
HAL Id: hal-03212726
https://hal.science/hal-03212726v1

Submitted on 5 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FP-Redemption: Studying Browser Fingerprinting
Adoption for the Sake of Web Security

Antonin Durey, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy

To cite this version:
Antonin Durey, Pierre Laperdrix, Walter Rudametkin, Romain Rouvoy. FP-Redemption: Studying
Browser Fingerprinting Adoption for the Sake of Web Security. International Conference on the
Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA), Jul 2021, lisboa, Portugal.
�hal-03212726�

https://hal.science/hal-03212726v1
https://hal.archives-ouvertes.fr

FP-Redemption: Studying
Browser Fingerprinting Adoption

for the Sake of Web Security

Antonin Durey1, Pierre Laperdrix2,1, Walter Rudametkin1, and Romain
Rouvoy1,3

1 University of Lille / Inria
2 CNRS
3 IUF

Abstract. Browser fingerprinting has established itself as a stateless
technique to identify users on the Web. In particular, it is a highly crit-
icized technique to track users. However, we believe that this identifica-
tion technique can serve more virtuous purposes, such as bot detection
or multi-factor authentication. In this paper, we explore the adoption
of browser fingerprinting for security-oriented purposes. More specifi-
cally, we study 4 types of web pages that require security mechanisms
to process user data: sign-up, sign-in, basket and payment pages. We vis-
ited 1, 485 pages on 446 domains and we identified the acquisition of
browser fingerprints from 405 pages. By using an existing classification
technique, we identified 169 distinct browser fingerprinting scripts in-
cluded in these pages. By investigating the origins of the browser fin-
gerprinting scripts, we identified 12 security-oriented organizations who
collect browser fingerprints on sign-up, sign-in, and payment pages. Fi-
nally, we assess the effectiveness of browser fingerprinting against two
potential attacks, namely stolen credentials and cookie hijacking. We
observe browser fingerprinting being successfully used to enhance web
security.

Keywords: browser fingerprinting · web security · cookies · multifactor
authentication

1 Introduction

As web usage continues to grow, web security continues to be challenged. By ex-
ploiting vulnerabilities, such as credential leaks4 from previous hacks or phish-
ing [10] to obtain new credentials, hackers can log into websites and harvest
users’ data. Additionally, websites may be vulnerable to cookie hijacking, which
consists of extracting cookies from a user session to access their accounts. These
attacks can lead to data leaks, such as username, email, physical addresses or
search history [28], but also to account hijacking. Given the growth of such at-
tacks, Multi-Factor Authentication (MFA) is perceived as a reliable protection

4 https://haveibeenpwned.com/

to increase web security. MFA consists in combining multiple security factors to
check the identity of an authorized user. Such factors not only include user cre-
dentials, but also physical tokens, SMS codes, or dedicated mobile apps. These
MFA solutions vary in price, level of security, and intrusiveness.

Among these alternatives, browser fingerprinting is a stateless identification
technique [7, 17] that accesses attributes exposed by the browser and its envi-
ronment to build a unique identifier. Over the years, studies have focused on
exploring new attributes, and increasing the uniqueness of browser fingerprints.
More specifically, several contributions studied browser fingerprinting for track-
ing purposes [1, 8, 32], while others focused on defending against it [31, 23, 16].
Some contributions proposed using browser fingerprinting as a new factor in
MFA solutions [29, 2, 15], but have not evaluated the benefits to secure online
websites. Moreover, given its identification potential, browser fingerprinting is
useful for bot detection [14, 33], demonstrating its ability to detect undesired
visitors.

In this paper, we investigate the adoption of browser fingerprinting to re-
inforce security on the web. Through our experiment, we intend to detect if
fingerprinting is used to strengthen web security, and in which specific contexts
this occurs. In particular, we target 4 types of web pages that store and process
sensitive user information, namely sign-up, sign-in, basket and payment pages.
Investigating these pages is a challenge as it is very hard to automate their
exploration because of the sheer diversity of forms and payment processes. As
such, we manually visited 1, 485 pages from 446 websites belonging to 14 dif-
ferent categories with the aim of detecting fingerprinting scripts. By using an
existing classification technique [6], we identified 169 fingerprinting scripts be-
ing used on all the secured types of pages we study, with 12 of them belonging
to security-focused organizations. Finally, we study the resilience of websites
adopting browser fingerprinting for security purposes by simulating two classes
of attacks: stolen credentials and cookie hijacking.

The key contributions of this paper are:
– Evidence of the adoption of browser fingerprinting for security on 4 types of

secure pages across various categories of websites, and a study of the browser
fingerprints they extract.

– A dataset of 1, 485 pages, obtained from 446 websites that include 169 dis-
tinct fingerprinting scripts;5

– A study of the resilience of websites that use fingerprinting to protect users
from stolen credentials and hijacked cookies. In particular, we show no em-
pirical evidence of its active use nor success in defending against stolen cre-
dentials or cookie hijacking.
The remainder of this paper is organized as follows. We give an overview of

the state of the art and its limitations in Section 2. We introduce our dataset in
Section 3. We analyse our results on browser fingerprinting adoption in Section 4.
We define our attack models and evaluate them in Section 5. We discuss our
results and its limitations in Section 6, before concluding in Section 7.

5 https://zenodo.org/record/3872144

2 Background & Related Work

2.1 Browser Fingerprinting

Browser fingerprinting is a technique to identify a user by leveraging the unique
combination of software configurations (e.g., browser, operating system) and
hardware characteristics of their device. It was first mentioned as a potential
identification technique and studied in 2010 [7]. It combines a set of discrim-
inating attributes mostly accessible from HTTP headers and JavaScript [17].
Commonly accessed attributes are the navigator and screen properties [7, 18],
font enumeration [22], canvas [20], audio [8], and WebGL rendering [5].

Studies. Most of the literature has focused on studying the uniqueness and
stability of browser fingerprints. They report that browser fingerprinting is a
powerful and stateless identification technique [7, 18, 9] to track users for poten-
tially long periods of time [32]. Other studies aimed at estimating the adoption of
browser fingerprinting by websites for tracking purposes. They highlighted that
3–5% of the Top Alexa 1M [22, 1, 8] embed browser fingerprinting scripts. How-
ever, all these studies only crawled home or random pages, thus lacking deeper
insight on more sensitive pages, such as sign-up or payment pages, which demand
higher security, but may require more complex user interactions to reach.

