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Optimal control strategies for bistable ODE

equations: Application to mosquito population

replacement

Luis Almeida∗ Jesús Bellver Arnau† Yannick Privat‡

Abstract

Vector-borne diseases, in particular arboviruses, represent a major threat to human health. In
the fight against these viruses, the endosymbiotic bacterium Wolbachia has become in recent years
a promising tool as it has been shown to prevent the transmission of some of these viruses between
mosquitoes and humans. In this work, we investigate optimal population replacement strategies,
which consists in replacing optimally the wild population by a population carrying the aforementioned
bacterium, making less likely the appearance of outbreaks of these diseases. We consider a two
species model taking into account both wild and Wolbachia infected mosquitoes. To control the
system, we introduce a term representing an artificial introduction of Wolbachia-infected mosquitoes.
Assuming a high birth rate, we reduce the model to a simpler one regarding the proportion of infected
mosquitoes. We study strategies optimizing a convex combination either of cost and time or cost and
final proportion of mosquitoes in the population. We fully analyze each of the introduced problem
families, proving a time monotonicity property on the proportion of infected mosquitoes and using
a reformulation of the problem based on a suitable change of variable. Our results are useful in
considerably more general contexts which we present.

Keywords: optimal control, Wolbachia, ordinary differential systems, epidemic vector control, bistable
ODEs.

1 Introduction

1.1 Around Wolbachia control strategies

Around 700 000 people die annually due to mosquito-transmitted diseases [16]. In particular, mosquitoes
of the genus Aedes, such as Aedes Aegypti and Aedes Albopictus can transmit several arboviruses as
Dengue, Chikungunya, Yellow fever or Zika [9, 17]. According to the World Health Organization, 390
million people are infected by Dengue every year and 3.9 billion people in 128 countries are at risk of
infection [6]. As no antiviral treatment nor efficient vaccine are known for Dengue, the current method for
preventing its transmission relies mainly on targeting the vector, i.e. the mosquito [5, 4, 11]. It has been
shown that the presence of the bacterium Wolbachia [10] in these mosquitoes reduces their vector capacity
(capability of transmission of the associated disease) for the aforementioned arboviruses [20, 14, 19, 15].
The bacterium is transmitted from the mother to the offspring. Furthermore, there is a phenomenon called
Cytoplasmatic Incompatibility (CI) [18, 13], which produces cross sterility between Wolbachia-infected
males and uninfected females. These two key phenomena make the introduction of mosquitoes infected
with Wolbachia a promising control strategy to prevent Dengue transmission.

In this work, we explore several ways of modeling optimal release strategies, in the spirit of [3], where
a simpler approach involving a least squares functional was presented. We enrich the model of [3] by
introducing and analyzing two relevant families of problems.

In a nutshell, we will first consider two families of functionals that are convex combinations of a term
accounting for the cost of the mosquitoes used and
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• either a growing function of the time horizon, let free, but fixing the final proportion of Wolbachia-
infected mosquitoes.

• or a penalization (more precisely a decreasing function) of the final proportion of Wolbachia-infected
mosquitoes at the final time of the experiment. Note that the horizon of time will be considered
fixed in this case.

This will lead us to introduce two large families of relevant optimization problems in order to model
this issue. Analyzing them will allow us to discuss optimal strategies of mosquito releasing and also the
robustness of the properties of the solutions with respect to the modeling choices (in particular the choice
of the functional we optimize).

Nevertheless, the results presented in this paper are not restricted to this particular problem. In
Remark 2 we state the conditions under which our results are applicable to other control problems with
bistable equations.

1.2 Issues concerning modeling of control strategy

To study these issues, let us consider the same model as in [3] for modeling two interacting mosquito
populations: a Wolbachia-free population n1, and a Wolbachia carrying one, n2. The resulting system
reads 

dn1(t)
dt = b1n1(t)

(
1− sh n2(t)

n1(t)+n2(t)

)(
1− n1(t)+n2(t)

K

)
− d1n1(t),

dn2(t)
dt = b2n2(t)

(
1− n1(t)+n2(t)

K

)
− d2n2(t) + u(t) , t > 0,

n1(0) = n0
1 , n2(0) = n0

2,

(1)

where

• the parameter sh ∈ [0, 1] is the cytoplasmic incompatibility (CI) rate1.

• The other parameters (bi, di) for i ∈ {1, 2} are positive and denote respectively the intrinsic mortality
and intrinsic birth rates. Moreover, we assume that bi > di, i = 1, 2.

• K > 0 denotes the environmental carrying capacity. Note that the term (1− sh n2

n1+n2
) models the

CI.

• u(·) ∈ L∞(IR+) plays the role of a control function that we will use to act upon the system. This
control function represents the rate at which Wolbachia-infected mosquitoes are introduced into the
population.

System (1) for modeling mosquito population dynamics with Wolbachia has been first introduced in [7, 8].
We also mention [12] where this model is coupled with an epidemiological one.

The aim of this technique is to replace the wild population by a population of Wolbachia-infected
mosquitoes. To understand mathematically this question, it is important to recall that, under the
additional assumption

1− sh <
d1b2
d2b1

< 1 (2)

satisfied in practice [3], System (1) has four non-negative steady states, among which two which are locally
asymptotically stable, namely:

n̄1 = (n∗1, 0) :=

(
K

(
1− d1

b1

)
, 0

)
and n̄2 = (0, n∗2) :=

(
0,K

(
1− d2

b2

))
.

Observe that n̄1 corresponds to a mosquito population without Wolbachia-infected individuals whereas
n̄2 corresponds to a mosquito population composed exclusively of infected individuals. Note that the
two remaining steady-states are unstable: they correspond to the whole population extinction and a
coexistence state.

Hence, the optimal control issue related to the mosquito population replacement problem can be recast
as:

1Indeed, when sh = 1, CI is perfect, whereas when sh = 0 there is no CI
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Starting from the equilibrium n̄1, how to design a control steering the system as close as possible to the
equilibrium state n̄2, minimizing at the same time the cost of the releases?

Of course, although this is the general objective we wish to pursue, the previous formulation remains
imprecise and it is necessary to clarify what is meant by ”the cost of release” and the set in which it is
relevant to choose the control function.

Following [2] and [3], we will impose several biological constraints on the control function u: the rate
at which mosquitoes can instantaneously be released will be assumed bounded above by some positive
constant M , and so will be the total amount of released infected mosquitoes up to the final time T . The
set of admissible control functions u(·) thus reads

UT,C,M :=

{
u ∈ L∞ (0, T ) , 0 6 u 6M a.e. in (0, T ),

∫ T

0

u(t)dt 6 C

}
. (3)

As shown in [3], System (1) can be reduced to a single equation under the hypothesis of high birth
rates, i.e. considering b1 = b01/ε, b2 = b02/ε and letting ε decrease to 0. In this frame, the proportion
n2/(n1 + n2) of Wolbachia-infected mosquitoes in the population, uniformly converges to p, the solution
of a simple scalar ODE, namely{

dp
dt (t) = f(p(t)) + u(t)g(p(t)), t ∈ (0, T )
p(0) = 0,

(4)

where

f(p) = p(1− p) d1b
0
2 − d2b

0
1(1− shp)

b01(1− p)(1− shp) + b02p
and g(p) =

1

K

b01(1− p)(1− shp)
b01(1− p)(1− shp) + b02p

.

We remark that f(0) = f(1) = 0 and, under assumption (2), there exists a single root of f strictly

between 0 and 1 at p = θ = 1
sh

(
1− d1b

0
2

d2b01

)
. The function p 7→ g(p) is non-negative, strictly decreasing in

[0, 1] and such that g(1) = 0.

Figure 1: Plots of p 7→ f(p) (left) and p 7→ g(p) (right) for the values of the parameters in Table 1. In this
case θ ≈ 0.211.

In the absence of a control function, the equation on p simplifies into dp
dt = f(p). This is a bistable

system, with an unstable equilibrium at p = θ and two stable equilibria at p = 0 and p = 1. Notice that
the derivative of the function f/g has a unique zero p∗ in (0, θ) defined by

p∗ =
1

sh

(
1−

√
d1b02
d2b01

)
, (5)

which will be useful in the following.
In [3], the control problem

inf
u∈UT,C,M

J(u), with J(u) =
1

2
n1(T )2 +

1

2
[(n∗2 − n2(T ))+]

2
. (6)
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related to the aforementioned system (1), is considered. Denoting by Jε(u) the criterion J(u) where
the birth rates b1 and b2 have been respectively replaced by b1,ε = b01/ε and b2,ε = b02/ε, with ε > 0, a
Γ-convergence type result is proven [3, Proposition 2]. More precisely, any solution uε of Problem (6)
with birth rates b1,ε and b2,ε converges weakly-star in L∞(0, T ) to a solution of the reduced problem (4).
Moreover,

lim
ε→0

inf
u∈UT,C,M

Jε(u) = inf
u∈UT,C,M

J0(u),

where
J0(u) = lim

ε→0
Jε(u) = K(1− p(T ))2 (7)

and p is the solution of (4) associated to the control function choice u(·). The arguments exposed in [3] can
be adapted easily to our problem. Since the solutions of both the full problem (6) and the minimization
of J0 given by (7) will be close in the sense above, it is relevant to investigate the later, which is easier to
study both analytically and numerically.

We now introduce the two families of optimal control problems we will consider in the following
sections. Although the model (4) driving the evolution of the Wolbachia-infected mosquitoes density is
the same as in [3], we will enrich it by introducing and analyzing new families of problems in which

• the horizon of time can be let free;

• the cost of producing Wolbachia-infected mosquitoes can be included. Since such a cost is not so
easy to take into account, we will write it in a rather general way∫ T

0

j1(u(t)) dt (8)

where j1 : IR→ IR denotes a increasing function such that j1(0) = 0.

To take the time of the experiment and the final state into account in the cost functional, we will use
a function j2 : IR+ × [0, 1] 3 (T, p)) 7→ j2(T, p) ∈ IR.

Let us now present the two families of problems we will deal with. We will be led to make the following
assumptions, in accordance with the modelling above:

j1(·) is a non-negative increasing function such that j1(0) = 0, two times differentiable,
either strictly concave, linear or strictly convex on (0, T ).

j2(·) is a non-negative function of class C1, strictly increasing w.r.t. its first variable
and strictly decreasing w.r.t. its second variable. Moreover, for all p ∈ [0, 1],

lim
T→+∞

j2(T, p) = +∞.

(H)

Family 1

A first way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes consists in minimizing
a convex combination of the time horizon, denoted T , and the cost of producing and releasing the mosquitoes
defined by (8), by imposing a target value on the final density of Wolbachia-infected mosquitoes. This
leads to introduce the following optimal control problem

inf
u∈UT,C,M
T>0

Jα(T, u),

p′ = f(p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = pT ,

(P1,α
pT ,C,M

)

where pT ∈ (0, 1) is given and Jα(u) is defined by

Jα(T, u) = (1− α)

∫ T

0

j1(u(t))dt+ αj2(T, p(T )), (9)

where α ∈ [0, 1], j1(·) and j2(·) satisfy (H) and UT,C,M is given by (3). The function (T, p) 7→ j2(T, p) aims
at penalizing the time used in our case. Once the existence of solutions is established, it will be fixed to
be j2(T, p(T )) = T . In what follows, we will not tackle the case where α = 0 since in that case, existence
may not be guaranteed. More precisely, it is rather easy to show that in that case, Problem (Q1,α

pT ,M
) has

no solution whenever pT > θ.
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Family 2

Another possible way of modeling optimal strategy for releasing Wolbachia-infected mosquitoes consists
in minimizing a convex combination of the final distance from p(T ) to the state of total invasion p = 1
and the cost of producing and releasing the mosquitoes defined by (8). In that case, we fix the horizon of
time T and let p(T ) free. This leads to consider the problem inf

u∈UT,C,M
Jα(u),

p′ = f(p) + ug(p), p(0) = 0 ,
(P2,α

T,C,M )

where α ∈ [0, 1], j1(·) and j2(·) satisfy (H) and UT,C,M is given by (3). The main difference here with
respect to the previous case is the fact that the time horizon T is fixed, p(T ) is free and that j2(T, p(T ))
now represents a function penalizing the final distance to a certain final state (typically, the state of
total invasion p = 1). Since T in this family is fixed, abusing of the notation we will write Jα(u) instead
of Jα(T, u), but Jα(u) will still be defined by (9). After establishing the existence of solutions to this
problem we will fix j2(T, p(T )) = (1 − p(T ))2 as in (7). A study of similar problems in a much more
limited setting can be found in [1].

