k>K
CcK+1

5 —2C) K(K+1-0)

||h7' _pK”oo = sup
A€[0,Amax]

< 2exp(

O

While (7) is the approximation error of exp(—7L)z, rela-
tive to the energy of the signal before diffusion ||||3, an alter-
native is to measure this error w.r.t. the energy after diffusion

| exp(—7L)x|3:
|| exp(=7L)z — pk (L)z||3
Nk (x) := (8)
| exp(—7L)x|3
Since ||exp(—7L)z|ls > e max||z|ly = e727||x[2, we

have 0 (z) < ||h, — px||%,e*". Using Lemma 3.1 we obtain
for K > 7/2 — 1 and any «:

K(x) §g2(K7T)u (9)
nk(z) < g*(K,7)e'". (10)

Specific bounds on relative approximation errors. The
bounds in Equations (9) and (10) being worst-case estimates,
they may be improved for specific input signals = by tak-
ing into account their properties. To illustrate this, let us fo-
cus on graph diffusion, with L, a graph Laplacian, and let
us moreover assume that a; := Y. x; # 0. Since ai/\/n
is the inner product between = and the unit constant vector
(1,...,1)/+/n, which is an eigenvector of the graph Lapla-
cian L associated to the zero eigenvalue A\; = 0, we have

| exp(—7L)z||3 > |a1/+/n|?. For K > 7/2 — 1 this leads to
the specific bound:
l=ll3 _ - nllzl3
< < g (K 11
TIK( ) GK(x)a%/n >4g ( 77_) a% ) (11)
nHsz

which improves upon (10) if 7 > 1 log

4. EXPERIMENTS

We apply the proposed polynomial approximation to the dif-
fusion of a graph signal z at scale 7. In general, the largest
eigenvalue of the combinatorial graph Laplacian L is not nec-
essarily Apmax = 2 (except if we consider the so-called nor-
malized graph Laplacian), but we can always return to this
generic case, observing that exp(—7L) = exp(—7'L’) where
L' = 2L/ Amax and 77 = Apax7/2. The largest eigenvalue is
computed with an Implicitly Restarted Lanczos Method [19].
Then, depending on whether the value of 7’ verifies the con-
dition of Eq. (11) or not, the sharpest bound between (10)
and (11) will be used to estimate the polynomial degree K
that ensures a given approximation accuracy. The recurrence
relations (1) is used to compute the action of the polynomi-
als Tj,(L') = T(L’ — Id) on z [16], while the coefficients
¢k (7") derive from the close form expression of (5). All meth-
ods are implemented in Python and available in open source
for reproducible research [20].

Bound tightness. We compare our new bounds to the tightest
bounds we were able to find in the literature [11]:

IN

nx (z) 4E(K)? ”a il exp(47) [spec. bound](12)

< 4E(K)? [gen. bound] (13)
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Fig. 1. Minimum degree K to achieve a relative approxima-
tion error g (z) < 1075, obtained from the different bounds.

— 1)2 T
With B(K) =4 ¢ 7 (1+ ) K <o
= if K > 27
_ 2 _ exp(d)
and b = 1+\/5anddf AL

For 25 values of 7 from 1072 to 102, we considered
100 independant realizations of graph signals, supported on
Erdos-Reyni graph of size n = 200, with connection proba-
bility p = 5% (Amaz = 20) and whose samples x; are drawn
ii.d. from a centered standard normal distribution. For each
trial, and for each approximation bound, generically noted
B(K,T,x), we estimate the minimum degree K that ensures
ni(z) < B(K,7,2) <1075, as well as the oracle minimum
degree K guaranteeing MSE 7 (x) < 1075, Corresponding
median value and quartiles are plotted against 7 in Fig 1.

We observe that our new bounds (blue) follow more
closely the true minimum K (black) achieving the targeted
precision, up to 7 ~ 10, thus saving computations over the
one of [11] (red). Also of interest is the fact that the bounds
(11)-(12) specific to the input signal are much tighter than
their respective generic counterparts (10)-(13).