Security usages. Bursztein et al. [4] argue that canvas fingerprinting can
distinguish different families of browsers and uncover the use of PhantomJS to
attack a website. Jonker et al. [14] studied the ”fingerprintability” surface of bots,
revealing discriminating attributes to protect websites against web scraping.
They also observed that such bot fingerprinting attributes were collected by 15%
of the Top Alexa 1M. Vastel et al. [33] mention that this technique is already used
by websites to block bots. About multifactor authentication, several approaches
focused on increasing web session security with browser fingerprinting [29, 2,
27, 15]. However, these studies only cover the methodology and implementation
steps, but fail to evaluate their effectiveness in production.

2.2 Multi-factor authentication and session hijacking

New authentication factors are regularly proposed to secure user accounts [25].
However, studies show their adoption is slow [3], leading to compromised ac-
counts if attacks targeting passwords are successful. Sivakorn et al. [28] uncov-
ered another attack on user accounts by using cookie session hijacking to log
into accounts and steal user sensitive data.

Synthesis. To the best of our knowledge, the state of the art stops either at
studying browser fingerprinting from a tracking perspective or for bot detection
purposes. It does not deliver any contribution to the adoptions and usages of
browser fingerprinting on more sensitive pages, dealing with personal or payment
data. The following sections, therefore, propose to address these limits by deliv-
ering a new study focusing on the adoption of browser fingerprinting to increase

web security. Our contribution advances the state of the art by considering a
dataset of 1, 485 real-world sensitive pages collected from 446 domains. Unlike
previous studies, we obtain this dataset by manually performing an in-depth
exploration of a carefully selected set of domains, thus going beyond the surface
of websites to study these sensitive web pages.

3 A Dataset of Secure Web Pages

This section reports on our methodology to build a dataset of secured web pages
to study the use of browser fingerprinting for security purposes.

3.1 Websites Under Study

Secured pages. All pages of a website are not equal when it comes to user se-
curity. While most web pages do not process sensitive data, some require careful
design to deal with user personal information (e.g., emails, credentials, personal
details, payment card numbers). On sensitive web pages, any security breach can
quickly lead to privacy leaks for the end-users and seriously affect the reputation
of the website. We decided to focus on 4 types of web pages requiring personal
information or requesting personal data:
1. Sign-up, which may require email, name, password, and additional personal

information depending on the website.
2. Sign-in usually requests user credentials (email/pseudonym and password).
3. Payment is a page containing a specific form requesting the user to input

their payment information (e.g., credit card, wallet, banking information).
4. Basket refers to any page related to a shopping basket or shopping cart

process, starting from adding an item up to, but not including, payment.
Such pages may also request additional information, such as billing/delivery
addresses.
We call these 4 types of web page secured web pages. To assess our results, we

also collected samples from other types of pages. From these, we isolated home
pages as it has been reported they might fingerprint 25% less [30]. We consider
pages that are neither secured nor home pages to be content pages.

Website categories. Previous studies crawled the Top Alexa with automated
tools, thus studying a large set of homepages and resources reachable by bots.
We decided to avoid the bias introduced by bots, preferring to manually browse
the websites and reach deeper pages that require user interaction. Moreover,
we are interested in studying the adoption of browser fingerprinting on secured
pages. In this context, the diversity of websites indexed by the Top Alexa —or
other ranking lists— proved to be unsatisfactory. Thus, we decided to consider
a list of website categories that we estimate to be more relevant for the purpose
of our study. To build this list of relevant categories, we adopted the following
methodology:

– We targeted websites focused on gambling, credit card, financial and money
services.

– We focused on different retail websites, such as event tickets, games, flights
and transports, and accommodation booking websites.

– Finally, we added to our list job search, social network, adult, dating, insti-
tutional and governmental websites as they often request detailed personal
information when creating an account.
The complete list of keywords we used to reach the websites is available in

Appendix A. We mainly entered a combination of country name, category and
the word ‘website’ into the Google search engine, and visited the websites given
on the first page of the results. We also translated the search terms into the main
language of the country when we were not getting suitable results according to
the country and the category, as for example, was the case for Russian websites.

3.2 Web Page Acquisition

Past studies used automated crawls to observe browser fingerprinting at scale [22,
1, 8]. However, relying on bot crawls introduces bias in the collected data [14, 11,
34] as more and more websites use defenses to block bot access [33]. Automating
the registration and payment processes is also a challenge because of the high
variability that can be found in related forms [13]. No unique or universal stan-
dard exists and the number of required fields can strongly differ. The coding
practices may be different with obfuscated code and custom attributes, mak-
ing it hard for a bot to automatically match a field with the right information.
Security requirements are also different, including diverse password constraints
and security questions. As the scope of this paper is not to develop a bot to
automatically test these websites, we manually visited them and collected the
required data via a custom web extension we developed. This strategy allows us
to appropriately locate interesting secured pages and reduces the bias of being
blocked by the security mechanisms in place.

3.3 Fingerprinted Page Attributes

This paper does not intend to discover new browser fingerprinting techniques, but
rather to investigate the adoption of existing ones in the context of web security.
As part of our data acquisition campaign, we thus focused on collecting the values
of all existing attributes reported in the literature. Thus, we consider navigator
& screen properties [7, 18, 22, 21, 24], fonts enumeration via span’s width and
height measurement [22], canvas [20], audio [8] and WebGL rendering [5] and
parameters [18], WebRTC [8] and bots detection attributes, including window

properties that were considered by Jonker et al. [14]. Our web extension monitors
access to the attributes by overriding getters of selected properties and functions.
Whenever one of these attributes is accessed, the web extension collects the
function or property name, the list of arguments passed if it is a function, the
property’s value or the function’s return value, the script accessing the property
or function, and the page’s URL.