1.3 Main results

Let us state here briefly the main results of this work. These results will be further detailed in sections
2.2 and 3.1 respectively. In this section, in order to avoid too much technicality, we provide simplified
statements of the main contributions of this article. Let us fix M > 0 and C > 0, and let us consider j1(·)
satisfying the hypothesis stated above in (H).

Our first result regards Family 1. In accordance with the biological modelling considerations above, let
us assume hereafter that j2(T, pT ) = T and that the final proportion of mosquitoes in the populations is
fixed p(T ) = pT < 1. The following result is a simplified and less precise version of Theorem 2.

Theorem A (Family 1). There exists (T ∗, u∗) ∈ IR+ × UT,C,M solving Problem (P1,α
pT ,C,M

). The overall
behaviour of u∗ depends on the convexity of j1(·), the value of α and the value of C.

In general, we distinguish the following cases:

• Case 1. j1 is either linear or strictly concave. There exists a real parameter α∗ ∈ [0, 1) given by the
parameters of the problem such that:

– if C is large enough: If α ∈ [α∗, 1], then u∗ = M1[0,T∗]. If α ∈ (0, α∗), then u∗ is bang-bang
with exactly one switch from M to 0 at a time ts ∈ (0, T ∗) determined by α.

– else, one has u∗ = M1[0,C/M ].

In this case, the optimal time T ∗ reads

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
with u∗p(ν) = M1(0,ps) and ps =

{
p(ts) if C is large enough,
p(C/M) otherwise.

• Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is non-decreasing
until t∗ ∈ (0, T ∗) such that p(t∗) = p∗ and then non-increasing.

If α = 1, the term with j1 is no longer present and u∗ = M1[0,min{T∗,C/M}].

Remark 1. We remark that in case j1 is either linear or strictly concave the controls are always bang-bang
(and the case α = 1 is similar to α < 1) while when j1 is convex, singular controls may appear when α < 1
while for α = 1 the control is still bang-bang.

For our second result, regarding Family 2 let us assume hereafter that j2(T, pT ) = (1− pT )2 and that
the time horizon T > 0 is fixed. The following result is a simplified and less precise version of Theorem 3.

Theorem B (Family 2). There exists u∗ ∈ UT,C,M solving Problem (P2,α
T,C,M ). In addition, there exists

an interval (t−, t+) such that, outside of it u∗ = 0 and the state pu∗ associated to u∗ is constant. Inside
(t−, t+), pu∗ is increasing and the behaviour of u∗ depends on the convexity of j1(·), the value of α and
the values of C and T . We distinguish between the following cases:

5



• Case 1. j1 is either linear or strictly concave. The solution is u∗ = M1[t−,ts], with ts 6 t+ the
switching time.

• Case 2. j1 is convex. If α ∈ (0, 1) singular controls may appear. The control u∗ is non-decreasing
until t∗ ∈ (t−, t+) such that p(t∗) = p∗ and then non-increasing.

If α = 1, then u∗ = M1[t−,ts], with ts defined as in the concave and linear case.

Remark 2. The use of bistable ODEs is widely spread to model a great variety of phenomena from
biology, to physics and economy. Examples of systems with a bistable behaviour can be found in population
dynamics, exploitation of natural resources, cell division, cancer modeling, apoptosis, chemical reactions
or mechanical systems. Therefore, these results may be interesting outside of the particular context in
which they have been presented.

In order to be able to apply Theorems A and B, f, g ∈ C1 ([0, 1]) for the system considered must satisfy
two conditions:

• Bistability: p 7→ f(p) must satisfy that f(0) = f(1) = 0, and that there exists a unique θ ∈ (0, 1)
such that f(θ) = 0, f(p) < 0 for p ∈ (0, θ) and f(p) > 0 for p ∈ (θ, 1).

• Increasingly costly to control: p 7→ g(p) must be non-negative, strictly decreasing in [0, 1] and
such that g(1) = 0. This means that as the state of the system gets closer to the steady state p = 1
it becomes increasingly harder to push.

Moreover, function p 7→ (f/g)(p) must satisfy two additional conditions, namely:

• Unimodality: p 7→ (f/g) (p) must be unimodal, that is, strictly decreasing for p ∈ (0, p∗) and
strictly increasing afterwards. With 0 < p∗ < θ.

• limp→1 (f/g) (p) = +∞.

1.4 Biological interpretation of our results and final comments

From a biological point of view, this problem is studied with more generality than what is strictly necessary.
Only a certain subset of parameters is interesting for real field releases. In order to give a biological
interpretation we restrict ourselves to the case where p(T ) > θ so that the system in the long term tends
to p = 1 without further action. Otherwise, once the releases ended the system would return to the initial
condition after a certain time meaning that the installation of the Wolbachia-infected mosquito population
would have failed. Independently of the family considered, with this restriction, our results yield:

• If j1 is either linear or strictly concave, the optimal releasing strategy is bang-bang. Starting with
u∗ = M and switching at most once, only after the critical proportion, p(t) = θ, is surpassed.

• If j1 is strictly convex, the possible appearance of singular solutions makes the analysis more
intricate. In any case, solutions attain their maximal value at t = t∗ such that p(t∗) = p∗. Either
u∗ has a global maximum at t∗ or there exists an open interval I where u∗(t) = M and t∗ belongs
to I, although in the first case the value of the maximum attained at that point is not always
straightforward to determine.

The function j1 aggregates all the costs of the mosquito production, transport and release. Its convexity
represents the marginal increase of the cost per mosquito. A concave function means that producing
mosquitoes becomes proportionally less expensive as we scale up the production, while a convex function
implies the opposite; the rate at which the costs increase grows as we increase the mosquito production.
Finally, a linear j1 means that the cost of production is scale-independent, directly proportional to the
number of mosquitoes produced.

Since in a real case some of the parameters may be very difficult to determine beforehand, this
interpretation gives us some guidelines to implement a sensible feedback strategy in the field. In order to
do this, we would have to measure the proportion of infected mosquitoes using traps and adapt the amount
of mosquitoes we release in consequence. We have shown that under a broad set of circumstances the
best strategy is to act as soon as possible, and as fast as possible, at least until the critical value p(t) = θ
is attained. An exception to this rule being the case when the production of mosquitoes is increasingly
expensive. Nevertheless, in this context, the effort must also be concentrated soon, when the proportion of
mosquitoes is p(t) ≈ p∗, which allows to reduce the amount of mosquitoes used before reaching p(t) = θ.
This interpretation is, of course, extensible to any other problem fitting the hypothesis of Remark 2.
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Methodological novelties and contributions. Beyond the particular application that motivated
this work we would like to point out the contributions that this work does methodologically speaking. In
this work, we prove a robustness property of the optimal control, with respect to the convexity/concavity
of the increasing function j1 defining the integrand term in the cost. More precisely, for this family of
bistable systems (see Remark 2), controls are similar whether we consider a concave or a convex cost
function. Let us highlight that to perform our analysis, we are led to introduce an appropriate change of
variables using the monotonicity of the state variable, allowing us to significantly reduce the difficulty of
the optimization problem, by transforming it into a simpler one of calculus of variations. Regarding the
concave case, standard reasonings in calculus of variations cannot be applied directly, because of the lack
of regularity of the functionals considered, which are not a priori lower semicontinuous. We introduce an
alternative approach based on the investigation of optimality conditions for a finite dimensional auxiliary
problem considered. This allows us to obtain both existence of an optimal control for the problem, but
also a bang-bang property of minimizers (in other words, every minimizer is an extremal point of the set
of admissible constraints).

2 Analysis of Family 1 problems

2.1 A first result: optimization without constraint on the number of mosquitoes
used.

This section is devoted to studying the case where no constraint is imposed on the total number of
mosquitoes used. In other words, we will deal with the optimal control problem

inf
u∈VT,M
T>0

Jα(T, u),

p′ = f(p) + ug(p) in (0, T ), p(0) = 0 , p(T ) = pT ,

(Q1,α
pT ,M

)

where Jα(T, u) is defined by

Jα(T, u) = (1− α)

∫ T

0

j1(u(t))dt+ αT, (10)

where α ∈ [0, 1], j1(·) satisfies (H) and VT,M is given by

VT,M := {u ∈ L∞ (0, T ) , 0 6 u 6M a.e. in (0, T )} . (11)

In what follows, it will be convenient to introduce the following notations:

m∗(pT ) := max
p∈[0,pT ]

(
−f(p)

g(p)

)
> 0 and m∗(pT ) = min

p∈[0,pT ]

(
−f(p)

g(p)

)
6 0. (12)

for pT ∈ (0, 1). Note that, as long as p 7→ (f/g) (p) satisfies the conditions of Remark 2, these quantities
are unique.

Let us introduce the mapping F0 defined by

v 7→ F0(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)
. (13)

For the sake of notational simplicity, we do not underline the dependence of F with respect to α. A
straightforward computation shows that F0 is increasing (resp. decreasing) whenever j1 is strictly convex
(resp. strictly concave).

Theorem 1. Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (2) is true, and j1(·) satisfies the first assumption
of (H). Let us assume that M > m∗(pT ). Then, there exists a pair (T ∗, u∗) ∈ IR+ × VT,M solving

Problem (Q1,α
pT ,M

). Moreover, let us distinguish between two cases:

• The case where j1 is either linear or strictly concave. Let us introduce the real parameter α∗ ∈ [0, 1)
given by

α∗ =
−m∗j1(M)/M

1−m∗j1(M)/M
. (14)

7



In this case, if α ∈ [α∗, 1], then u∗ = M1[0,T∗] and if α ∈ (0, α∗), then u∗ is bang-bang with exactly
one switch from M to 0 at ts ∈ (0, T ∗) such that

ts =

∫ ps

0

dν

f(ν) +Mg(ν)
where ps is implicitly determined by − f(ps)

g(ps)
=

−αM
(1− α)j1(M)

.

The optimal time T ∗ is given by

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
with u∗p(ν) = M1(0,ps),

with the convention that ps = pT if α ∈ [α∗, 1].

• The case where j1 is convex. In this case, define u∗p as

u∗p : [0, pT ] 3 pt 7→ max{min{M,F−1
0 (−f(pt)/g(pt))}, 0}

If α ∈ (0, 1) the optimal time T ∗ and control u∗ read

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] of the equation t =
∫ pt

0
dν

f(ν)+u∗p(ν)g(ν) . If α = 1 the

same holds with u∗p = M1[0,pT ].

If α = 1 the same holds with u∗p = M1[0,pT ].

Remark 3. A reasonable concern in the definition of v 7→ F0(v) is its behavior in case j′1(0) = ∞ or
j′1(0) = 0 like in the functions u 7→ j1(u) :=

√
u and u 7→ j1(u) := u2. We can check, taking limits, that in

these cases the reasoning is still valid and that the results obtained hold. The limit reads

lim
v→0

F0(v) = lim
v→0

v − j1(v)

j′1(v)
− α

(1− α)j′1(v)

• If j′1(0) =∞, we obtain limv→0 F0(v) = 0. In this case, j1(·) must be concave and therefore F0(·)
decreasing, thus F0(v) < 0 for all v ∈ (0,M ]. Looking at the maximization conditions, (23), we see
that this is consistent with the results.

• If j′1(0) = 0 we can apply l’Hôpital’s rule to find limv→0
j1(v)
j′1(v) = limv→0

j′1(v)
j′′1 (v) = 0 and therefore

limv→0 F0(v) = −∞. This implies that we can never have F (0) > 0 and thus u∗ > 0 for all
t ∈ (0, T ∗).

