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Abstract

A general theory for competitive dynamics among many strains at the epidemiological level is required
to understand polymorphisms in virulence, transmissibility, antibiotic resistance and other biological traits
of infectious agents. Mathematical coinfection models have addressed specific systems, focusing on the cri-
teria leading to stable coexistence or competitive exclusion, however, due to their complexity and nonlin-
earity, analytical solutions in coinfection models remain rare. Here we study a 2-strain SIS compartmental
model with co-infection/co-colonization, incorporating multiple fitness dimensions under the same frame-
work: variation in transmissibility, duration of carriage, pairwise susceptibilities to coinfection, coinfection
duration, and transmission priority effects from mixed coinfection. Taking advantage of a singular per-
turbation approach, under the assumption of strain similarity, we expose how strain dynamics on a slow
timescale are explicitly governed by a replicator equation which encapsulates all traits and their interplay.
This allows us to predict explicitly not only the final epidemiological outcome of a given 2-player compe-
tition, but moreover, their entire frequency dynamics as a direct function of their relative variation and of
strain-transcending global parameters. Based on mutual invasion fitnesses, we analyze and report rigor-
ous results on transition phenomena in the 2-strain system, strongly mediated via coinfection prevalence.
This framework offers a deeper analytical understanding of 2-strain competitive games in coinfection, with
applications to virulence, interventions, antibiotic resistance, and social evolution theory.

Keywords: SIS model; coinfection; polymorphism; replicator equation; timescale separation; strain simi-
larity; invasion fitness; coexistence; competitive release; epidemiology; priority effects; fitness cost

1 Introduction

Epidemiological models of coinfection have a long history of study (Levin and Pimentel, 1981; Adler and
Brunet, 1991; Nowak and May, 1994; May and Nowak, 1995; van Baalen and Sabelis, 1995; Mosquera and
Adler, 1998; Martcheva, 2009; Thieme, 2007; Alizon, 2013). Examples of multi-strain infectious agents where
coinfection processes appear and shape epidemiology include Streptococcus pneumoniae bacteria (Lipsitch,
1997; Gjini et al., 2016), Bordetella pertussis (Nicoli et al., 2015), Mycobacterium tuberculosis (Cohen et al.,
2012), Staphylococcus Aureus, (Pinotti et al., 2019) and many others, comprising plants (Susi et al., 2015;
Halliday et al., 2020), and also inter-species co-colonization such as between Haemophilus Influenzae and
pneumococcus serotypes (Margolis et al., 2010; Cobey and Lipsitch, 2013) and coinfection with different viruses
(Furuya-Kanamori et al., 2016). Typically the strain-defining parameters vary much less within than between
species. However, until now, models have not leveraged the conceptual and analytic advantages of strain
similarity to the full extent, except for the classical comparisons between strain-specific basic reproduction
numbers.

While it has long been recognized that in coinfection systems, basic reproduction numbers alone do not
determine strain competitive dynamics (Nowak and May, 1994; van Baalen and Sabelis, 1995), a generic
framework to integrate variation among strains along several phenotypic axes and coinfection, and map these
directly to strain frequencies, has not been developed. Moreover, until now simplified versions of traits involved
in SIS dynamics between two strains have been addressed: either modeling vulnerability to coinfection as
a single parameter (Alizon, 2013), or focusing just on cross-strain competition (Lipsitch, 1997), four-way
competitive interactions via altered susceptibilities to coinfection (Gjini et al., 2016), exclusively cooperative
dynamics (Chen et al., 2017), or focusing on transmission and clearance rate variation (Martcheva, 2009;
Thieme, 2007).

A key level of strain interactions in coinfection is the within-host level, where the order and timing of
arrival, can matter for onward transmission or clearance. Such interactions when studied empirically have
revealed strong priority effects, where the first arriving genotype has an advantage over later arriving ones

1



(De Roode et al., 2005; Halliday et al., 2020). Independently of the underlying mechanisms, whether via host
immunity, resource overlap within host or others, priority effects have repercussions on disease dynamics and
parasite assemblage dynamics at higher scales. Yet, the full extent of the inter-dependence between this trait
and other traits involved in epidemiological dynamics remains poorly understood. Thus, although several
aspects of coinfection have been studied, typically with simulations or analyses restricted to special cases and
particular models, a comprehensive and concise theoretical framework for how coinfection prevalence broadly
interplays with multiple traits between 2 coinfecting agents in endemic systems is still missing.

In this paper, we describe and study a general system for epidemiological dynamics of similar co-infecting
entities (e.g. strains of the same infectious agent or similar species) that comprise a rich ecological and
epidemiological phenomenology. Such a system could apply, but not be limited to, polymorphic Streptococcus
pneumonia bacteria or other commensal bacteria (Lipsitch, 1997; Gjini et al., 2016; Davies et al., 2019).
We generalize a previously- introduced quasi-neutral Susceptible-Infected-Susceptible (SIS) framework for 2
circulating strains, where we showed that asymmetries in pairwise susceptibilities to co-colonization create
frequency-dependent advantage for one of the strains and can give rise to coexistence, bistability as well as
competitive exclusion (Gjini et al., 2016; Gjini and Madec, 2017). Here, we study additional variation between
two microbial strains, in other traits besides vulnerability to co-colonization, including transmission rate and
duration of carriage, two classical traits that are known to vary among pneumococcus serotypes (Abdullahi
et al., 2012), but in general can also vary among two arbitrary infectious agents, e.g. an antibiotic-resistant
and an antibiotic-sensitive strain. Furthermore, we also allow for variation in transmission biases from co-
infected hosts carrying a mixture of two strains, and in duration of coinfection episodes, where priority effects
can play a role. Until now analytic solutions for how such systems behave in time have not been obtained,
although theoretical models have studied the conditions for coexistence vs. competitive exclusion or used
numerical simulations as an approach in specific cases (Lipsitch, 1997; Zhang et al., 2004; Gjini et al., 2016;
Alizon, 2008; Hansen and Day, 2014).

The novelty of our approach lies in applying singular perturbation theory to a quasi-neutral model, whereby
we obtain a timescale separation, similar to Gjini and Madec (2017), in order to express the total dynamics
as a fast plus a slow component, related to broken symmetries along 5 traits between strains: transmission
rate βi, clearance rate γi, coinfection duration γij , co-colonization interactions kij , and transmission priority
effects from coinfection piij . Net competition dynamics can be complex because all traits interact nonlinearly
to determine final strain fitness at the host population level, but here we make such selective process entirely
explicit. Moreover, we show how the strain-transcending parameters, defining the neutral model at the center,
feed back on the strain dynamics on the slow timescale, and tune the net importance of each phenotypic axis.

We concentrate only on up to 2 strains co-colonizing a host (MOI=2), assuming that primary colonization
by one strain alters host susceptibility to secondary strains, (increasing or decreasing it) by a factor kij ,
relative to uninfected hosts, without acquired immunity. We apply results for the N -strain case derived in
(Le et al., 2021). The altered susceptibilities to co-colonization, given by a 2 × 2 matrix in the case of 2
strains, can comprise antagonistic or facilitative interactions (kij < 1 or ≥ 1). Beyond enabling competition
and cooperation to be studied under the same framework, our model allows also for any asymmetries in
this co-colonization susceptibility matrix, as for the coinfection clearance rate matrix, depending on strain
composition, and for transmission biases from coinfected hosts, depending on order of strain arrival.

Considering the complex epidemiological multi-strain dynamics in fast and slow components has many
analytic advantages as argued in (Madec and Gjini, 2020; Le et al., 2021). Our neutral model satisfies the
criteria for ecological and population-genetic neutrality discussed in the context of ‘no coexistence for free’
(Lipsitch et al., 2009), but much more than a neutral null model, our approach highlights the neutral model
as the core organizing centre of the multi-strain dynamics. This is made entirely explicit via the slow-fast
timescale separation formalism (Madec and Gjini, 2020; Le et al., 2021), linking neutral and non-neutral
dynamics in an ‘organic’ manner, and showing how parameters of the neutral model impact on the slow
‘selection’ dynamics between strains, driven by specific feedbacks.

The paper is organized as follows. First, we describe the epidemiological framework. Secondly, we expose
and elaborate on a closed and generic analytic solution for 2-strain frequency dynamics over the slow time-scale,
in a changing fitness landscape shaped by multi-trait variation. This solution coincides with a version of the
classical replicator equation in 2 dimensions (Hofbauer and Sigmund, 2003), but with an explicit payoff matrix
derived from 5-dimensional trait variation between strains relatively weighted in the overall pairwise invasion
fitness (Le et al., 2021). Third, we analyze why and how coexistence, bistability or competitive exclusion of
either strain may occur between any two strains, for a fixed given trait variation between them. Fourth, we
focus our attention on an in-depth analytic investigation of how strain-transcending mean-field gradients can
shift the same system across these regimes, for different values of global R0 or coinfection prevalence, detailing
the context-dependence of net outcomes. Finally, we conclude with a roadmap for biological applications.
We believe our analysis and approach offer a fresh perspective, to quantify and predict how multiple traits
together shape strain dynamics and final equilibrium prevalence via joint population feedback.
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Figure 1: SIS co-colonization model diagram for two strains (N = 2). a. The model follows the structure
in (Gjini and Madec, 2017) but here two strains can differ in transmission rate βi, clearance rate γi, co-colonization
clearance rate γij , altered susceptibilities to co-colonization kij and transmission biases from coinfection piij . Thus
any combination of relative fitness costs and advantages can be encapsulated, provided that their variation is not too
big, as expected for similar conspecific strains, or similar infectious co-circulating ‘species’. Non-carriers (S) become

carriers of either strain 1 or 2 (Ii) with force of infection Fi = βi
(
Ii + Iii +

∑
ij

(
piijIij + pijiIji

))
where the mixed

carriage compartment (Iij) may transmit either strain with a slightly biased probability away from 1/2 depending
on the order of arrival (see (Le et al., 2021)). Here 1/γi is the strain-specific duration of single colonization, 1/γij
are the composition-specific durations of co-colonization, which can vary for all four Iij classes. The coefficients
kij capture the altered relative susceptibilities to co-colonization between strains, when a host is already colonized,
and transitions from primary colonization to co-colonization. The parameter r is the natural birth/death rate of
the host. b. Assuming strain similarity, the epidemiological dynamics in such an SIS co-colonization model, can be
decomposed into a fast (neutral) component and slow (non-neutral) component. The slow dynamics follow an explicit
replicator equation which includes in the net payoff matrix variation across 5 dimensions of fitness for each strain. This
equation allows to predict analytically the entire temporal dynamics of two strains as a function of their epidemiological
phenotypes. c. We simulate an example of 2-strain system in two timescales. On the fast time-scale (o (1/ε)), strains
follow neutral dynamics, driven by mean-field parameters, where total prevalence of susceptibles, single infection and
co-infection stabilize. On a slow time-scale, εt, within conserved global epidemiological compartments, complex non-
neutral dynamics between strains takes place, depicted here by the blue and green shadings. d. Each system can be
in one of four scenarios between 2 strains, depending on the signs of mutual invasion fitnesses (e.g. dynamics in c
corresponds to the black point in the coexistence region). We find that frequency dynamics are explicitly governed by
the λj

i . In our model, invasion fitnesses are explicit functions of strain variability and global mean-field parameters.