We manually visited the selected websites and we used a single identity we
created on a popular email provider. For each visited page, we stayed at least
10 seconds, and manually filled each form. When asked for proof of identity,
such as a valid phone number, an ID or a credit card, we provided one of the
phone numbers used to create the email account. As our identity was fake, we
were not able to provide a real ID (e.g., a passport) when required by some
websites. Given that payment pages require filling out credit card information,
we used a fake credit card generator6 to be able to validate online payment
forms and make sure that we trigger most of the scripts embedded in the page.
Even though the generated cards were fake and the payment processes were not
completed, we bypassed many client-side verifications thanks to this technique.
Yet, using fake payment data raises several issues, such as, our account could
be considered suspicious and prevented from performing additional actions, and
our IP address could be blacklisted and blocked for the rest of our experiment.
Finally, to reduce suspicion, we used several residential IP addresses during our
data collection. Although we provided websites with fake payment data, we
believe the low number of payment attempts we performed on each website has
had minimal impact on their operations. We did not try to harm them in any
way and we canceled our baskets if any information received after the payment
attempt indicated the website could validate the basket and ask for a future
payment.

3.4 Resulting Dataset Description

We performed our data collection campaign from December 2019 to January 2020.
We used a fresh install of Chrome 79 on Ubuntu 19.04. We always accepted the
default cookie settings for pop-ups, but refused all other types of solicitations,
such as geolocation, notifications, or newsletters. In total, we visited 1, 485 pages
across 446 websites.

Website category and ranking. We used the category keyword we put into
the search engine to categorize the website. We specifically targeted bank and
money-related services because of the sensitivity of the data they manipulate,
visiting 85 of these websites (see Figure 1). The country tag represents the main
country the website operates in. We assign the country tag by following the
result of two observations:

1. Is the website available in English or in multiple languages and translated
into the user’s preferred language?

2. Are the services proposed by the website available in a single country or
geographic zone?

If the website is available in multiple languages or served in English, and if the
website provides services to multiple countries, we use the International tag.
Otherwise, we specify the country. If the website does not operate in a listed
country, we use the Other tag. With these rules, we tagged 142 International

6 https://www.creditcardvalidator.org/

11 10 6 5 10 14 4 7 12 5 1
11 0 6 2 0 1 5 6 4 0 3
11 5 2 2 3 4 4 4 1 1 0
22 0 4 1 2 0 1 0 0 3 0
4 4 0 5 1 1 1 4 1 3 8

16 8 1 0 0 3 1 0 0 0 0
2 3 4 5 0 3 1 2 0 4 3

11 0 5 4 1 2 0 1 1 1 0
11 4 0 3 0 0 0 3 0 1 1
11 1 2 1 1 1 3 1 0 1 0
1 2 1 2 4 0 2 0 4 1 5

12 0 0 2 4 0 0 0 0 2 0
3 0 4 0 4 0 6 0 2 0 0
3 3 4 2 3 0 0 0 0 3 0

13 0 0 0 0 0 0 0 1 0 1

Int
ern

ati
on

al UK
Russ

ia
Fra

nce

Germ
an

y
Othe

r
Chin

a
Jap

an
Ind

ia
Sp

ain US

Country

142 40 39 34 33 29 28 28 26 25 22

Bank & related
Ecommerce

Flights & related
Adult

Event ticket
Technology

Institutional
Dating
Media

Accomodation
News

Financ. & crypto.
Social network

Job search
Games

Ca
te

go
ry

85
38
37
33
32
29
27
26
23
22
22
20
19
18
15

To
tal

Total 446

Fig. 1: Distribution of the 446 visited websites per country & category.

websites. The resulting distribution of visited websites per country and category
is depicted in Figure 1.

We did not aim to build an exhaustive manual dataset. However, we checked
the Top Alexa rankings of the websites in our dataset. We find that our dataset
is relatively well balanced across the less-than-1k (18%), 1k-10k (29%), 10k-100k
(27%) and higher-than-100k (26%) Top Alexa rankings.

Page type. We also tagged each page according to its type. By default, a
page is associated to a single tag, with the exception of home or content pages
that have a sign-up or sign-in embedded form that allows creating an account or
authenticating without going to a specific page (44 occurrences in our dataset),
and single pages that handle both account creation and authentication processes
(3 occurrences in our dataset). In the case of pages containing both basket-like
content and a payment form, we tagged the page as payment. If no tag matched,
we used the content tag. Our dataset is well-balanced between secure (44%) and
non-secure (56%) pages. The basket, sign-up and sign-in pages are equally present
(12 − 13%) while payment pages represent 6% of our dataset.

Script classification. Several studies exist to classify a real-world dataset
of scripts into fingerprinters and non-fingerprinters [12, 26]. All rely on both au-
tomatic and manual classification to combine efficiency and reliability. However,
none of these studies provide their implementation, making them difficult to be
reused. We designed and implemented an algorithm to classify the scripts of our
dataset. We have made its implementation freely available [6].

The algorithm relies on a incremental process to build similarities between
scripts based on the attributes they access and proposes a manual step to rein-
force the fingerprinting process. When the algorithm is unable to reach a decision
on a script, the user can step in to guide the algorithm and provide the correct
label. Out of 4, 665 scripts, the algorithm provided a label to 4, 296 scripts. We
manually analyzed, over several iterations, 359 of them. Overall, this classifica-
tion process found 169 browser fingerprinting scripts included in 405 web pages
of our dataset. The information concerning the fingerprinting scripts, their URL
and the domains they were found on are available in our public dataset.

The remainder of this paper builds on this dataset of secure pages to identify
scripts that collect browser fingerprints and evaluate the additional security layer
provided by the browser fingerprinting technique.

4 Analysis of Secure Web Pages

4.1 Browser Fingerprinting Attributes

Fingerprinters

navigator

canvas

WebGL

font

bot

WebRTC

audio

WebGL2

fa
m

ily

2

3

4
5
6
7
8
9

12

16
20
24
30

40
50

Fig. 2: Distribution of families across fingerprinters.

Of the 169 browser fingerprinting scripts we classified, we observed 132 dis-
tinct fingerprinting attributes that we organized into 8 families. The family of
an attribute is the parent JavaScript object calling the attribute; except for the
bot attributes where we used Jonker et al.’s list [14]. Figure 2 reports on the

distribution of the attributes per script grouped by family, showing that all at-
tribute families are exploited in the wild. The most accessed attributes are the
User-Agent, screen width and height, plugins list, and timezone. Even if it
would be tempting to rely on these to detect fingerprinting scripts, they can be
used for many other purposes, such as analytics or adjusting a website’s UI to the
device. In our dataset, these attributes are used by 81%, 20%, 19%, 6% and 13%
of non-browser fingerprinting scripts, respectively. This illustrates the difficulty
of identifying reliable attributes to detect browser fingerprinting scripts.