For the sake of simplicity we showed this for F0(·) but this remark will still be valid for the functions
Fλ(·) we will introduce in 19.

Let us comment and illustrate the result above, by describing the behaviour of the solutions of Family
1, classified with respect to the convexity of j1(·) and pointing out the limit values of α separating the
different regimes.

Exploiting Theorem 2, we know that in the concave and linear cases, solutions are necessarily bang-bang.
Either u∗ = M1[0,T∗] or with one switch from M to 0 occurring at time ts =

∫ ps
0

dν
f(ν)+Mg(ν) with ps

solving − f(ps)
g(ps)

= −αM
(1−α)j1(M) . This happens if and only if α < α∗. The value of α separating both regimes

is α∗ = −m∗j1(M)/M
1−m∗j1(M)/M . The existence and uniqueness of such a ps is guaranteed under the hypothesis of

Remark 2, and not exclusively for the f and g of this particular problem.
The convex case has a richer set of behaviours than the other ones. As an example, on Fig. 3 solutions

are plotted for the particular choice j1(u) = eu/11 − 1. This function is not intended to represent any
realistic scenario but to illustrate the variety of possible solutions. The parameters considered for these
simulations are given in Table 1, using the biological parameters considered in [3]. To obtain this plot,
one needs to compute the function F−1

0 which has been done by using the nonlinear system solver of the
software Python.
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0 ts T ∗ 0 T ∗

u∗

M

u∗

M

α < α∗ α > α∗

Figure 2: Control functions u∗ solving problem (Q1,α
pT ,M

) in the linear and concave case.

Category Parameter Name Value

Optimization
pT Final state 0.99
M Maximal instantaneous release rate 10

Biology

b01 Normalized wild birth rate 1
b02 Normalized infected birth rate 0.9
d1 Wild death rate 0.27
d2 Infected death rate 0.3
K Normalized carrying capacity 1
sh Cytoplasmatic incompatibility level 0.9

Table 1: Parameter values used to plot the solutions to problem (P1,α
pT ,C,M

)

The key factors to understand the behaviour of u∗ in the convex case are the relative positions of
F0(0) and F0(M) with respect to m∗ and m∗. We begin by excluding the case F0(0) > m∗ because for all
pT ∈ (0, 1), F0(0) 6 0 < m∗. Let us introduce

α0 :=
−m∗j′1(0)

1−m∗j′1(0)
, (15)

α1 :=
Mj′1(M)− j1(M)−m∗j′1(M)

1 +Mj′1(M)− j1(M)−m∗j′1(M)
, (16)

α2 :=
Mj′1(M)− j1(M)−m∗j′1(M)

1 +Mj′1(M)− j1(M)−m∗j′1(M)
. (17)

These values are the thresholds separating the different regimes of the solutions. As an example, we
deduce the value of α1. If M > F−1

0 (m∗) then u∗p : [0, pT ] 3 pt 7→ max{min{M,F−1
0 (−f/g(pt))}, 0} =

max{F−1
0 (−f/g(pt)), 0}. Instead, if M < F−1

0 (m∗), there will be an interval of positive measure in which
u∗p = M . Since F0 depends on α, we can compute the smallest value of α for which the inequality

M > F−1
0 (m∗) holds:

F0(M) :=
(1− α)(Mj′1(M)− j1(M))− α

(1− α)j′1(M)
> m∗ ⇔ α >

Mj′1(M)− j1(M)−m∗j′1(M)

1 +Mj′1(M)− j1(M)−m∗j′1(M)
:= α1

Here we assumed Mj′1(M)− j1(M)−m∗j′1(M) > 0, otherwise one can check that it is impossible to
have F0(M) > m∗. Doing a similar reasoning, one can see that we have similar equivalencies between
F0(0) 6 m∗ and α > α0 and between F0(M) 6 m∗ and α > α2.

We conclude that the behaviors of the solution with respect to α are the following:

• If α > α0, then u∗ > 0 for a.e. t ∈ (0, T ∗), whereas if α < α0 then there is an interval at the end in
which u∗ = 0.

• If α 6 α1, then u∗ < M for a.e. t ∈ (0, T ∗).

9



• If α1 < α < α2 an interval in which u∗ = M appears.

• Finally if α > α2, u∗ = M for a.e. t ∈ (0, T ∗).

We recall that the function x 7→ x
1+x maps [0,∞) into [0, 1). This implies that (α0, α2) ∈ [0, 1)2

and that if Mj′1(M) − j1(M) − m∗j′1(M) > 0, α1 ∈ [0, 1) too. For the purpose of the discussion, in
case Mj′1(M) − j1(M) −m∗j′1(M) < 0 we can consider that α > α1 always. Finally, since x 7→ x

1+x is
increasing one only needs to compare the numerators of the expressions of α0, α1 and α2 in order to
compare their values. Computing this we obtain that α2 > α0 and α2 > α1. Nevertheless, in a general
setting the relative position between α1 and α0 is not fixed.

Figure 3: Control functions (T ∗, u∗) solving problem (P1,α
pT ,C,M

) with j1(u) = eu/11 − 1 as α increases,
from left to right and from top to bottom. The values of α0, α1 and α2 obtained are α0 ≈ 0.15, α1 ≈ 0.44
and α2 ≈ 0.55. For the sake of clarity, for α = 0.005 and α = 0.1, u∗ has not been represented in all its
domain. Note that u∗ = 0 in the rest of the domain.

2.2 Description of solutions

The following result characterizes the solutions to Family 1 problems.
Let us introduce

CpT (M) =

∫ pT

0

M

f(ν) +Mg(ν)
dν. (18)

In this section we will assume, in accordance with the modeling issues discussed in Section 1.2, that
j2(T, pT ) = T . Therefore, (10) becomes

Jα(T, u) = (1− α)

∫ T

0

j1(u(t))dt+ αT.

For α ∈ (0, 1), let us also introduce the mapping

v 7→ Fλ(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)− λ
, (19)

where λ ∈ IR− is a constant depending on the parameters of the problem, and the quantity

CQ :=

∫ T∗Q

0

u∗Q(t)dt, (20)
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with
(
T ∗Q, u

∗
Q
)

being the solution to the unconstrained case that has been treated in Theorem 1. Therefore,
CQ is the cost associated with this solution.

Nevertheless, we remark that existence properties for the optimal control problem (P1,α
pT ,C,M

), studied
in Section A, are established in a more general setting, without prescribing explicitly the function j2.

Theorem 2 (Family 1). Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (2) is true, and j1(·) satisfies the
assumptions of (H). Let us assume that M > m∗(pT ) and

C > CpT (M) if pT 6 θ and C > Cθ(M) otherwise.

Then, there exists a pair (T ∗, u∗) ∈ IR+ ×UT,C,M solving Problem (P1,α
pT ,C,M

). Moreover, let us distinguish
two cases:

• Case where j1 is either linear or strictly concave. The optimal time and control are given by

u∗ = M1[0,min{CQ,C}/M ] and T ∗ =
min{CQ, C}

M
+

∫ pT

ps

dν

f(ν)
,

with ps solving Cps(M) = min{CQ, C}.

• Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] 3 pt 7→ max

{
min

{
M,F−1

λ

(
−f(pt)

g(pt)

)}
, 0

}
If α ∈ (0, 1) the optimal time T ∗ and control u∗ are given by

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] of the equation t =
∫ pt

0
dν

f(ν)+u∗p(ν)g(ν) and λ is a

Lagrange multiplier such that λ = 0 if, and only if, CQ 6 C.

If α = 1 then u∗ = M1[0,min{CpT (M),C}/M ].

Remark 4. In case CQ > C, we have that λ < 0. Moreover, this value λ is implicitly determined by the
equation

∫ pT
0

u∗p(ν)/(f(ν) + u∗p(ν)g(ν))dν = C.

Remark 5. For pT 6 θ and C = CpT we still have existence of solutions, and indeed u∗ = M1[0,T∗] with

T ∗ =
∫ pT

0
dν

f(ν)+Mg(ν) = C
M . For the sake of clarity we exclude this case from the statement of the theorem,

but it will be briefly discussed in the proof.

2.3 Proof of Theorem 1

The existence of solutions for Problem (Q1,α
pT ,M

) follows from an immediate adaptation of Proposition 3
and is left to the reader. Our approach is based on an adequate change of variable. In order to make this
proof easier to follow, let us distinguish several steps.

Step 1: a change of variable for recasting the optimal control problem.

To introduce the adequate change of variable, we need the following result.

Lemma 1. Let (T ∗, u∗) ∈ IR+×VT,M solve Problem (Q1,α
pT ,M

) and let α > 0. Let us introduce pu∗ solving{
p′u∗ = f(pu∗) + u∗g(pu∗) in (0, T ∗)
pu∗(0) = 0,

then one has p′u∗(t) > 0 for all t ∈ (0, T ∗).
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Proof. Let us argue by contradiction, assuming the existence of 0 6 t1 < t2 6 T such that pu∗(t2) 6
pu∗(t1). Looking at the functional Jα we are minimizing, we claim that T ∗ is the smallest time at which
pu∗(T

∗) = pT . Indeed, since α > 0, if there exists T < T ∗ such that pu∗(T ) = pT , the pair (T, u∗|(0,T ))

is admissible for Problem (Q1,α
pT ,M

), and moreover, Jα(T, u∗|(0,T )) < Jα(T ∗, u∗) which contradicts the

minimality of (T ∗, u∗).
Let us first assume that pu∗(t2) < pu∗(t1). Therefore, since pu∗(T ) = pT , we infer by continuity the

existence of t3 ∈ (t2, T
∗) such that pu∗(t3) = pu∗(t1). Let us define ũ as

ũ(t) =

{
u∗(t) t ∈ (0, t1),

u∗(t+ t3 − t1) t ∈ (t1, T̃ )

where T̃ = T ∗ − t3 + t1. We proceed by direct comparison between the cost of both controls, obtaining

Jα(T ∗, u∗)− Jα(T̃ , ũ) = (1− α)

∫ t3

t1

j1(u∗(t))dt+ α(t3 − t1) > 0,

which contradicts the optimality of (T ∗, u∗). The remaining case where pu∗(t1) = pu∗(t2) can be treated
similarly, by choosing t3 = t2.

Let us now exploit this lemma in order to perform a useful change of variables that will allow us to
reformulate Problem (Q1,α

pT ,M
). Given that u ∈ VT,M solving Problem (Q1,α

pT ,M
) satisfies the necessary

conditions p(0) = 0, p(T ) = pT and p′(t) = f(p(t)) + u(t)g(p(t)) > 0 for all t ∈ (0, T ). Therefore, p defines
a bijection from (0, T ) onto (0, pT ). Denoting by p−1 : [0, pT ]→ [0, T ] its inverse, one has

p(t) = pt ⇔ t = p−1(pt) =

∫ pt

0

(p−1)′(ν)dν =

∫ pt

0

dν

p′(p−1(ν))

which leads to define the change of variable

t =

∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
.

Introducing the function pt 7→ up(pt) defined by up(pt) := u(p−1(pt)) = u(t), one can easily infer that

Problem (Q1,α
pT ,M

) is equivalent to

inf
u∈V̂pT ,M

Ĵp,α(up), (Q̂1,α
pT ,M

)

where Ĵp,α(up) is defined by

Ĵp,α(up) =

∫ pT

0

(1− α)j1(up(ν)) + α

f(ν) + up(ν)g(ν)
dν, (21)

and V̂pT ,M , is given by

V̂pT ,M := {up ∈ L∞ (0, pT ) , 0 6 up 6M a.e.} .
To recover the solution of (Q1,α

pT ,M
) from the solution of (Q̂1,α

pT ,M
), it suffices to undo the change of variable

by setting u(·) = up(p(·)).
Note that, according to Lemma 1, the space V̂pT ,M is bigger than the space where solutions actually

belong. The appropriate space is the range of VT,M , defined in (11), by the change of variable above, that
is

W := {up ∈ L∞ (0, pT ) , f(pt) + up(pt)g(pt) > 0 a.e.} .
It is notable that, as can be observed in Figure 4, one has

up ∈ W ⇔ −f/g(·) < up(·) 6M a.e. on (0,min{pT , θ}) and 0 6 up(·) 6M a.e. on (min{pT , θ}, pT ).