2 The modeling framework

2.1 The SIS model with coinfection

We study an infectious agent transmitted in a host population following Susceptible-Infected-Susceptible
dynamics, where there are two co-circulating strains (denoted by 1 and 2). Susceptible hosts S can acquire
any strain i, by which they enter the single colonization compartment Ii. Already colonized hosts Ii can acquire
any secondary strain j, leading them to enter the co-colonization compartment Iij . As in the pioneering model
by (van Baalen and Sabelis, 1995), an important epidemiological feature here is that hosts can be coinfected
twice by the same strain (I11 and I22 compartments). Without this assumption, a rare strain always has an
advantage: it can infect hosts already infected by the common strain while the common strain has few hosts
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to coinfect. Co-colonized and singly-colonized hosts transmit at equal total rate, and hosts carrying a mixture
of two different strains transmit any strain i with a given probability piij which can be different from 1/2 and

may depend on the order of arrival within-host (e.g. piij 6= piji). The model follows the structure in (Gjini
et al., 2016; Gjini and Madec, 2017), but here we have a more general model, allowing for more trait variation
between strains. In (Gjini and Madec, 2017), only pairwise interactions in co-colonization were modeled
as different between strains (kij coefficients), and this was sufficient to generate stabilizing mechanisms for
coexistence. Thus, in addition to kij , we model strain-specific transmission rate, βi, and clearance rate γi, as
well as coinfection clearance rates γij and transmission biases from coinfection piij . Recruitment of susceptibles
happens at per-capita rate r, assumed equal to the natural mortality rate. The scheme of the model for two
strains is given in Figure 1. The explicit dynamical system of equations for the N -strain version of this
epidemiological model is derived in Le et al. (2021), and given by:

dS

dt
=r(1− S) +

N∑
i=1

γiIi +

N∑
i,j=1

γijIij − S
N∑
i=1

Fi,

dIi
dt

=FiS − (r + γi)Ii − Ii
N∑
j=1

kijFj , 1 ≤ i ≤ N,

dIij
dt

=kijIiFj − (r + γij)Iij , 1 ≤ i, j ≤ N,

(2.1)

where in our case for N = 2, i, j ∈ {1, 2}, and the force of infection for each strain is given by:

Fi = βi

Ii +

N∑
j=1

(
piijIij + pijiIji

) , (2.2)

Some conventions and notations for the parameters in a multiple-trait model, under the similarity assumption
between strains, are given in Table 1. To obtain the fast-slow decomposition, we rewrite the system in terms
of new aggregate variables as in (Madec and Gjini, 2020), such as the total prevalence of colonized hosts T ,
the total prevalence of hosts transmitting either strain Ji, the total prevalence of single colonization I, and
co-colonization D:

T =

2∑
i=1

Ii +

2∑
i,j=1

Iij , Ji = Ii +

2∑
j=1

(
piijIij + pijiIji

)
, I =

N∑
i=1

Ii, D = T − I. (2.3)

Following similar technical steps as in (Madec and Gjini, 2020), in Le et al. (2021), we have derived that
during the fast timescale, strains behave as neutral (all parameters are identical between them) and each
global aggregated variable tends to its equilibrium: S → S∗, T → T ∗, I → I∗ and D → D∗ as ε → 0. With

the basic reproduction number in this system denoted R0 =
β

m
, this equilibrium is given by:

S∗ =
1

R0
, T ∗ = 1− S∗, I∗ =

T ∗

1 + k(R0 − 1)
, D∗ = T ∗ − I∗. (2.4)

and the ratio of single to co-colonization is given by µ =
I∗

D∗
=

1

k(R0 − 1)
.

Further, during the slow time scale εt, strains are not equivalent, their differences in fitness start to get
manifested, and what follows is non-neutral dynamics at the level of strain frequencies zi. For a 2-strain
system, there are four possibilities for the equilibrium: i) coexistence, ii-iii) exclusion of each strain, and iv)
bistability of competitive exclusion states, also known as a priority effect. Below, these outcomes and their
dynamics are shown to depend explicitly on mutual invasion growth rates between two strains.

2.2 Pairwise invasion fitness and replicator dynamics via timescale separation

In this more complex model, we follow the same reasoning as in (Madec and Gjini, 2020), focusing on mutual
invasion fitnesses, to express the selective dynamics occurring on the slow time scale. We will define λji to be
invasion fitness of strain i in an equilibrium set by strain j alone, a classical approach in adaptive dynamics
(Geritz et al., 1998). Initially, based on Le et al. (2021), we redefine θi via the global quantities and parameters
of the neutral model:

θ1 =

(
T ∗

D∗

)2

, θ2 =
γI∗ (I∗ + T ∗)

2mT ∗2

(
T ∗

D∗

)2

, θ3 =
γT ∗

2mD∗
, θ4 =

T ∗

D∗
, θ5 =

βI∗T ∗

2mD∗
. (2.5)
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Table 1: Conventions and notations of parameters and variables, where we assume the traits
are numerically close for closely-related strains, or similar infectious entities. This similarity
assumption (0 < ε� 1, small) forms the basis for dynamic decomposition into fast and slow components (Le
et al., 2021).

Parameter Interpretation Specification Features
Original system
(Quasi-neutral)
βi = β (1 + +εbi) Strain-specific transmission rates ∆b = b1 − b2 Favours 1 if ∆b > 0

γi = γ (1 + ενi) Strain-specific clearance rates of sin-
gle colonization

∆ν = ν2 − ν1 Favours 1 if ∆ν > 0

γij = γ (1 + εuij) Clearance rates of co-colonization
with i and j

∆iu = 2ujj − (uij + uji) Favours i if ∆iu > 0

psij =
1

2
+ εωsij Transmission probability1 of s ∈

{̃i, j}; from a host co-colonized by
strain-i then -j (priority effects).

∆ω = ω1
12 − ω2

21 Favours 1 if ∆ω > 0

kij = k + εαij Relative factor of altered suscepti-
bility to co-colonization between col-
onizing strain i and co-colonizing
strain j

∆iα = αji−αjj+µ(αji−αij) Favours i if ∆iα > 0

Embedded
neutral system
(Fast):

r Susceptible recruitment rate Equal to natural mortality Host turnover ↑
β Transmission rate (infectiousness) β > 0 Transmission ↑
γ Clearance rate of single colonization Equal to clearance rate of co-

colonization, γ > 0
Transmission ↓

m Net infected host turnover rate m = r + γ R0 ↓
R0 Basic reproduction number R0 = β/m > 1 Colonization ↑
k Altered susceptibility to co-

colonization when colonized
k > 0 k ≥ 1: facilitation,

k < 1: competition
µ Single to co-colonization ratio µ = 1

(R0−1)k Monotone in R0 and k

Non-neutral
system (Slow):

θ1 Weight of transmission rate axis βi (µ+ 1)
2

Depends on µ
θ2 Weight of clearance rate axis γi

γ
2(γ+r)

(
2µ2 + µ

)
Depends on µ, γ, r

θ3 Weight of coinfection clearance rate
axis γij

γ
2(γ+r) (µ+ 1) Depends on µ, γ, r

θ4 Weight of transmission priority ef-
fects from coinfection axis piij

µ+ 1 Depends on µ

θ5 Weight of susceptibilities to coinfec-
tion axis kij

1

2k
Depends on k

As derived in detail in Le et al. (2021), we have that, in our model with several variable traits between strains,
for i, j ∈ {1, 2}, the mutual invasion fitnesses are given by:

λji = θ1 (bi − bj) + θ2 (−νi + νj) + θ3 (−uij − uji + 2ujj) + θ4

(
ωiij − ω

j
ji

)
+ θ5 (µ (αji − αij) + αji − αjj) .

(2.6)
This analytic expression sums the relative contributions of multiple trait variations at the same time, with
the weighting constants θi defined above and given explicitly in Table 1. By the notations of λji , setting
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Λ =
(
λji

)
i,j∈{1,2}

, system (2.1) on the slow timescale εt, can be approximated by the replicator equation


dz

dτ
= Θz

(
Λz − zTΛz

)
z1 + z2 + · · ·+ zN = 1

(2.7)

for variables z = (z1, z2) denoting strain frequencies, where the overall speed of dynamics Θ is given by:

Θ =
2mD∗2

2T ∗2 − I∗D∗
=

2m

2µ2 + 3µ+ 2
. (2.8)

When there is just variation in co-colonization coefficients kij , we recover the model and the Θ in (Madec and
Gjini, 2020). Further, recall in (Madec and Gjini, 2020) the term zTΛz is denoted as Q and referred to as
mean invasibility of the system, also revisited in terms of colonization resistance(Gjini and Madec, 2021b). In
the 2-strain system, more explicitly we have: Q = zTΛz = (λ21 + λ12)z1z2, and this quantity is positive only in
the case of coexistence between two strains.

In this slow-fast derivation, epidemiological variables of the original model (system 2.1) are then a function of
strain frequencies of the slow system:

Ii(τ) = I∗zi(τ) and Iij(τ) = D∗zi(τ)zj(τ), (2.9)

where I∗ and D∗ give the overall prevalence of single and co-colonization in the endemic system (neutral
model), and zi and zizj give the proportions occupied by strain i and the pair of strains i and j, in single
colonization and co-colonization respectively.

3 General outcomes of the 2-strain system

3.1 Equilibria of the system

Denote by z∗ = (z∗1 , z
∗
2) the nonzero equilibrium state of (2.7), where strain frequencies are given by:

(z∗1 , z
∗
2) =

(
λ21

λ21 + λ12
,

λ12
λ21 + λ12

)
.

Depending on the signs of both invasion growth rates, we therefore have conditions for λ21 and λ12, leading to
four ecological scenarios between two strains as in Madec and Gjini (2020) (see Table 2).

Table 2: System equilibria for 2-strain dynamics according to λ21 and λ12 as expected from the
replicator equation 2.7

Mutual invasion
(λ21,λ

1
2)

Outcome Strain frequencies Quadratic form
Q = zTΛz

(+,+) Stable coexistence z∗1 > 0, z∗2 > 0: 1
λ2
1+λ

1
2

(
λ21
λ12

)
Q > 0 and Q→ Q∗

(−,+) Exclusion of type 1 z∗1 = 0, z∗2 = 1 Q→ 0
(+,−) Exclusion of type 2 z∗1 = 1, z∗2 = 0 Q→ 0
(−,−) Bistability z∗1 = 1,or z∗2 = 1 Q < 0 and Q→ 0

Thus, to investigate the equilibria and their stability in this 2-strain system, it suffices to study the values
and signs of pairwise invasion fitness coefficients

(
λ21, λ

1
2

)
, given explicitly as follows:

λ21 = θ1 (b1 − b2) + θ2 (ν2 − ν1) + θ3 (−u12 − u21 + 2u22) + θ4
(
ω1
12 − ω2

21

)
+ θ5 (µ (α21 − α12) + α21 − α22)

λ12 = −θ1 (b1 − b2)− θ2 (ν2 − ν1) + θ3 (−u21 − u12 + 2u11)− θ4
(
ω1
12 − ω2

21

)
+ θ5 (µ (α12 − α21) + α12 − α11) ,

(3.1)
while their sum is λ21+λ12 = 2θ3 (u11 + u22 − u12 − u21)+θ4 (α12 + α21 − α11 − α22) . It’s not easy to determine
the exact long time scenario or the winner in a two-strain system because parameters with perturbations affect
all together the dynamics. The table 2 gives us criteria to determine the long time behavior. However, instead
of computing the fitness coefficients explicitly in each case, we can base on (3.1) to determine quickly and for
a various range of cases. Inspecting closely equations (3.1), we can see two parts:
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1. The part θ1∆b+ θ2∆ν + θ4∆ω+ θ5µ (α21 − α12), which keeps the
(
λ12, λ

2
1

)
close to the line λ21 + λ12 = 0,

i.e. the dynamics tend to exclusion of one strain.

2. The part θ3∆2u+ θ5 (α21 − α22) , which pulls
(
λ12, λ

2
1

)
away from the line λ21 + λ12 = 0, i.e. driving the

dynamics toward coexistence or bi-stability.

This makes it easy to see that variation in transmissibility (∆b) or duration of carriage between strains (∆ν),
and the precedence effect in transmission from mixed coinfection (∆ω), always promotes competitive exclusion
in the system, whereas variation in coinfection parameters (susceptibilities and clearance rates) can oppose
competitive exclusion.

3.2 An overview on four system outcomes dependent on R0 and k

What determines competitive exclusion?

The competitive exclusion occurs if and only if λ21 > 0 and λ12 < 0 or reversely, λ21 < 0 and λ12 > 0.
By (3.1), taking R0 → 1+ or k → 0+, which implies µ→∞, makes the nonlinear part tends to 0, which leads
to the competitive exclusion. This remark coincides with the result about µ = 1

(R0−1)k in Gjini and Madec

(2021a).

We note that a biologically feasible range for R0 and k is: 1 ≤ R0 ≤ 10 and 0 ≤ k ≤ 10, thus we use
values of these parameters in such range to illustrate our model behavior through simulations. However, the
model is general to accommodate any other positive values of such parameters.
Next, we will consider the case if we take µ → ∞, which implies R0 → 1+ or k → 0+, and determine the
strain winning in competitive exclusion.

As mentioned, we can rewrite pairwise invasion fitness so that we highlight two opposing terms, where
the first one, is completely anti-symmetric in the reverse λ12, thus contributes only to competitive exclusion.
Whereas, the second term in the square bracket captures the trait variation that may lead to outcomes beyond
exclusion. Here, recall that, if we impact on the system so that R0 → 1 or k → 0 to get the phenomenon of

exclusion, then
θ2
θ1
→ γ

γ + r
, and

θ3
θ1

,
θ5
θ1

go to 0. Hence, the second part tends to 0 and determination of

winner/extinct strain depends on the sign of

θ1 (b1 − b2) + θ2 (ν2 − ν1) + θ4

(
ωiij − ω

j
ji

)
+ θ5µ (α21 − α12) . (3.2)

If the sign of this expression is positive then strain 1 will be the winner strain and vice versa. Generally,
using these arguments, it is still hard to consider exactly the single winner without computing explicitly the
term (3.2). The final answer will depend on the advantage in terms including transmission ∆b, duration of
carriage ∆ν, transmission probability of a strain from a co-colonized host ω1

12 − ω2
21 and susceptibility to

co-colonization (α21 − α12). We will study particular cases in the next sections, but an overview of the range
of possible scenarios is given in Table 3.