We analyzed the scripts that use canvas or WebGL fingerprinting. 120 scripts
fingerprint browsers using canvas drawing primitives, using between 2 and 14
different drawing instructions. We found 44 different drawing sequences. Con-
cerning WebGL fingerprinting, 54 scripts draw with WebGL primitives, using
between 17 and 20 distinct drawing instructions. Only 7 drawing instruction
sequences are different. Moreover, one sequence is used by 46 scripts. 54 finger-
printers enumerate fonts. The number of fonts tested ranges from 66 to 594,
with 19 different sets of fonts. We observe 2 sets of fonts being largely checked
by fingerprinters: a set of 82 fonts tested by 17 scripts, and a set of 66–69 fonts
used by 18 scripts. Thus, even though there is a potentially unlimited combina-
tion of testable fonts, a majority of scripts use similar sets. We believe this is
due to these font sets being copied from one script to another, as well as, being
sufficient to capture enough uniqueness. We observed 107 fingerprinters collect
at least one bot attribute. The average number of bot attributes is 5. PhantomJS
attributes are the most collected (41% of all scripts), followed by those that
detect Headless Chrome (18–33%) and Selenium (12–16%).

Finally, we observed that the most used attributes belong to the earliest
identified for browser fingerprinting, like the navigator and screen properties
(Eckersley et al. [7] in 2010) and the canvas (Mowery et al. [20] in 2012). More
recent attributes are less present in our dataset, such as audio and WebRTC
(Englehardt et al. [8] in 2016). We also found one fingerprinting script accessing
9 unpublished attributes from the WebGL2RenderingContext object which is
part of the WebGL2 APIs.

4.2 Origins of Browser Fingerprinting Scripts

Regarding the adoption of browser fingerprinting for security purposes, we an-
alyzed the scripts hosted by domains whose main goal is security. We analyzed
their target markets and their presence in our dataset and identified 14 finger-
printing scripts from 12 security-focused organizations. For each of the organi-
zations, we extracted their main purpose, and analyzed the presence of their
scripts on the sensitive page types we defined. Table 1 reports on these results.
All of these security scripts are present in at least one of our 4 sensitive page
types.

We analyzed the attribute families collected by these browser fingerprint-
ing scripts. All major techniques are being actively used. The navigator and
screen properties are the most collected (included in 14 scripts), followed by can-
vas (12), bot (11), WebGL parameters (10), WebGL drawing (6), audio and font

Table 1: Summary of security organizations, with the accessed attributes and
the presence in the web pages of our dataset.

Organization goal Organization name
Script # of Script presence on
attributes # domains # pages sign-up sign-in basket payment

Payment platform

Adyen 47 1 1 X
CentroBill 14 1 1 X
Probiller 29 1 4 X X
Razorpay 10 1 1 X

Secured Touch 73 1 6 X

Fraud prevention

Iovation 8 1 1 X
Nudata Security 29 2 3 X X

Sift Science 26 10 26 X X X X
Simility 49 2 3 X

Bot protection
Datadome 33 1 1 X

Geetest 64–65 4 7 X X
PerimeterX 69 1 3 X

enumeration via span (5), canvas font enumeration and WebRTC (3). Access
to navigator.userAgent, navigator.platform and navigator.vendor was
found in 13 scripts. These navigator attributes overlap, we believe that they are
used to detect spoofing. Moreover, we observed 13 scripts where screen.width,
screen.height, screen.availWidth, and screen.availHeight are collected.
These attributes can also be used to detect spoofing, as the available sizes should
be smaller than the width and height. Jonker shows this invariant can detect
bots [14]. The 3 organizations that claim to protect against bots naturally collect
bot attributes. PerimeterX collects 10 of them, and Datadome 5, both covering
all major bot types. However, Geetest only collects 2 bot attributes, both for
detecting PhantomJS.

4.3 Secured vs non-secured web pages

We analysed the ratio of webpage types that include a browser fingerprinting
script. We found browser fingerprinting scripts on all types of web pages. Basket
(33.8%) and Sign-up (31.1%) pages fingerprint more than the average, followed
by content (25.6%), Payment (25.3%), Sign-in (23.4%), and home pages (23.0%).
Other studies have not targeted these specific page types and have generally
relied only on home pages. Consequently, we are—to the best of our knowledge—
the first study to observe the prevalence of browser fingerprinting in sensitive
and secure web pages. We compared fingerprinting in secured to non-secured
pages. We found 54 scripts exclusive to secured pages, 68 scripts exclusive to
non-secured pages, and 47 in both.

We counted the number of fingerprinting scripts included on a page. Out of
405 pages that fingerprint, 339 pages include 1 script, 51 pages had 2 scripts,
and 15 pages had 3 scripts. Out the 66 multi-script pages, (i.e., 51+15), 10 had
first-party fingerprinting scripts, 27 served fingerprinting scripts from a different
domain, and 29 served fingerprinting scripts from both first and third-party do-
mains. We make several hypotheses based on our observations. First, the browser

fingerprinting scripts have different purposes, such as advertising or security ser-
vices, and likely do not share the fingerprints they collect. Next, in the case
of pages from websites being developed by several teams, they may integrate
multiple browser fingerprinting scripts unintentionally. A majority of the pages
with multiple fingerprinting scripts are secured pages, (35 secured versus 31 non-
secure pages), although secured pages represent only 44.2% of our dataset. This
result supports the statement that secured pages fingerprint more aggressively
than non-secured pages.

4.4 Additional Security Mechanisms

During our data acquisition, we also marked the usage of any MFA mechanisms
or bot detection techniques we found. We observed 38 pages with an MFA mech-
anism, the majority being sign-up pages. 3 distinct mechanisms were used during
our collection: an email code or confirmation (used 19 times), an SMS code (17),
and a phone call (2) in which the code to enter on the website consists of the
last x digits of the calling number. The usage of an MFA mechanism for sign-
up pages implies a stronger requirement for proof of identity. Because browser
fingerprinting could fulfil this requirement, we compare the average number of
fingerprinting attributes on these pages to other pages. We observe only 1 sign-up
page that contains an MFA mechanism also embedded a browser fingerprinting
script. Moreover, this webpage also included a bot detection mechanism. This
means that they used both an authentication confirmation and a verification
for bots. Thus, the presence of a browser fingerprinting script might be used to
serve either of these purposes, as we are only observing from the client-side, we
cannot conclude.