It follows from the definition of W that

inf
u∈V̂pT ,M

Ĵp,α(up) 6 inf
u∈W

Ĵp,α(up)

To solve the optimization problem in the right-hand side, we will solve Problem (Q̂1,α
pT ,M

), and check a

posteriori that its solution u∗p ∈ V̂pT ,M satisfies u∗p ∈ W so that we will infer that

inf
u∈W

Ĵp,α(u) = inf
u∈V̂pT ,M

Ĵp,α(u) = Ĵp,α(u∗p).
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Step 2: first-order optimality conditions through the Pontryagin Maximum Principle.

Let us introduce, with a slight abuse of notation, the function t given by

t(pt) =

∫ pt

0

dν

f(ν) + up(ν)g(ν)
.

Let U = [0,M ]. It is standard to derive optimality conditions for this problem2 and one gets

u∗p(pt) ∈ arg max
v∈U
− (1− α)j1(v) + α

f(pt) + vg(pt)
. (22)

The case α = 1 is obvious and leads to u∗(·) = M on [0, T ∗], after applying the inverse change of variable.
Let us now assume that α ∈ (0, 1). It is standard to introduce the switching function3 ψ defined by

ψ(v) = −f(pt)(1− α)j′1(v) + g(pt) ((1− α) (vj′1(v)− j1(v))− α)

(f(pt) + vg(pt))
2 ,

and the maximization condition (22) yields
ψ(0) 6 0 on {u∗p = 0},
ψ(u∗p) = 0 on {0 < u∗p < M},
ψ(M) > 0 on {u∗p = M}.

These functions allows us to write the aforementioned optimality conditions as
F0(0) > − f(pt)

g(pt)
on {u∗p = 0},

F0(u∗p) = − f(pt)
g(pt)

on {0 < u∗p < M},
F0(M) 6 − f(pt)

g(pt)
on {u∗p = M}.

(23)

where F0 is given by (13).
Since the derivative of F0 writes

F ′0(v) = (1− α)j′′1 (v)
(1− α)j1(v) + α

((1− α)j′1(v))
2 ,

this function shares the sign of j′′1 (v).

Step 3: analysis of the first-order optimality conditions.

Before discussing the different cases, it is useful to recall the behaviour of the function pt 7→ − f(pt)
g(pt)

,

represented in Figure 4. This function has two roots at pt = 0 and pt = θ, is strictly positive between
them and strictly negative after pt = θ, with a maximum at pt = p∗ as defined in (5) and such that
limpt→1 f(pt)/g(pt) = −∞ (See Remark 2). Another property that will be useful thereafter is that
pt 7→ f(pt)/g(pt) is not constant on any set of positive measure.

We conclude the proof looking each case separately:

• If j′′1 (·) = 0 then F0 is constant, so that F0(0) = F0(M) and u∗p is necessarily bang-bang, equal to 0

or M a.e. in (0, pT ) because F0(u∗p) = − f(pt)
g(pt)

cannot be constant. Looking at conditions (23) we see

that if F0(0) 6 m∗ the solution is u∗p = M1[0,pT ], since only the condition F0(M) 6 − f(pt)
g(pt)

can be

2Indeed, one way consists in applying the Pontryagin Maximum Principle (PMP). Introducing the Hamiltonian H of the
system, defined by

H : (0, 1)× IR+ × IR× {0,−1} × U → IR

(pt, t, τ, q0, up) 7→ τ+q0((1−α)j1(up)+α)
f(pt)+upg(pt)

.

where τ is the conjugated variable of t and satisfies τ ′ = −∂tH = 0 and therefore, τ is constant. Furthermore the transversality
condition on τ yields τ = 0. The instantaneous maximization condition reads u∗p(pt) ∈ arg maxv∈U H(pt, t, τ, q0, v). Finally,

since (τ, q0) is nontrivial, one has q0 = −1.
3Indeed, according to the PMP, the switching function is given by ψ := ∂upH(pt, t, τ, v).
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Figure 4: Function pt 7→ − f(pt)
g(pt)

represented between pt = 0 and pt = 0.3 for the parameters at table 1.

satisfied. On the other hand, if F0(0) > m∗ then u∗p has one switch from M to 0. We conclude by
computing

F0(0) =
−α

(1− α)j′1(0)
6 m∗ ⇐⇒ α > −m∗

j′1(0)

1−m∗j′1(0)
= α∗

and noticing that j′1(0) = j1(M)/M .

• If j′′1 (·) < 0, then F is decreasing. We introduce the function Ψ we are maximizing, given by

Ψ(v) := − (1− α)j1(v) + α

f(pt) + vg(pt)

and we recall that Ψ′ = ψ. To show that u∗p is bang-bang, let us use (22). For a given pt ∈ (0, pT ), let
N(v) be the numerator of ψ(v). If there exists v0 ∈ (0,M) maximizing Ψ(·), then f(pt)+v0g(pt) > 0
according to Lemma 1. Moreover, ψ(v0) = N(v0) = 0 since v0 is a critical point of Ψ and
Ψ′′(v0) = ψ′(v0) 6 0. We compute

ψ′(v0) =
N ′(v0) (f(pt) + vg(pt))

2 −N(v0)2 (f(pt) + vg(pt)) g(pt)

(f(pt) + vg(pt))
4 =

N ′(v0)

(f(pt) + v0g(pt))
2 .

which has the same sign as N ′(v0), and

N ′(v0) = −(1− α)j′′1 (v0) (f(pt) + v0g(pt)) .

Therefore, one has Ψ′′(v0) > 0 leading to a contradiction with the maximality of v0. It follows

that the points v0 ∈ (0,M) satisfying F0(v0) = − f(pt)
g(pt)

cannot maximize Ψ, which shows that any

solution is bang-bang.

A straightforward computation shows that

Ψ(M)−Ψ(0) = − (1− α)j1(M)f(pt)− αMg(pt)

f(pt)(f(pt) +Mg(pt))
.

According to the optimality conditions (22), and because of the variations of −f/g, one sees that if
u∗p has a switching point, then it necessarily occurs strictly after θ since F0(0) < 0.

Hence, from the expression of Ψ(M)−Ψ(0), we get that any switching point ps solves the equation

−f(ps)

g(ps)
=

−αM
(1− α)j1(M)

and we can compute that the smallest value of α for which this equation has a solution is the one
such that m∗ = −αM

(1−α)j1(M) which allows us to recover α∗.
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• If j′′1 (·) > 0, then F0(·) is increasing, and the three conditions (23) are mutually exclusive and are

thus both necessary and sufficient. The function pt 7→ − f(pt)
g(pt)

is increasing until p∗, defined in (5),

and then decreasing (See the unimodality condition in Remark 2). Since F0 defines a bijection, the
optimality conditions (23) rewrite

0 > F−1
0

(
− f(pt)
g(pt)

)
on {u∗p = 0},

u∗p = F−1
0

(
− f(pt)
g(pt)

)
on {0 < u∗p < M},

M 6 F−1
0

(
− f(pt)
g(pt)

)
on {u∗p = M}.

The expected expression of u∗ follows then easily.

In order to finish the proof, we have to check that the solution u∗p ∈ V̂pT ,M belongs to W. This two

spaces only differ for pt ∈ [0, θ). We have that F0(0) = −α
(1−α)j′1(0) 6 0. This implies that u∗p 6= 0 in

(0, θ), because the optimality condition 0 > F−1
0

(
− f(pt)
g(pt)

)
cannot be satisfied in any open interval inside

(0, θ). In the concave and linear case, since the solution is bang-bang, this also means that u∗p = M
in (0, θ), therefore f(pt) + u∗p(pt)g(pt) > 0 in pt ∈ (0, θ). In the convex case, we need to prove that
f(pt) +u∗p(pt)g(pt) > 0 also in case the solution is a singular control. In that case, u∗p satisfies the equation

u∗p = F−1
0

(
− f(pt)
g(pt)

)
. Now F0(·) is increasing, and so is F−1

0 (·), therefore

F−1
0

(
−f(pt)

g(pt)

)
> −f(pt)

g(pt)
⇔ −f(pt)

g(pt)
> F0

(
−f(pt)

g(pt)

)
for pt ∈ (0, θ).

This is true if, and only if v > F0(v) for v ∈ (0,m∗]. We have that

v > F0(v)⇔ v >
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)
⇔ 0 > − (1− α)j1(v) + α

(1− α)j′1(v)
.

All the terms in the last fraction are positive, yielding that f(pt) + u∗p(pt)g(pt) > 0 for all pt ∈ (0, θ),
which ends the proof.

2.4 Proof of Theorem 2

Let us first recall that existence of solutions for Problem (P1,α
pT ,C,M

) has been proved in Proposition 3.

Step 1: derivation of the first-order optimality conditions.

By mimicking the reasoning in the first step of the proof of Theorem 1, one shows that the conclusion of
Lemma 1 still holds true in that case, in other words, the optimal state pu∗ is increasing in [0, T ∗]. This
allow us to reformulate Problem (P1,α

pT ,C,M
) by defining the change of variable

t : pt 7→
∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
,

introducing the function pt 7→ up(pt) defined by up(pt) := u(p−1(pt)) = u(t), so that Problem (P1,α
pT ,C,M

)
is equivalent to

inf
u∈ÛpT ,C,M

Ĵp,α(up), (P̂1,α
pT ,C,M

)

where Ĵp,α(up) is defined by (21) and ÛpT ,C,M is given by

ÛpT ,C,M :=

{
up ∈ L∞ ([0, pT ]) , 0 6 up 6M a.e. ,

∫ pT

0

up(ν)

f(ν) + up(ν)g(ν)
dν 6 C

}
.

To recover the solution of (P1,α
pT ,C,M

) from the solution of (P̂1,α
pT ,C,M

), it suffices to undo the variable change
by setting u(·) = up(p(·)). Note that, as pointed out in the step 1 of Section 2.3, we are solving the
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problem in ÛpT ,C,M , a bigger space than the range of UT,C,M by the change of variable introduced in

Lemma 1. This range is Ŵ =W ∩ ÛpT ,C,M . As we have seen before, solutions to Problems (P̂1,α
pT ,C,M

) and

inf
u∈Ŵ

Ĵp,α(up), (24)

coincide as long as the solutions to Problem (P̂1,α
pT ,C,M

) satisfy f(pt) + u∗p(pt)g(pt) > 0. Mimicking the
reasoning at the end Step 3 in Section 2.3, one can similarly check that solutions to both problems above
still coincide.

Let us derive and analyze optimality conditions for this problem. To handle the constraint∫ pT

0

up(ν)

f(ν) + up(ν)g(ν)
dν 6 C,

we introduce the mapping

pt 7→ zp(pt) =

∫ pt

0

up(ν)

f(ν) + up(ν)g(ν)
dν.

By following the same lines as in the proof of Theorem 1 and applying the PMP, one gets the existence of
λ 6 0 such that

λ 6 0 , λ(zp(pT )− C) = 0. (transversality and slackness condition) (25)

and the optimal control u∗p solves

u∗p(pt) ∈ arg max
v∈U

λv + q0((1− α)j1(v) + α)

f(pt) + vg(pt)
. (26)

In what follows, if pT 6 θ, we will assume without loss of generality that

C > CpT (M), (27)

the case C = CpT (M) being straightforward (in that case, one has necessarily u∗p(pt) = M on [0, pT ]).
Let us show that q0 = −1. To this aim, let us assume by contradiction that q0 = 0. Hence, the

optimality condition reads u∗p(pt) ∈ arg maxv∈U ψ(v) where ψ(v) = λv
f(pt)+vg(pt)

, and since the 3-tuple of

Lagrange multipliers is nontrivial according to the PMP, we necessarily have λ < 0 which, by condition
(25), implies in turn that zp(pT ) = C. If pt ∈ (0, θ) (resp. pt ∈ (θ, 1)), ψ is increasing (resp. decreasing).
Hence, if pT 6 θ, then u∗p = M1[0,pT ]. This allows us to write zp(pT ) = Mt(pT ) leading to a contradiction
since C > Mt(pT ) = zp(pT ) (See Remark 5). On the other hand, if pT > θ the final state cannot be
reached since u∗p = M1[0,θ] + 01[θ,pT ]. Given that with this control, pu∗ cannot attain pT (remaining
indefinitely at pu∗ = θ) we reach again a contradiction. Therefore, it follows that q0 = −1.