What determines coexistence?

By the previous arguments, in order to have the coexistence of two strains, in our model with coinfection,
the essential condition is R0 > 1 and k > 0 large enough. Coexistence opportunities can only come from
advantages that may arise in coinfection. In other words, this requires the ratio of single to co-colonization µ
tend to 0. In conclusion, from the analysis until here, we have that:

1. The perturbations only in βi, γi and piij lead to the competitive exclusion. Thus strain-specific trans-
mission and/or clearance rates, and the strain-specific transmission biases from mixed co-colonized hosts
only create forces favouring exclusion in the system.

2. The perturbations in co-colonization clearance rates and susceptibilities, γij and kij , create more complex
scenarios including exclusion of each strain, coexistence or bistable exclusion steady states. Thus,
only through the possibility of asymmetries in co-colonization (co-infection) parameters can the strains
mediate their mutual coexistence.

In the next section, we will consider the phenomena: exclusion, coexistence or bistable exclusion of either
strain according to µ.
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Table 3: Which trait variation between 2 strains leads to which final outcome? Scenarios of
variation in biological parameters analyzed with the quasi-neutral coinfection SIS model for 2-strains, and
the final ecological outcome of their dynamics. There can be exclusion of strain 1 (E1), exclusion of strain
2 (E2), coexistence (C), and bistability (B). Not all trait variations lead to coexistence. In a majority of
scenarios, for a given set of trait variation on ≥ 2 trait axes, the final outcome between two strains may
shift with coinfection prevalence in the system.

Ecology Exclusion Axis Coexistence-Bistability Axis
Nr.
traits
varying

βi γi piij γij kij Final outcome - Equilibrium

1 × × × × E1 or E2 (depends on Ri0)

1 × × × × E1 or E2 (depends on Ri0)

1 × × × × E1 or E2 (depends on ω1
12 − ω2

21)

1 × × × × E1, E2, C, B (depends on uij)

1 × × × × E1, E2, C, B (depends on αij ,(∗∗)
2 • • • × × E1 or E2 (∗)
3 × × E1 or E2 (∗∗)
≥ 2 • • • × E1, E2, C, B (#)

≥ 2 • • • × E1, E2, C, B (#)

≥ 2 • • • E1, E2, C, B (#)

The role of co-colonization (co-infection) as a potential gradient for system behavior:

(*) In this case, for any combination of fixed trait variation between two strains (with traits denoted by • varying or not
varying), there is only competitive exclusion and up to one shift is possible as a function of µ (I∗/D∗). Thus the system can
shift from Exclusion of 1 → Exclusion of 2 or vice versa, only once, because of a particular overall coinfection prevalence
(D/T = 1/(µ+ 1)).

(**) In this case, for any combination of fixed trait variation between two strains, only competitive exclusion is possible, but
now up to 2 shifts are possible as a function of µ (I∗/D∗). Thus the system can shift three times between opposite exclusion
equilibria, because of overall coinfection prevalence.

(#) In all these cases, (with traits denoted by • varying or not varying), for any combination of fixed trait variation between
two strains, there can be more qualitative shifts between scenarios as a function of µ (I∗/D∗, i.e. R0 and k). For example,
by varying coinfection prevalence, the system can shift: Exclusion → Coexistence → Exclusion; or Exclusion → Bistability →
Exclusion (see Figs. S3-S4). In very specific cases, for a given combination of fixed trait variation between two strains, the
system may even shift 4 times to different regimes as a function of µ, depending on how the λ21 and λ12 intersect the x-axis and
each-other (see Supplementary proofs in Text S3).

4 Effect on each trait variation on final outcome

In this very general version of the model, two strains vary along several fitness dimensions: transmission,
clearance rate, co-colonization interactions, and possible biases in the clearance of co-colonization and trans-
mission from the co-colonization compartment. In the following we will explore these dimensions in detail,
and what is their effect on the competitive dynamics for N = 2.

In the subsections 4.1, 4.2, 4.3, and 4.4, for each case considered, we study the values of mutual invasion
fitnesses λ21 and λ12 as a function of the ratio of single to co-colonization µ. Without loss of generality,
in computation we assume that ν1 < ν2, hence strain 1 is cleared more slowly than strain 2, giving it an
advantage in duration of carriage (∆ν > 0). First, we recall the relative weights (θi) of each trait in terms of
µ, µ ∈ [0,+∞) in the Table 1.

4.1 Definite drivers of competitive exclusion

In this model, exclusion always results from strain-specific transmission and clearance rate of single infection,
and transmission probability from coinfected hosts, if other parameters are equal. Below we explore these
three axes of trait variation in more detail. First, we consider variation only in βi, γi and piij . We assume
equal parameters for co-colonization clearance γij = γ and interaction coefficients between strains kij = k.
The two invasion fitnesses (Figure 2) are:λ

2
1 =

γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1)

2
∆b+ (µ+ 1) ∆ω,

λ12 = −λ21.
(4.1)
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Figure 2: Pure competitive exclusion from variation in three traits, but the winner strain may depend
on µ. Competitive exclusion is the only scenario when two strains vary only in transmission rate βi and/or infection
clearance rate γi and/or transmission probability from coinfected hosts piij (See (4.1)). Completely anti-symmetric
mutual invasion leads to competitive exclusion. The strain with the positive invasion fitness excludes the one with the
negative invasion fitness. Here we illustrate the values of λ2

1 and λ1
2 as a function of the ratio of single to co-colonization

in the system µ = 1/(k(R0 − 1)), with γ = 1.5, r = 0.5, in three cases of (a) Variations in transmission rates βi only
with ∆b = −2, (b) Variations in transmission rates βi and clearance rates γi with ∆ν = 4 and ∆b = −2, and (c)
Variations in transmission rates βi, clearance rates γi and transmission probability from coinfected hosts piij with
∆ν = 4, ∆b = −2 and ∆ω = 2.02.

These fitness coefficients are completely anti-symmetric, implying competitive exclusion as the only outcome.
Thus it doesn’t matter that there is co-colonization in the system (k > 0). For promoting coexistence, this is
not sufficient by itself. Variable co-colonization interactions or traits between strains would be an additional
requirement. When strains behave equally in all processes related to coinfection, coinfection cannot rescue
them from the destiny of competitive exclusion. However, as we explore below, overall prevalence of coinfec-
tion can actually shift between the winning and losing strain. This can happen only if there is variation in
duration of carriage. For example noticing that when βi is the only trait varying between two strains, k does
not appear in θ1, this indicates that transmissibility’s variation, uniquely determines the winner between two
strains; its relative contribution to λji cannot be altered by coinfection.

If variation is only in transmission rates βi, then the strain with bigger βi excludes the other one, see figure
2 (b). This fact holds for N strains in general and is proved in Le et al. (2021).

If a strain is superior in both fitness dimensions, which means it has smaller clearance rate and greater
transmission rate (∆b > 0,∆ν > 0), then for all value of µ or R0, it surely will be the winner par excellence,
which can be easily seen from (4.1). This is unsurprising and naturally expected.

However, if a strain is better in one trait but worse in another, for example if the strain with longer
duration of carriage (lower clearance) also has smaller transmission rate, the determination of the winning
strain depends on value of µ (and in general also R0), see Figure 2b.

Since we have fixed here γ = 1.5, r = 0.5 by convention, if we fix neutral transmission rate β, the value
of µ now depends only on the mean interaction coefficient in co-colonization k. This means, when k is high,
thus when strains tend to allow each-other more in co-colonization, µ is sufficiently close to 0, strain 2, which
has the smaller transmission rate but longer duration of carriage is the winner. In contrast, when µ is larger,
thus when hosts are less vulnerable to co-colonization, the strain 1, which has bigger transmission rate and
smaller duration of carriage is the winner.

This illustrates how the relative advantage between two strains, differing in two traits, depends on coin-
fection prevalence.

It is interesting to note that, if variations are only in two of which including transmission rates βi, clearance
rates γi and transmission probability from coinfected hosts piij , we can have at most one shifting outcome, i.e.
shifting once from the exclusion of one strain to the exclusion of the other one, see proof in S3.1.

Following the same analysis, we can study the model in which transmission probability from co-colonized
hosts, denoting within-host advantage, piij displays strain-specific perturbation. We note that if there is

variation in piij only, if ω1
12 − ω2

21 > 0, strain 1 excludes strain 2, and vice versa. This can be understood
via the precedence advantage that one strain has from mixed coinfected hosts if it arrives first, and thus gets
transmitted more.

If there are combinations of variations in within-host transmission advantage piij , as well as other traits βi
and/or γi, the final outcome is more complex (see Table 3 and Figure 2 (c). However, the long time competitive
result is always exclusion of one strain from the system. If perturbations occur in transmission rate βi and
transmission probabilities from mixed coinfection piij , the winning strain depends on coinfection prevalence

in the system, (µ = I∗/D∗) because
θ4
θ1

=
1

1 + µ
. If perturbations occur in duration of single carriage (i.e.
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strain-specific clearance rates γi) and piij , the winning strain depends on more strain-transcending parameters:

µ, γ and r. This can be explicitly observed in the ratio
θ4
θ2

=
2 (γ + r)

γ

µ+ 1

µ (2µ+ 1)
, which ultimately affects the

signs of pairwise invasion fitnesses. Figure 2 (c shows us a special example in which the exclusion of either
strains shifts twice when µ varies from 0 to ∞.

4.2 Four scenarios possible with variable co-infection clearance rates γij

As we can see from the fully explicit expression of pairwise invasion fitness, in this model, the coinfection
clearance rate axis contributes to λji with a term 2(ujj − uji+uij

2 ). Thus what matters is the comparison
between clearance rate of same strain coinfection vs. the mean coinfection clearance rate of mixed-strain
coinfection. While there are no restrictions for how these can vary, in the following we consider three special
cases where the variation in coinfection duration depends on variation in single infection duration. We also
assume no variation in transmission probability from coinfected hosts (piij = 1/2) but the results for the
general case can be easily derived using Eqs.(3.1).

4.2.1 Case 1: Unbiased clearance in mixed carriage u12 = u21 =
ν1 + ν2

2

In this first case, we consider that the clearance rate of mixed carriage is unbiased and equal to the mean of
the two clearance rates of single colonization. We have u11 = ν1, u22 = ν2 and the invasion fitnesses between
two strains are anti-symmetric:λ

2
1 =

γ

2 (γ + r)

(
2µ2 + 2µ+ 1

)
∆ν + (1 + µ)

2
∆b,

λ12 = −λ21.
(4.2)

This case leads again to the pure competitive exclusion. Whichever strain has positive λji will be the winner.

• Similar to the case in section 3.1, if a strain is superior in both transmission βi and clearance νi, it will
be the winner.

• However, if ∆ν and ∆b have opposite sign, meaning one strain has advantage in clearance and the other
has advantage in transmission, the final winner will depend on coinfection prevalence, hence on µ. From
the formula of the invasion fitness, it can be seen that in this system, the clearance rate differential
(i.e. in duration of carriage) has more important role than the transmission rate difference in helping
an inferior strain overcome and overturn its fitness disadvantage as µ increases.

4.2.2 Case 2: Decreased clearance in mixed carriage u12 = u21 = min{ν1, ν2} = ν1

Here, we explore the case when mixed carriage clearance rate corresponds to the minimum of the two single
colonization clearance rates. We still have u11 = ν1, u22 = ν2, but in hosts carrying a mixture of strain
1 and strain 2, this creates an advantage in co-colonization for the opponent strain (the one with the faster
strain-specific clearance). The two invasion fitness coefficients are not anti-symmetric anymore, hence allowing
for more scenarios beyond exclusion (see figures 3 (a,b)):

λ21 =
γ

2 (γ + r)
[(2µ+ 1)µ+ 2(µ+ 1)] ∆ν + (µ+ 1)

2
∆b

λ12 = − γ

2 (γ + r)
(2µ+ 1)µ∆ν − (µ+ 1)

2
∆b.

(4.3)

• If one strain, denoted to be strain 1 in Figure 3a, has larger transmission rate and lower clearance rate
(case when ∆b > 0,∆ν > 0), it will again be the only survivor for all µ.

• However if the advantage is only in one of the two traits (case when ∆b,∆ν have opposite signs),
for example the strain with smaller clearance rate has lower transmission rate, as in Figure 3b, then
coexistence can occur. However, even in this situation, coexistence can only be possible for sufficiently
low µ, i.e. k large enough for fixed R0 (we already fix γ and r). This means that increasing the
relative prevalence of co-colonization or coinfection in the system, via higher facilitative interactions,
can promote coexistence of two strains. This links back to the arguments at the end of section 2.