Regarding bot detection, we found 51 scripts using bot detection mechanisms:
41 ReCaptcha, 6 Geetest puzzles,7 and 4 textual captchas. As for the MFA
mechanisms, they were mainly observed in sign-up pages. 2 pages were using 2
bot detection techniques: a sign-in page on an adult website and a sign-up page
on an event ticket website. Half of the pages with a bot detection mechanism
embed a browser fingerprinting script. This shows the interest of websites in
using bot detection techniques based on browser fingerprinting.

Synthesis. In this section, we explored the browser fingerprinting scripts of
our dataset, their presence on the different page types we considered and the
adoption of fingerprinting in combination with additional security mechanisms.
More specifically, we show that browser fingerprints are effectively accessed for
all the types of web pages covered by our study. We finally observed that browsers
are fingerprinted slightly more aggressively on secured pages.

7 https://www.geetest.com/en/demo

5 Attack models

This section introduces two attack models we used to assess the security benefits
of browser fingerprinting.

5.1 Stolen credentials

Extracting the protected websites We observed in Section 4 that browser
fingerprints are collected by websites during the authentication process. We
are interested in observing any security improvements brought by fingerprint-
ing in the case of stolen credentials. We assume that a hacker steals a user’s
credentials—through a data leak, a phishing page, or any other technique—and
tries to authenticate into the targeted website. We reproduced this attack be-
haviour by trying to log into the accounts we created for this experiment. It is
worth mentioning that we used a phone number or any additional information
needed to create the account, but we skipped anything that was not manda-
tory. We assume that the attacker may use a different browser instance on a
different OS, with different cookies than the victim’s browser, while browsing
from a different network than the network associated with the original accounts.
We assume that the attacker can solve Captchas when using stolen credentials.
Therefore, bot detection mechanisms are not a reliable protection in this con-
text. We ran this attack on the 42 websites we were able to create accounts
on—12 of them use a browser fingerprinting script on the sign-in page. The 42
websites are well balanced concerning the Country tag we defined, and mainly
concern cryptocurrencies, money transfer, e-commerce, adult, event and sport
tickets content. Among these websites, 16 of them belong to the Top 1k Alexa,
8 between 1k and 10k, 11 between 10k and 100k, and 7 above the Top 100k.
We expect websites that collect browser fingerprints to use it them protect the
accounts from stolen credentials. Our attempts to log in to the accounts with
different fingerprints fell into the following 3 cases:
1. We were able to log into 37 websites without facing additional multi-factor

authentication mechanisms or security warnings.
2. Three websites sent a warning message about an unknown connection to our

account. These messages contained the IP address, the OS and the browser
we tried to connect with.

3. Two websites asked for additional proof of identity. The first one sent an
email code with additional information about the ongoing connection. The
other sent an SMS code to enter to validate the connection attempt. Those
2 websites also proposed a security panel where the user can check their
trusted devices.
We observe that only 5 out of the 42 websites react in a manner that strongly

suggests fingerprint-based detection of known devices and browsers is being used
to secure the account, namely Google, WeTransfer, (files transfer service) Skrill,
Crypto and Binance (cryptocurrencies, finances or money transfer websites). 4 of
them have a security panel with the authorized devices with their characteristics
and all the connection attempts to log into the account.

Table 2: Parameters and results concerning the reauthentication experiment.
Different IP, browser, device indicates the IP address, the browser and the device
were different from the ground truth respectively. * indicates the cookies from
step 5 were reused in step 6 (but they differ from the ground truth cookies).

Website

FP on Authentication attempt combinations

MFA on

sign-up sign-in

n°1 n°2 n°3 n°4 n°5 n°6

sign-up
ground truth different IP

different IP same IP

pages
different IP different IP diff browser diff browser
no cookies diff browser diff device diff device

no cookies no cookies same cookies*

Google SMS OTP connection connection SMS OTP SMS OTP
connection connection

+ alert + alert

Skrill connection connection SMS OTP SMS OTP SMS OTP SMS OTP

Crypto SMS OTP X X
connection connection connection connection connection connection

+ alert + alert + alert + alert + alert + alert

WeTransfer connection connection
connection connection connection connection

+ alert + alert + alert + alert

Binance Email OTP X X connection connection
connection +

Email OTP Email OTP
connection +

specific alert specific alert

Isolating the triggering characteristics As we noticed during our previ-
ous experiment, several details, including the OS, browser and IP address, were
provided to the user to explain the warnings or requirements for additional infor-
mation to authenticate. The IP address can be used to extract the approximate
geolocation of the user and to detect connections from unusual networks (e.g.,
through a cloud provider). Although not indicated, we believe the presence of
previous login cookies might also be used by the website to decide to authenticate
the users more easily. Their absence might reveal a device or browser change.
For the 5 websites of our previous results, we tried to isolate the set of elements
that trigger an additional security authentication mechanism or warning. To do
so, we tried the following 6 combinations:
1. We re-authenticated with the same conditions as the ones the account was

created with, to get the ground-truth.
2. We signed-in with the same browser but using a different IP address than

the one used for the account creation and previous login attempt.
3. On a different IP address, using the same browser, we logged in using the

browser’s private mode to navigate without reusing any cookies.
4. On the same device but using a different browser, with a different IP address.
5. We then tried to reauthenticate with a different device and browser, and a

different IP address.
6. Finally, we tried to log again on the same device and the same browser as the

previous combination, without deleting cookies or any other stateful data,
but we changed our IP address to reuse the original IP address used to create
the account and log in for the ground truth combination.
We ran the above combinations in order. Browser and OS changes make the

fingerprint different, contrary to IP address and cookies that do not affect the
browser fingerprint. If fingerprinting is used to secure the account, we expect to
observe different behaviors on the combinations where the fingerprint changes,
namely combinations n◦4, n◦5 and n◦6.

