Robust Subspace Tracking With Missing Data and Outliers: Novel Algorithm With Convergence Guarantee - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Signal Processing Year : 2021

Robust Subspace Tracking With Missing Data and Outliers: Novel Algorithm With Convergence Guarantee

Abstract

In this paper, we propose a novel algorithm, namely PETRELS-ADMM, to deal with subspace tracking in the presence of outliers and missing data. The proposed approach consistsof two main stages: outlier rejection and subspace estimation. In the first stage, alternating direction method of multipliers (ADMM) is effectively exploited to detect outliers affecting the observed data. In the second stage, we propose an improved version of the parallel estimation and tracking by recursive least squares (PETRELS) algorithm to update the underlying subspace in the missing data context. We then present a theoretical convergence analysis of PETRELS-ADMM which shows that it generates a sequence of subspace solutions converging to the optimum of its batch counterpart. The effectiveness of the proposed algorithm, as compared to state-of-the-art algorithms, is illustrated on both simulated and real data.
Fichier principal
Vignette du fichier
Manuscript.pdf (7.53 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03212505 , version 1 (03-05-2021)

Identifiers

Cite

Le Trung Thanh, Viet Dung Nguyen, Nguyen Linh Trung, Karim Abed-Meraim. Robust Subspace Tracking With Missing Data and Outliers: Novel Algorithm With Convergence Guarantee. IEEE Transactions on Signal Processing, 2021, 69, pp.2070-2085. ⟨10.1109/TSP.2021.3066795⟩. ⟨hal-03212505⟩
120 View
349 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More