The phenomenon of coexistence arising here is similar to what has been found before in the context of virulence
evolution (Alizon, 2008), where decreased clearance in coinfection was observed to promote coexistence, hence
persistence of more virulent strains (here strain 2 if ∆ν > 0, and in the limit of strain 2-R0 below 1.
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Figure 3: Competitive exclusion can be broken with variable coinfection clearance rates, and the result
may depend on µ. We illustrate possible scenarios resulting from deviation from symmetry in the mixed coinfection
clearance rate γij as a function of the ratio of single to coinfection µ. a-b Coinfection clearance equals the minimum
clearance rate of either strain: u12 = u21 = min{ν1, ν2} = ν1 (see (4.3)). c-d Coinfection clearance equals the maximum
clearance rate of either strain: u12 = u21 = max{ν1, ν2} = ν2 (see (4.4)). We choose γ = 1.5 and r = 0.5 as in figure
2. For each sub case, we plot the mutual invasion fitnesses for transmission advantage and disadvantage of strain 1,
respectively: ∆b > 0 (a,c) and ∆b < 0 (b,d). In particular, in the first column ∆b = 2, and in the second column
∆b = −2. The clearance rate differential ∆ν is assumed ∆ν = 5 attributing higher duration of carriage to strain 1. In
the first column, strain 1 is superior in all fitness dimensions, and coinfection clearance cannot overturn the result. In
the second column, strain 1 is not superior in all fitness dimensions, and coinfection matters for the final result.

4.2.3 Case 3: Increased clearance in mixed carriage u12 = u21 = max {ν1, ν2} = ν2

The co-infection clearance rate in mixed carriage here is assumed to be equal to the maximum value of the
strain-specific clearance rates in single colonization. We have u11 = ν1, u22 = ν2 and the pairwise invasion
fitness coefficients are (see figures 3 (c,d)):

λ21 =
γ

2 (γ + r)
(2µ+ 1)µ∆ν + (µ+ 1)

2
∆b

λ12 = − γ

2 (γ + r)
[(2µ+ 1)µ+ 2(µ+ 1)] ∆ν − (µ+ 1)

2
∆b

(4.4)

• If strain 1 has smaller clearance rate and larger transmission rate, it is again the superior strain in the
system, independently of coinfection parameters, like previous cases (Figure 3c).

• However, if strain 1 has smaller clearance rate but also lower transmission rate, bistability of exclusion
can occur when µ is small enough. When µ becomes larger and tends to infinity, we obtain only
competitive exclusion, as mentioned earlier and proven in Section 2. In that extreme, strain 1 is the
only persistent strain over long time (Figure 3d).

In conclusion, by the explicit formulae of
(
λ21, λ

1
2

)
in the cases above, we can also prove that for µ large enough,

the strain which has smaller clearance rate will be the only strain persisting in the system.

4.3 Four scenarios from variation in pairwise co-colonization susceptibilities kij

Another fitness dimension is how the strains facilitate or compete in altered susceptibilities to co-colonization
via the coefficients kij . Above we assumed they are all equal to the reference k. But when variation in this
parameter is allowed, as shown already in (Gjini and Madec, 2017), all four ecological scenarios are possible,
and thus the effect is to open up space for coexistence and bistability among two strains, when competitive
exclusion is expected from other parameters. According to the derivation of the reduced model in Madec and
Gjini (2020), the perturbations in co-colonization interaction matrix for N = 2 satisfy

∑2
i,j=1 αij = 0 when k

is defined by the mean of kij . However, without loss of generality, one can shift the αij by the same constant,
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without changing the mutual λji and consequently without changing the dynamics. The explicit formulas for
two pairwise invasion fitnesses are (see figure 4)

λ21 =
γ

2 (γ + r)
(2µ+ 1)µ∆ν + (R0 − 1)µ (µ (α21 − α12) + α21 − α22) + (µ+ 1)

2
∆b,

λ12 = − γ

2 (γ + r)
(2µ+ 1)µ∆ν + (R0 − 1)µ (µ (α12 − α21) + α12 − α11)− (µ+ 1)

2
∆b.

(4.5)

In this spirit, below we consider a few special cases of αij variation between strains, to highlight the effect
of co-colonization susceptibilities when they provide:

i) a disadvantage to strain 1: (αij)ij =

(
−1.5 0.5
0.5 0.5

)
, whose effect on λji is equivalent to (αij)ij =(

−2 0
0 0

)
, and increases relatively λ12:


λ21 =

γ

2 (γ + r)
(2µ+ 1)µ∆ν + (µ+ 1)

2
∆b,

λ12 = − γ

2 (γ + r)
(2µ+ 1)µ∆ν + 2 (R0 − 1)µ− (µ+ 1)

2
∆b.

(4.6)

ii) an advantage to strain 2: (αij)ij =

(
−0.5 −0.5
−0.5 1.5

)
; equivalent to (αij)ij =

(
0 0
0 2

)
when shifted by

the appropriate constant, which relatively decreases λ21:
λ21 =

γ

2 (γ + r)
(2µ+ 1)µ∆ν − 2 (R0 − 1)µ+ (µ+ 1)

2
∆b,

λ12 = − γ

2 (γ + r)
(2µ+ 1)µ∆ν − (µ+ 1)

2
∆b.

(4.7)

iii) and exactly counterbalanced effects on either strain: (αij)ij =

(
−
√

2 0

0
√

2

)
, whose impact on

λji is to decrease λ21 and increase λ12 by exactly the same amount:
λ21 =

γ

2 (γ + r)
(2µ+ 1)µ∆ν −

√
2 (R0 − 1)µ+ (µ+ 1)

2
∆b,

λ12 = − γ

2 (γ + r)
(2µ+ 1)µ∆ν +

√
2 (R0 − 1)µ− (µ+ 1)

2
∆b.

(4.8)

In Figure 4, we consider these cases, where besides kij , we allow also variation in transmission β and clearance
γ of each strain, but assume initially symmetry in other traits. We assume ∆ν > 0 (strain 1 is cleared more
slowly). In Fig. 4a-c we illustrate competitive outcomes (dependent on mutual signs of λji ), when strain 1 is
superior in transmissibility, and in Fig. 4d-f we show outcomes when strain 2 is superior in transmissibility
instead. Naturally as µ → ∞ the role of coinfection interaction asymmetries vanishes, and the system tends
to exclusion, but for low values of µ, the structure of the αij matters. In particular, if it is asymmetric
(Figure 4,a-b, d-e) there can be at most 3 scenarios as a function of µ: exclusion - coexistence -exclusion, or
exclusion - bistability- exclusion. In particular increase in λ21 acts to enable coexistence when ∆b > 0, and a
decrease in λ12 acts to enable bistability when ∆b < 0. Whereas, if co-colonization interactions have exactly
counterbalanced effects on λji (Fig. 4c,f), there can only be alternating exclusion scenarios as a function of µ.

4.4 Adding variation in transmission probability from coinfected hosts

In this case, besides transmission and clearance rates variations (∆b,∆ν), and co-colonization susceptibilities
(αij), we add to the system variation in terms of a slight priority effect between strains for transmission from
coinfection ∆ω 6= 0. The explicit formulae for pairwise invasion fitnesses of two strains are as follows:

λ21 =
γ

2 (γ + r)
(2µ+ 1)µ∆ν + (µ+ 1) ∆ω + (R0 − 1)µ (µ (α21 − α12) + α21 − α22) + (µ+ 1)

2
∆b

λ12 =
γ

2 (γ + r)
(2µ+ 1)µ∆ν − (µ+ 1) ∆ω + (R0 − 1)µ (µ (α12 − α21) + α12 − α11)− (µ+ 1)

2
∆b,

(4.9)

Recall that ∆ω = ω1
12 − ω2

21 represents the relative advantage of strain 1 from arriving first within-host, in
transmission from mixed coinfection. It is clear from the expression above, that when variation in this within-
host advantage is combined with variation in coinfection clearance rates or co-colonization susceptibility factors
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Figure 4: Breaking the competitive exclusion with co-colonization interactions kij (see Eqs (4.5)). We
compute pairwise invasion fitnesses

(
λ2
1, λ

1
2

)
according to µ in various cases of co-colonization interaction matrix (αij)

with R0 = 5, r = 0.5 and γ = 1.5. (a-c) We illustrate the cases of transmission superiority of strain 1: ∆b > 0, when
∆b = 0.4, ∆ν = 0.8. In (d-f) we plot 2-strain invasion fitnesses for transmission superiority of strain 2: ∆b < 0, when
∆b = −0.4,∆ν = 0.8, with the same γ, r and R0 as in (a, b, c). Coinfection clearance rate γij is assumed equal to

γ and transmission probability from coinfected hosts carrying a mixture of two strains piij =
1

2
. Subplots with the

same values (αij) lie in the same column. In particular, we consider 3 structures: (a, d)

(
−2 0
0 0

)
(Eqs (4.6)); (b,

e)

(
0 0
0 2

)
(Eqs (4.7)); (c, f)

(
−
√

2 0

0
√

2

)
(Eqs (4.8)) for variation in co-colonization interactions. Except for when

the αij exactly counterbalance effects on λj
i (c,f) there is potential for more scenarios beyond competitive exclusion,

induced by coinfection susceptibilities between strains.

between strains, coexistence and bistability also become possible. In this case within-host and between-host
competition combine to give rise to different outcomes. In figure S6 we illustrate the effect of ∆ω on the
baseline outcomes of Figure 4a-c. The effect of ∆w < 0 is to increase the potential for strain 2-only competitive
exclusion and coexistence with strain 1 in the system, oftentimes overturning the baseline result especially so
if µ small. The importance of transmission biases from mixed coinfection ∆w is unsurprisingly higher when
relative coinfection prevalence is higher in the system.

4.5 The qualitative outcome for two strains can shift multiple times with µ

Until now we have seen the important and explicit role of strain-transcending parameters, (e.g. R0, k, and
specifically µ) which define the core neutral system of this model, on the ultimate competitive outcome between
strains at the epidemiological level. We have seen that the same relative variation between strains, displayed
in (∆b,∆ν,...) will have a different impact in a system with larger or lower overall prevalence of coinfection,
relationships that are completely transparent in the λji . Sometimes the effect will be quantitative, changing

only the speed of dynamics without affecting the λji signs (see Supplementary figure S2). Other times the effect
will be qualitative, changing the signs of the pairwise invasion fitnesses and hence the dynamics. Furthermore,
using such full analytic transparency, we can also prove mathematically special results to make the claims
about qualitative shifts more precise. Depending on how many traits and which traits vary in the system, we
can have at most one, two, or more shifts with µ (see Table 2). For example we can prove that with variation
only in transmission and clearance rates, there can be at most one shift in final outcome as a function of µ
(Text S2.1)

A very special case arises, when the same system can shift 4 times as a function of µ. We have proven
that a necessary condition for its occurrence is the presence of variation in both coinfection clearance rates γij
and vulnerabilities to coinfection kij . If any of these is missing, 4 shifts as a function of µ are impossible (see
Text S2.2 for the formal proof). An illustration of such a special case is given in Figure 5, where the system
traces all 4 quadrants as µ goes from 0 to ∞, highlighting an extreme case of the critical role of coinfection,
for the relative hierarchical advantages between two strains and their selection dynamics. We see that the
system is characterized by competitive exclusion of strain 2 for µ low, then tends to coexistence of both strains
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for increasing µ, followed by competitive exclusion of strain 1 for even higher µ, until it returns again in the
competitive exclusion region of strain 2 as µ→∞.

Figure 5: Four ecological scenarios may happen depending on µ under fixed trait variation. Variations here
are in transmission rates, infection and coinfection clearance rates, and co-colonization susceptibilities between strains.
The strain-transcending parameters are assumed γ = 2, r = 0.2 and R0 = 2.5. We assume that ∆b = 0.2, ∆ν = 0.5,

the coinfection clearance rate γij with uij = min{νi, νj} and values of (αij) to be

(
−1 0

0
√

3

)
. The ultimate ecological

outcomes when µ goes from 0 to ∞ include: exclusion of strain 2, coexistence, exclusion of strain 1, bistablity, then
back to the exclusion of strain 2. Figure (a) plots two pairwise invasion fitnesses as function of µ. Figure (b) plots λ2

1

against λ1
2 as parametric functions of µ crossing all four quadrants.

4.6 Parameter regions for four ecological outcomes in co-colonization

Until now, we have considered fixed trait variations between two strains, and varied µ to show how their net
competitive dynamics driven by λ21 and λ12 will depend on the ratio of single to coinfection in the neutral
system. This context is defined by basic reproduction number R0, and k, of the neutral model (see Table 1).
Next, we consider the distribution of 4 possible ecological outcomes across different systems, as a function
of R0 and k. In figure 6 we represent the long time behaviour of a 2-strain model with perturbations in
transmission rate βi, clearance rate of single colonization γi and clearance rate of co-colonization γij with
u11 = u12 = u21 = ν1 and u22 = ν2. Figure 6 shows which combinations of ∆b and ∆ν, lead to one of the four
scenarios: exclusion of strain 1 or 2, coexistence or bistable state, for each R0 and k, for assumed symmetry

in kij and in piij =
1

2
.