Table 2 summarizes up the results we observed according to the changes we
applied to the browsing characteristics. Google, Skrill, and WeTransfer seem to
be based on cookies. When they are not present, the first 2 ask for a One Time
Password (OTP), while WeTransfer sends an alert. Crypto always has the same
behavior: it allows the connection, but sends an alert. Finally, Binance have the
most advanced system. First, it sends an alert about the IP address when we
changed it, when browsing without cookies (combination n◦3). The message did
not contain any reference to device or browser changes, so we believed the website
knew we were on the same device and browser. The behavior changed when we
used another browser on the same device: Binance sent us an email containing
an OTP and basic information about the new browser used (combination n◦4).
It also sent an email with an OTP when using a different device (combination
n◦5). When staying on the browser chosen on this second device and using the
same IP address as the one used, we received an alert (combination n◦6). Based
on this last experiment, we make 2 observations:
– The alert message is different from the one when we changed the IP address.

The message now mentions a change in the browser and device.
– We received an email alert, but we were still able to sign in. We believe this

is because the cookies set by the browser were the same as the ones in the
previous combination when we needed to provide an email OTP to validate
the connection.
In our dataset, we see browser fingerprinting being used only once, in com-

bination with other identifying techniques, to resist stolen credentials. As this
attack is similar to a user trying to login from a fresh browser, it also illustrates
the additional steps users needs to complete to sign in with a new browser.

5.2 Cookie hijacking

Attack design Cookie hijacking can lead to account compromise and data
leaks [28]. As browser fingerprinting can be used to identify a browser, we make
the hypothesis it can be used to help tell if a cookie has been hijacked and used
by a different browser. Our goal is not to study the existing ways to perform a
cookie hijacking. In our attacks, we assume an attacker was able to steal cookies,
no matter the method used—XSS vulnerability, insecure network exchanges,
malicious JavaScript injection. Instead, we aim at studying the resilience to
cookie hijacking by websites in our dataset if browser fingerprinting is used to
protect the accounts. We designed 2 attacks to study cookie hijacking.

Our first attack is session cookie hijacking. It consists in trying to authenti-
cate using cookies stolen from an existing user session. We log in to the target
site on a first browser, then we extract the cookies and login page URL and
insert these into a second browser. If the attack works, the second browser will
be authenticated and the session will be in the same state as on the first browser.
If not, the second browser will be stuck on the login page.

Our second cookie hijacking attack focuses on basket workflows. The goal is
to obtain the same basket as a user by hijacking their cookies. We fill a basket
with a commercial item, and visit the page summarizing the basket and its

content. Similarly to the session hijacking cookie attack, we then extract the
URL and cookie, and put them in another browser. If the basket content is the
same on the 2 browsers, the attack is successful.

Methodology For each website, we automated the browsing to the required
pages with a Puppeteer instance. We automate the insertion of cookies and
the navigation to the URL with a second Puppeteer instance. We lower the
possibility to be detected as a bot by changing the fingerprint of the Puppeteer
instances for them to look like Chrome 84. To do so, we reused the value of
each attribute collected by fingerprinters during our manual data collection and
integrated them into an extension in the Puppeteer instance that returns the
corresponding value when an attribute is accessed. We also added a delay of at
least one second between each action on a page.

Before studying the impact of fingerprint modification, we performed a pre-
liminary run with and without the collected cookies to make sure that sessions
could be stolen from the Puppeteer instance and that no other parameters, like
localStorage or a hidden parameter in the URL, would impact our measure-
ment. This way, we created a subset of websites where our attacks are successful.
Finally, we ran our attack on all the websites of this subset and collected the
cookies and URLs. We used different parameters and configurations of the second
Puppeteer instances by running them on a different device on a different net-
work with a different IP address. We also changed all the fingerprint attributes
we monitored during our data collection by giving them values from a Firefox
72 instance with the same extension as described earlier in this section. Should
a website be protected and detect the different fingerprint, we rerun the attack
by modifying parts of the fingerprint to detect which attributes or combinations
trigger the defense mechanism.

Table 3: Number of websites involved in
each step of the validation for the session
and basket cookies attacks, and results
of the attack on the validated subset

websites
Session Basket

FP no FP FP no FP
Dataset 12 30 33 51
Cannot automate 0 5 8 8
Anti-bot triggered 2 1 3 3
Impacted by other params 3 5 6 6
Nothing sold 0 0 7 16
Validated subset 7 19 9 18
Attack works 7 19 9 18

Results We ran these experiments in
July and August 2020. We used the 42
websites we were previously able to
create an account on for the session
hijacking cookie. Concerning the bas-
ket hijacking cookie attack, we used
the 84 websites of our dataset con-
taining at least a basket page—33 of
them contain at least one fingerprinter
on a basket page. We then ran each
step of our validation process to make
sure the cookies were the only variable
needed to retrieve the basket or ses-
sion state. The results are presented
in Table 3. Because of the time gap
between this experiment and the one
described in Section 4, we were unable to fill baskets for several websites with

a single item as some of them were not selling anything anymore. We believe
this is likely due to the economic and societal restrictions following the Covid-19
pandemic. We ended up with a validated subset of respectively 26 and 27 web-
sites for our session and basket cookies attacks. As explained in the methodology
section, we then ran our attack and inserted the cookies on a different device on
a different network with a different fingerprint and HTTP headers. With these
parameters, the attacks worked on every website of our validated subset. These
behaviors imply no defense mechanism was being used. Thus, browser finger-
printing is not used to protect against a session or basket cookie hijacking on
the websites of our dataset.

As we did not detect any usage of additional security mechanisms, we studied
the way HTTPS and HSTS are deployed and how cookies are configured to
observe if their settings were secure enough to protect against traffic sniffing.
If these elements are properly set, it lowers the attack surface on cookies by
complicating their extraction via JavaScript and avoiding their theft from HTTP
requests [28]. Over the 53 websites we tested our cookie hijacking attacks on, 52
were redirecting their traffic through HTTPS and 30 of these 52 websites were
setting the Strict Transport Security response header in the browser. During
the experiments, we collected and injected 1, 080 cookies, 198 (18%) and 305
(28%) were HTTPOnly and Secure, respectively. We also looked at the SameSite

parameter, observing 11 (1%) and 109 (10%) cookies have a Strict and Laxist

SameSite policy, respectively. Even if the SameSite parameter is now set by
default to Laxist since Chrome 80/Firefox 69, few websites were setting it to
a secure value, indicating they were added before to all requests because of the
default None SameSite policy.