Step 2: analysis of the first-order optimality conditions.

Before discussing further the optimality conditions of this problem we remark a key fact in this proof. We
introduce

CQ :=

∫ T∗Q

0

u∗Q(t)dt,

where
(
T ∗Q, u

∗
Q
)

is the solution to Problem (Q1,α
pT ,M

) for the same value of α considered. Since UT,C,M ⊂
VT,M we have that

inf
up∈VT,M

Ĵp,α(up) 6 inf
up∈UT,C,M

Ĵp,α(up).

This implies that if C > CQ, then u∗ = u∗Q. Moreover, we can also deduce that, in case C < CQ the
constraint zp(pT ) 6 C is always saturated. By contradiction, if zp(pT ) < C, then the slackness condition

yields λ = 0. Therefore u∗p(pt) ∈ arg max
v∈U
− (1−α)j1(v)+α

f(pt)+vg(pt)
, but this is the optimality condition for the

unconstrained case and u∗Q 6∈ UT,C,M . Thus, the constraint must be saturated and we must have λ < 0.
Consequently, we consider C < CQ and λ < 0 from now on.
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We begin by discussing the case α = 1. From the optimality condition (26) we can derive
1
λ > − f(pt)

g(pt)
on {u∗p = 0},

1
λ = − f(pt)

g(pt)
on {0 < u∗p < M},

1
λ 6 − f(pt)

g(pt)
on {u∗p = M}.

From these conditions we see easily that u∗p is bang-bang, since pt 7→ f(pt)
g(pt)

is not constant on any set of

positive measure. Also, using the monotonicity of pt 7→ f(pt)
g(pt)

and the fact that λ < 0 we conclude that

u∗p has, at most, one switch from M to 0. Since the case without constraint had no switches and we are
assuming C < CQ, it follows that u∗p = M1[0,ps], with ps solving Cps(M) = C. We can easily express this

as a function of time since Cps(M) =
∫ ps

0
M

f(ν)+Mg(ν)dν = M
∫ ps

0
dν

f(ν)+Mg(ν) = Mts, thus u∗ = M1[0,ts],

with ts = C
M .

Assuming now α ∈ (0, 1) and following the same lines as in the unconstrained case we introduce

v 7→ Fλ(v) :=
(1− α)(vj′1(v)− j1(v))− α

(1− α)j′1(v)− λ
.

Then, we can write the optimality conditions for Problem (P̂1,α
pT ,C,M

) as
Fλ(0) > − f(pt)

g(pt)
on {u∗p = 0},

Fλ(u∗p) = − f(pt)
g(pt)

on {0 < u∗p < M},
Fλ(M) 6 − f(pt)

g(pt)
on {u∗p = M}.

(28)

A straightforward computation shows that, like in the unconstrained case, F ′λ(·) and j′′1 (·) have the
same sign. This allows us to draw the same conclusions on the behaviour of u∗p as in the unconstrained
case. We sketch the reasoning hereafter:

• If j′′1 (·) = 0 then Fλ is constant and u∗p bang-bang. Since Fλ(0) = − α
(1−α)j′1(0)−λ 6 0, then there is

at most one switch. Moreover, we know that the constraint zp(pT ) 6 C is saturated and therefore
that u∗ = M1[0,ts] with ts = C

M .

• If j′′1 (·) < 0, then Fλ is decreasing. Mutatis mutandis, we can reproduce the calculations done in
Theorem 1, deducing that the behaviour of u∗p is identical to the unconstrained case. That is, u∗p is
bang-bang with at most one switch from M to 0. Again, using the saturation of the constraint we
deduce that u∗ = M1[0,ts] with ts = C

M .

• If j′′1 (·) > 0, then F (·) is increasing, and thus the three conditions (28) are both necessary and
sufficient. This also implies that, once again, Fλ defines a bijection, so the optimality conditions
(28) can be rewritten as 

0 > F−1
λ

(
− f(pt)
g(pt)

)
on {u∗p = 0},

u∗p = F−1
λ

(
− f(pt)
g(pt)

)
on {0 < u∗p < M},

M 6 F−1
λ

(
− f(pt)
g(pt)

)
on {u∗p = M}.

From these conditions we can do a straightforward derivation of the expression of u∗.

Remark 6. Note that the control u∗ in the convex case with constraint has a very similar expression to
the unconstrained case. Indeed the monotonicity of pt 7→ F−1

λ (−f/g(pt)) is the same: increasing until
pt = p∗ and then decreasing. This translates into u∗ being non-decreasing until t∗, solving pu∗(t

∗) = p∗

and non-increasing afterwards. The relative positions of Fλ(0) and Fλ(M) with respect to m∗ and m∗

still play the same crucial role in the behaviour of solutions. Nevertheless, the values of α0, α1 and α2 do
not make sense anymore, since Fλ depends on λ which may change for different choices of α and C.
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3 Analysis of Family 2 problems

3.1 Description of solutions

In this section we present and discuss the results obtained for the problem (P2,α
T,C,M ) of Family 2. As

discussed in Section 1.2 let us assume j2(T, p(T )) = (1− p(T ))2. Therefore, (10) becomes

Jα(u) = (1− α)

∫ T

0

j1(u(t))dt+ α(1− p(T ))2.

In this family the time horizon T is fixed and p(T ) is free. The existence issues in a broader setting are
treated separately in Appendix A.

We introduce the following notations in order to state the main result of this section:

M∗ := max
p∈[0,1]

(
−f
′(p)

g′(p)

)
(29)

Let us also introduce also pmax and p̄ defined in the following way:

• If C 6 Cθ,

pmax solves

∫ pmax

0

dν

f(ν) +Mg(ν)
= min

{
C

M
,T

}
.

• If C > Cθ,

pmax solves

∫ pmax

0

dν

f(ν) +M1(0,p̄)g(ν)
= T.

where p̄ is such that ∫ p̄

0

dν

f(ν) +Mg(ν)
= min{C/M,T}. (30)

We remark that in the first case we have pmax 6 θ.
Let us also introduce the mapping

v 7→ Fλ,τ (v) :=
vj′1(v)− j1(v) + τ

j′1(v)− λ
,

where λ, τ ∈ IR−.
Finally let us define

α0 :=
Kj1(M)/M

2 +Kj1(M)/M
and αmax =

j1(M)/ (f(pmax) +Mg(pmax))

2(1− pmax) + j1(M)/ (f(pmax) +Mg(pmax))
.

Note that both parameters satisfy α0, αmax ∈ (0, 1) and, assuming M > m∗(pT ) and M > M∗, they
satisfy the inequality α0 6 αmax 4. Here, K denotes the environmental carrying capacity (see (1)). It
appears in the definition of α0 and hereafter due to the fact that g(0) = 1/K.

Theorem 3. Let us assume that (2) is true, and that j1(·) satisfies the assumptions of (H). Let us
assume that M > m∗(pT ) and α ∈ (0, 1]5. Then, there exists a control u∗ ∈ UT,C,M solving problem

(P2,α
T,C,M ) and times t−, t+ ∈ [0, T ] such that u∗ = 0 in (0, t−) ∪ (t+, T ) and in (t−, t+):

• Case where j1 is either linear or strictly concave. The optimal control is u∗ = M1[t−,ts], with ts 6 t+.
Assuming further that M > M∗ we have that

4In order to prove this we recall that x 7→ x
2+x

is an increasing function of x, we have α0 6 αmax if and only if

K
j1(M)

M
6

j1(M)

(1− pmax)(f(pmax) +Mg(pmax))
.

Reordering this we get M > K(1− pmax)(f(pmax) +Mg(pmax)). Note that for pmax = 0 we have the equality, therefore
we want to be sure that p 7→ (1 − p)(f(p) + Mg(p)) is non-increasing. Computing the derivative we obtain −K(f(p) +
Mg(p)) +K(1− p)(f ′(p) +Mg′(p)). The conditions needed for both terms to be individually smaller than zero are, precisely,
M > m∗(pT ) and M > M∗.

5We exclude the case α = 0 for simplicity. Note that in that case the answer is trivially u∗ = 0 a.e. in [0, T ].
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– If α 6 α0, u∗ = 0 for all t ∈ (t−, t+).

– If α0 < α < αmax then u∗ = M1[t−,ts] with ts the smallest possible value such that pu∗(T ) = p∗T ,

p∗T being the only solution to (1 − p∗T ) (f(p∗T ) +Mg(p∗T )) = 1−α
2α j1(M). This value can be

explicitly computed: if p∗T 6 θ, then ts = T and if p∗T > θ then ts solves ts−t− =
∫ ps

0
dν

f(ν)+Mg(ν) ,

with ps the solution of
∫ p∗T

0
dν

f(ν)+M1(0,ps)g(ν) = T .

– If α > αmax then u∗ = M1[t−,ts] with ts solving ts − t− =
∫ p̄

0
dν

f(ν)+Mg(ν) .

• Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] 3 pt 7→ max{min{M,F−1
λ,τ (−f/g(pt))}, 0}

If α ∈ (0, 1) the optimal control u∗ reads u∗(t) = u∗p(pt) for all t ∈ [t−, t+], where pt denotes the

unique solution in [0, pT ] to the equation t =
∫ pt

0
dν

f(ν)+u∗p(ν)g(ν) .

If α = 1 then u∗ = M1[t−,t+].
Moreover, calling T ∗ ≡ t+ − t−:

• If pu∗(T ) < θ, then t+ = T

• If pu∗(T ) = θ, control functions u∗ξ such that u∗ξ(·) = u∗(· − ξ) a.e. with ξ ∈ [−t−, T − t+] are also
solutions.

• If pu∗(T ) > θ, then (t−, t+) = (0, T ), thus T ∗ = T .

Remark 7. Analogously to Family 1, in the convex case, λ and τ are equal to zero in case the constraints∫ p(T )

0
u∗p(ν)/(f(ν) + u∗p(ν)g(ν))dν 6 C and T ∗ 6 T , respectively, are not saturated. If the constraints are

saturated, λ and τ are defined implicitly by these equalities.

3.2 A first result: optimization with T free but bounded and pT fixed

We begin by stating and proving an intermediate result that will be useful for proving Theorem 3. In this
section we investigate a seemingly unrelated problem, where only the cost term is considered, the final
state is fixed, and the final time is free, but bounded. With a slight abuse of notation let us introduce

inf
u∈VT∗,M
T∗6T

J(T ∗, u)

p′ = f(p) + ug(p) in (0, T ∗), p(0) = 0 , p(T ∗) = pT ,

(Q2,T
pT ,C,M

)

where J(T ∗, u) is defined by

J(T ∗, u) =

∫ T∗

0

j1(u(t))dt. (31)

For τ ∈ IR−, let us introduce the mapping

v 7→ Fτ (v) :=
vj′1(v)− j1(v) + τ

j′1(v)
. (32)

Theorem 4. Let us assume that pT ∈ (0, 1), that (2) is true, and that j1(·) satisfies the assumptions of
(H). Let us assume that M > m∗(pT ) and that

T >
∫ pT

0

dν

f(ν) +Mg(ν)

Then, there exists a pair (T ∗, u∗) ∈ [0, T ]×UT,C,M solving Problem (Q2,T
pT ,C,M

). Moreover, let us distinguish
between two cases:
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• Case where j1 is either linear or strictly concave. The optimal time and control read

u∗ = M1[0,ts] and T ∗ =

∫ pT

0

dν

f(ν) +M1(0,ps)g(ν)
.

Where ps is the only solution to ts =
∫ ps

0
dν

f(ν)+Mg(ν) . Moreover, if pT 6 θ then ts = T ∗ and if

pT > θ then ts is such that T ∗ = T .