It can be seen that we can choose suitable values of relative fitness differences ∆b and ∆ν to observe a
given scenario, typically coexistence and bistability arise for relative advantage in one trait and relative dis-
advantage in the other, hence a trade-off between transmission and clearance. Notice that when R0 or k
become larger, increasing relative coinfection prevalence in the corresponding neutral system, (i.e. reducing
µ), the possibility for coexistence or bistability expands in the system. Near the origin, it’s harder to obtain
coexistence or bistable state rather than competitive exclusion.

The results of Figure 6 can be used to connect our system’s behavior to strain-specific basic reproduction

numbers R
(1)
0 and R

(2)
0 . In a model with coinfection, strain-specific R0 are not sufficient to determine the

long-time epidemiological competition between two strains. We show in Text S1 and in Figure S1 that even for
the same values of R0,1 and R0,2 we can have different long-time scenarios between the two strains. The result
in coinfection depends on the particular combination of traits, strain-specific transmission and clearance rates.
In particular, even for the same strain-specific R0’s, a system with bigger variation in clearance rate between
two strains is more sensitive to coinfection, and it is where coinfection parameters can shift the dynamics more
easily away from competitive exclusion (Fig. S1a). This is because of the advantage conferred to both strains
by staying longer in mixed compartment I12, where from they can have equal chance of transmission.

In Fig. 6 coinfection susceptibilities were assumed symmetric and coinfection clearance rate for mixed
carriage was assumed biased toward the same clearance rate of single infection by strain 1: u11 = u12 = u21 =
ν1 and u22 = ν2. In another case (Figs. S3-S4), when we remove the bias in coinfection clearance assuming
u12 = u21 = 0, but allow variation in susceptibilities to coinfection, we see only three scenarios emerge, over
all ∆b and ∆ν. In this case, depending on the structure of αij , we observe either coexistence or bistability as
a third possibility flanked by the two opposite exclusion steady states.
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Figure 6: Illustration of 4 possible outcomes, as a function of relative variation in transmission and
clearance rate between two strains, for different values of k and R0. We highlight the respective regions in
different colors, according to the critical relationship between ∆b, ∆ν, k and R0 when perturbations happen only βi,
γi, and mixed coinfection clearance happens base on strain-specific clearance rates γij with u11 = u12 = u21 = ν1 and
u22 = ν2. We choose the values γ = 1 and r = 0.2. Recall that the higher ∆ν > 0, the higher the advantage of strain 1
in the system; and the higher ∆b > 0, the higher the advantage of strain 1 in the system. We observe coexistence and
bistability arise only when the disadvantage in one trait is compensated by an advantage in the other. In particular
coexistence is enabled when the disadvantaged strain 2 in clearance rate benefits from reduced clearance in mixed
co-colonization with strain 1.

5 How trait mean and variation impact coexistence frequencies

Next, we zoom in from criteria for coexistence to the details of the coexistence equilibrium in a system with
two strains that vary along multiple fitness dimensions. The general formula in terms of pairwise invasion
fitnesses in Eqs. (3.1), when this equilibrium exists, is given by

z∗1 =
λ21

λ21 + λ12
z2∗ = 1− z∗1 .

This allows explicit computation for any combination of strain-specific and strain-transcending parameters
in the system. Below we focus on the case of variation in transmission rate βi, clearance rate of infection γi
and in interaction coefficients via susceptibilities to coinfection kij . We assume the special case of uij = 0

and initially no transmission biases in coinfection piij =
1

2
(although we relax this later). We consider only

coexistence regimes (Figure 7) and illustrate the equilibrium frequency of one of the strains (here z∗2), as a
function of trait mean and variation between strains. Using the explicit formula z∗2 = λ12/(λ

2
1 +λ12), we explore

this quantity numerically for two values of co-colonization interaction mean coefficient: k = 1.5 and k = 0.2,

and symmetric cross-strain interactions α12 = α21 > α11 = α22. We consider (αij)ij =

(
0
√

2√
2 0

)
but the

general formula for other cases is straightforward (see Text S3). The criteria enabling coexistence are derived
below.
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Figure 7: Strain coexistence frequencies depend on a critical interplay between trait mean and variation.
We plot the coexistence equilibrium frequency of strain 2 (intermediate shading), as a function of (β,∆b) and (γ,∆ν)
for higher coinfection prevalence (left) and lower coinfection prevalence (right). a-b. Effect of clearance rate. In
(a-b) we assume β = 5.3 and ∆b = 0.15. In these figures, we vary γ in 0 ≤ γ ≤ 5 and β = 5.3, to make R0 > 1. c-d.
Effect of transmission rate. In (c-d) we assume γ = 1 and ∆ν = 1 as fixed. We vary β between 1.5 and 9, ensuring
R0 > 1. Right-column subplots reflect a system with more competition in co-colonization, hence lower coinfection
prevalence (µ higher) than the left-column subplots. The light grey region represents the exclusion of strain 2-z∗2 = 0
and the dark grey region is for exclusion of strain 1 from the system i.e. z∗2 = 1. We choose r = 0.3 and the matrix

(αij) to be

(
0
√

2√
2 0

)
thus unbiased in terms of favouring either strain. The co-colonization clearance rate is also

assumed unbiased, and equal to the mean. The black lines denote the border lines for which coexistence is no longer
possible and the system shifts to either exclusion of strain 1 (yellow) or exclusion of strain 2 (blue). In a-b, the lines
are denoted by T1 (γ) and T2 (γ), and given by (5.2) and (5.3). In c-d, the graphs of S1 (β) and S2 (β) are hyperbolic,
given by explicit equations (5.5) and (5.6).

5.1 Mean and variation in clearance rate of single infection

By (4.3), the equation of boundary z∗2 = 0 is equivalent to λ12 = 0 which can be written explicitly as:

γ

2 (γ + r)

1

1 +
1

µ

1 +
1

1 +
1

µ

∆ν = −∆b−
√

2

2
(R0 − 1)

µ

(µ+ 1)
2 (5.1)

which, by substituting
1

µ
= k

(
β

γ + r
− 1

)
, becomes:

∆ν = T1 (γ) , T1 (γ) = −∆b
2 [γ + r + k (β − γ − r)]2

γ (2γ + 2r + k (β − γ − r))
−
√

2
k

γ

(β − γ − r)2

2 (γ + r) + k (β − γ − r)
. (5.2)

Analogously, we can compute the equation of boundary z∗2 = 1, thus λ21 = 0, which is

∆ν = T2 (γ) , T2 (γ) = −∆b
2 [γ + r + k (β − γ − r)]2

γ (2γ + 2r + k (β − γ − r))
+
√

2
k

γ

(β − γ − r)2

2 (γ + r) + k (β − γ − r)
. (5.3)
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Combining (5.2) and (5.3) we have the condition for 2-strain coexistence between these boundaries, expressed
as an inequality for the variation ∆ν dependent on the mean γ:

Stable Coexistence ⇐⇒ T1 (γ) ≤ ∆ν ≤ T2 (γ) . (5.4)

The figures 7a and 7b show critical interplay between mean and variation clearance rates of infection γi. The
light color region in this figure is the region displays coexistence phenomenon, corresponding to the space
between two curves which present equations (5.2) and (5.3). The contour shading corresponds to the relative
frequency of strain 2. In these figures, we can observe that by decreasing co-colonization efficiency k, we can
decrease the possibility of coexistence at the same variation in clearance rate ∆ν (7b compared to 7b). For γ
small enough, which increases overall prevalence in the system, less values of ∆ν lead to coexistence. When
∆ν becomes larger, the relative frequency of strain 2, decreases.

5.2 Mean and variation in transmission rate

Similarly to (5.2) and (5.3) for mean and variation in clearance rate (duration of carriage), and the same
assumptions about the other parameters, we can find the equation of boundary z∗2 = 0 as a function of (β,4b)
as follows:

∆b = S2 (β) , S2 (β) = −∆ν
γ (2γ + 2r + k (β − γ − r))
2 [γ + r + k (β − γ − r)]2

+

√
2

2

k (β − γ − r)2

[γ + r + k (β − γ − r)]2
(5.5)

The equation of the boundary z∗2 = 1 as a function of (β,4b) is:

∆b = S1 (β) , S1 (β) = −∆ν
γ (2γ + 2r + k (β − γ − r))
2 [γ + r + k (β − γ − r)]2

−
√

2

2

k (β − γ − r)2

[γ + r + k (β − γ − r)]2
. (5.6)

Combining (5.5) and (5.6), we have the condition on intermediate values of ∆b that allow 2-strain coexistence:

Stable Coexistence⇐⇒ S1 (β) ≤ ∆b ≤ S2 (β) . (5.7)

Two figures 7c and 7d show the value of strain 2 in case of coexistence as a function of mean and variation
in transmission rates ∆b. In contrast to 7a and 7b, by decreasing co-colonization vulnerability k, we increase
the possibility of coexistence at the same variation in transmissibility between strains ∆b. This also means
that for larger β, more values of ∆b lead to coexistence. When ∆b becomes larger, increasing the transmission
advantage of strain 1, the equilibrium frequency of strain 2, decreases. This is similar to Figure 7a and 7b.

5.3 Coexistence strain frequencies are explicit

While the entire frequency dynamics for each strain and for all time (zi(τ)) is fully explicit in the system, via
the replicator equation, so is also the final equilibrium. The value of the equilibrium frequency of strain 2, z∗2
under the coexistence regimes studied above is given by:

z∗2 =
1

2
− γ 2 (γ + r) + k (β − γ − r)

2
√

2k (β − γ − r)2
∆ν − [γ + r + k (β − γ − r)]2

√
2k (β − γ − r)2

∆b, (5.8)

and can be seen to be an explicit function of mean parameters (e.g. β, γ) as well as variation between
strains (∆b,∆ν). Here, because coinfection interactions are assumed symmetric, it becomes obvious that
any differences between strains will make the frequency deviate from the expected frequency of 1/2 under
balancing selection. If ∆ν,∆b > 0, then strain 1 has an absolute advantage and z2 will always be inferior
than 1/2, if it coexists. However, if the advantage is only in one trait and not in the other (∆ν∆b of different
sign), then strain 2 can increase its equilibrium frequency above 1/2.

More generally, for the rescaled co-colonization susceptibilities matrix being symmetric and satisfying:
αii = αjj = α11 and αij = αji = α12, we can write the expression for strain 2 equilibrium frequency, more
compactly as a function of µ, k and R0 constituent parameters, mean transmission rate β, clearance rate γ
and average host lifespan 1/r:

z∗2 =
1

2

[
1− k

α12 − α11

(
µ(2µ+ 1)

γ

γ + r
∆ν + 2(µ+ 1)2∆b

)]
(5.9)

One can notice that variation in each trait ∆b and ∆ν have their own distinct nonlinear scaling factors for how
they impact on ultimate strain success at the epidemiological level, depending directly on the prevalence of
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co-colonization in the system via the parameter µ = I∗/D∗. We can immediately see from this formula, how
the predicted coexistence level among two strains is attributable to clear mechanisms and clearly identifiable
biological differences between strains, which are explicitly weighted by epidemiologic constants.

Even more generally, if in addition there are biases in strain transmission probabilities from co-colonized
hosts carrying a mixture of strains, recalling that ∆ω = ω1

12 − ω2
21 the formula (5.9) now reads

z∗2 =
1

2

[
1− k

α12 − α11

(
µ(2µ+ 1)

γ

γ + r
∆ν + 2(µ+ 1)2∆b+ 2 (µ+ 1) ∆ω

)]
(5.10)

where we can straightforwardly see the contribution of the precedence effect in transmission from co-colonization
as a force in coexistence hierarchies between two strains. Indeed, for any value of coinfection prevalence and
overall R0, hence for any µ, the relative contribution of the transmission rate differential between strains (∆b)
is higher than that of the transmission bias differential from coinfected hosts (∆ω). It is also interesting to
notice in the above expression for z∗2 that the relative contribution of the between-strain difference in dura-
tion of carriage (∆ν) depends on µ but also on the absolute value of the duration of colonization itself γ.
Essentially, keeping all else fixed, differences in duration of carriage between two strains matter more for their
relative fitness, if the colonization episodes are shorter (γ higher), and if hosts are longer lived (r higher).

Perfectly balancing selection, in this model, under a given k 6= 0, would require that the linear combination
of ∆ν,∆b,∆ω in the round brackets be equal to zero. Trait variation possibilities satisfying this requirement
are infinite and constitute a plane in 3-d in this case, necessarily encoding trade-offs across different fitness
dimensions that would as a whole lead to the same epidemiologic fitness for the two strains. Other particular
values of z∗2 can be studied explicitly and investigated similarly in terms of the constraints implied for the
linear combination of ∆ν,∆b,∆ω, and other fitness dimensions eventually, if such variation exists.