Based on these observations, we conclude that developers put a lot of trust
in cookies as their presence alone in our tests lead to direct user authentication.
This trust is only possible thanks to strong security mechanisms in browsers that
have grown and matured a lot in the past decade. The rise of HTTPS coupled
with a lot of control over what can be executed on a webpage (through CSP,
CORS and all their derivatives) have changed the way we come to reason about
cookie hijacking and how much harder it is to pull off such an attack today.
Yet, our experiment shows that if indeed cookies are stolen, none of the tested
websites have any mechanisms in place to detect any irregularities. We can only
hypothesize at this point that this may not be in the scope of their threat model.

Synthesis. In this section, we designed 2 attack models and tested them to
measure the effectiveness of fingerprinting to protect users on web pages in our
dataset. We observed fingerprinting being successfully used to improve security
in our first attack using credentials to log in. Concerning our second attack, we
did not detect any website in our dataset that used browser fingerprinting to
protect against cookie hijacking.

6 Discussion

Understanding the intent of a fingerprinting script is hard. In the case
of browser fingerprinting, analyzing why a script is included in a web page and
why it’s accessing specific attributes is complex as there is little indication of
what will be done with the collected data once it has left the device. Still, it
is possible to rely on some signs to capture the intent behind a fingerprinting
script, such as:

– Accessed APIs: depending on the goal of the script, some APIs may be
picked over others. For example, anti-bot companies access well-identified
bot attributes, while others interested in cross-browser fingerprinting access
OS and hardware-specific attributes.

– Number of collected attributes: while a very high number of attributes
can often be linked to a fingerprinting behavior, the numbers vary. As seen
in Table 1, some third parties, like Iovation, build on only 8 attributes, while
others, like Secured Touch, collect up to 73. As a lot of the state of the art in
fingerprinting is interested in either uniquely identifying devices or detecting
inconsistencies, it makes sense to collect as many attributes as possible. Yet,
as seen with Iovation, if you have a clear goal in mind, collecting very few
attributes can be enough for your purpose.

– Execution context: where the fingerprinting script is located can show
intent. If a fingerprinting script is included in all web pages, it is probably
linked with an anti-bot system but, if it is only present on a payment page,
then it is likely used for fraud prevention.

Considering the above signals, it is possible to estimate how the collected
information will be used, but it does not provide certainty without having access
to the backend where the browser fingerprints are analyzed.

Fingerprinting is not being used to protect individual accounts. In
Section 4.2, we identified third-party actors who collect a wide range of data to
implement bot protection and fraud prevention. They protect a website globally
against external threats. Yet, when looking at what is offered to protect users’
accounts, the story seems very different. Based on our experiments detailed in
Section 5, there is little evidence that fingerprinting is currently being used to
protect individual accounts. As we detected fingerprinting scripts delivered by
12 security-oriented organizations, we would have expected them to add an ad-
ditional security layer to protect users. This raises the question of the relevance
of using such a script from a security organization if the final usage is not secu-
rity. More generally, we tested the defenses of 42 websites by creating accounts
and logging with several contexts and parameters. Apart from some warning
messages with few details on the new connecting device, we found only a single
website blocked access to their services when the browser fingerprint did not
match. Moreover, we have not detected any usage of browser fingerprinting to
protect against our second attack, the cookie hijacking. We believe these are
negative results of our paper and deserves further discussion.

First, theses results raise the question of why we observed such behaviors.
One concern could be the accuracy of the browser fingerprinting algorithm. While
cookies and IP addresses send strong signals that websites have relied on for
years, a fingerprint is, in contrast, more volatile. It can change due to a minor
modification to the browser’s configuration or an update. Some attributes may
be deemed too unstable to be included for verification while others are much
more reliable and even predictable. As detailed by Vastel et al. [32], browser
fingerprinting techniques require constant adaptation to maintain their robust-
ness. Another concern is user experience, as having an overly sensitive algorithm
could prompt for additional checks too often, even if the user did not change
their device or browser.

Deficiencies in the state of the art. As we identify concerns about the use
of browser fingerprinting in a multifactor authentication system, we believe the
state of the art currently lacks studies to measure the effectiveness and reliability
of MFA with browser fingerprinting. First, users would need a way to add a new
fingerprint to their account to be able to connect with another device. Websites in
our dataset seem to use a OTP email. We believe other options should be studied
because each authentication system is different and has its own trade-offs. Also,
fingerprints evolve over time, and a multifactor authentication system would
must be able to tell if a fingerprint is an evolution of an already registered one or
not. While solutions have been proposed to compute a fingerprint evolution [32],
it has been shown to not be fast enough when confronted with a large dataset [19].
Used in an authentication context, it would require a quick decision to have
negligible impact on the user experience. An interesting study has been proposed
by Alaca et al. [2] about the requirements of a such a system, but due to the
rapid evolution of the web ecosystem, the study might be outdated. Finally,
the state of the art lacks an evaluation of the user experience, satisfaction and
confidence when using this kind of system.

Benefits provided by our dataset. We believe our manual dataset is in-
teresting for the community for future research on browser fingerprinting. In
combination with a study about the origin and causality of a change in the
browser fingerprint, it could be used to better understand what information
the websites is looking for. They could be interested in an attribute that con-
cerns some specific hardware or the software detail of the device, for example,
to determine whether the fingerprint is consistent. An inconsistency could re-
veal a possible identity theft or a fraudster. Thus, it could help understand the
purpose of browser fingerprinting collection on sensitive pages. Moreover, the
automated detection of multi-factor authentication mechanisms suffers from the
same biases as the automated detection of browser fingerprinting, and much of
the same reasoning behind this study would apply. As explained in Section 2,
the literature lacks a study on multi-factor authentication adoption on the web.
Our dataset provides information about such mechanisms and could be used as
a starting point for an in-depth study on these security systems.

7 Conclusion

In this paper, we studied the adoption of browser fingerprinting for security ap-
plications. More specifically, we analyzed 4 types of secured web pages—sign-up,
sign-in, basket, and payment—that process sensitive personal data. We consid-
ered the state-of-the-art JavaScript attributes and developed an extension to
monitor browser fingerprinting attribute accesses. To avoid biases introduced by
automated crawlers and bots, we manually visited 1, 485 pages published by 446
websites, and created accounts, logged in to verify authentication procedures,
and went through the payment processes where available. We labeled 169 dis-
tinct fingerprinters using an existing technique. We publicly share our secured
web page dataset and the detected fingerprinters we found.8 We observed these
fingerprinters being served by all types of secured pages and various website
categories. We analyzed the script providers and found 12 security-focused or-
ganizations that use browser fingerprinting in secured web pages. We measured
the use of MFA systems and bot detection, showing fingerprinting is used in
combination with other identification techniques. We defined 2 attack models,
stolen credentials and cookies hijacking, and evaluate websites in our dataset
against them. Finally, we did not observe fingerprinting being actively used to
secure websites against these 2 attacks.