• Case where j1 is convex. Let u∗p be defined by

u∗p : [0, pT ] 3 pt 7→ max{min{M,F−1
τ (−f/g(pt))}, 0}.

The optimal time T ∗ and control u∗ read

T ∗ =

∫ pT

0

dν

f(ν) + u∗p(ν)g(ν)
and ∀t ∈ [0, T ∗], u∗(t) = u∗p(pt)

where pt denotes the unique solution in [0, pT ] to the equation t =
∫ pt

0
dν

f(ν)+u∗p(ν)g(ν) . Moreover,

τ ∈ IR− and if for τ = 0, T ∗ 6 T then τ = 0, otherwise τ is implicitly determined by the equation
T ∗ = T .

3.3 Proof of Theorem 4

In order to prove Theorem 4 we will follow similar steps to the ones in Family 1. The idea behind the
proof is to recast Problem (Q2,T

pT ,C,M
) into a problem of Family 1 with an extra constraint T ∗ 6 T . We

find the desired results by performing a similar reasoning to the one carried out in the proof of Theorem
2. Recall that our conclusions hold true for a larger class of functions f and g (See Remark 2).

Step 1: recasting into a Family 1 control problem with T ∗ bounded.

Adapting slightly the reasoning in Lemma 1, we see that the result is valid for Problem (Q2,T
pT ,C,M

). We
can therefore repeat the change of variable performed in Sections 2.3 and 2.4, that is

t : pt 7→
∫ pt

0

dν

f(ν) + u(p−1(ν))g(ν)
and up(pt) := u(p−1(pt)) = u(t).

Let us introduce a new problem.
inf

u∈V̂p∗
T
,M

Ĵp(up), (Q̂2,T
pT ,C,M

)

where Ĵp(up) :=
∫ pT

0
j1(up(ν))

f(ν)+up(ν)g(ν)dν and V̂p∗T ,M is given by

V̂p∗T ,M :=

{
up ∈ V̂pT ,M ,

∫ pT

0

dν

f(ν) + up(ν)g(ν)
6 T

}
.

From this new problem we will be able to recover the solutions of (Q2,T
pT ,C,M

) by undoing the change of
variable.

Similarly to the analysis of the problems of Family 1, we should impose the restriction f(p(t)) +
u∗(t)g(p(t)) > 0 for t ∈ [0, T ] in the control space. Once again, we will not impose it in order to simplify
the derivation of the solutions. Using analogous arguments to those exposed in Section 2.3, one can easily
check that the solutions we obtain indeed belong to the range of UT,C,M by the change of variable used.

Step 2: first-order optimality conditions through the Pontryagin Maximum Principle.

In addition to the notations used so far, we introduce, abusing of the notation t(pt) :=
∫ pt

0
dν

f(ν)+up(ν)g(ν)

in order to handle the constraint T ∗ 6 T . Applying the PMP we find:

τ 6 0 , τ(t(pT )− T ) = 0, (transversality and slackness condition)
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with τ being a constant. The optimal control u∗p solves

u∗p(pt) ∈ arg max
v∈U

τ + q0j1(v)

f(pt) + vg(pt)
. (33)

We can check that, if T >
∫ pT

0
dν

f(ν)+Mg(ν) , then q0 = −1. By the PMP the pair
(
τ, q0

)
is non-trivial.

Assuming q0 = 0, this implies that τ < 0 and u∗p ≡ M1[0,pT ]. Since τ < 0 by the slackness condition

T ∗ = T and T ∗ =
∫ pT

0
dν

f(ν)+Mg(ν) . So, without loss of generality, for the rest of the proof we consider

T >
∫ pT

0
dν

f(ν)+Mg(ν) and q0 = −1.

Step 3: analysis of the first-order optimality conditions.

In the same spirit as in Theorem 2, we introduce the switching function

v 7→ ψ(v) :=
∂H
∂v

(pt, t, τ, v)

=
−f(pt)j

′
1(v)− g(pt) (vj′1(v)− j1(v) + τ)

(f(pt) + vg(pt))
2 .

The maximization condition yields 
ψ(0) 6 0 on {u∗p = 0},
ψ(u∗p) = 0 on {0 < u∗p < M},
ψ(M) > 0 on {u∗p = M}.

Using the mapping Fτ (·) introduced in (32) we can write the optimality conditions as
Fτ (0) > − f(pt)

g(pt)
on {u∗p = 0},

Fτ (u∗p) = − f(pt)
g(pt)

on {0 < u∗p < M},
Fτ (M) 6 − f(pt)

g(pt)
on {u∗p = M}.

(34)

We compute the derivative of Fτ

F ′τ (v) = j′′1 (v)
j1(v)− τ
j′1(v)2

.

The sign of F ′τ (·) depends exclusively on the sign of j′′1 (·), hence we can extract similar conclusions on
the behaviour of u∗p to the ones obtained in Theorem 2, namely, u∗p is bang-bang in the linear case and
the three optimality conditions are mutually exclusive in the convex case. As for the concave case, we
can prove that u∗p is bang-bang too. To do this it suffices to reproduce the computations carried out in
Theorem 1 but with the switching function of this section. These results lead us to conclude that:

• If j′′1 (·) 6 0, then u∗ = M1[0,ts]. Using Lemma 1 we obtain that if pT 6 θ, then ts = T ∗ =∫ pT
0

dν
f(ν)+Mg(ν) , since there cannot be any switch. If pT > θ, since

∫ t
0
j1(M)ds is an increasing

function of time, by direct comparison we find that the switching time must be as small as
possible. Since ts =

∫ ps
0

dν
f(ν)+Mg(ν) , a smaller ts implies a smaller ps. Taking into account that

T ∗ =
∫ pT

0
dν

f(ν)+M1(0,ps)g(ν) we conclude that minimising ts is equivalent to maximising T ∗. Therefore

ts is such that T ∗ = T .

• If j′′1 (·) > 0, the three optimality conditions are mutually exclusive and therefore necessary and
sufficient. Applying F−1

τ to both sides of the inequalities in (34) we obtain the expression in the
statement for u∗p.

We conclude arguing by contradiction. Let us call T ∗τ the T ∗ obtained for a particular value of τ . If
T ∗0 6 T then, for bigger values of T , the slackness condition implies τ = 0 and therefore T ∗ = T ∗0 .
The only way we can have τ < 0 is in case T ∗0 > T , and in that case, using again the slackness
condition we need T ∗τ = T . Looking at the definition of T ∗τ and u∗p, we conclude that τ must have a

value such that
∫ pT

0
dν

f(ν)+u∗p(ν)g(ν) = T .
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3.4 Proof of Theorem 3

In order to prove Theorem 3 we will characterize an interval in which p′u∗ > 0. In this interval we will be
able to adapt some of the results seen so far, specially those of Theorem 4. The solution outside of this
interval will be null.

Step 1: recasting into a Family 1 control problem with T ∗ bounded.

Lemma 2. Let u∗ ∈ UT,C,M be a control solving (P2,α
T,C,M ) and let α > 0. Let us introduce pu∗ solving{

p′u∗ = f(pu∗) + u∗g(pu∗) in (0, T ),

pu∗(0) = 0.

Then, there exists one single interval (t−, t+) ⊆ (0, T ) in which p′u∗ > 0. Moreover, outside of this interval,
u∗ = 0 and p′u∗ = 0, implying that pu∗(0) = pu∗(t

−) = 0 and pu∗(t
+) = pu∗(T ).

Proof. The proof will be done by contradiction and it will follow the same lines as the one carried in
Lemma 1. Assuming pu∗(T ) > 0 (if pu∗(T ) = 0 the solution is trivially u∗ = 0), there necessarily
exists a non-zero measure set in which p′u∗ > 0. We call t− = inf{t ∈ (0, T ) | p′u∗(t) > 0} and
t+ = sup{t ∈ (0, T ) | p′u∗(t) > 0}, therefore {t ∈ (0, T ) | p′u∗(t) > 0} ⊆ (t−, t+). We assume that there
exists an interval of non-zero measure (t1, t2) ⊂ (t−, t+) such that p′u∗ 6 0 a.e. on (t1, t2).

We split the proof in two parts: first we assume pu∗(T ) 6 θ, and we define ũ as

ũ(t) =


0 t ∈ (0, t2 − t1)

u∗(t− t2 + t1) t ∈ (t2 − t1, t2),

u∗(t) t ∈ (t2, T ).

We proceed by direct comparison between the cost of both controls, obtaining

Jα(u∗)− Jα(ũ) = (1− α)

 T∫
0

j1(u∗(t))dt−
T∫

0

j1(ũ(t))dt

+ α((1− pu∗(T ))2 − (1− pũ(T ))2)

= (1− α)

∫ t2

t1

j1(u∗(t))dt+ α((1− pu∗(T ))2 − (1− pũ(T ))2).

Since p′ũ = 0 on (0, t2 − t1) but p′u∗ 6 0 in (t1, t2) and they are equal on intervals of the same length, it
follows that pũ(T ) > pu∗(T ). Therefore Jα(u∗)−Jα(ũ) > 0 which leads to a contradiction if the inequality
is strict. In order to have the equality we need p′u∗ = 0 in (t1, t2) and since we assumed pu∗(T ) 6 θ this
can only happen if pu∗(t1) = pu∗(t2) = θ and u∗ = 0 on (t1, t2). But in this case t2 = T , t1 = t+, so
(t−, t+) = {t ∈ (0, T ) | p′u∗(t) > 0} anyway.

Next, we assume pu∗(T ) > θ, and we define ũ as

ũ(t) =


u∗(t) t ∈ (0, t1)

u∗(t+ t2 − t1) t ∈ (t1, T − t2 + t1),

0 t ∈ (T − t2 + t1, T ).

(35)

Comparing the cost of both controls we obtain again Jα(u∗) > Jα(ũ), because in this case pũ(T ) > pu∗(T )
always. This yields the desired contradiction.

Since (t−, t+) = {t ∈ (0, T ) | p′u∗(t) > 0} we have that u∗ = 0 and p′u∗ = 0 in (0, t−) and thus
pu∗(t

−) = 0. On the other hand, we have pu∗(t
+) > pu∗(T ). But we must also have u∗ = 0 and p′u∗ = 0

in (t+, T ), otherwise at least one of the two terms in Jα(u∗) would be bigger, thus pu∗(t
+) = pu∗(T ).

This lemma proves that pu∗(t) is a bijection from (t−, t+) onto (pu∗(t
−), pu∗(t

+)). A straightforward
exploration of its consequences already proves the last part of Theorem 3. Since we must have p′ = 0 in
(0, t−) ∪ (t+, T ) and pu∗(t

+) = pu∗(T ) it follows that:

• If pu∗ < θ, then t+ = T , otherwise we would have p′ < 0 in (t+, T ) and pu∗(t
+) < pu∗(T ).
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• If pu∗ = θ, as long as the length of (0, t−) ∪ (t+, T ) is the same, the length of each interval does not
affect the functional Jα(u), hence the conclusion.

• If pu∗(T ) > θ, we have pu∗(t
+) = pu∗(T ) > θ so t+ = T , otherwise we would have p′ > 0 in (t+, T )

and pu∗(t
+) > pu∗(T ). We have also that t− = 0,. By contradiction we can construct a function

following the same principle as in (35) (setting t1 = 0 and t2 = t−) and prove that u∗ is not optimal.

Exploiting this lemma further we can repeat the change of variable of the previous theorems one more
time, but only in the subinterval (t−, t+).

Let us introduce the following problem:

inf
u∈UTpT ,C,M
pT∈[0,1)

Ĵp,α(pT , up), (P̂2,α
T,C,M )

where Ĵp,α(pT , up) is defined by

Ĵp,α(pT , up) = (1− α)

∫ pT

0

j1(up(ν))

f(ν) + up(ν)g(ν)
dν + α(1− pT )2, (36)

α ∈ (0, 1] and UTpT ,C,M is given by

UTpT ,C,M :=

{
up ∈ ÛpT ,C,M ,

∫ pT

0

dν

f(ν) + up(ν)g(ν)
6 T

}
.