6 Model applications: a roadmap

In earlier theoretical work, interaction among co-infecting agents has been assumed to occur only between
different strains, and studied for arbitrary infection multiplicity Adler and Brunet (1991). Later evolutionary
frameworks, based on (van Baalen and Sabelis, 1995), have considered a full model including same-strain
coinfection, but modeling vulnerability to co-infection with a single parameter (Alizon, 2013). This aggregation
of within- and between- strain interactions into a net parameter can be found in other co-infection models,
considering altered susceptibility to coinfection in the context of disease persistence (Gaivão et al., 2017),
and diversity in other traits, e.g. virulence (Alizon et al., 2013) and antibiotic resistance (Hansen and Day,
2014). These studies highlight the importance of coinfection and its epidemiological details for persistence
and evolution of microorganisms. Sometimes very complex multi-scale models have been invoked to generate
coexistence between strains via coinfection, embedding an explicit within-host dynamics framework (Davies
et al., 2019). We argue that many such coinfection models could be mapped to phenomena in the overarching
model proposed here, as special cases, or expansions of a particular parameter.

With the here-proposed explicit framework, the impact of coinfection becomes very easy to understand,
via the role of the parameter µ, given by the ratio of single - to co-infection prevalence in the system, which
modulates the relative weight of different trait asymmetries (θi’s) among strains, and even tuning the net
asymmetries in some traits, as is the case for kij . This role of coinfection (in terms of 2 global determining
parameters R0, k) can be studied at a deeper level, at a higher resolution in terms of potential asymmetries
within and between strains, and in an entirely analytically-explicit manner which enables precise predictions.
These advantages can lead to new applications to study coexistence and vaccination effects in polymorphic
systems, going beyond current theoretical insights (Lipsitch, 1997; Gjini et al., 2016). Similarly, our modeling
framework could also help obtain clear and direct analytical insights into antibiotic resistance evolution, as
an alternative or as a complement to the more cumbersome simulation route (Davies et al., 2019). Below we
sketch briefly some ways in which the model can be applied.

6.1 Antibiotic treatment, fitness costs and competitive release

We can apply this model to understand epidemiological competition dynamics between two strains under
antibiotics, co-circulating in a host population with the possibility of coinfection. In its simplest form, broad-
spectrum antibiotic treatment can be modelled as an increase in global clearance rate of colonization γ, keeping
fixed all other parameters between strains. Suppose strain 1 is superior in transmission, with strain 2 suffering
a relative fitness cost ∆b > 0. For variation in duration of carriage we explore both an advantage to strain
1 ∆ν > 0 or advantage to strain 2 ∆ν < 0. Without perturbation in coinfection parameters, under such
scenario, there would be competitive exclusion of the less fit strain, seen earlier in Section 3.1.
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But under interactions through coinfection vulnerabilities, coexistence among the two strains is possible.
Thus we may explore, the frequency of strain 2, under such scenario, which would then correspond to the
variable z2 in our model. We examine how the equilibrium value of the frequency of strain 2, varies as a
function of γ (or total broad-spectrum antibiotic treatment), for different values of strain variation in relative
duration of carriage (clearance rate) ∆ν, and relative transmissibility ∆b.

Fixing for example the rescaled co-infection susceptibility matrix to αii = αjj = 0 and αij = αji =
√

2,
corresponds to the case analyzed earlier, where within-strain susceptibilities to coinfection are lower than
between-strain susceptibilities, a condition that a-priori favours coexistence. Hence, applying the earlier
results, we have that for any (β, γ,∆b,∆ν), stable coexistence of two strains is possible only for T1 (γ) ≤
∆ν ≤ T2 (γ). The value of z∗2 under such condition is given by Eq. 5.8. Thus, in Figure 8, we only consider
the values of global clearance rate γ guaranteeing coexistence. It is interesting to point out that depending on
how the fitness differential between the strain 1 and its competitor strain 2, is manifested (∆b,∆ν), increasing
antibiotic administration in a population can have opposing effects: it can increase or decrease the prevalence
of a focal strain (see Fig.8a solid vs. dashed lines). This behavior can be understood in full analytic detail
because of the explicit expression for strain frequencies, allowing us to compute and verify directly the first
and second derivatives of z2 with respect to γ (see Supplementary Material S3).

Figure 8: Increasing global clearance or global transmission can have opposite effects on single strain
frequency at the endemic equilibrium, depending on underlying trait variation. We plot the frequency
of strain 2, z∗2 at the coexistence equilibrium (Eq. 5.8), as a function of mean transmission rate and mean clearance
rate. Variation among 2-strains is encoded in the transmission and clearance rate axes: βi and γi, and co-colonization
vulnerabilities kij . In this simulation, we choose r = 0.2, k = 1 and the matrix of standardized interactions is assumed

symmetric (αij) =

(
0
√

2√
2 0

)
, favouring coexistence with αij = αji > αii = αjj . a-b. Equilibrium frequency as

a function of strain-transcending γ. We plot z∗2 as a function of mean clearance rate γ (varied between 1 and 4) for
2 cases of fitness differentials in transmission ∆b and 3 cases of variability in clearance ∆ν. The global transmission
rate is β = 4.5 to ensure R0 ≥ 1. c-d. Equilibrium frequency as a function of strain-transcending β. We plot z∗2 , as
a function of mean transmission rate β (varied between 1.5 and 9) for 2 cases of different variation ∆b and 3 cases of
∆ν. In these plots, overall clearance rate is held fixed at γ = 1 to ensure R0 ≥ 1.

To understand the additional effects of possible variations in transmission probability from mixed coinfec-
tion between strains, we have repeated the same simulations with ∆w < 0, favouring strain 2 (Supplementary
figure S7). It is clear that also this dimension of fitness (within-host advantage) has a substantial effect on
the net competitive dynamics between the two strains, and in particular, in this case, enhances the possibility
of two-strain coexistence.
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6.2 Explicit link for vaccination, coexistence and strain replacement

Similarly, universal vaccination that protects against both strains could be modelled, to a first-order approx-
imation, as a global reduction of β in the system, realized via reduced average susceptibility of all hosts to
infection. In figures 8c and 8d, we explore the effect of a universal reduction in β on the relative prevalence
of two strains. As shown earlier, coexistence is possible only for S1 (β) ≤ ∆b ≤ S2 (β). The value of z∗2 under
such condition is given by Equation 5.8. Plotting this as a function of β in Figures 8c and 8d, we observe again
that changes in strain-transcending transmissibility can have opposing effects on prevalence of a focal strain
(here strain 2). They can either favour its increase in prevalence or its decrease, depending on the underlying
basic trait variation (∆b,∆ν), as well as on coinfection parameters (kij or others).

Turning the inequalities around, another way to interpret the critical borders for ∆b is with regards to
a strain-specific vaccine. For example, assuming universal coverage, in order to predict the minimal vaccine
efficacy needed to exclude a given strain (or group of strains) from the system, given everything else fixed at
pre-vaccine baseline, we can use the model to extract the ∆b that violates the coexistence inequality criterion:
S1 (β) ≤ ∆b ≤ S2 (β). Notice that this criterion specifically implies that in populations with different overall
β a different ∆b (targeted vaccine efficacy) may be needed to reach exclusion. In the case of ∆b < S1(β) we
would ensure exclusion of strain 1 from the system, whereas making ∆b > S2(β) would shift the system to
the exclusion of strain 2 steady state.

6.3 Effects of host demography on 2-strain competition

Changes in natural susceptible recruitment rate (equal host mortality rate) r affect R0 in the system, which
also determines µ, besides appearing itself also explicitly in Eq.5.9. So even with everything else fixed (β, γ, k
and ∆b,∆ν) it is possible to influence competitive dynamics between strain 1 and strain 2, just via host
demography. Increasing host mortality rate, decreases R0 in the system which increases µ and hence gives a
larger weight to the trait variation in clearance rate of infection ∆ν. Increasing host turnover rate might then
enable coexistence of two strains (maintenance of the less fit strain e.g. strain 2) because it could amplify,
and even overturn, the relative advantage in duration of carriage (∆ν < 0) versus the disadvantage in trans-
missibility (∆b > 0). This would imply that in different populations, with different rates of susceptible host
turnover, the dynamics of the same two strains could be different. Thanks to this model, all these mechanisms
and special cases in competitive dynamics between two closely-related strains at the epidemiological scale can
be studied in a fully parameter-explicit and analytical manner, which should promote easier and more direct
testable links with data.

6.4 Dynamical transitions: from N = 2 to the N-strain network

Throughout this study, we have shown explicitly and illustrated in detail how global parameters of the neutral
model, embedded in the center of the dynamics, can shift qualitatively and quantitatively the net competitive
outcome for any given pair of strains. Recall that the N = 2 system forms the basic unit in the full competitive
network among an arbitrary number N of strains, and that qualitative shifts in each network ‘edge’, as a
function of global parameters, can have far-reaching effects on the collective dynamics among multiple strains,
even when strains differ just in co-colonization interactions (Gjini and Madec, 2021a). Having exposed further
nonlinear gradient effects of µ,R0, k, γ, r in the more complete 2-strain system with variation along 5 fitness
dimensions, opens the way towards deeper analysis of their higher-level effects on the N− strain dynamics
and coexistence (Le et al., 2021). Studying dynamical transitions mediated via coinfection prevalence and
strain-transcending epidemiological parameters in the full system is the natural and exciting next step.

7 Discussion

Coinfection is an important aspect of many infectious diseases. There are substantial modeling efforts ded-
icated to co-infection in the last decades (Adler and Brunet, 1991; Lipsitch, 1997; Gjini et al., 2016; Alizon
et al., 2013; Hansen and Day, 2014; Davies et al., 2019). Yet, simple and sufficiently general mathematical
frameworks to analyze and unify the full spectrum of hierarchical patterns emerging from co-colonization
(co-infection) interactions and variation in other fitness dimensions between two strains are missing. Here, we
contribute to fill this gap, thanks to a model reduction obtained after assuming strain similarity (Le et al.,
2021). Focusing on N = 2, here we have modeled simultaneously 5 fitness dimensions where two strains can
differ, and used the decomoposition into two timescales to simplify their dynamics: neutral dynamics between
types on a fast timescale and non-neutral selective processes on a slow timescale, driven explicitly by trait
variation, going beyond (Gjini and Madec, 2017) where only pairwise co-colonization coefficients (a single
‘trait’) were studied.
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Many studies of coinfection are either totally epidemiological in nature (Martcheva, 2009; Thieme, 2007;
Lipsitch, 1997), exploring transmission dynamics of infectious agents in a host population, or they focus on
evolution of specific pathogen traits (often virulence) (Mosquera and Adler, 1998; Alizon et al., 2013) using
the coinfection framework developed by (van Baalen and Sabelis, 1995) for microparasites causing persistent
infections. The latter group of studies, typically derive the conditions of invasion of a rare mutant in a host
population already infected by a resident strain, following adaptive dynamics theory (Meszéna et al., 2005),
where it is further assumed that the resident strain is at equilibrium, that is, that the densities of susceptible,
singly-infected and coinfected hosts have reached their equilibrium values. Invader fitness is then evaluated
using the basic reproduction ratio (van Baalen and Sabelis, 1995), where it becomes clear that the fitness of
a mutant strain is the sum of two components: the fitness achieved through the infection of susceptible hosts
and the fitness achieved through the infection of hosts already infected by the resident. Typically by analyzing
whether the reproduction ratio is greater than or lower than 1, conditions for successful or unsuccessful inva-
sion, and ultimate evolutionary dynamics for the trait in consideration are established. However, sometimes
the criteria derived in such models can be model-dependent, involve cumbersome mathematical expressions,
and may not provide immediate comprehensive insight into the biological mechanisms.

In the present work, with a rather generic model, we have revealed coexistence and competition mecha-
nisms in their bare essence, and have integrated, generalized and advanced analytically these two perspectives
on coinfection. We have linked population dynamics of endemic transmission with slow selective dynamics in
strain trait space. We have generalized single trait evolution to multiple trait evolution, exploring fitness vari-
ation along 5 dimensions between two strains: transmission, clearance, vulnerability to coinfection, duration
of coinfection, and transmission biases from mixed coinfection. We have also presented an analytical expres-
sion for explicit frequency dynamics between two strains, under an endemic global equilibrium, which allows
to use the well-known replicator equation to make predictions for relative strain abundances over time, and
highlights how the means of different traits directly affect their joint variation dynamics. We have illustrated
only special cases, where the traits are uncorrelated. Possible co-variation constraints or trade-offs between
different traits (e.g. transmission-clearance, or transmission -competition in co-colonization) can be studied
under the same analytically-explicit framework, provided they do not violate the similarity assumption.