References

1. Acar, G., Eubank, C., Englehardt, S., Juarez, M., Narayanan, A., Diaz, C.: The
web never forgets: Persistent tracking mechanisms in the wild. CCS’14

2. Alaca, F., van Oorschot, P.C.: Device fingerprinting for augmenting web authenti-
cation: Classification and analysis of methods. ACSAC’16

3. Bursztein, E.: The bleak picture of two-factor authentication
adoption in the wild (2018), https://elie.net/blog/security/

the-bleak-picture-of-two-factor-authentication-adoption-in-the-wild/

4. Bursztein, E., Malyshev, A., Pietraszek, T., Thomas, K.: Picasso: Lightweight de-
vice class fingerprinting for web clients. SPSM ’16

5. Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via os and hardware
level features. NDSS’17

6. Durey, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: An iterative technique to
identify browser fingerprinting scripts (2021)

7. Eckersley, P.: How unique is your web browser? PETS’10
8. Englehardt, S., Narayanan, A.: Online tracking: A 1-million-site measurement and

analysis. CCS’16
9. Gómez-Boix, A., Laperdrix, P., Baudry, B.: Hiding in the crowd: An analysis of

the effectiveness of browser fingerprinting at large scale. WWW’18
10. Group, A.P.W.: Phishing activity trends report. https://docs.apwg.org/

reports/apwg_trends_report_q3_2019.pdf (2019)
11. Invernizzi, L., Thomas, K., Kapravelos, A., Comanescu, O., Picod, J., Bursztein,

E.: Cloak of visibility: Detecting when machines browse a different web. S&P’16

8 https://zenodo.org/record/3872144

12. Iqbal, U., Englehardt, S., Shafiq, Z.: Fingerprinting the fingerprinters: Learning to
detect browser fingerprinting behaviors

13. Jonker, H., Kalkman, J., Krumnow, B., Sleegers, M., Verresen, A.: Shepherd: En-
abling automatic and large-scale login security studies (2018)

14. Jonker, H., Krumnow, B., Vlot, G.: Fingerprint Surface-Based Detection of Web
Bot Detectors (2019)

15. Laperdrix, P., Avoine, G., Baudry, B., Nikiforakis, N.: Morellian analysis
for browsers: Making web authentication stronger with canvas fingerprinting.
DIMVA’19

16. Laperdrix, P., Baudry, B., Mishra, V.: Fprandom: Randomizing core browser ob-
jects to break advanced device fingerprinting techniques. ESSoS’17

17. Laperdrix, P., Bielova, N., Baudry, B., Avoine, G.: Browser fingerprinting: A sur-
vey. TWEB’20

18. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: Diverting mod-
ern web browsers to build unique browser fingerprints. S&P’16

19. Li, S., Cao, Y.: Who touched my browser fingerprint?: A large-scale measurement
study and classification of fingerprint dynamics (2020)

20. Mowery, K., Shacham, H.: Pixel perfect: Fingerprinting canvas in HTML5.
W2SP’12

21. Mulazzani, M., Reschl, P., Huber, M., Leithner, M., Schrittwieser, S., Weippl, E.,
Wien, F.: Fast and reliable browser identification with javascript engine finger-
printing. W2SP’13

22. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
S&P’13

23. Nikiforakis, N., Joosen, W., Livshits, B.: Privaricator: Deceiving fingerprinters with
little white lies. WWW’15

24. Olejnik, L., Acar, G., Castelluccia, C., Diaz, C.: The leaking battery. In: Data
Privacy Management, and Security Assurance (2016)

25. Ometov, A., Bezzateev, S.V., Mäkitalo, N., Andreev, S., Mikkonen, T., Kouch-
eryavy, Y.: Multi-factor authentication: A survey. Cryptography (2018)

26. Rizzo, V., Traverso, S., Mellia, M.: Unveiling web fingerprinting in the wild via
code mining and machine learning. PETS’21

27. Rochet, F., Efthymiadis, K., Koeune, F.A., Pereira, O.: Swat: Seamless web au-
thentication technology. Association for Computing Machinery (2019)

28. Sivakorn, S., Polakis, I., Keromytis, A.D.: The cracked cookie jar: Http cookie
hijacking and the exposure of private information. S&P’2016

29. Unger, T., Mulazzani, M., Frühwirt, D., Huber, M., Schrittwieser, S., Weippl, E.:
Shpf: Enhancing http(s) session security with browser fingerprinting (AReS’13)

30. Urban, T., Degeling, M., Holz, T., Pohlmann, N.: Beyond the front page: Measuring
third party dynamics in the field

31. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: Fp-scanner: The privacy
implications of browser fingerprint inconsistencies. USENIX’18

32. Vastel, A., Laperdrix, P., Rudametkin, W., Rouvoy, R.: FP-STALKER: Tracking
Browser Fingerprint Evolutions. S&P’18

33. Vastel, A., Rudametkin, W., Rouvoy, R., Blanc, X.: FP-Crawlers: Studying the
Resilience of Browser Fingerprinting to Block Crawlers. MADWeb’20

34. Zeber, D., Bird, S., Oliveira, C., Rudametkin, W., Segall, I., Wollsen, F., Lopatka,
M.: The representativeness of automated Web crawls as a surrogatefor human
browsing. WWW’20

A Selected Search Keywords

We used the following list of keywords to get specific website types: – Bank
– Money transfer service – Stock trading – Financial – Cryptocurrency – Social
insurance – Taxes – Healthcare – Job search – News – Email – Adult – Dating –
Metro/train/flight tickets – Flight companies – Travel agencies – Airlines – Event
ticket – Sport ticket – Social network – Ecommerce – Shopping – TV channel
– Streaming – Bet games – Poker – Online game.

We used the following list of countries for our experiment: – United States
– Japan – Germany – France – Russia – Spain – United Kingdom – India – China