We remark that thanks to the change of variable, actually T ∗ = t+ − t− =
∫ pT

0
dν

f(ν)+up(ν)g(ν) , therefore

UTpT ,C,M can also be expressed as UTpT ,C,M :=
{
up ∈ ÛpT ,C,M , T ∗ 6 T

}
. To recover the solution of (P2,α

T,C,M )

on the interval (t−, t+) from the solution of (P̂2,α
T,C,M ), we need to undo the change of variable by setting

u(·) = up(p(·)). Next, we need to determine t− and t+ which will be done in the following steps. Finally,
u∗ = 0 in (0, t−) and in (t+, T ).

Similarly to the analysis of the problems of Family 1, according to Lemma 2, we should impose the
restriction f(p(t)) + u∗(t)g(p(t)) > 0 for t ∈ (t−, t+) in the control space. Once again, we will not impose
it in order to simplify the derivation of the solutions. Using analogous arguments to those exposed before,
one can check that the solutions we obtain indeed belong to the range of UT,C,M by the change of variable
introduced in Lemma 2.

Step 2: Finding pmax (case α = 1).

Let us define

Φ : [0, 1) 3 pT 7→ inf
up∈UTpT ,C,M

∫ pT

0

j1(up(ν))

f(ν) + up(ν)g(ν)
dν.

Thanks to Theorem 4 we know this problem has a solution for all pT ∈ [0, 1) if T is big enough. And
therefore we can rewrite Problem (P̂2,α

T,C,M ) as a minimisation problem in one variable, namely:

inf
pT∈[0,1)

(1− α)Φ(pT ) + α (1− pT )
2
.

Nevertheless, in Theorem 4, no constraint on the total number of mosquitoes used was imposed. Moreover
the final time T was supposed big enough for solutions to exist. In order to apply the results of Theorem 4
to prove Theorem 3 we need to establish first which values of pT are reachable for a given set of constraints.
In other words, depending on T , C and M , there will be values of pT such that UTpT ,C,M is empty. We
note this maximal value pmax. Once we have characterized the set [0, pmax], inside it we can disregard
the constraint on C and apply Theorem 4 to find the solution.

In order to find the value of pmax we study the case α = 1 in Problem (P2,α
T,C,M ). We recall it

inf
u∈UT,C,M

(1− p(T ))2.

Indeed, when α is set to 1 we are maximising pT for a given set of constraints C and T regardless of j1(·).
This problem, in the case T > C/M , is discussed and solved in [3]. There, it is proven that solutions are
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bang-bang and such that saturate the constraint
∫ T

0
u∗(t)dt = C. Combining this result with Lemma 2

and since we are only looking at the subinterval (t−, t+) where p′u∗ > 0, we conclude that solutions have
at most one switch from M to 0, and only if pu∗(T ) > θ. A straightforward extension of their results
yields that in the more general case, where the T > C/M is not imposed, we have that if C 6 Cθ then
pmax 6 θ and solves ∫ pmax

0

dν

f(ν) +Mg(ν)
= min

{
C

M
,T

}
.

Instead if C > Cθ, then pmax > θ and solves∫ pmax

0

dν

f(ν) +M1(0,p̄)g(ν)
= T

where p̄ is such that
∫ p̄

0
dν

f(ν)+Mg(ν) = min{C/M,T}.

Step 3: Finding p∗T

Thanks to the previous step we can finally write the expression we want to minimize, that is

inf
pT∈[0,pmaxT ]

(1− α)Φ(pT ) + α (1− pT )
2
.

Now, for all pT ∈ [0, pmax] we know that Φ(pT ) is well defined and that u∗p solving Problem (Q̂2,T
pT ,C,M

)

for a given p∗T solving this minimization problem, will solve Problem (P̂2,α
T,C,M ) too.

We write the optimality conditions
(1− α)K

j1(u∗p(0))

u∗p(0) − 2α > 0 if p∗T = 0

(1− α)
j1(u∗p(p∗T ))

f(p∗T )+u∗p(p∗T )g(p∗T ) − 2α(1− p∗T ) = 0 if 0 < p∗T < pmax,

(1− α)
j1(u∗p(pmax))

f(pmax)+u∗p(pmax)g(pmax) − 2α(1− pmax) 6 0 if p∗T = pmax.

(37)

In the convex case, these necessary conditions are not enough to give an explicit answer in a general
setting. The first condition not even being well defined since u∗p(0) can be arbitrarily close to 0. Nevertheless,
we focus here in the concave and linear case where these conditions can be further exploited.

If j′′1 (·) 6 0, using Theorem 4 we have u∗ = M1[0,ts]. The switching point happening only if pu∗(T ) > θ.
In case there is a switch, u∗(pT ) = 0 and therefore the only optimality condition that can be satisfied is
−2α(1− pmax) 6 0. Therefore p∗T = pmax and u∗p = M1[0,p̄].

In case u∗(p∗T ) = M , we can rewrite the optimality conditions (37) as
(1− α)K j1(M)

M − 2α > 0 if p∗T = 0

(1− α) j1(M)
f(p∗T )+Mg(p∗T ) − 2α(1− p∗T ) = 0 if 0 < p∗T < pmax,

(1− α) j1(M)
f(pmax)+Mg(pmax) − 2α(1− pmax) 6 0 if p∗T = pmax.

(38)

Assuming M > M∗, the three conditions are mutually exclusive. Let us show it by computing the
derivative of the condition with respect to pT and showing that it is strictly increasing

−(1− α)
j1(M)

(f(pT ) +Mg(pT ))2
(f ′(pT ) +Mg′(pT )) + 2α > 0,

which is equivalent to

f ′(pT ) +Mg′(pT ) <
2α

1− α
(f(pT ) +Mg(pT ))2

j1(M)
.

This inequality needs to be satisfied for all α, and the right hand side is non-negative and increasing
in α, therefore we want to ensure f ′(pT ) + Mg′(pT ) < 0. This is true for all pT if and only if M >

maxpT∈[0,1]

(
− f

′(pT )
g′(pT )

)
:= M∗6. We can distinguish three cases

6This requirement is not much stronger than the minimum required for the existence of solutions, M > m∗(pT ). For
instance, with the parameters considered in Table 1 we obtain m∗(1) ≈ 0.0033 and M∗ ≈ 0.077. On the other hand, the
value of M in this table has been fixed to be M = 10.
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• If α 6 α0 then p∗T = 0. Therefore u∗ = 0 for all t ∈ [0, T ∗].

• If α0 < α < αmax then 0 < p∗T < pmax and it is the only solution of the equation (1− p∗T )(f(p∗T ) +
Mg(p∗T )) = 1−α

2α j1(M). If p∗T 6 θ there will not be any switch. If p∗T > θ, then since the final state

is fixed and
∫ t

0
j1(M)ds is an increasing function of time, the switching point will be the smallest

possible such that pu∗(T ) = p∗T , this is u∗p = M1[0,ps] with ps solving T ∗ =
∫ p∗T

0
dν

f(ν)+M1(0,ps)g(ν) = T .

• If α > αmax then p∗T = pmax. Therefore u∗p = M1[0,p̄]. In other words, the switch is only possible if
the constraint on the total amount of mosquitoes is saturated.

Appendix

A Existence of solutions for Problems (P1,α
pT ,C,M

) and (P2,α
T,C,M)

This section is devoted to studying existence issues for problems (P1,α
pT ,C,M

) and (P2,α
T,C,M ). Note that the

existence property for Problem (P1,α
pT ,C,M

) is a bit more intricate to show since the horizon of time T is let
free.

Nevertheless, we will have to distinguish between the case where j1 is convex or concave: the first case
is standard whereas the second one needs a particular approach.

The existence of solutions for problems (P1,α
pT ,C,M

) and (P2,α
T,C,M ) will be studied with less restrictive

hypothesis on the regularity of j1(·) and j2(·). We introduce:

j1(·) is a non-negative increasing function such that j1(0) = 0,
either strictly concave, linear or strictly convex on (0, T ).

j2(·) is a non-negative function, strictly increasing w.r.t. its first variable
and strictly decreasing w.r.t. its second variable. Moreover, for all p ∈ [0, 1],

lim
T→+∞

j2(T, p) = +∞.

(H′)

A.1 Existence for Problem (P2,α
T,C,M) in the case where j1 is convex

The proof is standard and rests upon the direct method in the calculus of variations.

Proposition 1. Let us assume that j1(·) and j2(·) satisfy (H′). Let T > 0, M > 0, C > 0 and let us
assume that j1 is convex in IR and that for every T , pT 7→ j2(T, pT ) is lower semi-continuous in [0, 1].
Then, Problem (P2,α

T,C,M ) has a solution.

Proof. Since UT,C,M is non-empty, let us consider a minimizing sequence (un)n∈N ∈ UN
T,C,M for Prob-

lem (P2,α
T,C,M ). We have 0 6 un 6M a.e. in (0, T ) for all n ∈ N and, according to the Banach-Alaouglu

theorem, we conclude that UT,C,M is compact for the weak-star topology of L∞(0, T ). Therefore, up to a
subsequence, un converges to u∗ for the weak-star topology of L∞(0, T ), and by a property of the weak
star convergence, one gets that 0 6 u∗ 6M a.e. in (0, T ) and∫ T

0

u∗(t) dt = lim
n→+∞

∫ T

0

un(t) dt = lim
n→+∞

〈un, 1〉L∞,L1 6 C.

We thus infer that u∗ ∈ UT,C,M .
Next, we consider (pn)n∈N where pn solves p′n = f(pn) + ung(pn) in (0, T ) with pn(0) = 0. Using

the fact that f and g are continuous in [0, 1] and since 0 6 pn 6 1 in [0, T ], we deduce that (p′n)n∈IN is
bounded in L∞(0, T ). Hence, pn is bounded in W 1,∞([0, T ]) and according to the Ascoli-Arzelá theorem,
(pn)n∈IN converges in C0([0, T ]) to p∗ ∈W 1,∞(0, T ) up to a subsequence. Now, let ϕ ∈ H1(0, T ). One has

pn(T )ϕ(T )−
∫ T

0

pn(t)ϕ(t) dt =

∫ T

0

(f(pn) + ung(pn))ϕ
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for all n ∈ IN. According to the previous considerations, extracting adequately subsequences and letting
then n tend to +∞ shows that

p∗(T )ϕ(T )−
∫ T

0

p∗(t)ϕ(t) dt =

∫ T

0

(f(p∗) + u∗g(p∗))ϕ.

Therefore, a standard variational analysis yields that p∗ satisfies p′∗ = f(p∗) + u∗g(p∗) in (0, T ) with
p∗(0) = 0.

Finally, in order to assure the existence of solutions, it remains to prove that

lim
n→∞

Jα(un) > Jα(u∗). (39)

By convexity of j1, the functional

UT,C,M 3 u 7→
∫ T

0

j1 (u(t)) dt

is convex. Furthermore, it is easy to see that the functional L2(0, T ; [0,M ]) 3 u 7→
∫ T

0
j1 (u(t)) dt is

continuous for the strong convergence of L2(0, T ; [0,M ]) (indeed, this follows from the fact that the strong
convergence in L2 implies pointwise one and from the dominated convergence theorem). Now, using that
a convex function on a real locally convex space is lower semicontinuous if and only if it is weakly lower
semicontinuous, we infer that

lim inf
n→∞

∫ T

0

j1 (un(t)) dt >
∫ T

0

lim inf
n→∞

j1 (u∗(t)) dt.

Up to a subsequence, (pn(T ))n∈IN converges to p∗(T ) and it follows by assumption on j2 that up to a
subsequence, lim infn→+∞ j2(T, pn(T )) > j2(T, p∗(T )), whence (39). This concludes the proof.

A.2 Existence for Problem (P2,α
T,C,M) in the case where j1 is concave

The concave case is a bit more intricate than the convex one. Indeed, we strongly used the convexity of j1
to prove the lower semicontinuity of the integral term in the definition of Jα. We overcome this difficulty
by introducing an auxiliary problem where only bang-bang control functions with a finite number of
switches are considered.