We believe this analytical approach, derived for general N in (Le et al., 2021), starting with a complete
coinfection structure (involving both same strain and mixed co-colonization as in (van Baalen and Sabelis,
1995; Alizon, 2013; Gjini et al., 2016)), and made possible via timescale separation and model reduction under
the assumption of strain similarity (following (Gjini and Madec, 2017; Madec and Gjini, 2020)), can have
countless further theoretical and practical applications. Understanding more deeply multiple-trait selection
in coinfection systems will enable easier and more direct insights on several important health challenges,
including antibiotic resistance, virulence evolution, optimal immunization and patterns of diversity in multi-
strain endemic pathogens.
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S1 Strain-specific R0 in co-infection vs. actual trait variation

We may consider the relations between the basic reproductive numbers R0,1 and R0,2 in determining the
winner in the case of exclusion. We recall the basic reproductive number of each strain, see Le et al. (2021)
as follows

R0,1 =
β

m
+ ε

β

m

(
b1
β
− ν1
m

)
+O

(
ε2
)
, R0,2 =

β

m
+ ε

β

m

(
b2
β
− ν2
m

)
+O

(
ε2
)

(S1.1)

which implies
R0,1 ≥ R0,2 ⇐⇒ b1 − b2 ≥ R0 (ν1 − ν2) . (S1.2)

where R0 = β/m. Strain 1 has higher strain-specific R0 if and only if its advantage in transmission is bigger
than its relative disadvantage in clearance rate, weighted by the global reproduction number.

For any given value R0,1, when we fix any value of ν1, we can find unique value b1 such that strain 1 is
associated to b1 and ν1 and has the basic reproductive number R0,1. The same holds true for strain 2. This

is plausible because of the formulas R0,i =
βi
mi

=
β + εbi
m+ ενi

.

Hence, with only values of basic reproductive number R0,1 and R0,2, in a coinfection model, we cannot
determine the long time behavior of the dynamics. Figure S1 is actually a vertical slice in each sub figure of
figure S6 when we keep ∆ν unchanged and change the value of ∆b to vary (R0,1, R0,2). It is consistent with
figure S6 when the smaller ∆ν leads to the smaller possibility of coexistence in the same range of ∆b but the
possibility of the exclusion of strain 2 stays the same.

Figure S1: Ecological scenarios do not depend just on relative basic reproduction numbers of strains R0,1

and R0,2. We compare the case of large variation in clearance rate between two strains ν1 = −1, ν2 = 1 (a) with lower
one ν1 = −0.25, ν2 = 0.25 (b). The other parameters are assumed: k = 3, m = 1.5, β = 6, ε = 0.1. We vary ∆b in each
case to obtain the relative comparison between R0,1 and R0,2 shown in the figures. The variations are in transmission
rates βi, single clearance rates γi, and for coinfection clearance rate we assume γij with u12 = u21 = min {ν1, ν2}.
Comparing (a) and (b), for the same combination of strain-specific R0, the scenarios can diverge depending on the
actual difference in strain-specific parameters leading to the particular reproduction number. Particularly, where the
∆ν is higher (a), the relative benefit of strain 2 from lower clearance in mixed co-colonization is larger, leading to a
larger strain-2 only region, and a larger coexistence region, over the same R0 range.

S2 Speed of strain dynamics depends on global parameters

Our model allows explicit quantification of the speed of strain dynamics as a function of epidemiological
parameters. Next we illustrate a dynamics example for a 2-strain system tending to exclusion. For the same
relative variation between two strains, the dynamics are much faster when R0 is lower, in this case obtained by
changes in β. For the dynamics in figure S2, we calculate the values of theta’s and pairwise invasion fitnesses
in each sub figure as follows:
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Figure S2: An example of 2-strain system with multi-trait variation. b1 = 1, b2 = −1.5, ν1 = −2, ν2 = −3,

(uij)ij =

(
1 −2
−2 3

)
,
(
ωi
ij

)
ij

=

(
−1 −3
−1 3

)
and (αij)ij =

(
−
√

2 0√
2 0

)
. We choose mean transmission rate β = 4,

mortality r = 0.2, mean co-colonization interaction factor (altered susceptibility to co-colonization) k = 1.5, and the
initial values of strain frequencies (z1, z2) =

(
0.3 0.7

)
. Both figures present periods of transient coexistence before

the exclusion of strain 1. The dashed-dotted grey vertical lines, denoted by d in two figures show the region where
min (z1, z2) > 0.02. Figure (a) plots for R0 = 1.5, in which, d goes through a point between 3 and 4 (near 4). Figure
(b) plots for R0 = 1.1, in which, d goes through a point very near and less than 1. Thus, it can be seen that the the
region of ”effective transient coexistence” when R0 = 1.5 is larger than when R0 = 1.1.

• (a):
(
θ1 θ2 θ3 θ4 θ5

)
≈
(
0.48 0.2 0.09 0.03 0.2

)
, and

(
λ21, λ

1
2

)
≈ (10.37,−0.20).

• (b):
(
θ1 θ2 θ3 θ4 θ5

)
≈
(
0.51 0.39 0.03 0.07 0.0

)
, and

(
λ21, λ

1
2

)
≈ (8.28,−4.42).

It is easy to verify that because of the values of λji , we have exclusion of strain 2 from the system and only
strain 1 persists, but depending on the value of R0 the dynamics will be quicker or slower. In this particular
case, reducing R0, hence overall endemic prevalence of the two strains, leads to faster exclusion dynamics and
shorter period of transient coexistence.

S3 Qualitative transitions in the same system when varying µ

S3.1 A result for variation occurring only in two out of: i) transmission rates βi,
ii) clearance rates γi and ii) transmission biases from coinfection piij

In this subsection, we prove that, in the case of variation between 2 strains only, can be in transmission rates
βi, clearance rates γi and transmission probability from co-colonized hosts, there is at most one shift for the
ecological outcome as a function of µ (single to coinfection ratio in the system). Indeed, we show this result
in three cases.

Case 1: Transmission rates βi and clearance rates γi vary.

By formulae (4.1) with ∆ω = 0 we have thatλ
2
1 =

γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1)

2
∆b

λ12 = −λ21
. (S3.1)

It suffices to show that the following equation can not have two positive roots

γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1)

2
∆b = 0.

Assume the contradiction, which means that it has two positive roots, which can be denoted by µ1 and µ2.
By Viete’s theorem, we have that

µ1 + µ2 = −
γ

2(γ+r)∆ν + 2∆b
γ
γ+r∆ν + ∆b

> 0, µ1µ2 =
∆b

γ
γ+r∆ν + ∆b

> 0. (S3.2)

Thus, (S3.4) implies µ1 + µ2 +
3

2
µ1µ2 > 0, which is equivalent to

−
γ

2(γ+r)∆ν + 2∆b
γ
γ+r∆ν + ∆b

+
3
2∆b

γ
γ+r∆ν + ∆b

> 0,

2



which is absurd because the left-hand side is equal to −1

2
.

Case 2: Clearance rates γi and transmission probability from coinfected hosts piij vary.

By formulae (4.1) with ∆b = 0 we have thatλ
2
1 =

γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1) ∆ω

λ12 = −λ21
. (S3.3)

It suffices to show that the following equation can not have two positive roots

γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1) ∆ω = 0.

Assume the contradiction, which means that it has two positive roots, which can be denoted by µ1 and µ2.
By Viete’s theorem, we have that

µ1 + µ2 = −
γ

2(γ+r)∆ν + ∆ω
γ
γ+r∆ν

> 0, µ1µ2 =
∆ω
γ
γ+r∆ν

> 0. (S3.4)

Thus, (S3.4) implies µ1 + µ2 + µ1µ2 > 0, which is equivalent to

−
γ

2(γ+r)∆ν + ∆ω
γ
γ+r∆ν

+
∆ω
γ
γ+r∆ν

> 0,

which is absurd because the left-hand side is equal to −1

2
.

Case 3: Transmission probabilities from coinfected hosts piij and transmission rates βi vary.

By formulae (4.1) with ∆ν = 0 we have that{
λ21 = (µ+ 1)

2
∆b+ (µ+ 1) ∆ω

λ12 = −λ21
. (S3.5)

The quadratic equation
(µ+ 1)

2
∆b+ (µ+ 1) ∆ω = 0

has one root to be −1. Hence, it can not have two positive roots, which implies our requirement.

S3.2 The case of four ecological outcomes in the same system according to µ

It is possible to have four distinct ecological outcomes between which the same system with two strains
can shift, as a function of global µ. Initially, we will prove that the necessary condition for the presenting
of fully four survival outcomes: E1, E2, C, B is that, variations are in coinfection clearance rates γij and
co-colonization interaction kij .

Proof. • Firstly, we prove that if variations are only in βi, γi, p
i
ij and kij then we can not have

four survival scenarios as µ→∞.
The formulas for pairwise invasion fitnesses are

λ21 =
γ

2 (γ + r)
µ (2µ+ 1) ∆ν + (µ+ 1) ∆ω +

(R0 − 1)µ

2
(µ (α21 − α12) + α21 − α22) + (µ+ 1)

2
∆b

λ12 = − γ

2 (γ + r)
µ (2µ+ 1) ∆ν − (µ+ 1) ∆ω +

(R0 − 1)µ

2
(−µ (α21 − α12) + α12 − α11)− (µ+ 1)

2
∆b

.

(S3.6)
We have that two equations λ21 = 0 and λ12 = 0 are respectively equivalent to

(Eq1) : A1µ
2 +B1µ

2 + C1 = 0, A1 > 0

and
(Eq2) : A2µ

2 +B2µ
2 + C2 = 0, A2 > 0,
3



in which A1 = A2 and C1 = C2, easily deduced from (S3.6).
On the other side, by direct verification, to have fully four outcomes, the signs of

(
λ21, λ

1
2

)
must change at

least three times, so one in two equations (Eq 1) or (Eq 2) must have two distinguished positive solutions
and the other must have at least one positive solution. By Viete’s theorem, the products of solutions in two
equations (Eq 1) and (Eq 2) are equal. Hence, (Eq 1) and (Eq 2) must have both positive solutions.
Denote two positive solutions of (Eq 1) are x1 < x2, two positive solutions of (Eq 2) are y1 < y2.
By direct checking, and note that when µ→ +∞ or µ→ −∞ , λ21 + λ12 → 0, we have that, to have fully four
outcomes, it must be

x1 < y1 < x2 < y2

or
y1 < x1 < y2 < x2.

Both of these inequality requires the products of solutions in (Eq 1) is strictly less or more than the products
of solutions in (Eq 2), which is a contradiction of the equality of two products mentioned before.
Thus, if variations are only in βi, γi, p

i
ij and kij then we can not have four survival scenarios as µ→∞.

• Secondly, we prove that if variations are only in βi, γi, γij and piij then we can not have
four survival scenarios as µ→∞.

The formulas for pairwise invasion fitnesses now read

λ21 =
γ

2 (γ + r)
µ (2µ+ 1) ∆ν +

γ

2 (γ + r)
(µ+ 1) ∆2u+ (µ+ 1) ∆ω + (µ+ 1)

2
∆b

λ12 = − γ

2 (γ + r)
µ (2µ+ 1) ∆ν +

γ

2 (γ + r)
(µ+ 1) ∆1u− (µ+ 1) ∆ω − (µ+ 1)

2
∆b
. (S3.7)

For the sake of simplicity, we denote that m := 2(γ+r)
γ , d1 := −ν12−ν21+2ν22 and −d2 := −ν12−ν21+2ν11.

We have that two equations λ21 = 0 and λ12 = 0 are respectively equivalent to

(Eq3) : A′1µ
2 +B′1µ

2 + C ′1 = 0, A′1 > 0

and
(Eq4) : A′2µ

2 +B′2µ
2 + C ′2 = 0, A′2 > 0,

now in which
A′1 = 2∆ν +m∆b, B′1 = ∆ν + d1 + 2m∆b, C ′1 = d1 +m∆b

and
A′2 = 2∆ν +m∆b, B′2 = ∆ν + d2 + 2m∆b, C ′2 = d2 +m∆b.

Denote two solutions of (Eq 3) to be x3 < x4, and two solutions of (Eq 4) to be y3 < y4. By the same
arguments, it can be deduce that, to have fully four survival outcome, it must be

(∗) x3 < y3 < x4 < y4

or
(∗∗) y3 < x3 < y4 < x4

where at least 0 < x3 < x4 or 0 < y3 < y4. Without loss of generality, similarly to the previous arguments,
we assume that 0 < x3 < x4 and y4 > 0.

According to Viete’s theorem, we obtain, note that A′1 = A′2

x3 + x4 = −B
′
1

A′1
, x3x4 =

C ′1
A′1

,

y3 + y4 = −B
′
2

A′2
, y3y4 =

C ′2
A′2

.

Case 1: A′1 = A′2 > 0.

• If d1 > d2 then −B
′
1

A′1
< −B

′
2

A′2
and

C ′1
A′1

>
C ′2
A′2

, which implies x3 + x4 < y3 + y4 and x3x4 > y3y4. From

x3 + x4 < y3 + y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3x4 > y3y4.
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• If d1 < d2 then −B
′
1

A′1
> −B

′
2

A′2
and

C ′1
A′1

<
C ′2
A′2

, which implies x3 + x4 > y3 + y4 and x3x4 < y3y4. From

x3x4 < y3y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3 + x4 > y3 + y4.