Acceleration of multiscale diffusion. Interestingly, when
diffusing at multiple scales {77 - - - 7;, }, computations can be
factorized. Indeed, the degree K can be computed only once
(using the largest 7;), as well as the terms Tk(L’ )z. Note
that the matrices Tj(L’) do not need to be stored, but only
their action on the signal z, thus avoiding memory issues. Fi-
nally, the coefficients c;’s are evaluated for all values 7; to
generate the needed linear combinations of Tk(L’ )z, 0< k<
K. To illustrate this acceleration, our method is compared to
scipy.sparse.linalg.expmmultiply that uses a Tay-
lor approximation and a linear stepping strategy [13].2

In our first experiment, we take the Standford bunny [21],
a graph built from a rabbit ceramic scanning (2503 nodes and

2 All experiments are in Python using NumPy and SciPy. They ran on a
Intel© Core™ i5-5300U CPU @ 2.30GHzx2 processor and 15.5 GiB RAM
on a Linux Mint 20 Cinnamon.

65.490 edges, with A4, ~ 78). The signal is a Dirac located
at a random node. We compute repeatedly the diffusion for
20 scales 7 sampled in [1073,10%]. Our method is set with
a target error 7 < 1075. When the 7 values are linearly
spaced, both methods can make use of their respective multi-
scale acceleration. In this context, our method is about twice
faster than Scipy: it takes 0.36s 4+ 6.1x1073 s per scale,
while Scipy takes 0.74s 4+ 2.4x1073s per scale. On the
other hand, when the 7 values are randomly sampled, SciPy
cannot make use of its multiscale acceleration and its com-
putation cost increases linearly with the number of 7’s, with
an average cost of 0.39 s per scale. Whereas, the additional
cost for repeating our method for each new 7 is negligible
(0.0094 s on average) compared to the necessary time to ini-
tialize once and for all, the T}, (L/)z (0.30s).

The trend observed here holds for larger graphs as well.
We run a similar experiment on the ogbn-arxiv graph
from the OGB datasets [22]. We take uniformly sampled
scales in [0.076,0.24] (as in [23]), and set nx < 1073, We
observe an average computation time of 504 s per scale (1 hr
and 24 min for 10 scales) with Scipy’s method, and 87 s plus
50 per scale for our method (around 9 min for 10 scales). If
we impose a value nx < 2724, comparable to the floating
point precision achieved by Scipy, the necessary polynomial
degree K only increases by 6%, which does not jeopardise
the computational gain of our method. This behavior gives
insight into the advantage of using our fast approximation for
addressing the multiscale diffusion on very large graphs.

5. CONCLUSION

Our contribution is twofold: first, using the now classical
Chebyshev approximation of the exponential function, we
significantly improved the state of the art theoretical bound
used to determine the minimum polynomial degree needed
for an expected approximation error. Second, in the specific
case of the heat diffusion kernel applied to a graph structure,
we capitalized on the polynomial properties of the Chebyshev
coefficients to factorize the calculus of the diffusion operator,
reducing thus drastically its computational cost when applied
for several values of the diffusion time.

The first contribution is particularly important when deal-
ing with the exponential of extremely large matrices, not nec-
essarily coding for a particular graph. As our new theoretical
bound offer the same approximation precision for a polyno-
mial degree downsized by up to one order of magnitude, the
computational gain is considerable when modeling the action
of operators on large mesh grids, as it can be the case, for
instance, in finite element calculus.

Our second input is directly related to our initial motiva-
tion in [5] that was to identify the best diffusion time 7 in
an optimal transport context. Thanks to our accelerated algo-
rithm, we can afford to repeatedly compute the so-called Dif-
fused Wasserstein distance to find the optimal domain adap-
tation between graphs’ measures.
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