Proposition 2. Let us assume that j1(·) and j2(·) satisfy (H′). Let α ∈ (0, 1], T > 0, M > 0, C > 0 and
let us assume that j1 is concave. Then, Problem (P2,α

T,C,M ) has a solution which is necessarily bang-bang,
equal a.e. to 0 or M and with at most two switches.

Proof. To deal with the concave case, we introduce the set

UN := {u ∈ UT,C,M , u bang-bang equal a.e. to 0 or M and having at most N switches} .

Let N ∈ IN∗ be given and consider the auxiliary problem{
infu∈UN Jα(u)

p′ = f(p) + ug(p) , p(0) = 0.
(PN )

We first claim that Problem (PN ) has a solution. Indeed, note first that UN is compact for the strong
topology of L1(0, T ) (since a sequence of switching points converges up to a subsequence in [0, T ] according
to the Bolzano-Weierstrass lemma). Let (uN,n)n∈IN denote a minimizing sequence for Problem (P2,α

T,C,M ).

Up to a subsequence, (uN,n)n∈IN converges to some element uN in L1(0, T ). Since j1(·) is locally Lipschitz
as a concave function, there exists K > 0 such that∣∣∣∣∣

∫
(0,T )

j1(uN,n)−
∫

(0,T )

j1(uN )

∣∣∣∣∣ 6
∫ T

0

|j1(uN,n)− j1(uN )| 6 K‖uN,n − uN‖L1(0,T ).

Finally, dealing similarly as in the proof of Lemma 1 with the term j2(T, pN,n(T )), where pN,n stands for
the solution to p′ = f(p) + uN,ng(p) and p(0) = 0, enables us to show that (39) still holds true in that
case. It follows that Problem (PN ) has a solution uN .
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Let us now show that uN has at most two switches. Let uN ∈ UN solving Problem (PN ). Let
0 6 ξ1 < ... < ξN0

6 T denote the distinct switching points of uN with N0 6 N , with the convention that
ξ1 = 0 if, and only if, uN = M in a neighborhood of t = 0 and that xN0

= T if, and only if, uN = M in a
neighborhood of t = T . We have to distinguish between two cases: there exist three distinct switching
points ξk−1, ξk and ξk+1 such that (a) ξk−1 > 0 and u = M on (ξk, ξk+1), or (b) ξk+1 < T and u = M on
(ξk−1, ξk). In what follows, we will only deal with the case (a), the study of the case (b) being exactly
similar.

Figure 5: Left: case (a). Right: case (b).

Let us first write Jα(uN ) as a function of the ξk as

Jα(uN ) := Jξα(ξ1, . . . , ξN0) := (1− α)j1(M)
∑

j∈J1,N0K
j odd

(ξj+1 − ξj) + αj2(T, pN (T )),

where pN denotes the solution to the Cauchy problem p′ = f(p) + uNg(p) with p(0) = 0.
Hence, one can rewrite Problem (PN ) as

infξ1<···<ξN0
Jξα(ξ1, . . . , ξN0

),∑
j∈J1,N0K
j odd

(ξj − ξj−1) 6 C/M,

ξj − ξj+1 < 0 , j = 1, . . . , N0 − 1

Notice that this problem is equivalent to Problem (PN ) and has therefore a solution. We write pN (T ) in
terms of the ξk as

pN (T ) =
∑

j∈J1,N0K
j odd

∫ ξj+1

ξj

(f(pN (t)) +Mg(pN (t))) dt.

Let k denote the integer satisfying the conditions of the case (a). Applying the Karush Kuhn-Tucker
theorem to the optimization problem above in order to obtain the optimality conditions yields the existence
of a Lagrange multiplier µ ∈ IR+ such that

µ

 ∑
k∈J1,N0K
k odd

(ξk − ξk−1)− C/M

 = 0 (slackness condition)

and {
(−1)k(1− α)j1(M) + (−1)kα∂j2∂p (T, pN (T ))Mg(pN (ξk)) + (−1)kµM = 0

(−1)k+1(1− α)j1(M) + (−1)k+1α∂j2∂p (T, pN (T ))Mg(pN (ξk+1)) + (−1)k+1µM = 0.

Therefore, adding these two equations, we get

αM
∂j2
∂p

(T, pN (T ))(g(pN (ξk))− g(pN (ξk+1))) = 0.
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Since α > 0, ∂j2
∂p (T, pN (T )) < 0 and p 7→ g(p) is strictly decreasing we reach a contradiction. It follows

that uN has at most two switches and we infer that

inf
u∈UN

Jα(u) = min
v∈U2

Jα(v) (40)

To conclude, one needs to investigate the links between Problems (PN ) and (P2,α
T,C,M ). One important

ingredient is the following lemma, whose proof is postponed to the end of this section for the sake of
readability.

Lemma 3. Let u be an element of UT,C,M such that u is bang-bang. Then, there exists uN in UN such
that

lim
N→+∞

uN (t) = u(t) for a.e. t ∈ (0, T ).

Let u ∈ UT,C,M . It is well-known that the set {v ∈ UT,C,M | v is bang-bang, equal a.e. to 0 or M} is
dense into UT,C,M for the weak-star topology topology of L∞(0, T ). Hence, there exists (uk)k∈IN ∈ U IN

T,C,M

converging weakly-star to u in L∞(0, T ).
By concavity of j1 in IR, the mapping

UT,C,M 3 u 7→
∫ T

0

j1 (u(t)) dt

is concave. Mimicking the argument used at the end of the proof of Proposition 1, one shows the upper
semicontinuity property:

lim sup
k→+∞

∫
(0,T )

j1(uk) 6
∫

(0,T )

j1(u)

Now, according to Lemma 3, there exists uNk ∈ UN such that

lim
N→+∞

uNk (t) = uk(t) for a.e. t ∈ (0, T ).

The dominated convergence theorem thus yields

lim
N→+∞

∫
(0,T )

j1(uNk ) =

∫
(0,T )

j1(uk).

According to the convergence results above, we infer that, ε > 0 being given, there exists N0 ∈ IN such
that

N > N0 =⇒ lim sup
k→+∞

∫
(0,T )

j1(uNk )− ε 6 lim sup
k→+∞

∫
(0,T )

j1(uk) 6
∫

(0,T )

j1(u).

Dealing with the term involving j2 is easier. Indeed, by using the approximation results above and
mimicking the reasoning in the proof of Proposition 1, one gets

lim
N,k→+∞

j2(T, pNk (T )) = j2(T, p(T ))

where pNk (resp. p) denotes the solution to the Cauchy problem p′ = f(p) + uNk g(p) and p(0) = 0 (resp.
p′ = f(p) + ug(p) and p(0) = 0). The combination of the convergence results above yields the existence of
N̂0 ∈ IN such that

N > N̂0 =⇒ lim sup
k→+∞

Jα(uNk ))− ε 6 Jα(u).

Since ε has been chosen arbitrarily, and since Jα(uNk ) > minv∈U2 Jα(v) according to (40), one gets

Jα(u) > min
v∈U2

Jα(v).

This concludes the proof: Problem (P2,α
T,C,M ) has a solution which solves moreover Problem (P2).
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Proof of Lemma 3. Since u is assumed to be bang-bang, let us write u = M1I where I denotes a
measurable subset of (0, T ). Let ε > 0. By outer regularity of the Lebesgue measure, there exists un open
subset of (0, T ) containing I and such that |I| 6 |O| 6 |I|+ ε. Let us write O =

⋃
n∈IN(αn, βn) where the

intervals (αn, βn) are disjoint and such that |O| =
∑
n∈IN(βn−αn). Let us introduce un := M1

⋃n
p=0(αp,βp).

Writing u = (u−M1O) +M1O, one has∫ T

0

|u− un| 6 M

∫ T

0

|1I − 1O|+M

∫ T

0

|1O − 11⋃n
p=0(αp,βp)

|

6 2εM +M

+∞∑
p=n+1

(βp − αp)

Since ε is arbitrary and since the series with general term βn − αn is convergent, it follows that (un)n∈IN

converges to u in L1(0, T ) and thus also pointwise. This concludes the proof.

A.3 Existence results for Problem (P1,α
pT ,C,M

)

Proposition 3. Let us assume that α ∈ (0, 1], pT ∈ (0, 1), (2) is true, and that j1(·) and j2(·) satisfy the
assumptions of (H′). Let us assume that M > m∗(pT ) and

C > CpT (M) if pT 6 θ and C > Cθ(M) otherwise.

Finally, let us also assume that for every pT , T 7→ j2(T, pT ) is lower semi-continuous in IR+. Then,
Problem (P1,α

pT ,C,M
) has a solution.

Proof. To avoid working on a variable domain, let us make the following change of variables: we define
p̃(s) := p(Ts) and ũ(s) := u(Ts), with s ∈ [0, 1]. Then, Problem (P1,α

pT ,C,M
) rewrites inf

(T,ũ)∈DpT
J̃α(T, ũ),

p̃′(s) = T (f(p̃(s)) + ũ(s)g(p̃(s))) , p̃(0) = 0 , p̃(1) = pT ,
(P̃1,α

pT ,C,M
)

where J̃(T, ũ) is defined by

J̃(T, ũ) = (1− α) T

∫ 1

0

j1(ũ(s))ds+ αj2(T, pT ).

and DpT is the set of admissible controls

DpT = {(T, ũ) ∈ IR+ × U1,C,M × [0, 1] | p̃(1) = pT } .

Let us first prove that DpT is non-empty. To this aim, let us define

T pT (M) :=

∫ pT

0

dν

f(ν) +Mg(ν)
(41)

and look for controls of the form uξ(t) = M1[0,ξ] belonging to this set, where

ξ =

{
1 if MT pT 6 C
C

MTpT if MT pT > C.
(42)

Let us introduce p̃ξ solving p̃′ξ = T (f(p̃ξ) + ũξg(p̃ξ)) in (0, 1) and p̃ξ(0) = 0. By integrating both sides of
the differential equation, we get that the time Tξ taken by pξ to reach the final state pT reads

Tξ =

∫ pξ(ξ)

0

dν

f(ν) +Mg(ν)
+

∫ pT

pξ(ξ)

dν

f(ν)
.

Note that in case pξ(ξ) 6 θ the second integral does not converge unless ξ = 1, in which case it vanishes.
This expression gives a lower bound on C depending on pT . If pT 6 θ we must have ξ = 1, concluding
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that pξ(ξ) = pT and C >MT pT = CpT , with CpT as defined in (18). Instead if pT > θ, then either ξ = 1

implying C > CpT or pξ(ξ) > θ and therefore C > M
∫ θ

0
dν

f(ν)+Mg(ν) = Cθ. Since in this case CpT > Cθ,

the least restrictive condition is C > Cθ. We conclude that under the hypothesis of this proposition
Tξ <∞ and DpT is non-empty.

Let us consider a minimizing sequence (Tn, ũn)n∈N ∈ (DpT )N and let p̃n be the solution of p̃′ =

T (f(p̃) + ũng(p̃n)) in (0, 1) and p̃n(0) = 0. By minimality, one has lim
n→∞

J̃α(Tn, ũn) <∞, i.e.

lim
n→∞

(1− α) Tn

∫ 1

0

j1(ũn(s))ds+ αj2(Tn, pT ) <∞.

Each term of the sum being bounded from below by 0, it follows that both of them are also bounded
above. Since α > 0 and limn→∞ j2(Tn, pT ) = +∞, it follows that (Tn)n∈IN is bounded, and therefore, up
to a subsequence, Tn → T̃ <∞ as n→ +∞. By mimicking the arguments used for problem (P2,α

T,C,M ),
one shows that, up to a subsequence, (ũn)n∈IN converges to ũ∗ ∈ UT̃ ,C,M weakly-star in L∞(0, 1; [0,M ]).

Moreover,(p̃n)n∈IN converges to p̃∗ in C0([0, T̃ ]), where p̃∗ solves the equation

(p̃∗)′ = T̃ (f(p̃∗) + ũ∗g(p̃∗)) in (0, T̃ )

and p̃∗(0) = 0. As a consequence, (J̃α(Tn, ũn))n∈IN converges to J̃α(T̃ , ũ∗), which concludes the proof.
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