Case 2: A′1 = A′2 < 0.

• If d1 > d2 then −B
′
1

A′1
> −B

′
2

A′2
and

C ′1
A′1

<
C ′2
A′2

, which implies x3 + x4 > y3 + y4 and x3x4 < y3y4. From

x3x4 < y3y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3 + x4 > y3 + y4.

• If d1 < d2 then −B
′
1

A′1
< −B

′
2

A′2
and

C ′1
A′1

>
C ′2
A′2

, which implies x3 + x4 < y3 + y4 and x3x4 > y3y4. From

x3 + x4 < y3 + y4, then 0 < x3 < y3 < x4 < y4, which contradicts x3x4 > y3y4.

Hence, if variations are only in βi, γi, γij and piij then we can not have four survival scenarios as µ→∞.

In the main text, we give an example, in which varying µ from 0 to ∞ may give us 4 outcome exclusion
of either strain, coexistence and bistability.

S4 Examples for 3 possible global outcomes

We illustrate possible outcomes as a function of ∆b and ∆ν, similarly to Figure 6, when the perturbations
are only in transmission rates βi, clearance rates γi and co-colonization interactions kij . We recall that the
borders separating exclusion regions are lines representing λ21 = 0 and λ12 = 0.

According to the explicit formulas of
(
λ21, λ

1
2

)
, the border lines have the same slope, thus leading to

parallelism. Thus, there are at most 3 possible outcomes for each fixed value (R0, k). Figures S3 and S4 shows
that changing the matrix (αij) may generate different final outcomes.

According to (3.1), we can deduce that regardless of changing (αij), we can not observe coexistence and
bistability for a fixed value of (αij). Indeed, according (3.1), two coefficients of ∆ν in the formulae of λ21 and
λ12 are of opposite sign, and the same holds for ∆b.

Then, for (∆ν,∆b)→ (∞,∞) and (−∞,−∞), we have the opposing signs of
(
λ21, λ

1
2

)
, leading to exclusion.

Figure S3: Illustration of 3 possible outcomes, as a function of ∆ν and ∆b, for different values of k and
R0. We highlight the respective regions in different colors, according to the critical relationship between ∆b, ∆ν, k

and R0 when perturbations happen only βi, γi, and kij with γ = 1, r = 0.2 and the matrix (αij) be

(
0 −

√
2

−
√

2 0

)
.

Three possible survival outcomes include the exclusion of strain 1, bistability and the exclusion of strain 2.
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Figure S4: Illustration of 3 possible outcomes, as a function of difference in transmission and clearance
rates between two strains, for different values of k and R0. We highlight the respective regions in different
colors, according to the critical relationship between ∆b, ∆ν, k and R0 when perturbations happen only βi, γi, and

kij with γ = 1, r = 0.2 and the matrix (αij) be

(
−2 0
0 0

)
. This changing of matrix (αij) flips the position of two

lines λ2
1 = 0 and λ1

2 = 0 leads to the other possible outcomes. Three possible system outcomes include: the exclusion
of strain 1, coexistence and the exclusion of strain 2.

S5 The analytical expression for coexistence prevalence

Here we compute the value of z∗2 in the case of symmetric co-colonization interaction matrix. Thus: αij = αji,
αii = αjj . We also assume that strain-specific transmission probability from mixed coinfected hosts is in this
case piij = 1

2 (no priority effects).

• Perturbation in βi, γi, γij , kij

z∗2 =
1

2
·
−∆b− θ2

θ1
∆ν +

θ3
θ1

(2u11 − u12 − u21) +
θ5
θ1

(α12 − α11)

θ3
θ1

(u11 + u22 − u12 − u21) +
θ5
θ1

(α12 − α11)

(S5.1)

• Perturbation in βi, γi, kij

z∗2 =
1

2
·
−∆b− θ2

θ1
∆ν +

θ5
θ1

(α12 − α11)

θ5
θ1

(α12 − α11)

=
1

2

 −∆b− θ2
θ1

∆ν

θ5
θ1

(α12 − α11)

+ 1


=

1

2

(
− 1

α12 − α11
· 2 (γ + r) + k (β − γ − r)

k (β − γ − r)2
· γ∆ν − 1

α12 − α11
· 2 (γ + r + k (β − γ − r))2

k (β − γ − r)2
∆b+ 1

)
.

(S5.2)
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S5.1 Studying the monotonicity of z∗2: increasing vs. decreasing equilibrium
strain frequency

For the sake of simplicity, and for the purposes of illustration, we consider the equilibrium of resistance strain
in section 4. Recall the formula of z∗2 in (5.8)

z∗2 =
1

2
−∆ν · γ 2 (γ + r) + k (β − γ − r)

2
√

2k (β − γ − r)2
−∆b

[γ + r + k (β − γ − r)]2
√

2k (β − γ − r)2
. (S5.3)

To investigate the monotonicity of strain frequency, we need to compute the first partial derivative of z∗2 with
respect to β and γ, noting that m = γ + r and investigate its sign:

∂z∗2
∂β

= −∆ν
1

2
√

2k

(k − 4)m− βk
(β −m)

3 −∆b
1√
2k

2m ((k − 1)m− βk)

(β −m)
3 , (S5.4)

and

∂z∗2
∂γ

= −∆ν
1

2
√

2k

β (βk − km+ 4m)− r ((k + 2)β − (k − 2)m)

(β −m)
3 −∆b

1√
2k

2β (βk − km+m)

(β −m)
3 . (S5.5)

It can be seen that the expressions are entirely explicit but they display nonlinear dependence on many
parameters, including strain variation (∆b,∆ν), as well as mean parameters β,m or coinfection determinants
(k, etc.). This allows to obtain a full analytic understanding of the coexistence between two strains at the
epidemiological level and how their relative hierarchies depend and may shift with overall context.

Figure S5: Monotonicity and convexity of z∗2 according to transmission rate β and clearance rate γ. We

choose r = 0.2, k = 1 and matrix including entries αij is

(
0
√

2√
2 0

)
. The behavior observed is by plotting for

∆ν = −0.5. In (a) and (c), setting ∆b = 0.3, we plot z∗2 according to γ with β = 5.3 and β = 6.3 respectively. Figures
(c) and (b) present the curve of first and second orders derivatives of z∗2 according to γ, respective for figures (a) and
(b).

S5.2 Studying the convexity of z∗2: accelerating vs. decelerating behavior

In this subsection, we consider the convexity of z∗2 with respect to β and γ, global strain-transcending param-
eters, that can be controlled via interventions (antibiotic treatment, vaccines, etc.). Thus, we compute the
second-order derivative of z∗2 related to β as follows, noting that m = γ + r:

∂2z∗2
∂β2

= −∆ν
1√
2k

6βm+ (−4m+ k) (β −m)

(β −m)
4 −∆b

√
2m (3m− 2km+ 2βk)

k (β −m)
4 , (S5.6)
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and the second-order derivative of z∗2 related to γ as follows:

∂2z∗2
∂γ2

= −∆ν
βk − (k − 6)m
√

2k (β −m)
4 −∆b

2β ((2k + 1)− 2 (k − 1)m)

k (β −m)
4 . (S5.7)

These expressions reveal whether the behavior of the strain frequency as a function of global parameters is
decelerating or accelerating. This has implications for the control of the strain composition at the population
level if we intervene via changing global transmissibility of all strains β or global clearance rate γ. If the
behavior is increasing and accelerating, this means that the frequency of that strain can reach fixation for
some value of the global parameter. If the behavior is increasing and decelerating (first derivative positive and
second derivative negative) this means that the strain frequency saturates at a particular value < 1 indicating
coexistence in the limit of high values of the control parameter. The following simulation in Figure S5 allows us
to see how we can use these analytical expressions above to predict exactly the behavior the strain coexistence
frequencies as a function of our parameters, and possible responses to interventions in global transmission
rate β or clearance rate γ. In these figures, we can see that z∗2 is always convex related to γ in the considered
period of varying γ.

S5.3 Effect of transmission priority effects from mixed coinfection ∆ω

To see the effect of transmission biases from mixed coinfection, as in the section 4 we plot the values of pairwise
invasion fitnesses according to the single to co-colonization ratio µ. From 4.1, it is known that if variations are
only in transmission rates βi, clearance rates γi and transmission probability from coinfected hosts piij , the
outcome is always the exclusion of either strain. In this figure, the perturbations are in transmission rates,
clearance rates, transmission probability from co-colonized hosts as well as in co-colonization interaction factor
kij to break the anti-symmetry. Except the transmission biases from mixed coinfection piij favor to strain 2,
other trait differences in βi, γi favors to strain 1.

We consider in three cases including co-colonization interaction factor kij favors to strain 1, disfavors to
strain 2 and counter balance. Although the difference ∆ω is bias to strain 2, when µ is large enough, the
difference in transmission probability does not effect too much. This can be seen in the similar trending of(
λ21, λ

1
2

)
in figures (a, b, c) in figure 4, whose values of ∆b and ∆ν are kept the same.

These phenomena are plausible because the weight (written in µ) of transmission probability from coin-
fected hosts is µ+ 1 in the formulae of invasion fitnesses (4.5). Of course, unlike 4.3, when µ is small enough,
∆ω leads to the exclusion of strain 2 in figure S6 (a) and the exclusion of strain 1 in figure S6 (b). Meanwhile,
λ21 is always positive in figure 4 (a) and λ12 is always negative in figure 4 (b).

Figure S6: Additional effects of within-host transmission advantage from mixed coinfection piij 6= 1
2

(for
comparison with Figure 4 a-b-c) Here we combine variation in co-colonization interactions kij with variations in
transmission rates, infection clearance rates, and transmission probability from coinfected hosts (See Eqs (4.9)). We
compute pairwise invasion fitnesses

(
λ2
1, λ

1
2

)
according to µ in various cases of co-colonization interaction matrix (αij).

We illustrate the cases of transmission and clearance superiority of strain 1 (parameters as in top row of Figure 4):
∆b = 0.4, ∆ν = 0.8, R0 = 5, r = 0.5 and γ = 1.5. We choose the value ∆ω = −2 to increase the advantage in

transmission probability of strain 2 from mixed coinfection. We consider 3 structures: (a)

(
−2 0
0 0

)
; (b)

(
0 0
0 2

)
;

(c)

(
−
√

2 0

0
√

2

)
for variation in co-colonization interactions.

Secondly, as mentioned in Sections 6.1 and 6.2, we point out that depending on how the fitness differential
between strain 1 and its competitor strain 2, is manifested (∆b,∆ν) increasing strain-transcending clearance
or tranmission rates (γ or β) in a population can have opposing effects. Besides other trait parameters which
are kept unchanged, we analyze the effect of ∆ω < 0 favouring strain 2, and how this modifies the range
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of γ guaranteeing the coexistence, originally observed in Figure S7. We can see that the shapes of curves
representing z∗2 are similar to the Figures 8 (a, b, c, d). respectively. However, in Figures S7 for all (a, b,
c, d), for ∆ν > 0 (which favours strain 1), compared to figures 8 (a, b, c, d) respectively, the ranges for
survival of strain 2 are larger, highlighting the positive effect of its precedence in transmission from mixed
coinfection. In contrast to this, when ∆ν < 0, the range for coexistence decreases, to a larger advantage of
strain 2-only persistence. In all cases, the values of equilibrium of strain 2 in Figure S7 corresponding to each
parameter γ or β are higher than in Figure 8.

Figure S7: Strain frequency at the endemic equilibrium vs. γ and β depends on underlying trait variation
(related to Fig.8 but with ∆ω 6= 0). We plot the prevalence of strain 2, z∗2 at the coexistence equilibrium (Eq.
5.8), as a function of mean transmission rate and mean clearance rate. Variation among 2-strains is encoded in the
transmission and clearance rate axes: βi and γi, transmission probability from co-colonized hosts piij and co-colonization
vulnerabilities kij . In this simulation, we keep the same values of r, k and the matrix of standardized interactions in
Figure 8. We choose ∆ω = −0.5, which favors strain 2 in precedence of transmission from mixed coinfection. a-b. We
plot the equilibrium z∗2 as a function of mean clearance rate γ (varied between 1 and 4) for 2 cases of fitness differentials
in transmission ∆b and 3 cases of variability in clearance ∆ν. The global transmission rate is β = 4.5 to ensure R0 ≥ 1.
c-d. We plot the equilibrium frequency of strain 2, z∗2 , as a function of mean transmission rate β (varied between 1.5
and 9) for 2 cases of different variation ∆b and 3 cases of ∆ν. In these plots, overall clearance rate is held fixed at
γ = 1 to ensure R0 ≥ 1.
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